
Rev. 1.3.a, 06/2005

© Copyright RapidIO Trade Association

RapidIO™ Interconnect Specification
Part 10: Data Streaming Logical

Specification
RapidIO Trade Association

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.
DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:
Suite 325, 3925 W. Braker Lane
Austin, TX 78759
512-305-0070 Tel.
512-305-0009 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their
respective owners.

Revision History

Revision Description Date

1.3 First release 06/09/2004

1.3.a No technical changes
Converted to ISO-friendly templates

02/23/2005

1.3.a Removed confidentiality markings for public release 06/07/2005
RapidIO Trade Association

Table of Contents

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 1 Overview

1.1 Introduction... 9
1.2 Overview... 9
1.3 Features of the Data Streaming Specification... 10
1.3.1 Functional Features... 10
1.3.2 Physical Features .. 10
1.3.3 Performance Features ... 11
1.4 Contents .. 11
1.5 Terminology.. 12
1.6 Conventions .. 12
1.7 Useful References ... 13

Chapter 2 Data Streaming Systems

2.1 Introduction... 15
2.2 System Example ... 15
2.3 Traffic Streams ... 16
2.4 Operation Ordering ... 17
2.5 Class of Service and Virtual Queues .. 19
2.6 Deadlock Considerations .. 20

Chapter 3 Operation Descriptions

3.1 Introduction... 21
3.2 Data Streaming Protocol ... 21
3.2.1 Data Streaming Operation .. 21
3.2.2 Virtual Streams ... 22
3.2.3 PDU Sequences Within Streams... 23
3.2.4 Segments within a PDU.. 23
3.2.5 Rules for Segmentation and Reassembly.. 26
3.3 Class of Service and Traffic Streams.. 27

Chapter 4 Packet Format Descriptions

4.1 Introduction... 29
4.2 Type 9 Packet Format (Data-Streaming Class) .. 29
4.3 Type 9 Extended Packet Format (Extended Data-Streaming Class) 32
RapidIO Trade Association 3

Table of Contents

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 5 Data Streaming Registers

5.1 Introduction... 33
5.2 Register Summary... 33
5.3 Reserved Register and Bit Behavior ... 34
5.4 Capability Registers (CARs) .. 36
5.4.1 Source Operations CAR (Configuration Space Offset 0x18)........................... 36
5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)................... 36
5.4.3 Data Streaming Information CAR (Configuration Space Offset 0x3C)........... 37
5.5 Command and Status Registers (CSRs).. 38
5.5.1 Data Streaming Logical Layer Control CSR

(Configuration Space Offset 0x48)... 38

Annex A VSID Usage Examples

A.1 Introduction... 39
A.2 Background... 39
A.3 Packet Classification... 39
A.3.1 Sub-port Addressing at the Destination .. 40
A.3.1.1 DSLAM application.. 40
A.3.1.2 VOIP application .. 40
A.3.2 Virtual Output Queuing - Fabric On-ramp ... 40
A.4 System Requirements ... 41
A.4.1 UTOPIA to RapidIO ATM bridge.. 41
A.4.2 Network processor .. 41
A.4.3 CSIX to RapidIO interface ... 41
A.4.4 10Gb Metropolitan Area Network interface... 42
4 RapidIO Trade Association

List of Figures

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
1-1 End to End Communication Circuit..10
2-1 Example of a RapidIO-Based Networking System ..15
2-2 Mapping Virtual Streams at the System Ingress...19
2-3 Mapping Virtual Streams at the System Egress..20
3-1 Data Streaming Operation ..22
3-2 Virtual Streams ...22
3-3 PDU Segmentation and Reassembly Example 1 ..25
3-4 PDU Segmentation and Reassembly Example 2 ..25
3-5 Traffic Sorting Based on CoS ID..27
4-1 Single Segment Type 9 Packet Bit Stream Format Example ...30
4-2 Start Segment Type 9 Packet Bit Stream Format Example ..31
4-3 Continuation Segment Type 9 Packet Bit Stream Format Example...............................31
4-4 End Segment Type 9 Packet Bit Stream Format ..32
RapidIO Trade Association 5

List of Figures
RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Blank page
6 RapidIO Trade Association

List of Tables

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
4-1 Specific Field Definitions and Encodings for Type 9 Packets29
4-2 Specific Field Definitions and Encodings for Type 9 Packets30
5-1 Data Streaming Register Map...33
5-2 Configuration Space Reserved Access Behavior..34
5-3 Bit Settings for Source Operations CAR ..36
5-4 Bit Settings for Destination Operations CAR...36
5-5 Bit Settings for Data Streaming Information CAR...37
5-6 Bit Settings for Data Streaming Logical Layer Control CSR...38
RapidIO Trade Association 7

List of Tables
RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Blank page
8 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 10: Data Streaming Logical
Specification. The goal of the specification is to combine the need for efficiency,
flexibility, and protocol independence in order to minimize the resources necessary
to support a data plane interconnect fabric, and to maintain compatibility and fully
inter-operate with the rest of the RapidIO specifications.

The rationale for this optimization is based upon the assumption that platforms are
expected to produce many times more revenue than the initial cost of the platform.
For example, a platform is expected to produce 10 times the revenue vs. its initial
capital costs. If that same platform could cost 10% more but allow 10% more
resources for producing revenue rather than doing fabric support, the result would
be a significant net gain on the investment. Therefore, enabling more intelligence
within the system fabric and relieving the system processing resources to produce
revenue, even if that fabric is more expensive, is believed to be a good trade-off.

The features of the data streaming specification define virtual mechanisms in simple
forms for building cost sensitive systems and also provides for complex high
functioning fabrics for more demanding applications.

It is assumed that the reader has a thorough understanding of the other RapidIO
specifications and of data plane equipment and applications in general.

1.2 Overview
Standard encapsulation schemes have been developed for the transmission of
datagrams over most popular LANs. A number of different proposals currently exist
for the encapsulation of one protocol over another protocol [RFC1226, RFC1234,
RFC1701]. The data streaming logical specification defines a mechanism for
transporting an arbitrary protocol over a standard RapidIO interface, and addresses
interconnection between elements in an end-to-end data communications circuit.
The protocol has been carefully designed to provide complete compatibility and
inter-operability with existing RapidIO specifications.
RapidIO Trade Association 9

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Figure 1-1. End to End Communication Circuit

The defined encapsulation methodology provides for the multiplexing of different
network-layer protocols simultaneously over the same link and provides a common
solution for easy connection of a wide variety of hosts, bridges and switches. It is
envisioned that a RapidIO system will be capable of carrying a wide variety of data
types, supporting a diverse set of protocol regimens concurrently.

1.3 Features of the Data Streaming Specification
The following are features of the RapidIO data streaming specification designed to
satisfy the needs of various applications and systems:

1.3.1 Functional Features
• Protocol encapsulation, independent of the protocol being encapsulated.
• Support for Protocol Data Units (PDUs) of up to 64k bytes through

Segmentation and Reassembly (SAR).
• Support for hundreds of traffic classes.
• Support for thousands of data streams between end points.
• Support for concurrent interleaved PDUs between end points.
• Seamless inter-operability with other RapidIO specifications.

