
Rev. 1.3, 06/2005

© Copyright RapidIO Trade Association

RapidIO™ Interconnect Specification
Part 1: Input/Output Logical

Specification
RapidIO Trade Association

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.
DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:
RapidIO Trade Association
Suite 325, 3925 W. Braker Lane
Austin, TX 78759
512-305-0070 Tel.
512-305-0009 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their
respective owners.

Revision History

Revision Description Date

1.1 First public release 03/08/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
03-05-00006.001, 03-12-00001.001, 04-02-00001.002
and the following new features showings:
04-05-00005.001
Converted to ISO-friendly templates, re-formatted

02/23/2005

1.3 Removed confidentiality markings for public release 06/07/2005
RapidIO Trade Association

Table of Contents

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.3 Features of the Input/Output Specification... 12
1.3.1 Functional Features... 12
1.3.2 Physical Features .. 12
1.3.3 Performance Features ... 12
1.4 Contents .. 13
1.5 Terminology.. 13
1.6 Conventions .. 13

Chapter 2 System Models

2.1 Introduction... 15
2.2 Processing Element Models.. 15
2.2.1 Processor-Memory Processing Element Model.. 15
2.2.2 Integrated Processor-Memory Processing Element Model 16
2.2.3 Memory-Only Processing Element Model ... 16
2.2.4 Processor-Only Processing Element... 17
2.2.5 I/O Processing Element .. 17
2.2.6 Switch Processing Element... 17
2.3 System Issues.. 18
2.3.1 Operation Ordering ... 18
2.3.2 Transaction Delivery... 20
2.3.2.1 Unordered Delivery System Issues... 20
2.3.2.2 Ordered Delivery System Issues... 21
2.3.3 Deadlock Considerations .. 21

Chapter 3 Operation Descriptions

3.1 Introduction... 23
3.2 I/O Operations Cross Reference ... 24
3.3 I/O Operations... 24
3.3.1 Read Operations.. 25
3.3.2 Write and Streaming-Write Operations .. 25
3.3.3 Write-With-Response Operations... 26
3.3.4 Atomic (Read-Modify-Write) Operations .. 26
3.4 System Operations .. 27
3.4.1 Maintenance Operations ... 27
3.5 Endian, Byte Ordering, and Alignment .. 27
RapidIO Trade Association 3

Table of Contents

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 4
Packet Format Descriptions

4.1 Request Packet Formats.. 31
4.1.1 Addressing and Alignment ... 32
4.1.2 Field Definitions for All Request Packet Formats.. 32
4.1.3 Type 0 Packet Format (Implementation-Defined).. 35
4.1.4 Type 1 Packet Format (Reserved) .. 35
4.1.5 Type 2 Packet Format (Request Class)... 35
4.1.6 Type 3–4 Packet Formats (Reserved)... 36
4.1.7 Type 5 Packet Format (Write Class)... 36
4.1.8 Type 6 Packet Format (Streaming-Write Class)... 37
4.1.9 Type 7 Packet Format (Reserved) .. 38
4.1.10 Type 8 Packet Format (Maintenance Class) ... 38
4.1.11 Type 9–11 Packet Formats (Reserved)... 40
4.2 Response Packet Formats ... 40
4.2.1 Field Definitions for All Response Packet Formats ... 40
4.2.2 Type 12 Packet Format (Reserved) .. 41
4.2.3 Type 13 Packet Format (Response Class) .. 41
4.2.4 Type 14 Packet Format (Reserved) .. 41
4.2.5 Type 15 Packet Format (Implementation-Defined).. 41

Chapter 5
Input/Output Registers

5.1 Register Summary... 43
5.2 Reserved Register and Bit Behavior ... 44
5.3 Extended Features Data Structure... 45
5.4 Capability Registers (CARs) .. 47
5.4.1 Device Identity CAR

(Configuration Space Offset 0x0)... 47
5.4.2 Device Information CAR

(Configuration Space Offset 0x4)... 47
5.4.3 Assembly Identity CAR

(Configuration Space Offset 0x8)... 47
5.4.4 Assembly Information CAR

(Configuration Space Offset 0xC) .. 48
5.4.5 Processing Element Features CAR

(Configuration Space Offset 0x10)... 48
5.4.6 Switch Port Information CAR

(Configuration Space Offset 0x14)... 49
5.4.7 Source Operations CAR

(Configuration Space Offset 0x18)... 49
5.4.8 Destination Operations CAR

(Configuration Space Offset 0x1C) .. 50
5.5 Command and Status Registers (CSRs).. 52
4 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3

Table of Contents

5.5.1 Processing Element Logical Layer Control CSR

(Configuration Space Offset 0x4C) .. 52
5.5.2 Local Configuration Space Base Address 0 CSR

(Configuration Space Offset 0x58)... 52
5.5.3 Local Configuration Space Base Address 1 CSR

(Configuration Space Offset 0x5C) .. 53
RapidIO Trade Association 5

Table of Contents

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
6 RapidIO Trade Association

List of Figures

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
2-1 A Possible RapidIO-Based Computing System..15
2-2 Processor-Memory Processing Element Example..16
2-3 Integrated Processor-Memory Processing Element Example...16
2-4 Memory-Only Processing Element Example ...17
2-5 Processor-Only Processing Element Example..17
2-6 Switch Processing Element Example ...18
3-1 Read Operation ...25
3-2 Write and Streaming-Write Operations ..26
3-3 Write-With-Response Operation ..26
3-4 Atomic (Read-Modify-Write) Operation..27
3-5 Maintenance Operation...27
3-6 Byte Alignment Example..28
3-7 Half-Word Alignment Example..28
3-8 Word Alignment Example ..28
3-9 Data Alignment Example..29
4-1 Type 2 Packet Bit Stream Format...36
4-2 Type 5 Packet Bit Stream Format...37
4-3 Type 6 Packet Bit Stream Format...38
4-4 Type 8 Request Packet Bit Stream Format ...39
4-5 Type 8 Response Packet Bit Stream Format ..40
4-6 Type 13 Packet Bit Stream Format...41
5-1 Example Extended Features Data Structure ...46
RapidIO Trade Association 7

List of Figures
RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
8 RapidIO Trade Association

List of Tables

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
4-1 Request Packet Type to Transaction Type Cross Reference ..31
4-2 General Field Definitions for All Request Packets...33
4-3 Read Size (rdsize) Definitions ..33
4-4 Write Size (wrsize) Definitions ..34
4-5 Transaction Fields and Encodings for Type 2 Packets ...36
4-6 Transaction Fields and Encodings for Type 5 Packets ...37
4-7 Specific Field Definitions and Encodings for Type 8 Packets39
4-8 Response Packet Type to Transaction Type Cross Reference..40
4-9 Field Definitions and Encodings for All Response Packets ...40
5-1 I/O Register Map ..43
5-2 Configuration Space Reserved Access Behavior..44
5-3 Bit Settings for Device Identity CAR ...47
5-4 Bit Settings for Device Information CAR ..47
5-5 Bit Settings for Assembly Identity CAR ..48
5-6 Bit Settings for Assembly Information CAR..48
5-7 Bit Settings for Processing Element Features CAR..48
5-8 Bit Settings for Switch Port Information CAR...49
5-9 Bit Settings for Source Operations CAR ..49
5-10 Bit Settings for Destination Operations CAR...50
5-11 Bit Settings for Processing Element Logical Layer Control CSR52
5-12 Bit Settings for Local Configuration Space Base Address 0 CSR52
5-13 Bit Settings for Local Configuration Space Base Address 1 CSR53
RapidIO Trade Association 9

List of Tables
RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
10 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 1: Input/Output Logical
Specification, including a description of the relationship between this specification
and the other specifications of the RapidIO interconnect.

