AN OPEN RF-DIGITAL INTERFACE FOR
SOFTWARE-DEFINED RADIOS

THIS ARTICLE PRESENTS AN OPEN, COMPLETE RF-DIGITAL INTERFACE APPROPRIATE FOR

SOFTWARE-DEFINED RADIOS (SDRS). THE INTERFACE INCLUDES DATA AND METADATA

(CONTROL AND CONTEXT) PACKETS. THE CONTROL AND CONTEXT PACKETS DESCRIBE THE

ENTIRE RF FRONT END. THE PROPOSED DESCRIPTION HAS A HIERARCHICAL STRUCTURE

AND IS A HARDWARE ABSTRACTION. THE INTERFACE SUPPORTS ADVANCED

ARCHITECTURES SUCH AS SDR CLOUDS. THE METADATA PACKETS CAN BE REPRESENTED

USING FORMAL, COMPUTER-PROCESSABLE SEMANTICS.

o o o o o o Wireless signals are centered at a
certain RE The signal-processing operations—
synchronization, modulation, and so on—are
implemented on baseband signals centered at
zero frequency. Therefore, receivers must
down-convert from RF to baseband. Trans-
mitters perform the opposite process of
up-conversion. The RF front end, located
between the antenna and the digital subsys-
tem, performs the tasks of down-conversion
and up-conversion and also does filtering for
frequency band selection and amplification.

In this article, we advance an RF-digital
interface that is open, which allows the RF
front end and the digital hardware to be
seamlessly replaced independently of each
other. This property is not achieved by pre-
vious attempts at defining this interface.

The developed interface is a stream of
data and metadata (context and control)
packets. The proposed interface completely
describes the RF front end and can serve as a
hardware abstraction language for it. The
metadata packets can be described using a
simple ontology, such as RDE, and exchanged
among different cognitive radio platforms.
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RF front-end details
As Figure 1 shows, the RF front end is not

entirely analog; it consists of an analog front
end and a digital front end (DFE)." The DFE
does interpolation or decimation to increase or
decrease the sampling frequency. Furthermore,
the down-conversion and up-conversion can
be implemented partially or even entirely
with digital signal processing (DSP). (See the
“Glossary” sidebar for a list of terms.)

In a software-defined radio (SDR), the
radio access technologies (RATs) at the base-
band level are implemented entirely in soft-
ware. A RAT can be called a radio protocol,
although more accurately it is an aggregation
of protocols. For radio protocols imple-
mented entirely in software, the digital hard-
ware platform must be programmable. Such
platforms can be built with general-purpose
processors, digital signal processors, or field-
programmable gate arrays (FPGAs).

The International Telecommunication
Union (ITU) defines SDR as a radio “that
allows the RF operating parameters includ-
ing, but not limited to, frequency range,
modulation type, or output power to be set
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Glossary

Baseband: digitally modulated signal that is low-pass in nature
(that is, not up-converted onto an RF carrier)

Interpolation: increasing the sampling frequency

Decimation: decreasing the sampling frequency

IF: intermediate frequency

Down-conversion: the process of moving a signal’s spectrum
content from RF to zero frequency (or to IF)

technology

Up-conversion: the process of moving a signal’s spectrum con-
tent from zero to RF (or to IF)
Waveform software: software that implements a radio-access

Ontology: a general mechanism to describe objects in a certain
domain and the relationships between them
Metadata: data that helps interpret signals (data about data)
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Figure 1. Block diagram of a software-defined radio (SDR) system. The architecture of an
SDR includes hardware, system software, and service software layers.

or altered by software, excluding changes to
operating parameters which occur during the
normal preinstalled and predetermined oper-
ation of a radio according to a system specifi-
cation or standard.”” Therefore, SDR can be
defined simply as a radio that can implement
radio protocols to be defined in the future.
Therefore, SDR architecture is the science
and art of interconnecting hardware and soft-
ware components to create such “future-
proof” radios. To become future-proof,
radios should have upgradable software and
hardware. Architectures that allow the add-
ing, upgrading, and swapping of hardware
and software components can be called open.
If one makes a parallel comparison with com-
puter architecture, an SDR’s architecture
includes hardware, system software, and serv-
ice software layers (see Figure 1).
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The radio in Figure 1 can operate at any
one of N different RATs, such as Wi-Fi,
GSM, and LTE-Advanced. The center fre-
quency and power at the RF level can be con-
sidered completely independent of the radio
protocol. A special element is necessary to
determine which radio protocol is active at
any one time, and at what parameters (such
as center frequency and power) this protocol
will operate. This element in Figure 1 is the
cognitive engine (CE). (The architecture in
Figure 1 is similar to that in previous work by
the SDR Forum,” where the term “switcher”
is used instead of a CE.) Figure 1 can also
describe radios that aren’t software-defined,
in which the radio protocols are imple-
mented with dedicated hardware that isn’t
programmable. In such hardware radios, usu-
ally every radio protocol is connected using a



closed RF-digital interface to a separate RF
front end.