1.3.2 Physical Features
• Packet definition is independent of the choice of physical layer interconnection

to other devices on the interconnect fabric.
• The protocols and packet formats are independent of the physical interconnect

topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• No dependencies exist on the bandwidth or latency of the physical fabric.
10 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
• The protocol requires in-order packet transmission and reception; out-of-order
packet delivery is not tolerated.

• Certain devices have bandwidth and latency requirements for proper operation.
The data streaming logical layer specification does not preclude an
implementation from imposing these constraints within the system.

1.3.3 Performance Features
• Packet headers are small to minimize the control overhead and be organized for

fast, efficient assembly and disassembly.
• Multiple transactions are allowed concurrently in the system, otherwise a

majority of the potential system throughput is wasted.
• Multiple end point to end point concurrent data streams are supported for high

fabric utilization.

1.4 Contents
Following are the contents of the RapidIO Part 10: Data Streaming Logical
Specification:

• Chapter 1, “Overview,” is an overview of the data streaming logical
specification.

• Chapter 2, “Data Streaming Systems,” introduces system issues such as
transaction ordering and deadlock prevention.

• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO data streaming protocol.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the data streaming specification.

• Chapter 5, “Data Streaming Registers,” describes the visible register set that
allows an external processing element to determine the data streaming
capabilities, configuration, and status of a processing element using this
logical specification. Only registers or register bits specific to the data
streaming logical specification are explained. Refer to the other RapidIO
logical, transport, and physical specifications of interest to determine a
complete list of registers and bit definitions.

• Annex A, “VSID Usage Examples,” contains a number of examples of how the
virtual stream identifier can be used in a system.
RapidIO Trade Association 11

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
1.5 Terminology
The data streaming logical specification introduces some new terms:

Protocol Data Unit - (PDU) A self contained unit of data transfer comprised of data
and protocol information that defines the treatment of that data.

Virtual Stream ID - (VSID) an identifier comprised of several fields in the protocol
to identify individual data streams.

Virtual input Queue (ViQ), Virtual output Queue (VoQ) - an intermediate point
in the system where one or more virtual streams may be concentrated.

Class of service - (cos) a term used to describe different treatment (quality of
service) for different data streams. Support for class of service is provided by a class
of service field in the data streaming protocol. The class of service field is used in
the virtual stream ID and in identifying a virtual queue.

StreamID - a specific field in the data streaming protocol that is combined with the
data streams’s transaction request flow ID and the source ID or destination ID from
the underlying packet transport fabric to form the virtual stream ID.

Segment - A portion of a PDU.

Segmentation - a process by which a PDU is transferred as a series of smaller
segments.

Segmentation context - Information that allows a receiver to associate a particular
packet with the correct PDU.

Ingress - Ingress is the device or node where traffic enters the system. The ingress
node also becomes the source for traffic into the RapidIO fabric. The terms ingress
and source may or may not be used interchangeably when considering a single end
to end connection.

Egress - Egress is the device or node where traffic exits the system. The egress node
also becomes the destination for traffic out of the RapidIO fabric. The terms egress
and destination may or may not be used interchangeably when considering a single
end to end connection.

Refer to the Glossary at the back of this document for additional definitions.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits
ACTIVE_HIGHNames of active high signals are shown in uppercase text with no

overbar. Active-high signals are asserted when high and not
asserted when low.

ACTIVE_LOWNames of active low signals are shown in uppercase text with an

12 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.
REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.

Specific bits, fields, or ranges appear in brackets.
TRANSACTIONTransaction types are expressed in all caps.
operation Device operation types are expressed in plain text.
n A decimal value.
[n-m] Used to express a numerical range from n to m.
0bnn A binary value, the number of bits is determined by the number of

digits.
0xnn A hexadecimal value, the number of bits is determined by the

number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care.

1.7 Useful References
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC791, September 1981

[RFC1226] Kantor, B. "Internet Protocol Encapsulation of AX.25 Frames",
RFC1226, University of California, San Diego, May 1991.

[RFC1234] Provan, D. "Tunneling IPX Traffic through IP Networks", RFC 1234,
Novell, Inc., June 1991.

[RFC1700] J. Reynolds and J. Postel, "Assigned Numbers", RFC1700, October
1994.

[RFC2460] S. Deering, R. Hinden, "Internet Protocol, Version 6 (IPv6)", RFC2460,
December 1998.

[RFC1884] Hinden, R., and S. Deering, Editors, "IP Version 6 Addressing
Architecture", RFC1884, Ipsilon Networks, Xerox PARC, December 1995.

[RFC2004] C. Perkins, "Minimal Encapsulation within IP", RFC2004, October
1996.
RapidIO Trade Association 13

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Blank page
14 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 2 Data Streaming Systems

2.1 Introduction
This overview introduces the role of the data streaming logical layer in an overall
system. It provides some possible use examples. See Annex A, “VSID Usage
Examples”, for more example details.

2.2 System Example
Figure 2-1 shows a block diagram of an example RapidIO-based networking system
in which protocol encapsulation is required. A number of typical data path type
devices are connected with a variety of proprietary and/or somewhat standard
interfaces and the entire system is tied together with a RapidIO switching fabric of
some topology.

Figure 2-1. Example of a RapidIO-Based Networking System

MAC Traffic
ManagerXAUI xMII

Framer Network
Processor

Fabric
InterfaceSFIx SPIx

Framer Comm
Processor

Traffic
ManagerSFIx SPIx

CSIX,
NPSI

Utopia,
xMII,

Proprietary
RapidIO,

R
a
p
i
d
I
O

I
n
t
e
r
c
o
n
n
e
c
t

F
a
b
r
i
c

Comm
ProcessorxMII
RapidIO Trade Association 15

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Data “streams” represent logical connections between an ingress port and an egress
port. A connection spans the transfer of multiple PDUs. The transfer of PDUs may
be separated by discrete intervals of time, based on the arrival of data at the ingress.
Transfer between an ingress process and an egress process is unidirectional. An I/O
device may be bi-directional, containing both an ingress process and an egress
process. These processes are usually completely independent consisting of separate
streams in each direction.

A given ingress may service hundreds, thousands, even millions of streams at any
given time depending on how specifically a PDU is classified. Traffic may be
lumped into a single stream, or classified by user and application to form millions of
data streams.

Data streaming transactions differ from most other RapidIO transactions in two
ways: they must accommodate larger variably sized data transfers, and the
transactions are not acknowledged with a response packet. The data streaming
logical layer is intended to support data from a variety of hardware and processing
devices. These devices have a variety of different interfaces, protocols, and degrees
of sophistication. This specification is intended to enable these kinds of devices to
exist on the RapidIO interconnect.

2.3 Traffic Streams
A stream identifier identifies independent streams of traffic between the end
producer (for example, a web server) and end consumer (for example, a home
personal computer) of the encapsulated data. Stream identifiers vary with protocol
and may include multiple fields from the various networking layers included in the
protocol. A unit of data that contains a discrete identifier is called a Protocol Data
Unit, or PDU. A PDU may or may not have an ordering relationship with another
PDU being transmitted between that same producer and consumer, depending upon
the higher layer protocol being carried. A traffic stream is a series of PDUs that have
an ordering relationship between each other. A PDU has no ordering relationship
with a PDU from different producers and consumers pairs.