1.2 Overview
The RapidIO Part 1: Input/Output Logical Specification is one of the RapidIO
logical layer specifications that define the interconnect’s overall protocol and packet
formats. This layer contains the information necessary for end points to process a
transaction. Other RapidIO logical layer specifications include RapidIO Part 2:
Message Passing Logical Specification and RapidIO Part 5: Globally Shared
Memory Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encodings for the transport and physical layers lower in the specification
hierarchy.

RapidIO is a definition of a system interconnect. System concepts such as processor
programming models, memory coherency models and caching are beyond the scope
of the RapidIO architecture. The support of memory coherency models, through
caches, memory directories (or equivalent, to hold state and speed up remote
memory access) is the responsibility of the end points (processors, memory, and
possibly I/O devices), using RapidIO operations. RapidIO provides the operations
to construct a wide variety of systems, based on programming models that range
from strong consistency through total store ordering to weak ordering.
Inter-operability between end points supporting different
coherency/caching/directory models is not guaranteed. However, groups of
end-points with conforming models can be linked to others conforming to different
models on the same RapidIO fabric. These different groups can communicate
through RapidIO messaging or I/O operations. Any reference to these areas within
the RapidIO architecture specification are for illustration only.
RapidIO Trade Association 11

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
1.3 Features of the Input/Output Specification
The following are features of the RapidIO I/O specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features
• A rich variety of transaction types, such as DMA-style read and writes, that

allow efficient I/O systems to be built.
• System sizes from very small to very large are supported in the same or

compatible packet formats—RapidIO plans for future expansion and
requirements.

• Read-modify-write atomic operations are useful for synchronization between
processors or other system elements.

• The RapidIO architecture supports 50- and 66-bit addresses as well as 34-bit
local addresses for smaller systems.

• DMA devices can improve the interconnect efficiency if larger non-coherent
data quantities can be encapsulated within a single packet, so RapidIO
supports a variety of data sizes within the packet formats.

1.3.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface

to other devices on the interconnect fabric.
• The protocols and packet formats are independent of the physical interconnect

topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.
• The protocols handle out-of-order packet transmission and reception.
• Certain devices have bandwidth and latency requirements for proper operation.

RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead

and be organized for fast, efficient assembly and disassembly.
• 48- and 64-bit addresses are required in the future, and must be supported

initially.
• Multiple transactions must be allowed concurrently in the system, otherwise a

majority of the potential system throughput is wasted.
12 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
1.4 Contents
Following are the contents of the RapidIO Part 1: Input/Output Logical
Specification:

• Chapter 1, “Overview” (this chapter) provides an overview of the specification
• Chapter 2, “System Models,” introduces some possible devices that could

participate in a RapidIO system environment. Transaction ordering and
deadlock prevention are discussed.

• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO I/O protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the I/O specification. The two basic types, request and
response packets, with their sub-types and fields are defined.

• Chapter 5, “Input/Output Registers,” describes the visible register set that
allows an external processing element to determine the I/O capabilities,
configuration, and status of a processing element using this logical
specification. Only registers or register bits specific to the I/O logical
specification are explained. Refer to the other RapidIO logical, transport, and
physical specifications of interest to determine a complete list of registers and
bit definitions.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits
ACTIVE_HIGH Names of active high signals are shown in uppercase text with

no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.
REG[FIELD] Abbreviations or acronyms for registers are shown in

uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.
operation Device operation types are expressed in plain text.
n A decimal value.
RapidIO Trade Association 13

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
[n-m] Used to express a numerical range from n to m.
0bnn A binary value, the number of bits is determined by the

number of digits.
0xnn A hexadecimal value, the number of bits is determined by the

number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
14 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 2 System Models

2.1 Introduction
This overview introduces some possible devices in a RapidIO system.

2.2 Processing Element Models
Figure 2-1 describes a possible RapidIO-based computing system. The processing
element is a computer device such as a processor attached to a local memory and to
a RapidIO system interconnect. The bridge part of the system provides I/O
subsystem services such as high-speed PCI interfaces and gigabit ethernet ports,
interrupt control, and other system support functions.

The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element Model
Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to a local memory that has much
lower latency than memory that is local to another processing element (remote
memory accesses). It also provides an interface to the RapidIO interconnect to

Figure 2-1. A Possible RapidIO-Based Computing System

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

Firewire
RapidIO Trade Association 15

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
service those remote memory accesses.

2.2.2 Integrated Processor-Memory Processing Element Model
Another form of a processor-memory processing element is a fully integrated
component that is designed specifically to connect to a RapidIO interconnect system
as shown in Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package.

2.2.3 Memory-Only Processing Element Model
A different processing element may not contain a processor at all, but may be a
memory-only device as shown in Figure 2-4. This type of device is much simpler
than a processor; it only responds to requests from the external system, not to local
requests as in the processor-based model. As such, its memory is remote for all
processors in the system.

Figure 2-2. Processor-Memory Processing Element Example

Figure 2-3. Integrated Processor-Memory Processing Element Example

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect

Processor

Memory

RapidIO-based
System Interconnect
16 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
2.2.4 Processor-Only Processing Element
Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing element is shown in Figure 2-5.

2.2.5 I/O Processing Element
This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory device. An I/O device
only needs to move data into and out of local or remote memory.

2.2.6 Switch Processing Element
A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidIO-compliant processing elements. A hybrid processing element may
combine a switch with end point functionality. A possible switch is shown in
Figure 2-6. Behavior of the switches, and the interconnect fabric in general, is
addressed in the RapidIO Common Transport Specification.

Figure 2-4. Memory-Only Processing Element Example

Figure 2-5. Processor-Only Processing Element Example

Memory

Memory

RapidIO-based
System Interconnect

Control

Agent

Processor

Local Interconnect

RapidIO-based
System Interconnect
RapidIO Trade Association 17

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
2.3 System Issues
The following sections describe transaction ordering and system deadlock
considerations in a RapidIO system.

2.3.1 Operation Ordering
Most operations in an I/O system do not have any requirements as far as completion
ordering. There are, however, several tasks that require events to occur in a specific
order. As an example, a processing element may wish to write a set of registers in
another processing element. The sequence in which those writes are carried out may
be critical to the operation of the target processing element. Without some specific
system rules there would be no guarantee of completion ordering of these
operations. Ordering is mostly a concern for operations between a specific source
and destination pair.

In certain cases a processing element may communicate with another processing
element or set of processing elements in different contexts. A set or sequence of
operations issued by a processing element may have requirements for completing in
order at the target processing element. That same processing element may have
another sequence of operations that also requires a completion order at the target
processing element. However, the issuing processing element has no requirements
for completion order between the two sequences of operations. Further, it may be
desirable for one of the sequences of operations to complete at a higher priority than
the other sequence. The term “transaction request flow” is defined as one of these
sequences of operations.

A transaction request flow is defined as a ordered sequence of non-maintenance
request transactions from a given source (as indicated by the source identifier) to a
given destination (as indicated by the transaction destination identifier), where a
maintenance request is a special system support request. Each packet in a transaction
request flow has the same source identifier and the same destination identifier.

There may be multiple transaction request flows between a given source and
destination pair. When multiple flows exist between a source and destination pair,

Figure 2-6. Switch Processing Element Example

Switch
18 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
the flows are distinguished by a flow indicator (flowID). RapidIO allows multiple
transaction request flows between any source and destination pair. The flows
between each source and destination pair are identified with alphabetic characters
beginning with A.