In both SDR and non-SDR, there are
other software applications. The difference
between these software applications and radio
protocols implemented in software (or “radio
software,” for short) is that the radio software
has much greater execution-speed require-
ments. As a result, the radio software can’t be
made completely independent of the digital
hardware, which is indicated by the dotted
lines in Figure 1. This is the main barrier to
implementing radio protocols entirely in
software. Another, more subtle barrier to
achieving SDR is the lack of an open RF-
digital interface. If the RE-digital interface is
closed, the radio protocols become hardware
dependent.

In pursuing an open architecture, several
horizontal and vertical interfaces in Figure 1
can be defined. The Software Communica-
tions Architecture (SCA) defines a set of
interfaces that isolate the radio applications
from the hardware.® Another related work
specifies a programming interface of C++,
VHDL (VHSIC Hardware Description Lan-
guage), and IDL (Interface Definition Lan-
guage) that is a set of APIs between the
waveform application and the rest of the
radio.” The goal is to make the waveform
software portable onto different platforms.

While these interfaces are also important,
the RF-digital interface is critical in achieving
hardware modularity. Early attempts at defin-
ing the RF-digital interface for SDR consid-
ered a hardware bus-type interface.”> One
obvious limitation of this solution is that a
hardware bus can operate only at specific
clock speeds and data rates. Furthermore, the
work completely ignored the metadata,
including parameters such as frequency and
power.” These parameters were defined for
the first time by VITA 49.° However, the
VITA 49 standard is incomplete because it
doesn’t specify the transmitter side or how to
control the receiver. In this article, we
describe a complete packet-based interface
that lets the RF subsystem and the digital
subsystem be replaced independently of each
other. This interface completely describes the
RF front end—that is, it can be used as a
hardware abstraction language for the RF
front end.

The RF-digital interface

The RF-digital interface in Figure 1
includes both high-speed data and low-speed
metadata. Unlike conventional radios, in SDR
the metadata can’t be assumed to be constant
and known. Figure 2 shows a way to imple-
ment the RF-digital interface where the meta-
data is defined explicitly. In general, the main
blocks of a transmitter include a digital-to-
analog converter (DAC), followed by an up-
converter, power amplifier (PA), and transmit
RF filter. An up-converter or down-converter
generally consists of a local oscillator, mixer,
and a filter. The local oscillator’s frequency is
software-defined. After up-conversion, the RF
signal is amplified using the PA, for which
gain and output power are the main program-
mable parameters. To adjust the transmit
power level, there might be a programmable
attenuator (not shown). The receiver consists
of a channel-select RF filter, amplifier, down-
converter, and analog-to-digital converter
(ADC). The important parameters of pro-
grammable RF filters are RE bandwidth, out-
of-band attenuation, and stop-band edge. A
programmable impedance-matching circuit
(not shown) can also be used. A duplexer sepa-
rates the transmit and receive paths in time or
frequency. The antenna and the duplexing
technique must also be software-defined in
general, although this isn’t easy to achieve in
practice. In any practical SDR device, not all
parameters will be software-defined. Which
parameters are programmable and the specific
way they are programmed is hardware-
dependent and should be hidden from the
RF-digital interface.

To achieve these properties, we propose a
packet connection between the RF and digital
subsystems (Figure 2). Over this packet connec-
tion, there are six packet types that implement
the interface: data, context, control, extension
data, extension context, and extension control
packets. The data, context, and control packet
types are mandatory. Each of the extension
packet types is optional. The packet header
conveys the packet type. If a decoder does not
support a particular extension packet type, it
ignores its content and could provide feedback
indicating a potential problem.