The data streaming logical layer uses a virtual stream identifier (VSID) to allow
multiple end to end traffic streams of PDUs to be uniquely identified and managed
concurrently within the RapidIO system. Creation of a VSID is done by performing
a protocol specific classification process on a PDU. The complexity of the
classification process is directly proportional to the sophistication of the system as
required by the application. The VSID allows the traffic to be reassociated with an
appropriate application at the egress without having to perform a second
protocol-specific classification. A VSID is comprised of fields from the data
streaming protocol: source or destination ID from the underlying packet transport
fabric, class of service, and streamID.
16 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
2.4 Operation Ordering
A transaction request flow is defined as an ordered sequence of request transactions
comprising a specific PDU from a given source (as indicated by the transaction
source identifier from the underlying packet transport fabric) to a given destination
(as indicated by the transaction destination identifier). Each packet in a transaction
request flow has the same source identifier and the same destination identifier. All
traffic streams are mapped onto transaction request flows. These flows may also be
shared with other RapidIO logical layers transactions, and therefore the relationship
between streams, traffic classes, virtual queues, and all RapidIO transaction request
flows are implementation specific.

There may be multiple transaction request flows between a given source and
destination pair. When multiple flows exist between a source and destination pair,
the flows are distinguished by a flow indicator referred to as a “flowID”, introduced
in the RapidIO Part 1: Input/Output Logical Specification. RapidIO allows multiple
transaction request flows between any source and destination pair. Any number of
transaction request flows may exist between the two end points. The flowID
represents the lowest level of traffic management in a RapidIO system as that is the
construct mapped directly on to the switch fabric itself.

The transaction request flows between each source and destination end point pair
may be allocated to different virtual channels in the underlying fabric and may also
be prioritized within a channel. The flows are labeled and identified alphabetically
as in the other logical layer specifications, and the channels labeled and identified
numerically with channel then priority, starting with 0 as first channel or lowest
priority, then 1 as second channel or next lowest priority, etc. For example, flowID
0A is channel 0 flow A, flowID 1C is channel 1 flow C, flowID 3E is channel 3 flow
E, and so on. This flow information provides class of service information when
mapped by the application to the switch fabric.

Allocation of transaction request flows to virtual channels and the relative priority
within each channel is application dependent. A special case is a single virtual
channel application which must follow the same prioritization of flows and labeling
as the other logical layers (flowID A, flowID B, flowID C, etc.). The channel label
(0) is dropped. This channel may include traffic from the other logical layers.

At the link level, when multiple transaction request flows within the same virtual
channel exist between a given connected source and destination pair, transactions of
a higher priority flow may pass transactions of a lower priority flow, but transactions
of a lower priority flow may not pass transactions of a higher priority flow. There
are no ordering rules for flows in different channels. A traffic stream being
transmitted between a source and a destination end point pair must utilize the same
flowID value so that the ordering of the traffic stream is maintained. As a class of
service indicator, the flowID is used by the underlying RapidIO fabric to determine
how to treat a packet with respect to other packets with respect to priority and
RapidIO Trade Association 17

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
ordering. It is expected that in a mixed control and data plane application that both
I/O logical and data streaming transaction request flows will exist in a RapidIO
system simultaneously, possibly between the same end point devices.

To support transaction request flows, all devices that support the RapidIO data
streaming logical specification shall comply as applicable with the following Fabric
Delivering Ordering and End point Completion Ordering rules. Note that these rules
are very similar and complementary to the rules specified in RapidIO Part 1:
Input/Output Logical Specification.

Fabric Delivery Ordering Rules
1. Transactions within a transaction request flow (same source identifier,

same destination identifier, same flowID, same PDU) shall be delivered
to the logical layer of the destination in the same order that they were
issued by the logical layer of the source.

2. Request transactions that have the same source (same source identifier)
and the same destination (same destination identifier) within the same
virtual channel but with different flowIDs shall be delivered to the
logical layer of the destination as follows.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source before a transaction of a
lower priority transaction request flow shall be delivered to the
logical layer of the destination before the lower priority
transaction.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source after a transaction of a
lower priority transaction request flow may be delivered to the
logical layer of the destination before the lower priority
transaction.

3. Request transactions that have different sources (different source
identifiers) or different destinations (different destination identifiers) or
different virtual channels are unordered with respect to each other.

End point Completion Ordering Rules
1. Request transactions in a transaction request flow shall be completed at

the logical layer of the destination in the same order that the transactions
were delivered to the logical layer of the destination.

It may be necessary to impose additional rules in order to provide for
inter-operability with other interface standards or programming models. However,
such additional rules are beyond the scope of this specification.
18 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
2.5 Class of Service and Virtual Queues
Data streaming systems may support thousands, even millions of active data
streams. These streams are eventually interleaved onto the single underlying packet
transport fabric. The process for deciding which streams may share common
resources is sometimes referred to as virtual queuing. To facilitate virtual queuing at
the ingress and/or egress of the fabric, and to provide for more sophisticated
management of traffic streams, the data streaming logical layer provides a class of
service (cos) identifier. The cos field exists to provide a common semantic as to how
the traffic stream is to be treated. The relationship between the ingress/egress cos
and the end to end flowID assigned to the traffic stream is implementation specific.

At the ingress to the fabric, thousands of streams may be combined into fewer virtual
output queues (VoQs) using just the destination ID and the class of service portions
of the VSID as shown in Figure 2-2. The cos field defined by this specification is
comprised of one byte. The number of bits utilized by a particular device depends
upon the number of data buffering structures implemented, but are always from the
most significant bit of the cos field to the least significant bit. For example, a device
with two buffering structures (or “bins”) maps a packet to a bin using bit 0, a device
with four bins maps a packet to a bin using bits 0 and 1, and so on.

Figure 2-2. Mapping Virtual Streams at the System Ingress

As shown in Figure 2-2, as the virtual output queues are mapped on to the flowIDs
and then on to the underlying packet transport fabric, they may be intermingled with
other logical layer transactions. The use of the transport fabric must account for the
needs of the total environment and is application and implementation specific. End
points designed to support a wide variety of applications for data streaming should
offer some flexibility in how virtual queues are mapped down on to the transport
fabric in the implementation.

A reverse process (virtual input queueing) may or may not occur at the destination.
If there is a critical resource needed to process traffic on egress from the fabric, the
system designer may choose to fan the traffic back out into virtual queues. This
allows the fabric egress processing to re-prioritize utilization of the critical resource.

Data Streaming Logical Layer

Other Logical Layers

Flow A

Flow B

Flow C
Transport Fabric

Sc
he

du
lin

g

Virtual Streams VoQs
VSID = dest. ID+cos+streamID
VoQ = dest. ID+cos
Flow = dest. ID+transport
RapidIO Trade Association 19

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
This is illustrated in Figure 2-3.