The flows between each source and destination pair are prioritized. The flow priority
increases alphabetically with flowID A having the lowest priority, flowID B having
the next to lowest priority, etc. When multiple transaction request flows exist
between a given source and destination pair, transactions of a higher priority flow
may pass transactions of a lower priority flow, but transactions of a lower priority
flow may not pass transactions of a higher priority flow.

Maintenance transactions are not part of any transaction request flow. However,
within a RapidIO fabric, maintenance transactions may not pass other maintenance
transactions of the same or higher priority taking the same path through the fabric.

Response transactions are not part of any transaction request flow. There is no
ordering between any pair of response transactions and there is no ordering between
any response transaction and any request transaction that did not cause the
generation of the response.

To support transaction request flows, all devices that support the RapidIO logical
specification shall comply as applicable with the following Fabric Delivering
Ordering and End point Completion Ordering rules.

Fabric Delivery Ordering Rules
1. Non-maintenance request transactions within a transaction request flow

(same source identifier, same destination identifier, and same flowID)
shall be delivered to the logical layer of the destination in the same order
that they were issued by the logical layer of the source.

2. Non-maintenance request transactions that have the same source (same
source identifier) and the same destination (same destination identifier)
but different flowIDs shall be delivered to the logical layer of the
destination as follows.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source before a transaction of a
lower priority transaction request flow shall be delivered to the
logical layer of the destination before the lower priority
transaction.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source after a transaction of a
lower priority transaction request flow may be delivered to the
logical layer of the destination before the lower priority
transaction.
RapidIO Trade Association 19

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
3. Request transactions that have different sources (different source
identifiers) or different destinations (different destination identifiers)
are unordered with respect to each other.

End point Completion Ordering Rules
1. Write request transactions in a transaction request flow shall be

completed at the logical layer of the destination in the same order that
the transactions were delivered to the logical layer of the destination.

2. A read request transaction with source A and destination B shall force the
completion at the logical layer of B of all write requests in the same
transaction request flow that were received by the logical layer of B
before the read request transaction.

Read request transactions need not be completed in the same order that they were
received by the logical layer of the destination. As a consequence, read response
transactions need not be issued by the logical layer of the destination in the same
order that the associated read request transactions were received.

Write response transactions will likely be issued at the logical level in the order that
the associated write request was received. However, since response transactions are
not part of any flow, they are not ordered relative to one another and may not arrive
at the logical level their destination in the same order as the associated write
transactions were issued. Therefore, write response transactions need not be issued
by the logical layer in the same order as the associated write request was received.

It may be necessary to impose additional rules in order to provide for inter
operability with other interface standards or programming models. However, such
additional rules are beyond the scope of this specification.

2.3.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO
processing elements: unordered and ordered. The RapidIO logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logical protocols do not rely on transaction
interdependencies for operation. RapidIO also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware. The specific mechanisms and definitions of how RapidIO
enforces transaction ordering are discussed in the appropriate physical layer
specification.

2.3.2.1 Unordered Delivery System Issues
An unordered delivery system is defined as an interconnect fabric where
transactions between a source and destination pair can arbitrarily pass each other
during transmission through the intervening fabric.
20 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Operations in the unordered system that are required to complete in a specific order
shall be properly managed at the source processing element. For example, enforcing
a specific sequence for writing a series of configuration registers, or preventing a
subsequent read from bypassing a preceding write to a specific address are cases of
ordering that may need to be managed at the source. The source of these transactions
shall issue them in a purely serial sequence, waiting for completion notification for
a write before issuing the next transaction to the interconnect fabric. The destination
processing element shall guarantee that all outstanding non-coherent operations
from that source are completed before servicing a subsequent non-coherent request
from that source.

2.3.2.2 Ordered Delivery System Issues
Ordered delivery systems place additional implementation constraints on both the
source and destination processing elements as well as any intervening hardware.
Typically an ordered system requires that all transactions between a
source/destination pair be completed in the order generated, not necessarily the
order in which they can be accepted by the destination or an intermediate device. In
one example, if several requests are sent before proper receipt is acknowledged the
destination or intermediate device shall retry all following transactions until the first
retried packet is retransmitted and accepted. In this case, the source shall “unroll” its
outstanding transaction list and retransmit the first one to maintain the proper system
ordering. In another example, an interface may make use of explicit transaction tags
which allow the destination to place the transactions in the proper order upon
receipt.

2.3.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidIO is
designed to be a reliable fabric for use in real time tightly coupled systems, therefore
discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency loops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing), topology related dependency
loops are avoided in these structures.
RapidIO Trade Association 21

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
In addition, a processing element design shall not form dependency links between
its input and output ports. A dependency link between input and output ports occurs
if a processing element is unable to accept an input packet until a waiting packet can
be issued from the output port.

RapidIO supports operations, such as read operations, that require responses to
complete. These operations can lead to a dependency link between a processing
element’s input port and output port.

As an example of a input to output port dependency, consider a processing element
where the output port queue is full. The processing element can not accept a new
request at its input port since there is no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

The method by which a RapidIO system maintains a deadlock free environment is
described in the appropriate Physical Layer specification.
22 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the set of operations and their associated transactions
supported by the I/O protocols of RapidIO. The transaction types, packet formats,
and other necessary transaction information are described in Chapter 4, “Packet
Format Descriptions.”

The I/O operation protocols work using request/response transaction pairs through
the interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been
completed or if an error condition is encountered. Each transaction is sent as a packet
through the interconnect fabric. For example, a processing element that requires data
from another processing element sends an NREAD transaction in a request packet
to that processing element, which reads its local memory at the requested address
and returns the data in a DONE transaction in a response packet. Note that not all
requests require responses; some requests assume that the desired activity will
complete properly.

Two possible response transactions can be received by a requesting processing
element:

• A DONE response indicates to the requestor that the desired transaction has
completed and it also returns data for read-type transactions as described
above.

• An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such
as a device number. These requirements are described in the appropriate RapidIO
transport layer specification, and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
RapidIO transport and physical layer specifications and are beyond the scope of this
document.
RapidIO Trade Association 23

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
For most transaction types, a request transaction sent into the system is marked with
a transaction ID that is unique for each requestor and responder processing element
pair. This transaction ID allows a response to be easily matched to the original
request when it is returned to the requestor. An end point cannot reuse a transaction
ID value to the same destination until the response from the original transaction has
been received by the requestor. The number of outstanding transactions that may be
supported is implementation dependent.

Transaction IDs may also be used to indicate sequence information if ordered
reception of transactions is required by the destination processing element and the
interconnect fabric can reorder packets. The receiving device must accept and not
complete the subsequent out-of-order requests until the missing transactions in the
sequence have been received and completed.

3.2 I/O Operations Cross Reference
Table contains a cross reference of the I/O operations defined in this RapidIO
specification and their system usage.

3.3 I/O Operations
The operations described in this section are used for I/O accesses to physical
addresses in the target of the operation. Examples are accesses to non-coherent
memory, ROM boot code, or to configuration registers that do not participate in any
globally shared system memory protocol. These accesses may be of any specifiable
size allowed by the system.