In this article, we focus on the case in which
the RF front end generates context packets and
the digital hardware side generates control
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Figure 2. The packet-based RF-digital interface. The metadata is defined explicitly.
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packets, but more generally, all metadata pack-
ets are bidirectional. Context packets include
parameters pertaining to both the transmitter
and receiver such as RE IE bandwidths, ADC
and DAC sample rates, ADC, and DAC num-
ber of bits, gain, voltage full-scale range, filter
order, out-of-band attenuation, stop-band
edge, transmit output power, reference point,
timestamp, timestamp delay, and location.
Collectively, these parameters describe the RF
front end completely. Every time one or more
of these parameters changes, the RF encoder
sends a context packet containing the current
value of the parameters that have changed.
The control packets contain metadata
specifying the reference point, timestamp,
and output power pertaining to the transmit-
ter, and the DAC and ADC sample rate,
DAC and ADC number of bits, reference
level, voltage full-scale range, RE, IF, local
oscillator (LO) power, bandwidth, gain, filter
order, out-of-band attenuation, and stop-
band edge pertaining to both the transmitter
and receiver. The control packets include all

RF front-end parameters that are software-
defined. The control packet decoder is tightly
coupled to the analog front end and trans-
lates the metadata to each programmable
device’s hardware settings.

In addition to the data, context, and con-
trol packets, our proposed solution includes
their extension counterparts. The interface is
extensible, and arbitrary additional parame-
ters can be defined in extension control pack-
ets. For example, extension data packets
could carry spectrum information. The
extension context packets can be used to con-
vey bit error rates, power supply voltages, and
receiver noise figures. Note that there might
be power-management circuitry that can
turn off parts of the radio when not in use.
Although Figure 2 doesn’t show power man-
agement, if this feature is desired, power-
management information can be specified in
extension control packets.

At the RF-digital interface, encoders and
parsers exchange multiplexed streams of
packets (Figure 2). The interface to the RF



transmitter has a packet encoder on the digi-
tal hardware side and a packet parser on the
RF side. The output of the packet encoder is
a stream of multiplexed signal and control
packets (and optionally their extensions).
The parser on the RF side receives this stream
and separates the control packets from the
data packets. The payload of the transmit
darta packets is fed to the DAC. The parame-
ters specified in the control packets are trans-
lated into a hardware-specific format for
every software-defined element.

Every circuit element of the RF front end
in Figure 2 can be controlled individually
using a control packet. However, every
parameter has minimum and maximum val-
ues. For example, the RF front end should
not be told to tune to a particular frequency if
it can’t operate at that frequency. Within one
radio, the tuning range (if any) is always
known, but like all metadata in previous radio
designs, it has never been explicitly defined.
Now, the control packet encoder on the digi-
tal side must be made aware of every compo-
nent’s tuning range to produce proper control
packets. This awareness can be provided by
context packets or extension context packets.
If a parameter is fixed, this can be communi-
cated by the tuning range information. Typi-
cally, the tuning range must be updated when
the RF front end is replaced. Because this
happens less often than other contexts need to
be changed, it’s appropriate to specify tuning
range in extension context packets transmit-
ted by the context packet encoder in Figure 2.

The RF side also has a packet encoder
that’s connected to a packet parser on the digi-
tal hardware side. The elements in the receiver
chain are connected in a hardware-dependent
way to the context packet encoder, which in
turn produces proper context packets with
information such as RE IF, bandwidth, and
sample rate. The context packet encoder can
also keep track of GPS data and includes loca-
tion information in the context packets. The
RF packet encoder’s output is a stream of mul-
tiplexed signal and context packets (and
optionally, their extensions). From this stream,
the digital-side parser separates the packet
types and processes them appropriately.

It becomes clear that the metadata (con-
trol and context) packets are multiplexed
with the data packets and can be considered

as overhead. However, the metadata packets
need not be sent as often as the data packets.
Control and context packets need to be sent
only when the relevant metadata changes—
that is, the metadata is understood to be per-
sistent between updates. This makes the over-
head due to the control and context packets
proportional to how often parameters such as
the center radio frequency and bandwidth
change. Because sampling periods are typi-
cally on the order of nanoseconds, while
metadata parameters such as center frequency
change on the order of milliseconds, the time
to transmit the metadata will be negligible
compared to the time to transmit the data
packets.

The proposed interface promotes modu-
larity by being completely independent of
the PHY and MAC used by the wireless sys-
tem, and by being independent of the specific
technique to carry these packets. For exam-
ple, the connection between the RF front end
and the digital system can be implemented
using Gigabit Ethernet. Although the con-
nection could reside at layer 2 and below, it
could also be implemented as a full network
stack with either TCP or User Datagram Pro-
tocol, for example.