Figure 2-3. Mapping Virtual Streams at the System Egress

A switch device may choose to utilize the information carried in the cos field by
acting as a “virtual” end point, removing the traffic streams from the underlying
packet transport fabric, reassembling the individual PDUs, and fanning the streams
back out into some larger number of queues. It then re-injects the traffic streams
back into the underlying transport fabric re-ordering the traffic using the cos. This
permits intervening devices to participate in the overall assurance of quality of
service in the system.

2.6 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The data streaming logical specification does not have any dependency loops since
the defined operations do not require responses. However, a real RapidIO system is
required to support the I/O logical maintenance operation, and will very likely
require the use of other logical operations for control functions. Support for these
other logical operations may have significant deadlock considerations for
processing element and system designs.

Data Streaming Logical Layer

Other Logical Layers

Sc
he

du
lin

gVirtual StreamsViQs

Flow A

Flow B

Flow C
Transport Fabric

VSID = src. ID+cos+streamID
ViQ = src. ID+cos
Flow = src. ID+transport
20 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the RapidIO data streaming protocol. The field encodings and
packet formats are described in Chapter 4, “Packet Format Descriptions.”

Data path data movement through a machine has requirements that are significantly
different than those for control path and traditional DMA functions. Many times this
data is encapsulated data, which also many times contains further encapsulated data.
For example, the data moving through the system may be encapsulated Ethernet
packets, which may in turn be encapsulating TCP/IP packets.

This style of data movement is typically not address-based as with DMA type I/O,
and consequently follows a queue based message passing paradigm. Data path data
movement also has much more complex requirements in the area of class (or quality)
of service than control path communications, and generally requires managing a
number of queues at the egress of the system. There is also a need to be able to
identify and manage many thousands of data traffic streams that pass through a
RapidIO based data path system. The data being passed through the RapidIO system
may not be directly generated or consumed by the device connected to the RapidIO
portion of the machine, but instead by a distant end user, such as a personal computer
attached to a LAN. This necessitates the addition of a new protocol to the RapidIO
logical layers, the data streaming protocol.

The RapidIO data streaming protocol uses request transactions through the
interconnect fabric as with other RapidIO operation protocols. Since many data
movement protocols guarantee data delivery in an upper layer protocol, the
generation of responses indicating completion are not needed. Such upper layer
protocols may also allow data to be discarded if necessary, for example, under error
or fabric congestion conditions.

3.2 Data Streaming Protocol
This section describes the RapidIO data streaming protocol.

3.2.1 Data Streaming Operation
A data stream represents a logical connection between a source and a destination
pair. A stream may consist of multiple transactions and requires the allocation of
RapidIO Trade Association 21

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
resources at both the source and the destination. This may be done in advance of any
data transfer, or in response to receiving a new transaction. Since streams are virtual
constructs between source and destination pairs, they may be reused for different
data transfers at any time as long as the source and destination pair are both
synchronized as to the stream usage.

A data streaming operation consists of individual data streaming transactions, as
shown in Figure 3-1. A series of transactions is used to send PDUs between two end
points. The data streaming protocol is completely independent of the PDU’s native
protocol.
Data streaming transactions do not receive responses, so there is no notification to
the sender when the transaction has completed at the destination.

Figure 3-1. Data Streaming Operation

3.2.2 Virtual Streams
A stream is represented by a unique virtual stream indentifier, or VSID. This
identifier represents the handling of all PDUs within the stream for the duration of a
PDU’s transit of the RapidIO fabric. The identifier is created by performing some
form of protocol specific classification of the PDU. The classification can be as
complex or as simple as the application warrants. The VSID allows this protocol
specific classification to take place one time at the ingress to the fabric. After that,
the handling of the PDU is protocol independent.

Figure 3-2. Virtual Streams

The VSID is used at the destination to “reclassify” the PDU. This sorts the data back
into contexts that can now be protocol specific again. This virtual addressing model
eliminates the need for the source and the destination to align the use of buffers and
other resources. Therefore, the VSID can be used to carry a wide variety of
information about a stream through the system, such as the protocol being
encapsulated, demultiplexing exit port IDs instructions, very fine grained buffer

DATA STREAMING, data1

Source Destination

Protocol Type A

Classification
VSIDPDU

Destination

Demux
Protocol Type B

Classification

FABRIC

VSIDPDU
22 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
management, etc., as required for a specific application.

The VSID is a “key” comprised of multiple fields. These fields are the
source/destination ID, cos, and streamID.
From the source’s viewpoint: destination ID+cos+streamID represents a unique
stream.
From the destination’s viewpoint: source ID+cos+streamID represents a unique
stream.

By using the complete key, each source and destination pair is free to allocate the
use of these fields independently. Some examples of how the VSID may be applied
in a system are described in Appendix A, “VSID Usage Examples,” on page 39.

3.2.3 PDU Sequences Within Streams
As described earlier, a traffic stream may consist of a sequence of related PDUs that
have ordering requirements between each other. A stream of PDUs is transmitted
one PDU at a time to preserve the required ordering. PDUs that do not have an
ordering relationship may be separated into different streams or may be interleaved
in common streams. A stream is identified by the interconnect fabric by the
combination of the destination ID and either the cos field or the flowID, depending
upon the complexity of the fabric, as described in “Section 2.5, Class of Service and
Virtual Queues” on page 19.

Only one PDU from any given stream will be transmitted at a time at the source, but
fabric conditions may result in multiple PDUs in transit. The fabric must guarantee
that delivery of PDUs (and segments of PDUs as described below) remain in order.
A fabric may load balance traffic through multiple paths on a stream by stream basis.

3.2.4 Segments within a PDU
The basic mechanism of segmentation defines a general methodology to provide for
larger PDUs than are accommodated by the standard 256 byte limit on a RapidIO
data payload. The standard industry term for this function is “Segmentation and
Reassembly”, or SAR. A PDU that is to be transmitted from the initial producer to
the final consumer is broken up (segmented) into a series of blocks of data. The
consumer “reassembles” that data back into the original PDU. The maximum size of
a PDU that a particular destination can accept is specified in a CAR (see Chapter 5,
“Data Streaming Registers”). The system must be configured with in accordance to
these limitations.

The block size used for the segmentation process is specified by the Maximum
Transmission Unit, or MTU, parameter. The MTU is defined in Chapter 5, “Data
Streaming Registers”. The MTU is a system-wide parameter agreed to by all
processing elements participating in the SAR process. By managing the MTU size
for the system, the variability in latency for the system can be controlled.
RapidIO Trade Association 23

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
A data streaming transaction is also referred to as a segment. The transmission of a
PDU for any given stream may result in one or more transactions (segments). A
typical sequence is made up of three types of transactions, a start segment, some
number of continuation segments, and an end segment. Start segments and
continuation segments are always filled to the MTU size. End segments are variable
in size containing the remainder of the PDU. If a PDU is equal to or less than the
MTU size, it is carried in a single segment. A single segment may also be variable
in size, matching the PDU payload. Since flowIDs and the cos are assigned on a
PDU basis, all segments of a PDU must also have that same flowID and cos
assignments.