Table 2-1. I/O Operations Cross Reference

Operation Transactions
Used Possible System Usage

Request
Transaction

Classification
for Completion
Ordering Rules

Description Packet
Format

Read NREAD,
RESPONSE

Read operation Read Section 3.3.1 Type 2
Section 4.1.5

Write NWRITE Write operation Write Section 3.3.2 Type 5
Section 4.1.7

Write-with-response NWRITE_R,
RESPONSE

Write operation Write Section 3.3.3 Type 5
Section 4.1.7

Streaming-write SWRITE Write operation Write Section 3.3.2 Type 6
Section 4.1.8

Atomic
(read-modify-write)

ATOMIC,
RESPONSE

Read-modify-write
operation

Write Section 3.3.4 Type 2
Section 4.1.5
Type 5
Section 4.1.7

Maintenance MAINTENANCE System exploration,
initialization, and
maintenance operation

not applicable Section 3.4.1 Type 8
Section 4.1.10
24 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
All data payloads that are less than 8 bytes shall be padded and have their bytes
aligned to their proper byte position within the double-word, as in the examples
shown in Figure 3-6 through Figure 3-8.

The described behaviors are the same regardless of the actual target physical
address.

3.3.1 Read Operations
The read operation, consisting of the NREAD and RESPONSE transactions
(typically a DONE response) as shown in Figure 3-1, is used by a processing
element that needs to read data from the specified address. The data returned is of
the size requested.

If the read operation is to memory, data is returned from the memory regardless of
the state of any system-wide cache coherence mechanism for the specified cache
line or lines, although it may cause a snoop of any caches local to the memory
controller.

3.3.2 Write and Streaming-Write Operations
The write and streaming-write operations, consisting of the NWRITE and SWRITE
transactions as shown in Figure 3-2, are used by a processing element that needs to
write data to the specified address. The NWRITE transaction allows multiple
double-word, word, half-word and byte writes with properly padded and aligned (to
the 8-byte boundary) data payload. The SWRITE transaction is a double-word-only
version of the NWRITE that has less header overhead. The write size and alignment
for the NWRITE transaction are specified in Table 4-4. Non-contiguous and
unaligned writes are not supported. It is the requestor’s responsibility to break up a
write operation into multiple transactions if the block is not aligned.

NWRITE and SWRITE transactions do not receive responses, so there is no
notification to the sender when the transaction has completed at the destination.

If the write operation is to memory, data is written to the memory regardless of the
state of any system-wide cache coherence mechanism for the specified cache line or
lines, although it may cause a snoop of any caches local to the memory controller.

Figure 3-1. Read Operation

DONE, data2

NREAD1

Requestor Destination
RapidIO Trade Association 25

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
3.3.3 Write-With-Response Operations
The write-with-response operation, consisting of the NWRITE_R and RESPONSE
transactions (typically a DONE response) as shown in Figure 3-3, is identical to the
write operation except that it receives a response to notify the sender that the write
has completed at the destination. This operation is useful for guaranteeing
read-after-write and write-after-write ordering through a system that can reorder
transactions and for enforcing other required system behaviors.

3.3.4 Atomic (Read-Modify-Write) Operations
The read-modify-write operation, consisting of the ATOMIC and RESPONSE
transactions (typically a DONE response) as shown in Figure 3-4, is used by a
number of cooperating processing elements to perform synchronization using
non-coherent memory. The allowed specified data sizes are one word (4 bytes), one
half-word (2 bytes) or one byte, with the size of the transaction specified in the same
way as for an NWRITE transaction. Double-word (8-byte) and 3, 5, 6, and 7 byte
ATOMIC transactions may not be specified.

The atomic operation is a combination read and write operation. The destination
reads the data at the specified address, returns the read data to the requestor,
performs the required operation to the data, and then writes the modified data back
to the specified address without allowing any intervening activity to that address.
Defined operations are increment, decrement, test-and-swap, set, and clear (See bit
settings in Table 5-9 and Table 5-10). Of these, only test-and-swap,
compare-and-swap, and swap require the requesting processing element to supply
data. The target data of an atomic operation may be initialized using an NWRITE
transaction.

If the atomic operation is to memory, data is written to the memory regardless of the
state of any system-wide cache coherence mechanism for the specified cache line or

Figure 3-2. Write and Streaming-Write Operations

Figure 3-3. Write-With-Response Operation

NWRITE or SWRITE, data1

Requestor Destination

NWRITE_R, data1

Requestor

DONE2

Destination
26 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
lines, although it may cause a snoop of any caches local to the memory controller.

3.4 System Operations
All data payloads that are less than 8 bytes shall be padded and have their bytes
aligned to their proper byte position within the double-word, as in the examples
shown in Figure 3-6 through Figure 3-8.

3.4.1 Maintenance Operations
The maintenance operation, which can consist of more than one MAINTENANCE
transaction as shown in Figure 3-5, is used by a processing element that needs to
read or write data to the specified CARs, CSRs, or locally-defined registers or data
structures. If a response is required, MAINTENANCE requests receive a
MAINTENANCE response rather than a normal response for both read and write
operations. Supported accesses are in 32 bit quantities and may optionally be in
double-word and multiple double-word quantities to a maximum of 64 bytes.

3.5 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means
that the RapidIO interface to devices that are little-endian shall perform the proper
endian transformation to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-6 through Figure 3-8.

Figure 3-4. Atomic (Read-Modify-Write) Operation

Figure 3-5. Maintenance Operation

DONE, data2

ATOMIC, data (opt.)1

Requestor Destination

opt. MAINTENANCE, opt. data2

MAINTENANCE, opt. data1

Requestor Destination
RapidIO Trade Association 27

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
For write operations, a processing element shall properly align data transfers to a
double-word boundary for transmission to the destination. This alignment may
require breaking up a data stream into multiple transactions if the data is not
naturally aligned. A number of data payload sizes and double-word alignments are
defined to minimize this burden. Figure 3-9 shows a 48-byte data stream that a
processing element wishes to write to another processing element through the
interconnect fabric. The data displayed in the figure is big-endian and double-word
aligned with the bytes to be written shaded in grey. Because the start of the stream
and the end of the stream are not aligned to a double-word boundary, the sending
processing element shall break the stream into three transactions as shown in the
figure.

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and
indicates a byte lane 5, 6, and 7 three-byte write. The second transaction sends all of
the remaining data except for the final sub-double-word. The third transaction sends
the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte
lanes 0, 1, 2, 3, and 4.

Figure 3-6. Byte Alignment Example

Figure 3-7. Half-Word Alignment Example

Figure 3-8. Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
28 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Figure 3-9. Data Alignment Example

First transaction sends these three bytes
with this double-word alignment

Byte
Lane

0

Byte
Lane

1

Byte
Lane

2

Byte
Lane

3

Byte
Lane

4

Byte
Lane

5

Byte
Lane

6

Byte
Lane

7

MSB

LSB

Second transaction sends these five
double-words

Third transaction sends these five bytes
with this double-word alignment

Double-Word Boundary
RapidIO Trade Association 29

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Blank page
30 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 4
Packet Format Descriptions

This chapter contains the packet format definitions for the RapidIO Part 1:
Input/Output Logical Specification. Four types of I/O packet formats exist:

• Request
• Response
• Implementation-defined
• Reserved

The packet formats are intended to be interconnect fabric independent so the system
interconnect can be anything required for a particular application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.1 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such as a memory read operation.
The request packet format types and their transactions for the I/O Logical
Specification are shown in Table 4-1 below.

Table 4-1. Request Packet Type to Transaction Type Cross Reference

Request Packet
Format Type Transaction Type Definition Document

Section No.

Type 0 Implementation-
defined

Defined by the device implementation Section 4.1.3

Type 1 — Reserved Section 4.1.4

Type 2 ATOMIC set Read-write 1’s to specified address Section 4.1.5

ATOMIC clear Read-write 0’s to specified address

ATOMIC increment Read-increment-write to specified address

ATOMIC
decrement

Read-decrement-write to specified address

NREAD Read specified address

Type 3-4 — Reserved Section 4.1.6
RapidIO Trade Association 31

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
4.1.1 Addressing and Alignment
The size of the address is defined as a system-wide parameter; thus the packet
formats do not support mixed local physical address fields simultaneously. The least
three significant bits of all addresses are not specified and are assumed to be logic 0.