Reference points, stream IDs,
and timestamps

We specify where the metadata applies
using the concept of reference points. For
instance, the center frequency or power-level
characteristics are unclear if the reference
point is unknown. Therefore, metadata pack-
ets include reference points.

The ability to multiplex different packet
types onto the same connection is supported
by the concept of Stream Identifiers or IDs.
Data and metadata packets that share a
stream identifier have a one-to-one relation-
ship, referred to as data-metadata pairing. A
data packet stream and a paired metadata
packet stream form an information stream.
For example, a data packet will be transmit-
ted with the RF parameters specified in the
most recent paired control packet. There
could be multiple information streams, for
example, if there are multiple spatial streams.

All six packet types can include timestamps
to enable synchronization. For example, control
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Figure 3. Radio transmitter operating with the proposed control and data packets. Three reference points—a digital IF signal,
the DAC output, and an RF signal—describe the RF front end’s topology at a coarse level.
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packets are time-stamped so that the software-
defined elements in the RF front end are con-
figured at the specified time instant.

The timestamp in data packets sent from
the RF encoder indicates the local time at the
time of timestamping. However, it’s often
desirable to use the antenna as a reference
point and convey accurately the instant a sig-
nal is impinging on the antenna. A signal that
arrives at the antenna will emerge from the
RF encoder with a certain delay due to the
delays introduced by the various electronic
circuits in the RF front end. This is why there
is a timestamp adjustment field to account for
all delays prior to attaching the timestamp. If
we want the reference point to be the antenna,
then negative timestamp adjustments can be
included, indicating that events at the refer-
ence point occurred earlier than the time-
stamp specifies. The timestamp adjustment is
a single value that’s specific for the RF front
end and is useful because it does not have to
be equal to a multiple of the sampling period.
For data packets sent to the RF front end, the
timestamp refers to the time to start emission
of the data, keeping in mind that the actual
transmission will start with a delay that is
equal to the timestamp adjustment.

Note that for synchronization timestamps
are required, but not sufficient. Together
with timestamps, GPS can achieve synchro-
nization. However, there are other techniques

for clock and time-of-day synchronization,
even without GPS.” In this way, even radios
that are at geographically different locations
can operate synchronously.

Figure 3 illustrates the concepts discussed
so far. The figure has three reference
points—the digital IF signal fed to the DAC,
the DAC output, and the RF signal at the
output of the up-converter, which are
assigned IDs of 9, 8, and 7, correspondingly.
These reference points describe the RF front
end’s topology. Two control packets are
shown—one for the DAC and one for the
up-converter, which is described by RE, IFE,
and bandwidth. An IF frequency of zero can
indicate up-conversion from baseband. We
can describe the DAC using sample rate,
number of bits, and reference level.

Figure 3 also shows the format of the
packets. The first word is a header that con-
tains information about the packet type and
packet size. The header is followed by a
stream identifier, a reference point, and an
optional timestamp. For data packets, the
time stamp is followed by the payload. For
context and control packets, the timestamp is
followed by metadata parameters.

Examples
We can combine the metadata descrip-
tions of several circuit elements; ultimately,



all transmit or receive circuit elements of the
SDR architecture can be described with a single
packet. Therefore, this technique is in fact a hier-
archical description language for the RF front
end. Then, we can aggregate the control and
context to and from each component and gener-
ate aggregate control or context packets. This
aggregate control or context packet describes the
entire RF front end with the reference point
being the antenna. For example, we can com-
bine the up-converter and the DAC control
packets in Figure 3 in a single control packet.

Furthermore, the ongoing evolution of
wireless technology is leading to systems in
which there is coordination and cooperation
among radios to reduce the probability of error.
For example, if data is relayed, two or more
independent copies are received at the destina-
tion, improving the robustness. Figure 4 illus-
trates the operation of a relay with aggregate
context and control packets that are paired with
the respective data packets. Both amplify-and-
forward and decode-and-forward relaying tech-
niques can be used.

A related development is distributed
antenna systems or SDR clouds,® in which the
RF front end is collocated with the antenna,
whereas the digital signal processing is per-
formed remotely at a data center, conceptually
similar to cloud computing. Figure 5 illustrates
an SDR cloud that has two information
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Figure 4. Wireless relay. According to the
proposed architecture, an RF front end can
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streams, one for every spatial stream. This
SDR cloud supports advanced wireless techni-
ques—such as joint transmission—that require
coordination among the spatial streams. In
joint transmission, multiple devices jointly
transmit data to another device to improve the
received signal’s quality, and the defined meta-
data packets can accomplish the required coor-
dination. Note that in SDR clouds, the
distinction between radio and RF front end is
becoming blurred, and RF-digital interface
becomes the interface between the RF front
end and the dloud.