A start segment contains the necessary fields to identify the VSID and “open” a
segmentation context. The segmentation context for a stream is defined as the
combination of the source ID and the flowID, and is used by a receiver to reassociate
the segments of a particular PDU. Using source ID+flowID allows each source and
destination pair to have one PDU for each flowID that is explicitly supported by the
system interleaved in the fabric at any one point in time. The VSID is used when
opening a segmentation process at the destination to associate the PDU with its
stream since the continuation and end segments do not carry that information. After
the receipt of the end segment, the segmentation context is “closed” (the sending
processing element has an analogous definition for open and closed). The stream
and PDU associated with a segmentation context is not permitted to change during
the time that the context is open.

Since there may be a large number of PDU sources and concurrent contexts per
source, the amount of context state that a destination may have to handle can
potentially get very large. The number of contexts that can be supported by a
particular destination end point is specified in a CAR (see Chapter 5, “Data
Streaming Registers”). These segmentation contexts must be allocated to sources by
system software.

For efficiency, information as to which block of the PDU is contained in a specific
packet is not included in the header. This requires that the transmitter issue the
sequence starting with the first block of the PDU and proceeding sequentially
through the PDU, and requires the underlying transport fabric to deliver the
sequence to the data streaming logical layer in the issued order.

Figure 3-3 shows a 24 byte PDU that is to be segmented for transmission, with an
eight byte MTU (note that an eight byte MTU is not permitted in this specification;
it is used to simplify the illustration). Since the PDU is divisible by the size specified
as the MTU, all data payloads are exactly that size and no padding is necessary. The
sender takes byte 0 (the first byte of the PDU) through byte 7 as the data payload to
transmit in the start segment. The second data payload consists of bytes 8 through
15, which is transmitted in a continuation segment. The last data payload consists of
bytes 16 through 23, which is transmitted in the end segment. Since the data
payloads are required to be delivered to the receiver’s data management hardware in
24 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
order of transmission, the receiver can correctly reassemble the original PDU when
all three packets have arrived.

To guarantee the packet ordering, all packets making up an individual PDU
and all PDUs in a stream must be in the same transaction request flow, as
described in “Section 2.4, Operation Ordering” on page 17.

Figure 3-4 shows an example of a similar situation, except that this time the PDU is
21 bytes. In this case, the end segment has a data payload that is less than the
specified MTU, and also has a pad byte to round out the data payload to be a multiple
of half-words. A bit in the end segment (the “P” bit) indicates the presence of the
pad byte. An additional bit (the “O” bit) indicates that the data payload has an odd
number of half-words and is therefore oddly aligned. The number of half-words in
the data payload as well as the presence of a pad byte can be determined from a PDU
length field contained in the end segment header.

Figure 3-3. PDU Segmentation and Reassembly Example 1

Figure 3-4. PDU Segmentation and Reassembly Example 2

First
Byte

of PDU

Last
Byte

of PDU

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

byte 8 byte 10 byte 11byte 9 byte 12 byte 13 byte 14 byte 15

byte 16 byte 18 byte 21byte 20byte 19 byte 22 byte 23byte 17

Bytes for the start
segment data payload

Bytes 8 through 15
are the continuation

Bytes 16 through 23
are the end segment

segment data payload

data payload

First
Byte

of PDU

Last
Byte

of PDU

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

byte 8 byte 10 byte 11byte 9 byte 12 byte 13 byte 14 byte 15

byte 16 byte 18 padbyte 20byte 19byte 17

Bytes for the start
segment data payload

Bytes 8 through 15
are the continuation

Bytes 16 through 20
plus the pad byte is

segment data payload

the end segment data
payload
RapidIO Trade Association 25

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
3.2.5 Rules for Segmentation and Reassembly
Segmentation (source)

1. In order to limit implementation complexity due to possible PDU ordering
issues, only one PDU from a given stream may be segmented at a time.

2. Segments are filled with bytes from the PDU in order as shown in Figure 3-3
and Figure 3-4.

3. The first segment is marked as start segment (see section 4).
4. The start segment is filled to the end of the PDU data or to the MTU size.
5. If the end of the PDU data is encountered, the start segment then re-marked as

a single segment.
6. If the start segment reaches MTU size (and there is remaining PDU data), the

start segment is encapsulated, and a continuation segment is opened.
7. Continuation segments are filled to MTU size from the PDU data, in order.
8. When the end of PDU data is encountered, the segment is marked as the end

segment. The end segment data payload size may be less than or equal to the
MTU size.

9. If the source wishes to abort a PDU transmission, it sends an end segment with
no data payload and with the length field set to zero.

Reassembly (destination)
1. Upon receiving a segment with a start bit, the reassembly unit opens a

“context” containing the virtual stream ID and associates it with the
segmentation context (consisting of the source ID and the flowID).

2. The reassembly process transfers the entire payload into the reassembly buffer
in order. The amount of data transferred is counted for comparison to the
length field.

3. If the packet is a single segment, the amount of payload data must be equal to
or less than the MTU size or the PDU is defective.

4. If the packet is a start segment and the payload data does not match the MTU
size the PDU is defective.

5. Reassembly continues with continuation packets. All continuation packets
must match the MTU size or the PDU is defective. All data transferred to the
reassembly buffer is counted.

6. An end segment terminates the reassembly process. An end segment may be
received immediately after a start segment. The data payload size must be
less than or equal to the MTU size or the PDU is defective. The data from the
end segment is transferred according to the data payload size and counted.

7. Once all the data has been reassembled, the length (provided by the end
segment packet header) is checked against the received data count. A
mismatch indicates a lost continuation segment and the PDU is defective.
26 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
8. Receiving a continuation or end segment on a closed context indicates a lost
start segment and the PDU is defective.

9. Receiving a start or single segment on an open context indicates a lost end
segment and the PDU is defective. The existing context is closed, and the new
context is opened.

In all cases, a defective PDU results in discarding the entire PDU. The method used
for reporting the discard event is beyond the scope of this specification. It may be
desirable for a destination to have a time-out as part of the lost packet detection
mechanism, but the definition and time interval are also outside of the scope of this
specification.

3.3 Class of Service and Traffic Streams
A virtual stream ID is partitioned into three pieces as previously discussed: port
(identified by the source/destination ID), class (the cos field), and the stream
identifier (the streamID field). These fields form a specific hierarchy for
transitioning packets from highly individualized streams to coarser groupings of
traffic. At the fabric ingress, egress, and potentially at interim points (where
competition for resources may occur) the traffic may be resegregated and queued by
class. In the packet transport fabric, switching is done by destination ID and the
mapped flowID, as described in Section 2.4. The full class of service identifier (CoS
ID) is a subset of the VSID. It consists of the source/destination ID (or ingress/egress
port) plus the cos field.
Ingress queuing should be based on: destination ID+cos
Egress queuing should be based on: source ID+cos
as shown in Figure 3-5.

Including the source or destination ID in the CoS ID allows the class of service to
be specific to the source and destination pairing.

Figure 3-5. Traffic Sorting Based on CoS ID

The cos field shall be used beginning with the MSB (bit 0) using the necessary
number of bits for the number of classes supported.