All transactions are aligned to a byte, half-word, word, or double-word boundary.
Read and write request addresses are aligned to any specifiable double-word
boundary and are not aligned to the size of the data written or requested. Data
payloads start at the first double-word and proceed linearly through the address
space. Sub-double-word data payloads shall be padded and properly aligned within
the 8-byte boundary. Non-contiguous or unaligned transactions that would
ordinarily require a byte mask are not supported. A sending device that requires this
behavior shall break the operation into multiple request transactions. An example of
this is shown in Section 3.5, “Endian, Byte Ordering, and Alignment.”

4.1.2 Field Definitions for All Request Packet Formats
Table 4-2 through Table 4-4 describe the field definitions for all request packet
formats. Bit fields that are defined as “reserved” shall be assigned to logic 0s when
generated and ignored when received. Bit field encodings that are defined as
“reserved” shall not be assigned when the packet is generated. A received reserved
encoding is regarded as an error if a meaningful encoding is required for the
transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the

Type 5 ATOMIC
test-and-swap

Read-test=0-swap-write to specified address Section 4.1.7

ATOMIC swap Read-write to specified address

ATOMIC
compare-and-swap

Read-test=first data-write second data to specified address

NWRITE Write specified address

NWRITE_R Write specified address, notify source of completion

Type 6 SWRITE Write specified address Section 4.1.8

Type 7 — Reserved Section 4.1.9

Type 8 MAINTENANCE Read or write device configuration registers and perform
other system maintenance tasks

Section 4.1.10

Type 9-11 — Reserved Section 4.1.11

Table 4-1. Request Packet Type to Transaction Type Cross Reference (Continued)

Request Packet
Format Type Transaction Type Definition Document

Section No.
32 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
figures from left to right respectively.
Table 4-2. General Field Definitions for All Request Packets

Field Definition

ftype Format type, represented as a 4-bit value; is always the first four bits in the logical packet stream.

wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table 4-3, Table 4-4 and
Section 3.5.

rdsize Data size for read transactions, used in conjunction with the word pointer (wdptr) bit—see Table 4-3 and Section
3.5.

wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit—see
Table 4-4 and Section 3.5. For writes greater than one double-word, the size is the maximum payload that should
be expected by the receiver.

rsrv Reserved

srcTID The packet’s transaction ID

transaction The specific transaction within the format class to be performed by the recipient; also called type or ttype.

extended
address

Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and extended address
fields by 2 bits. This field provides 34-, 50-, and 66-bit addresses to be specified in a packet with the xamsbs as the
most significant bits in the address.

address Bits [0-28] of byte address [0-31] of the double-word physical address

Table 4-3. Read Size (rdsize) Definitions

wdptr rdsize Number of
Bytes Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000
RapidIO Trade Association 33

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16

0b0 0b1100 32

0b1 0b1100 64

0b0 0b1101 96

0b1 0b1101 128

0b0 0b1110 160

0b1 0b1110 192

0b0 0b1111 224

0b1 0b1111 256

Table 4-4. Write Size (wrsize) Definitions

wdptr wrsize Number of
Bytes Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

0b1 0b1000 4 0b00001111

Table 4-3. Read Size (rdsize) Definitions (Continued)

wdptr rdsize Number of
Bytes Byte Lanes
34 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
4.1.3 Type 0 Packet Format (Implementation-Defined)
The type 0 packet format is reserved for implementation-defined functions such as
flow control.

4.1.4 Type 1 Packet Format (Reserved)
The type 1 packet format is reserved.

4.1.5 Type 2 Packet Format (Request Class)
The type 2 format is used for the NREAD and ATOMIC transactions as specified in
the transaction field defined in Table 4-5. Type 2 packets never contain a data
payload.

The data payload size for the response to an ATOMIC transaction is 8 bytes. The
addressing scheme defined for the read portion of the ATOMIC transaction also
controls the size of the atomic operation in memory so the bytes shall be contiguous
and shall be of size byte, half-word (2 bytes), or word (4 bytes), and be aligned to
that boundary and byte lane as with a regular read transaction. Double-word
(8-byte), 3, 5, 6, and 7 byte ATOMIC transactions are not allowed.

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16
maximum

0b0 0b1100 32
maximum

0b1 0b1100 64
maximum

00b 0b1101 reserved

0b1 0b1101 128
maximum

0b0 0b1110 reserved

0b1 0b1110 reserved

0b0 0b1111 reserved

0b1 0b1111 256
maximum

Table 4-4. Write Size (wrsize) Definitions (Continued)

wdptr wrsize Number of
Bytes Byte Lanes
RapidIO Trade Association 35

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Note that type 2 packets don’t have any special fields.

Figure 4-1 displays the type 2 packet with all its fields. The field value 0b0010 in
Figure 4-1 specifies that the packet format is of type 2.

Figure 4-1. Type 2 Packet Bit Stream Format

4.1.6 Type 3–4 Packet Formats (Reserved)
The type 3–4 packet formats are reserved.

4.1.7 Type 5 Packet Format (Write Class)
Type 5 packets always contain a data payload. A data payload that consists of a
single double-word or less has sizing information as defined in Table 4-4. The
wrsize field specifies the maximum size of the data payload for multiple
double-word transactions. The data payload may not exceed that size but may be
smaller if desired. The ATOMIC, NWRITE, and NWRITE_R transactions use the
type 5 format as defined in Table 4-6. NWRITE request packets do not require a
response. Therefore, the transaction ID (srcTID) field for a NWRITE request is
undefined and may have an arbitrary value.

The ATOMIC test-and-swap transaction is limited to one double-word (8 bytes) of
data payload. The addressing scheme defined for the write transactions also controls
the size of the atomic operation in memory so the bytes shall be contiguous and shall
be of size byte, half-word (2 bytes), or word (4 bytes), and be aligned to that
boundary and byte lane as with a regular write transaction. Double-word (8-byte)
and 3, 5, 6, and 7 byte ATOMIC test-and-swap transactions are not allowed.

The ATOMIC swap transaction has the same addressing scheme and data payload

Table 4-5. Transaction Fields and Encodings for Type 2 Packets

Encoding Transaction Field

0b0000–0011 Reserved

0b0100 NREAD transaction

0b0101–1011 Reserved

0b1100 ATOMIC inc: post-increment the data

0b1101 ATOMIC dec: post-decrement the data

0b1110 ATOMIC set: set the data (write 0b11111...’)

0b1111 ATOMIC clr: clear the data (write 0b00000...’)

0 0 1 0

4 4 4 8

transaction rdsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229
36 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
restrictions as the ATOMIC test-and-swap transaction.

The ATOMIC compare-and-swap operation is different from the other ATOMIC
operations in that it requires two double-words (16 bytes) of data payload.

Note that type 5 packets don’t have any special fields.

Figure 4-2 displays the type 5 packet with all its fields. The field value 0b0101 in
Figure 4-2 specifies that the packet format is of type 5.

4.1.8 Type 6 Packet Format (Streaming-Write Class)
The type 6 packet is a special-purpose type that always contains data. The data
payload always contains a minimum of one complete double-word.
Sub-double-word data payloads shall use the type 5 NWRITE transaction. Type 6
transactions may contain any number of double-words up to the maximum defined
in Table 4-4.