Metadata packet descriptions
using RDF ontology

The ITU defines cognitive radio as a radio
that can “obtain knowledge of its operational
and geographical environment, established pol-
icies and its internal state; to dynamically and
autonomously adjust its operational parameters
and protocols according to its obtained knowl-
edge in order to achieve predefined objectives;
and to learn from the results obtained.”?

Therefore, a cognitive radio must have
domain knowledge of radio communication.
On the basis of this knowledge, the CE can
optimize the various parameters and protocols.
There is a difference between the CE and other
applications such as web browsing; the CE
must have hardware-specific knowledge. Some
metadata parameters such as center RF and
power level are physically determined only by
the RF front end. On the other hand, it is
desirable to isolate the CE from the underlying
hardware and make it fully portable (Figure 1).
This requires some hardware abstraction.
Therefore, for cognitive radios supporting
multiple radio protocols, an open RF-digital
interface is more appropriate than a closed
interface for every radio system.

Ontology is a general mechanism to describe
objects in a certain domain and the relationships
among these objects. A cognitive radio ontology
has been developedg; it provides a Web Ontol-
ogy Language (OWL) representation of the
Transmitter APL> This ontology tries to define
all possible radio protocols and describes the
basic terms of wireless communications, such as
“bit,” “symbol,” and “channel model.”’

Our focus is on the RF-digital interface,
which contains the minimum set of

parameters that must be described. The
parameters defined in the metadata packets
must be part of any radio ontology, because
these parameters describe the entire RF front
end.

A radio might be asked, “What are the
minimum and maximum RF at which you
can transmit?” or “What are the minimum
and maximum bandwidths at which you can
operate?” For radios to understand such ques-
tions, they must not only speak a common
language'® but they must also have explicitly
defined metadata. To enable such interac-
tions, it is convenient to use a simple ontol-
ogy scheme such as the Resource Description
Framework (RDF).'® It describes things
using triplets—for example, subject, predi-
cate, and object. The subject is the resource
being described. The predicate is a property
of the subject, and the object field contains
the value of this property. The mapping
between such ontology descriptions and the
context and control packets is one to one.

This description method allows queries to
be made and answered. The query is a series
of triplets in which some of the slots contain
variables. For example, a query about the
minimum and maximum RF would be:

PREFIX sdr: <http://opensdr.org/sdr/>
SELECT ?xmin ?xmax
WHERE {

?x sdr :MinRFfrequency ?xmin .

?x sdr :MaxRFfrequency ?xmax .

If this device operates between 5,000 and
6,000 MHz, the response would be:

<sdr:Device rdf :about="#DeviceID” />
<sdr:MinRFfrequency

rdf : resource="#5000 MHz"” />
<sdr:MaxRFfrequency

rdf : resource="#6000 MHz"” />

The #-prefix states that the device is defined
in the local namespace. With this description
method, a radio can also be asked to adjust its
operating parameters. For example, to ask the
radio to tune to 5,200 MHz, we can use:

<sdr:Device rdf :about="#DeviceID” />
<sdr:Purpose rdf :about="ChangeState” />



<sdr:RFfrequency rdf:resource="#5200
MHz” />

If the devices are synchronized, then we
can add <sdr:Timestamp rdf:resource=
“#value” /> to specify an exact time instant
when these parameters should be changed.

All metadata packets—the control, the con-
text, and their extensions—can be represented
using such formal, computer-processable
semantics. Note that the sequence of descrip-
tions doesn’t matter. RDF applications do not
have to understand the complete description.
They look for parts they understand and ignore
the rest. This lets the ontology be extended
while maintaining complete backwards com-
patibility. Therefore, this is a method to
describe completely the current operational sta-
tus and capabilities of RF components.

A n open RF-digital interface, where
the RF front end and the digital hard-
ware are replaced independently of each
other, is possible. Metadata is defined explic-
itly, which facilitates cognitive radios that
require metadata anyway. This interface
makes advanced architectures such as SDR
clouds practical.

The metadata can be described using ontol-
ogies. One task for future work is to develop a
comprehensive wireless ontology. Nicko
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