Streams
Queues

Port 2

Class

Fabric

Egress

Egress

Ingress

Port 4

Queues

Traffic
Prioritized
by Class
RapidIO Trade Association 27

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Bit 0 - 2 Classes of Service

Bits 0, 1 - 4 Classes of Service

Bits 0, 1, 2 - 8 Classes of Service supported

etc.
28 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 4 Packet Format Descriptions

4.1 Introduction
This chapter contains the definition of the data streaming packet format.

4.2 Type 9 Packet Format (Data-Streaming Class)
The type 9 packet format is the DATA STREAMING transaction format. Type 9
packets always have a data payload, unless terminating the PDU. Unlike other
RapidIO logical specifications, the data payload length is defined as a multiple of
half-words rather than double-words. A pad bit allows a sender to transmit an odd
number of bytes in a packet. An odd bit indicates that the data payload has an odd
number of half-words. This bit makes it possible for the destination to determine the
end of a data payload if packet padding is done by the underlying transport. An
extended header bit allows future expansion of the functionality of the type 9 packet
format.

Definitions and encodings of fields specific to type 9 packets are provided in
Table 4-1.

Table 4-1. Specific Field Definitions and Encodings for Type 9 Packets

Field Definition

cos class of service - This field defines the class of service to be applied by the destination end point
(and possibly intervening switch processing elements) to the specified traffic stream.

S Start - If set, this packet is the first segment of a new PDU that is being transmitted. The new
PDU is identified by the combination of the source of the packet and the flowID.

E End - If set, this packet is the last segment of a PDU that is being transmitted. Both S and E set
indicates that the PDU is fully contained in a single packet.

rsrv Reserved - Assigned to logic 0s by the sender, ignored by the receiver

xh Extended header - There is an extended header on this packet. Currently there are no defined
extended header formats. It is always assigned to 0b0 for type 9 packets.

O Odd - If set, the data payload has an odd number of half-words

P Pad - If set, a pad byte was used to pad to a half-word boundary
RapidIO Trade Association 29

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Table 4-1 details the O and P bit combinations.

There are three type 9 packet headers, determined by the value of the Start and End
bits, which determine if the header is a Start/Single header, a Continuation header,
or an End header. The following set of figures shows examples of type 9 packets.
Field sizes are specified in bits.

Figure 4-1 is an example of a Single Segment type 9 packet with all of its fields. The
data payload size may or may not match the MTU size, so n and m are determined
by the size of the PDU itself. In this example, the data payload is un-padded and
there are an even number of half-words. The value 0b1001 in Figure 4-1 specifies
that the packet format is of type 9. This is the only type 9 packet that has the xh field.

Figure 4-2 is an example of a Start Segment type 9 packet with all of its fields. The
data payload that matches the MTU, so n and m are determined by the MTU size.
The value 0b1001 in Figure 4-2 specifies that the packet format is of type 9.

streamID traffic stream identifier - This is an end to end (producer to consumer) traffic stream identifier.

length PDU length - This is the length in bytes of the segmented PDU.
0x0000 - 64kbytes
0x0001 - 1 byte
0x0002 - 2 bytes
0x0003 - 3 bytes
...
0xFFFF - 64kbytes - 1

Table 4-2. Specific Field Definitions and Encodings for Type 9 Packets

O bit P bit Definition

0b0 0b0 Even number of half-words and no pad byte

0b0 0b1 Even number of half-words and a pad byte

0b1 0b0 Odd number of half-words and no pad byte

0b1 0b1 Odd number of half-words and a pad byte

Figure 4-1. Single Segment Type 9 Packet Bit Stream Format Example

Table 4-1. Specific Field Definitions and Encodings for Type 9 Packets (Continued)

Field Definition

• • •

1 0 0 1

4 3

rsrv

1 1

S=1 E=1cos

8

half-word n (byte m-1 || byte m)

16

streamID

161

xh=0

half-word 0 (byte 0 || byte 1)

16

half-word 1 (byte 2 || byte 3)

16

1 1

O=0 P=0
30 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Figure 4-3 is an example of a Continuation Segment type 9 packet with all of its
fields. The size of the data payload must match the MTU size. The half-words (and
correspondingly, bytes) are contiguous in the manner shown in the preceding
examples. The value 0b1001 in Figure 4-3 specifies that the packet format is of type
9.

Figure 4-4 is an example of an End Segment type 9 packet with all of its fields. The
size of the data payload is determined by the remainder of the size of the PDU (the
length field) divided by the size of the MTU. For convenience at the destination, the
O and P bits are used as they are for a single segment. In this example, the data
payload size does not match the PDU size, has a pad byte, and is an odd number of
half-words. The half-words (and correspondingly, bytes) are contiguous in the
manner shown in the preceding examples. A length value of 0 and no data payload
can be used to force the PDU to be discarded. The value 0b1001 in Figure 4-4
specifies that the packet format is of type 9.

Figure 4-2. Start Segment Type 9 Packet Bit Stream Format Example

Figure 4-3. Continuation Segment Type 9 Packet Bit Stream Format Example

1 0 0 1

4 3

rsrv

1 1

S=1 E=0 streamID

162

rsrvcos

8

• • •

half-word n (byte m-1 || byte m)

16

half-word 0 (byte 0 || byte 1)

16

half-word 1 (byte 2 || byte 3)

16

1

0

1 0 0 1

4 3

rsrv

1 1

S=0 E=0cos

8

• • •

half-word

16

half-word

16

half-word

16

2

rsrv

1

0

RapidIO Trade Association 31

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
4.3 Type 9 Extended Packet Format (Extended
Data-Streaming Class)

The type 9 extended packet format is intended to be used for advanced traffic
management and other possible future features of the data streaming specification.
The format is undefined.

Figure 4-4. End Segment Type 9 Packet Bit Stream Format

1 0 0 1

4 3

rsrv

1 1

S=0 E=1cos

8

• • •

half-word (last byte || pad=0x00)

16

length

16

half-word

16

half-word

16

1

0

1 1

O=1 P=1
32 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Chapter 5 Data Streaming Registers

5.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, physical, and extension specifications of interest to determine a complete
list of registers and bit definitions. All registers are 32 bits and aligned to a 32 bit
boundary.

5.2 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
RapidIO Part 1: Input/Output Logical Specification maintenance operations. Any
register offsets not defined are considered reserved for this specification unless
otherwise stated. Other registers required for a processing element are defined in
other applicable RapidIO specifications and by the requirements of the specific
device and are beyond the scope of this specification. Read and write accesses to
reserved register offsets shall terminate normally and not cause an error condition in
the target device. Writes to CAR (read-only) space shall terminate normally and not
cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. Data Streaming Register Map

Configuration
Space Byte

Offset
Register Name

0x0-14 Reserved

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20–38 Reserved

0x3C Data Streaming Information CAR
RapidIO Trade Association 33

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
5.3 Reserved Register and Bit Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x40–44 Reserved

0x48 Data Streaming Logical Layer Control CSR

0x4C–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. Data Streaming Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
34 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO Trade Association 35

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities through maintenance read
operations. All registers are 32 bits wide and are organized and accessed in 32 bit (4
byte) quantities, although some processing elements may optionally allow larger
accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 and Word 0 respectively the most significant bit
and word.