Table 4-6. Transaction Fields and Encodings for Type 5 Packets

Encoding Transaction Field

0b0000–0011 Reserved

0b0100 NWRITE transaction

0b0101 NWRITE_R transaction

0b0110–1011 Reserved

0b1100 ATOMIC swap: read and return the data, unconditionally
write with supplied data.

0b1101 ATOMIC compare-and-swap: read and return the data, if
the read data is equal to the first 8 bytes of data payload,
write the second 8 bytes of data to the memory location.

0b1110 ATOMIC test-and-swap: read and return the data,
compare to 0, write with supplied data if compare is true

0b1111 Reserved

Figure 4-2. Type 5 Packet Bit Stream Format

0 1 0 1

4 4 4 8

transaction wrsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229

double-word 0

64

double-word 1

64

double-word n

64

• • •
RapidIO Trade Association 37

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Because the SWRITE transaction is the only transaction to use format type 6, there
is no need for the transaction field within the packet. There are also no size or
transaction ID fields.

Figure 4-3 displays the type 6 packet with all its fields. The field value 0b0110 in
Figure 4-3 specifies that the packet format is of type 6.

4.1.9 Type 7 Packet Format (Reserved)
The type 7 packet format is reserved.

4.1.10 Type 8 Packet Format (Maintenance Class)
The type 8 MAINTENANCE packet format is used to access the RapidIO capability
and status registers (CARs and CSRs) and data structures. Unlike other request
formats, the type 8 packet format serves as both the request and the response format
for maintenance operations. Type 8 packets contain no addresses and only contain
data payloads for write requests and read responses. All configuration register read
accesses are performed in word (4-byte), and optionally double-word (8-byte) or
specifiable multiple double-word quantities up to a limit of 64 bytes. All register
write accesses are also performed in word (4-byte), and optionally double-word
(8-byte) or multiple double-word quantities up to a limit of 64 bytes.

Read and write data sizes are specified as shown in Table 4-3 and Table 4-4. The
wrsize field specifies the maximum size of the data payload for multiple
double-word transactions. The data payload may not exceed that size but may be
smaller if desired. Both the maintenance read and the maintenance write request
generate the appropriate maintenance response.

The maintenance port-write operation is a write operation that does not have
guaranteed delivery and does not have an associated response. This maintenance
operation is useful for sending messages such as error indicators or status
information from a device that does not contain an end point, such as a switch. The
data payload is typically placed in a queue in the targeted end point and an interrupt
is typically generated to a local processor. A port-write request to a queue that is full
or busy servicing another request may be discarded.

Figure 4-3. Type 6 Packet Bit Stream Format

0 1 1 0

4

double-word 0

64

double-word 1

64

double-word n

64

• • •

addressextended address

0, 16, 32

rsrv xamsbs

1 229
38 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Definitions and encodings of fields specific to type 8 packets are provided in
Table 4-7. Fields that are not specific to type 8 packets are described in Table 4-2.

Figure 4-4 displays a type 8 request (read or write) packet with all its fields. The
field value 0b1000 in Figure 4-4 specifies that the packet format is of type 8. The
srcTID and config_offset fields are reserved for port-write requests.

Table 4-7. Specific Field Definitions and Encodings for Type 8 Packets

Type 8 Fields Encoding Definition

transaction 0b0000 Specifies a maintenance read request

0b0001 Specifies a maintenance write request

0b0010 Specifies a maintenance read response

0b0011 Specifies a maintenance write response

0b0100 Specifies a maintenance port-write request

0b0101–1111 Reserved

config_offset — Double-word offset into the CAR/CSR register block for reads and writes

srcTID — The type 8 request packet’s transaction ID (reserved for port-write requests)

targetTID — The corresponding type 8 response packet’s transaction ID

status 0b0000 DONE—Requested transaction has completed successfully

0b0001–0110 Reserved

0b0111 ERROR—Unrecoverable error detected

0b1000–1011 Reserved

0b1100–1111 Implementation-defined—Can be used for additional information such as an error code

Figure 4-4. Type 8 Request Packet Bit Stream Format

1 0 0 0

4 4 4 8

transaction rdsize/wrsize srcTID

config_offset

21

wdptr rsrv

1 2

64

double-word n

• • •
64

double-word 0
RapidIO Trade Association 39

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Figure 4-5 displays a type 8 response packet with all its fields.

4.1.11 Type 9–11 Packet Formats (Reserved)
The type 9–11 packet formats are reserved.

4.2 Response Packet Formats
A response transaction is issued by a processing element when it has completed a
request made to it by a remote processing element. Response packets are always
directed and are transmitted in the same way as request packets. Currently two
packet format types exist, as shown in Table 4-8.

4.2.1 Field Definitions for All Response Packet Formats
The field definitions in Table 4-9 apply to more than one of the response packet
formats.

Figure 4-5. Type 8 Response Packet Bit Stream Format

Table 4-8. Response Packet Type to Transaction Type Cross Reference

Response Packet
Format Type Transaction Type Definition Document Section

Number

Type 12 — Reserved Section 4.2.2

Type 13 RESPONSE Issued by a processing element when it completes a
request by a remote element.

Section 4.2.3

Type 14 — Reserved Section 4.2.4

Type 15 Implementation-
defined

Defined by the device implementation Section 4.2.5

Table 4-9. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload

0b0001–0111 Reserved

0b1000 RESPONSE transaction with data payload

0b1001–1111 Reserved

1 0 0 0

4 4 4 8

transaction status targetTID

reserved

24

64

double-word n

• • •
64

double-word 0
40 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
4.2.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

4.2.3 Type 13 Packet Format (Response Class)
The type 13 packet format returns status, data (if required), and the requestor’s
transaction ID. A RESPONSE packet with an “ERROR” status or a response that is
not expected to have a data payload never has a data payload. The type 13 format is
used for response packets to all request packets except maintenance and
response-less writes.

Note that type 13 packets do not have any special fields.

Figure 4-6 illustrates the format and fields of type 13 packets. The field value
0b1101 in Figure 4-6 specifies that the packet format is of type 13.

4.2.4 Type 14 Packet Format (Reserved)
The type 14 packet format is reserved.

4.2.5 Type 15 Packet Format (Implementation-Defined)
The type 15 packet format is reserved for implementation-defined functions such as
flow control.

targetTID — The corresponding request packet’s transaction ID

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001–0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional information such as
an error code

Figure 4-6. Type 13 Packet Bit Stream Format

Table 4-9. Field Definitions and Encodings for All Response Packets (Continued)

1 1 0 1

4 4 4 8

transaction status targetTID

double-word 0

64

double-word 1

64

double-word n

64

• • •
RapidIO Trade Association 41

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Blank page
42 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Chapter 5
Input/Output Registers

This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

5.1 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
RapidIO maintenance operations. Any register offsets not defined are considered
reserved for this specification unless otherwise stated. Other registers required for a
processing element are defined in other applicable RapidIO specifications and by
the requirements of the specific device and are beyond the scope of this
specification. Read and write accesses to reserved register offsets shall terminate
normally and not cause an error condition in the target device. Writes to CAR
(read-only) space shall terminate normally and not cause an error condition in the
target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. I/O Register Map

Configuration
Space Byte

Offset
Register Name

0x0 Device Identity CAR

0x4 Device Information CAR

0x8 Assembly Identity CAR

0xC Assembly Information CAR

0x10 Processing Element Features CAR

0x14 Switch Port Information CAR
RapidIO Trade Association 43

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.2 Reserved Register and Bit Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20–48 Reserved

0x4C Processing Element Logical Layer Control CSR

0x50 Reserved

0x58 Local Configuration Space Base Address 0 CSR

0x5C Local Configuration Space Base Address 1 CSR

0x60–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. I/O Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
44 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.3 Extended Features Data Structure
The RapidIO capability and command and status registers implement an extended
capability data structure. If the extended features bit (bit 28) in the processing
element features register is set, the extended features pointer is valid and points to
the first entry in the extended features data structure. This pointer is an offset into
the standard 16 Mbyte capability register (CAR) and command and status register
(CSR) space and is accessed with a maintenance read operation in the same way as
when accessing CARs and CSRs.

