
18 VITA Journal

VMEbus FAQs—
Frequently Asked Questions for

the Beginning VMEbus User
John Rynearson, Technical Director,
VITA

Questions: What are address mod-
ifier codes? Are they an option on
VME? What purpose do they
serve? How does a master gener-
ate these codes? Must all slaves
decode these lines?

Address modifier (AM) codes have turned
out to be one of the best ideas conceived
by the original developers of the VMEbus.
AM codes, as they are called, have
allowed the VMEbus to evolve with new
technology and to meet new application
requirements.

Physically, the AM lines are imple-
mented via six signal lines labeled AM0
through AM5. These lines provide
address modifier codes on each and every
address cycle. The address modifier
codes give the VMEbus its ability to han-
dle different addressing widths — 16 bits,
24 bits, 32 bits, 40 bits, and 64 bits; to
handle block transfers; and to provide
processor state information on a cycle by
cycle basis. Thus a single VMEbus sys-
tem can be configured with boards of
varying capabilities that all work together
correctly and dynamically on a cycle to
cycle basis. Per the VMEbus specifica-
tion, master boards must generate
address modifier codes during each
address cycle and slave boards must
decode address modifier codes to deter-
mine whether or not to respond.

In the case of handling different
addressing widths, two slave boards, one
A24 and the other A16, may decode the
same address value on address lines a1
through a15. When a master puts out an
address for the A24 board, what keeps the
A16 board from responding also? The
address modifier codes for A24 space are
different from the ones for A16 space. So
even if address decoding on address lines
a1 through a15 is identical for both
boards, the A16 board will not respond to

A24 address modifier codes.
Besides handling different addressing

widths, address modifier codes specify
block transfer operations. Block transfers
maximize bus bandwidth by transferring
multiple bytes of data per single address
cycle. Address modifier codes are used to
specify A24, A32, and A64 block transfer
operations.

Address modifier codes can be used
to control slave board response based on
specific processor states. Multitasking
microprocessors run in one of two dis-
tinct modes - supervisory state or user
state. In supervisory state all instructions
can be executed. In user state the execu-
tion of certain instructions, such as halt
and reset, are not allowed. Separate
address modifier codes are defined for
processor state and user state and can be
used to control slave board access. For
example, in most real-time operating sys-
tems access to peripheral devices takes
place through kernel system calls that
execute in the microprocessor’s supervi-
sory state. Application tasks, on the other
hand, execute in the microprocessor’s
user state. Thus address modifier codes
can be used as a hardware means of con-
trolling software access to critical I/O
boards. The slave boards in a system can
be set up to respond only to supervisory
address modifier codes. An application
task running in user mode that becomes
corrupted cannot inadvertently access
the slave board and cause unintended or
possible dangerous actions.

Address modifier codes can be used
to differentiate between program access
and data access. Many microprocessors
provide signal lines that indicate whether
they are doing an instruction fetch or a
data access. Slave boards can be set up so
that they respond only to program
accesses or data accesses. For example, a
system could be configured with a shared
global memory board for data only stor-
age. Since the board will only respond to
data mode address modifier codes, pro-
gram mode accesses are prohibited.

Critical data can be protected from unin-
tended accesses thus enhancing system
integrity.

Out of 64 possible address modifier
codes, 16 have been set aside as “user
defined”. Application developers are free
to use these address modifier codes to
meet specific requirements.

When the VMEbus specification was
first released only 14 address modifier
codes were defined in addition to the 16
user defined codes. In the new VME64
specification 24 additional codes have
been added. Because there are only a
total of 64 AM codes defined for VME,
there was concern during the develop-
ment of VME64x (extensions to VME64)
that we would run out of AM codes during
the development of the 2eVME protocol.
This protocol will allow faster data trans-
fer by using both edges of the data strobes
rather than the current one transition
protocol. To resolve this problem, a
method of supplying a primary address
modifier code and then a secondary code
during the address phase of the 2eVME
protocol was developed. The use of a sec-
ondary address modifier code will allow
new protocols to be added as required
while insuring that interoperability with
previously designed boards is maintained.

AM codes have served the VMEbus
well. They allow the system designer the
ability to configure a system with maxi-
mum flexibility to handle a wide range of
address and data widths. 64-bit data
transfers can be used to achieve optimum
performance while 8-bit data transfers
can be a cost effective alternative when a
simple peripheral card is used. Both
capabilities can exist in the same VMEbus
system at the same time and accesses can
take place on a dynamic basis. This
capability is present because of AM codes.

* * *

The VITA Journal, March 1997 issue © 1997 VMEbus International Trade Association