5.4.1 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO data streaming logical operations that can be
issued by this processing element; see Table 5-3. It is assumed that a processing
element can generate I/O logical maintenance read and write requests if it is required
to access CARs and CSRs in other processing elements. The Source Operations
CAR is applicable for end point devices only. RapidIO switches shall be able to
route any packet.

5.4.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO data streaming operations that can be
supported by this processing element; see Table 5-4. It is required that all processing
elements can respond to maintenance read and write requests in order to access these
registers. The Destination Operations CAR is applicable for end point devices only.
RapidIO switches shall be able to route any packet.

Table 5-3. Bit Settings for Source Operations CAR

Bit Field Name Description

0–12 — Reserved

13 Data-streaming PE can support a data streaming operation

14–15 Implementation Defined Defined by the device implementation

16-29 — Reserved

30–31 Implementation Defined Defined by the device implementation

Table 5-4. Bit Settings for Destination Operations CAR

Bit Field Name Description

0-12 — Reserved

13 Data-streaming PE can support a data streaming operation

14-15 Implementation Defined Defined by the device implementation
36 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
5.4.3 Data Streaming Information CAR
(Configuration Space Offset 0x3C)

This register defines the data streaming capabilities of a processing element. It is
required for destination end point devices.

16-29 — Reserved

30-31 Implementation Defined Defined by the device implementation

Table 5-5. Bit Settings for Data Streaming Information CAR

Bit Field Name Description

0–15 MaxPDU Maximum PDU - The maximum PDU size in bytes supported by the destination
end point
0x0000 - 64kbytes
0x0001 - 1 byte
0x0002 - 2 bytes
...
0xFFFF - 64kbytes - 1

16–31 SegSupport Segmentation Support - The number of segmentation contexts supported by the
destination end point
0x0000 - 64k segmentation contexts
0x0001 - 1 segmentation context
0x0002 - 2 segmentation contexts
...
0xFFFF - 64k - 1 segmentation contexts

Table 5-4. Bit Settings for Destination Operations CAR (Continued)

Bit Field Name Description
RapidIO Trade Association 37

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
5.5 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs)
that allows an external processing element to control and determine the status of its
internal hardware. All registers are 32 bits wide and are organized and accessed in
the same way as the CARs. Refer to Table 5-2 for the required behavior for accesses
to reserved registers and register bits.

5.5.1 Data Streaming Logical Layer Control CSR
(Configuration Space Offset 0x48)

The Data Streaming Logical Layer Control CSR is used for general command and
status information for the logical interface.

Table 5-6. Bit Settings for Data Streaming Logical Layer Control CSR

Bit Field Name Description

0-23 — Reserved

24-31 MTU Maximum Transmission Unit - controls the data payload size for segments of an
encapsulated PDU. Only single segment PDUs and end segments are permitted to
have a data payload that is less this value. The MTU can be specified in increments
of 4 bytes. Support for the entire range is required.
0b0000_0000 - reserved
...
0b0000_0111 - reserved
0b0000_1000 - 32 byte block size
0b0000_1001 - 36 byte block size
0b0000_1010 - 40 byte block size
...
0b0100_0000 - 256 byte block size
0b0100_0001 - Reserved
...
0b1111_1111 - Reserved

All other encodings reserved
38 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Annex A VSID Usage Examples

A.1 Introduction
The virtual stream identification (VSID) mechanism provides multiple features
condensed in a single 32 bit key. These features include:

• A mechanism to manage traffic for ingress to the fabric
• A mechanism to manage traffic in transit within the fabric
• A protocol independent tag to reclassify packets on fabric egress
• A flexible "sub-port" addressing mechanism
• Independence in buffer management

A.2 Background
The VSID is a composite of the port, class, and streamID fields as described in
Section 3.2.2. The port address used in the VSID is either the destination ID or the
source ID depending on which side of the fabric the packet is on. At the ingress to
the fabric (source) the destination IDs are unique. At the egress from the fabric, the
source IDs are unique.

By including the source/destination IDs in the VSID, these keys are unique for each
source and destination pairing. This allows the other fields (class and streamID) to
be set up independently without consideration of how these fields are used with any
other port pairings.

The usage of the VSID can vary depending on the sophistication of the fabric and
the demands of the application, from very simplistic port or queue steering to
conveying significant amounts of information (requiring intensive computation) as
to the content of the PDU.

A.3 Packet Classification
All PDUs require some form of classification for ingress to the fabric. Fields in the
PDU specific to the protocol are examined and routing information is produced. The
VSID produced is a 32 bit tag as opposed to just a port address. At the destination,
this 32 bit tag can be used to re-associate the PDU with a target buffer. This can be
done by direct addressing, or using a single key table lookup.
RapidIO Trade Association 39

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
This mechanism provides a finely grained and protocol independent way to sort
traffic, and a virtual mechanism for buffer pool management. Without a virtual tag,
the packet would have to undergo a re-classification based on the protocol specific
portion of the PDU. In multi-service platforms, this could involve numerous and
elaborate processes, duplicating what was already done at the source.

The following sections illustrate in degrees of increasing complexity, the versatility
of the VSID scheme.

A.3.1 Sub-port Addressing at the Destination
The simplest use of the VSID is to de-multiplex the traffic into coarse sub-ports at
the destination. These may be to separate traffic by protocol, or into multiple
sub-ports of the same protocol.

A.3.1.1 DSLAM application

Assume that each line card contain 128 user ports. The system could expose each of
these as independent destinations to the RapidIO fabric, requiring the use of an
excessively large number of destination IDs in the system, and imposing the
associated cost in overhead. Alternatively the ATM traffic can be encapsulated into
128 VSIDs, one for each port. The line card would then expose a single port to the
RapidIO fabric. The VSID would be used as the address to fan out the traffic on
various UTOPIA busses to the user ports. This also has an advantage for fault
recovery. Should a line card fail, a single port entry in routing tables in the fabric
needs to be updated rather than all 128 sub-ports.

A.3.1.2 VOIP application

The VSID can be used to separate the traffic into just 2 channels, one destined for a
control processor to handle control messages and one channel that goes to a network
processor to be distributed to DSPs. The VSID could contain the address of the
target DSP, to further off-load the network processor on distribution. The VSID
could also contain the user channel within the DSP de-multiplexing the traffic even
further.

A.3.2 Virtual Output Queuing - Fabric On-ramp
Applications involving larger numbers of flows can use the class field to regulate the
ingress to the fabric (known as virtual output queuing). For example, the RapidIO
fabric interface could contain 256 queues for 64 destination ports with 4 traffic
classes. Traffic for each destination of the same class is fairly weighted. The
weighting between classes can be application unique.

The traffic is kept sorted by destination. If traffic was just dumped into 4 queues, and
a destination port was to fail, the traffic could head of line block the traffic to the
other ports, or it would have to be discarded while the port is being recovered or
40 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
re-routed. By keeping the traffic sorted by destination at the fabric ingress, that
destination can be re-routed with minimal traffic loss.