The extended features data structure is a singly linked list of double-word structures.
Each of these contains a pointer to the next structure (EF_PTR) and an extended
feature type identifier (EF_ID). The end of the list is determined when the next
extended feature pointer has a value of logic 0. All pointers and extended features

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO Trade Association 45

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
blocks shall index completely into the extended features space of the CSR space, and
all shall be aligned to a double-word boundary so the three least significant bits shall
equal logic 0. Pointer values not in extended features space or improperly aligned
are illegal and shall be treated as the end of the data structure. Figure 5-1 shows an
example of an extended features data structure. It is required that the extended
features bit is set to logic 1 in the processing element features register.

Figure 5-1. Example Extended Features Data Structure

ExtendedFeaturesPtr

ExtendedFeatureID
0 15 16 31 32
NextExtendedFeaturePtr reserved

47 48
reserved

ExtendedFeatureID
0 15 16 31 32
NextExtendedFeaturePtr reserved

47 48
reserved

ExtendedFeatureID
0 15 16 31 32
0b0000000000000000 reserved

47 48
reserved

63

63

63
46 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities through maintenance read
operations. All registers are 32 bits wide and are organized and accessed in 32-bit (4
byte) quantities, although some processing elements may optionally allow larger
accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Device Identity CAR
(Configuration Space Offset 0x0)

The DeviceVendorIdentity field identifies the vendor that manufactured the device
containing the processing element. A value for the DeviceVendorIdentity field is
uniquely assigned to a device vendor by the registration authority of the RapidIO
Trade Association.

The DeviceIdentity field is intended to uniquely identify the type of device from the
vendor specified by the DeviceVendorIdentity field. The values for the
DeviceIdentity field are assigned and managed by the respective vendor. See
Table 5-3.

5.4.2 Device Information CAR
(Configuration Space Offset 0x4)

The DeviceRev field is intended to identify the revision level of the device. The
value for the DeviceRev field is assigned and managed by the vendor specified by
the DeviceVendorIdentity field. See Table 5-4.

5.4.3 Assembly Identity CAR
(Configuration Space Offset 0x8)

The AssyVendorIdentity field identifies the vendor that manufactured the assembly
or subsystem containing the device. A value for the AssyVendorIdentity field is

Table 5-3. Bit Settings for Device Identity CAR

Bit Field Name Description

0–15 DeviceIdentity Device identifier

16–31 DeviceVendorIdentity Device vendor identifier

Table 5-4. Bit Settings for Device Information CAR

Bit Field Name Description

0-31 DeviceRev Device revision level
RapidIO Trade Association 47

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
uniquely assigned to a assembly vendor by the registration authority of the RapidIO
Trade Association.

The AssyIdentity field is intended to uniquely identify the type of assembly from the
vendor specified by the AssyVendorIdentity field. The values for the AssyIdentity
field are assigned and managed by the respective vendor. See Table 5-5.

5.4.4 Assembly Information CAR
(Configuration Space Offset 0xC)

This register contains additional information about the assembly; see Table 5-6.

5.4.5 Processing Element Features CAR
(Configuration Space Offset 0x10)

This register identifies the major functionality provided by the processing element;
see Table 5-7.

Table 5-5. Bit Settings for Assembly Identity CAR

Bit Field Name Description

0–15 AssyIdentity Assembly identifier

16–31 AssyVendorIdentity Assembly vendor identifier

Table 5-6. Bit Settings for Assembly Information CAR

Bit Field Name Description

0–15 AssyRev Assembly revision level

16–31 ExtendedFeaturesPtr Pointer to the first entry in the extended features list

Table 5-7. Bit Settings for Processing Element Features CAR

Bit Field Name Description

0 Bridge PE can bridge to another interface. Examples are PCI, proprietary processor buses,
DRAM, etc.

1 Memory PE has physically addressable local address space and can be accessed as an end
point through non-maintenance (i.e. non-coherent read and write) operations. This
local address space may be limited to local configuration registers, or could be
on-chip SRAM, etc.

2 Processor PE physically contains a local processor or similar device that executes code. A
device that bridges to an interface that connects to a processor does not count (see
bit 0 above).

3 Switch PE can bridge to another external RapidIO interface - an internal port to a local end
point does not count as a switch port. For example, a device with two RapidIO
ports and a local end point is a two port switch, not a three port switch, regardless
of the internal architecture.

4–27 — Reserved
48 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.4.6 Switch Port Information CAR
(Configuration Space Offset 0x14)

This register defines the switching capabilities of a processing element. This register
is only valid if bit 3 is set in the processing element features CAR; see Table 5-8.

5.4.7 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO IO logical operations that can be issued by
this processing element; see Table 5-9. It is assumed that a processing element can
generate I/O logical maintenance read and write requests if it is required to access
CARs and CSRs in other processing elements. For devices that have only switch
functionality only bit 29 is valid. RapidIO switches shall be able to route any packet.

28 Extended features PE has extended features list; the extended features pointer is valid

29-31 Extended addressing support Indicates the number address bits supported by the PE both as a source and target
of an operation. All PEs shall at minimum support 34 bit addresses.
0b111 - PE supports 66, 50, and 34 bit addresses
0b101 - PE supports 66 and 34 bit addresses
0b011 - PE supports 50 and 34 bit addresses
0b001 - PE supports 34 bit addresses
All other encodings reserved

Table 5-8. Bit Settings for Switch Port Information CAR

Bit Field Name Description

0–15 — Reserved

16–23 PortTotal The total number of RapidIO ports on the processing element
0b00000000 - Reserved
0b00000001 - 1 port
0b00000010 - 2 ports
0b00000011 - 3 ports
0b00000100 - 4 ports
...
0b11111111 - 255 ports

24–31 PortNumber This is the port number from which the maintenance read operation accessed this
register. Ports are numbered starting with 0x00.

Table 5-9. Bit Settings for Source Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16 Read PE can support a read operation

17 Write PE can support a write operation

Table 5-7. Bit Settings for Processing Element Features CAR (Continued)

Bit Field Name Description
RapidIO Trade Association 49

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.4.8 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO I/O operations that can be supported by this
processing element; see Table 5-10. It is required that all processing elements can
respond to maintenance read and write requests in order to access these registers.
The Destination Operations CAR is applicable for end point devices only. RapidIO
switches shall be able to route any packet.