Virtual output queuing can be expanded to 2K or even 16K buffers depending on
how large the fabric is, and how many different traffic classes are involved. This
fabric ingress management can be a simple mechanism to add some quality of
service to a system using the destination ID and the class portion of the VSID. Note
that this can be done separately from the use of the streamID at the destination for
de-multiplexing.

A.4 System Requirements
The use of the VSID is determined by all three elements in a system, the source, the
fabric, and the destination. This section contains descriptions of some example
source devices.

A.4.1 UTOPIA to RapidIO ATM bridge
The UTOPIA to RapidIO ATM bridge classifies traffic using the VPI field as the
destination port, and the VCI as a sub-port address. It maps all (type 9) traffic to a
single RapidIO flow, setting the class to 0 and the streamID to the VCI. The fabric
switches on flows. The destination uses the streamID portion of the VSID as a
hard-wired sub-port address.

A.4.2 Network processor
The network processor (NP) contains a OC-48 link aggregating traffic to and from
multiple 1MB/s ports distributed on line cards. The NP classifies traffic for each user
into two classes: high priority for voice (using RTP) and low priority for all others.
It sets the class field to 0 or 1, the port to the proper line card, and the streamID to
the desired sub-port.

A.4.3 CSIX to RapidIO interface
The CSIX packet contains the destination and class fields (the source is a preset
parameter in the interface chip). The streamID is the first 16 bits of the CSIX
payload. The RapidIO packet is easily constructed from this information. The fabric
interface contains multiple virtual output queues, 2 per destination port. Since the
CSIX to NP interface is also a segmented interface, PDUs are reassembled in the
virtual queues until enough information is available to form the required MTU on
the RapidIO fabric.

The fabric maps the class to a higher or lower priority flow. The destination uses the
streamID to map the traffic to the correct user sub-port. Each sub-port contains two
class queues to collect traffic as it is reassembled.
RapidIO Trade Association 41

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
A.4.4 10Gb Metropolitan Area Network interface
A specialized classification processor creates the 32 bit VSID based on IP,
TCP/UDP, and application information. The tag is prepended to a SPI4.2 packet.
The interface to the fabric is a SPI4.2 to RapidIO bridge, which contains virtual
output queues.

The destination is a processor that only supports memory and IO logical
transactions. The RapidIO to processor interface bridge contains the segmentation
and reassembly buffers and look up tables and associated engines that maps the
VSID to a DMA buffer address (and vice-versa).

The system contains multiple of these processing cards to support address
translation, encryption, or firewall processing. The source classifies traffic based on
which of these applications applies. A connection is created by allocating a buffer
address in the destination, and assigning a streamID. The source table is created with
the search tree requirements for the protocol, and setting up the VSID result.

Destinations may use the VSID in a hard-wired method, or it may be a flexible
mapping to virtual buffers. In either case, the source must be flexible to assign the
VSID according the destination's needs. This is normally not an issue as the source
needs to classify the packet to determine the destination anyway. The use of the
VSID can be to separate the traffic by protocol, sub-port, service class, or into as
many virtual queues as necessary. If the destination is managing a large number of
buffers, the VSID allows the destination to use a single protocol independent key to
re-map the traffic and completely abstract any buffer management.
42 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Class of service - (cos) a term used to describe different treatment (quality of
service) for different data streams. Support for class of service is
provided by a class of service field in the data streaming protocol.
The class of service field is used in the virtual stream ID and in
identifying a virtual queue.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Double-word. An eight byte or 64 bit quantity, aligned on eight byte
boundaries.

B

C

D

RapidIO Trade Association 43

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Egress - Egress is the device or node where traffic exits the system. The
egress node also becomes the destination for traffic out of the
RapidIO fabric. The terms egress and destination may or may not be
used interchangeably when considering a single end to end
connection.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

Ingress - Ingress is the device or node where traffic enters the system. The
ingress node also becomes the source for traffic into the RapidIO
fabric. The terms ingress and source may or may not be used
interchangeably when considering a single end to end connection.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PDU. Protocol Data Unit, the OSI term for a packet.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

E

F

H

I

O

PP
44 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

SAR. Segmentation and Reassembly, a mechanism for encapsulating a PDU
within multiple packets.

Segmentation. A process by which a PDU is transferred as a series of smaller
segments.

Segmentation Context. Information that allows a receiver to associate a
particular packet with the correct PDU.

Sender. The RapidIO interface output port on a processing element.

Sequence. Sequentially ordered, uni-directional group of messages that
constitute the basic unit of data delivered from one end point to
another.

StreamID. A specific field in the data streaming protocol that is combined
with the data stream’s transaction request flow ID and the sourceID
or destinationID from the underlying packet transport fabric to form
the virtual stream ID.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

Virtual Stream ID (VSID). An identifier comprised of several fields in the
protocol to identify individual data streams.

R

S

T

V

RapidIO Trade Association 45

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a
Virtual input Queue (ViQ), Virtual output Queue (VoQ). An intermediate
point in the system where one or more virtual streams may be
concentrated.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.W
46 RapidIO Trade Association

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a

RapidIO Trade Association 47

Blank page

RapidIO Part 10: Data Streaming Logical Specification Rev. 1.3.a

48 RapidIO Trade Association

Blank page

	RapidIO™ Interconnect Specification Part 10: Data Streaming Logical Specification
	Chapter�1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Data Streaming Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions
	1.7 Useful References

	Chapter�2 Data Streaming Systems
	2.1 Introduction
	2.2 System Example
	2.3 Traffic Streams
	2.4 Operation Ordering
	2.5 Class of Service and Virtual Queues
	2.6 Deadlock Considerations

	Chapter�3 Operation Descriptions
	3.1 Introduction
	3.2 Data Streaming Protocol
	3.2.1 Data Streaming Operation
	3.2.2 Virtual Streams
	3.2.3 PDU Sequences Within Streams
	3.2.4 Segments within a PDU
	3.2.5 Rules for Segmentation and Reassembly

	3.3 Class of Service and Traffic Streams

	Chapter�4 Packet Format Descriptions
	4.1 Introduction
	4.2 Type 9 Packet Format (Data-Streaming Class)
	4.3 Type 9 Extended Packet Format (Extended Data-Streaming Class)

	Chapter�5 Data Streaming Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register and Bit Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Source Operations CAR (Configuration Space Offset 0x18)
	5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)
	5.4.3 Data Streaming Information CAR (Configuration Space Offset 0x3C)

	5.5 Command and Status Registers (CSRs)
	5.5.1 Data Streaming Logical Layer Control CSR (Configuration Space Offset 0x48)

	Annex�A VSID Usage Examples
	A.1 Introduction
	A.2 Background
	A.3 Packet Classification
	A.3.1 Sub-port Addressing at the Destination
	A.3.1.1 DSLAM application
	A.3.1.2 VOIP application

	A.3.2 Virtual Output Queuing - Fabric On-ramp

	A.4 System Requirements
	A.4.1 UTOPIA to RapidIO ATM bridge
	A.4.2 Network processor
	A.4.3 CSIX to RapidIO interface
	A.4.4 10Gb Metropolitan Area Network interface