18 Streaming-write PE can support a streaming-write operation

19 Write-with-response PE can support a write-with-response operation

20-21 — Reserved

22 Atomic (compare-and-swap) PE can support an atomic compare-and-swap operation

23 Atomic (test-and-swap) PE can support an atomic test-and-swap operation

24 Atomic (increment) PE can support an atomic increment operation

25 Atomic (decrement) PE can support an atomic decrement operation

26 Atomic (set) PE can support an atomic set operation

27 Atomic (clear) PE can support an atomic clear operation

28 Atomic (swap) PE can support an atomic swap operation

29 Port-write PE can support a port-write operation

30–31 Implementation Defined Defined by the device implementation

Table 5-10. Bit Settings for Destination Operations CAR

Bit Field Name Description

0-13 — Reserved

14-15 Implementation Defined Defined by the device implementation

16 Read PE can support a read operation

17 Write PE can support a write operation

18 Streaming-write PE can support a streaming-write operation

19 Write-with-response PE can support a write-with-response operation

20-21 — Reserved

22 Atomic (compare-and-swap) PE can support an atomic compare-and-swap operation

23 Atomic (test-and-swap) PE can support an atomic test-and-swap operation

24 Atomic (increment) PE can support an atomic increment operation

25 Atomic (decrement) PE can support an atomic decrement operation

26 Atomic (set) PE can support an atomic set operation

27 Atomic (clear) PE can support an atomic clear operation

28 Atomic (swap) PE can support an atomic swap operation

Table 5-9. Bit Settings for Source Operations CAR (Continued)

Bit Field Name Description
50 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
29 Port-write PE can support a port-write operation

30-31 Implementation Defined Defined by the device implementation

Table 5-10. Bit Settings for Destination Operations CAR (Continued)

Bit Field Name Description
RapidIO Trade Association 51

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.5 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs)
that allows an external processing element to control and determine the status of its
internal hardware. All registers are 32 bits wide and are organized and accessed in
the same way as the CARs. Refer to Table 5-2 for the required behavior for accesses
to reserved registers and register bits.

5.5.1 Processing Element Logical Layer Control CSR
(Configuration Space Offset 0x4C)

The Processing Element Logical Layer Control CSR is used for general command
and status information for the logical interface.

5.5.2 Local Configuration Space Base Address 0 CSR
(Configuration Space Offset 0x58)

The local configuration space base address 0 register specifies the most significant
bits of the local physical address double-word offset for the processing element’s
configuration register space. See Section 5.5.3 below for a detailed description.

Table 5-11. Bit Settings for Processing Element Logical Layer Control CSR

Bit Field Name Description

0–28 — Reserved

29-31 Extended addressing control Controls the number of address bits generated by the PE as a source and processed
by the PE as the target of an operation.
0b100 - PE supports 66 bit addresses
0b010 - PE supports 50 bit addresses
0b001 - PE supports 34 bit addresses (default)
All other encodings reserved

Table 5-12. Bit Settings for Local Configuration Space Base Address 0 CSR

Bit Field Name Description

0 — Reserved

1-16 LCSBA Reserved for a 34-bit local physical address
Reserved for a 50-bit local physical address
Bits 0-15 of a 66-bit local physical address

17-31 LCSBA Reserved for a 34-bit local physical address
Bits 0-14 of a 50-bit local physical address
Bits 16-30 of a 66-bit local physical address
52 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
5.5.3 Local Configuration Space Base Address 1 CSR
(Configuration Space Offset 0x5C)

The local configuration space base address 1 register specifies the least significant
bits of the local physical address double-word offset for the processing element’s
configuration register space, allowing the configuration register space to be
physically mapped in the processing element. This register allows configuration and
maintenance of a processing element through regular read and write operations
rather than maintenance operations. The double-word offset is right-justified in the
register.

Table 5-13. Bit Settings for Local Configuration Space Base Address 1 CSR

Bit Field Name Description

0 LCSBA Reserved for a 34-bit local physical address
Bit 15 of a 50-bit local physical address
Bit 31 of a 66-bit local physical address

1-31 LCSBA Bits 0-30 of a 34-bit local physical address
Bits 16-46 of a 50-bit local physical address
Bits 32-62 of a 66-bit local physical address
RapidIO Trade Association 53

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Blank page
54 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Agent. A processing element that provides services to a processor.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache. In other words, a
write operation to an address in the system is visible to all other
caches in the system.

Cache line. A contiguous block of data that is the standard memory access
size for a processor within a system.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

A

B

C

D

RapidIO Trade Association 55

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

End point free device. A processing element which does not contain end
point functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LSB. Least significant byte.

E

F

G

H

I

L

56 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

MSB. Most significant byte.

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Port-write. An address-less maintenance write operation.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

ROM. Read-only memory.

Sender. The RapidIO interface output port on a processing element.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

SRAM. Static random access memory.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

M

N

O

P

R

S

RapidIO Trade Association 57

RapidIO Part 1: Input/Output Logical Specification Rev. 1.3
Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

T

W

58 RapidIO Trade Association

RapidIO Part 1: Input/Output Logical Layer Specification Rev. 1.3

RapidIO Trade Association 59

Blank page

RapidIO Part 1: Input/Output Logical Layer Specification Rev. 1.3

60 RapidIO Trade Association

Blank page

	RapidIO™ Interconnect Specification Part 1: Input/Output Logical Specification
	Chapter�1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Input/Output Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter�2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 System Issues
	2.3.1 Operation Ordering
	2.3.2 Transaction Delivery
	2.3.2.1 Unordered Delivery System Issues
	2.3.2.2 Ordered Delivery System Issues

	2.3.3 Deadlock Considerations

	Chapter�3 Operation Descriptions
	3.1 Introduction
	3.2 I/O Operations Cross Reference
	3.3 I/O Operations
	3.3.1 Read Operations
	3.3.2 Write and Streaming-Write Operations
	3.3.3 Write-With-Response Operations
	3.3.4 Atomic (Read-Modify-Write) Operations

	3.4 System Operations
	3.4.1 Maintenance Operations

	3.5 Endian, Byte Ordering, and Alignment

	Chapter�4 Packet Format Descriptions
	4.1 Request Packet Formats
	4.1.1 Addressing and Alignment
	4.1.2 Field Definitions for All Request Packet Formats
	4.1.3 Type 0 Packet Format (Implementation-Defined)
	4.1.4 Type 1 Packet Format (Reserved)
	4.1.5 Type 2 Packet Format (Request Class)
	4.1.6 Type 3–4 Packet Formats (Reserved)
	4.1.7 Type 5 Packet Format (Write Class)
	4.1.8 Type 6 Packet Format (Streaming-Write Class)
	4.1.9 Type 7 Packet Format (Reserved)
	4.1.10 Type 8 Packet Format (Maintenance Class)
	4.1.11 Type 9–11 Packet Formats (Reserved)

	4.2 Response Packet Formats
	4.2.1 Field Definitions for All Response Packet Formats
	4.2.2 Type 12 Packet Format (Reserved)
	4.2.3 Type 13 Packet Format (Response Class)
	4.2.4 Type 14 Packet Format (Reserved)
	4.2.5 Type 15 Packet Format (Implementation-Defined)

	Chapter�5 Input/Output Registers
	5.1 Register Summary
	5.2 Reserved Register and Bit Behavior
	5.3 Extended Features Data Structure
	5.4 Capability Registers (CARs)
	5.4.1 Device Identity CAR (Configuration Space Offset 0x0)
	5.4.2 Device Information CAR (Configuration Space Offset 0x4)
	5.4.3 Assembly Identity CAR (Configuration Space Offset 0x8)
	5.4.4 Assembly Information CAR (Configuration Space Offset 0xC)
	5.4.5 Processing Element Features CAR (Configuration Space Offset 0x10)
	5.4.6 Switch Port Information CAR (Configuration Space Offset 0x14)
	5.4.7 Source Operations CAR (Configuration Space Offset 0x18)
	5.4.8 Destination Operations CAR (Configuration Space Offset 0x1C)

	5.5 Command and Status Registers (CSRs)
	5.5.1 Processing Element Logical Layer Control CSR (Configuration Space Offset 0x4C)
	5.5.2 Local Configuration Space Base Address 0 CSR (Configuration Space Offset 0x58)
	5.5.3 Local Configuration Space Base Address 1 CSR (Configuration Space Offset 0x5C)

	Glossary of Terms and Abbreviations

