
Rev. 1.3, 06/2005

© Copyright RapidIO Trade Association

RapidIO™ Interconnect Specification
Part 5: Globally Shared Memory

Logical Specification
RapidIO Trade Association

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.
DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:
RapidIO Trade Association
Suite 325, 3925 W. Braker Lane
Austin, TX 78759
512-305-0070 Tel.
512-305-0009 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their
respective owners.

Revision History

Revision Description Date

1.1 Incorporate comment review changes 03/08/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable
Converted to ISO-friendly templates

02/23/2005

1.3 Removed confidentiality markings for public release 06/07/2005
RapidIO Trade Association

Table of Contents

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.2.1 Memory System.. 12
1.3 Features of the Globally Shared Memory Specification....................................... 13
1.3.1 Functional Features... 13
1.3.2 Physical Features .. 14
1.3.3 Performance Features ... 14
1.4 Contents .. 14
1.5 Terminology.. 15
1.6 Conventions .. 15

Chapter 2 System Models

2.1 Introduction... 17
2.2 Processing Element Models.. 17
2.2.1 Processor-Memory Processing Element Model.. 18
2.2.2 Integrated Processor-Memory Processing Element Model 19
2.2.3 Memory-Only Processing Element Model ... 19
2.2.4 Processor-Only Processing Element... 20
2.2.5 I/O Processing Element .. 20
2.2.6 Switch Processing Element... 20
2.3 Programming Models ... 21
2.3.1 Globally Shared Memory System Model ... 21
2.3.1.1 Software-Managed Cache Coherence Programming Model 23
2.4 System Issues.. 23
2.4.1 Operation Ordering ... 23
2.4.2 Transaction Delivery... 23
2.4.3 Deadlock Considerations .. 24

Chapter 3 Operation Descriptions

3.1 Introduction... 25
3.2 GSM Operations Cross Reference.. 26
3.3 GSM Operations ... 27
3.3.1 Read Operations.. 28
3.3.2 Instruction Read Operations ... 29
3.3.3 Read-for-Ownership Operations... 31
3.3.4 Data Cache Invalidate Operations .. 33
3.3.5 Castout Operations.. 34
3.3.6 TLB Invalidate-Entry Operations ... 35
RapidIO Trade Association 3

Table of Contents

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
3.3.7 TLB Invalidate-Entry Synchronization Operations.. 35
3.3.8 Instruction Cache Invalidate Operations... 35
3.3.9 Data Cache Flush Operations ... 36
3.3.10 I/O Read Operations ... 38
3.4 Endian, Byte Ordering, and Alignment .. 40

Chapter 4 Packet Format Descriptions

4.1 Introduction... 43
4.2 Request Packet Formats.. 43
4.2.1 Addressing and Alignment ... 44
4.2.2 Data Payloads ... 44
4.2.3 Field Definitions for All Request Packet Formats.. 47
4.2.4 Type 0 Packet Format (Implementation-Defined).. 50
4.2.5 Type 1 Packet Format (Intervention-Request Class).. 50
4.2.6 Type 2 Packet Format (Request Class)... 51
4.2.7 Type 3–4 Packet Formats (Reserved)... 52
4.2.8 Type 5 Packet Format (Write Class)... 52
4.2.9 Type 6–11 Packet Formats (Reserved)... 53
4.3 Response Packet Formats ... 53
4.3.1 Field Definitions for All Response Packet Formats ... 53
4.3.2 Type 12 Packet Format (Reserved) .. 54
4.3.3 Type 13 Packet Format (Response Class) .. 54
4.3.4 Type 14 Packet Format (Reserved) .. 55
4.3.5 Type 15 Packet Format (Implementation-Defined).. 55

Chapter 5 Globally Shared Memory Registers

5.1 Introduction... 57
5.2 Register Summary... 57
5.3 Reserved Register and Bit Behavior ... 58
5.4 Capability Registers (CARs) .. 60
5.4.1 Source Operations CAR (Configuration Space Offset 0x18)........................... 60
5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)................... 61
5.5 Command and Status Registers (CSRs).. 62

Chapter 6 Communication Protocols

6.1 Introduction... 63
6.2 Definitions .. 63
6.2.1 General Definitions... 64
6.2.2 Request and Response Definitions ... 66
6.2.2.1 System Request... 66
6.2.2.2 Local Request ... 66
6.2.2.3 System Response .. 67
4 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table of Contents

6.2.2.4 Local Response... 67
6.3 Operation to Protocol Cross Reference .. 67
6.4 Read Operations.. 68
6.4.1 Internal Request State Machine .. 68
6.4.2 Response State Machine ... 68
6.4.3 External Request State Machine ... 70
6.5 Instruction Read Operations ... 72
6.5.1 Internal Request State Machine .. 72
6.5.2 Response State Machine ... 72
6.5.3 External Request State Machine ... 73
6.6 Read for Ownership Operations ... 75
6.6.1 Internal Request State Machine .. 75
6.6.2 Response State Machine ... 75
6.6.3 External Request State Machine ... 78
6.7 Data Cache and Instruction Cache Invalidate Operations 79
6.7.1 Internal Request State Machine .. 79
6.7.2 Response State Machine ... 79
6.7.3 External Request State Machine ... 80
6.8 Castout Operations.. 82
6.8.1 Internal Request State Machine .. 82
6.8.2 Response State Machine ... 82
6.8.3 External Request State Machine ... 82
6.9 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations 83
6.9.1 Internal Request State Machine .. 83
6.9.2 Response State Machine ... 83
6.9.3 External Request State Machine ... 83
6.10 Data Cache Flush Operations ... 84
6.10.1 Internal Request State Machine .. 84
6.10.2 Response State Machine ... 84
6.10.3 External Request State Machine ... 86
6.11 I/O Read Operations ... 88
6.11.1 Internal Request State Machine .. 88
6.11.2 Response State Machine ... 88
6.11.3 External Request State Machine ... 89

Chapter 7 Address Collision Resolution Tables

7.1 Introduction... 91
7.2 Resolving an Outstanding READ_HOME Transaction 92
7.3 Resolving an Outstanding IREAD_HOME Transaction 93
7.4 Resolving an Outstanding READ_OWNER Transaction 94
7.5 Resolving an Outstanding READ_TO_OWN_HOME Transaction 95
7.6 Resolving an Outstanding READ_TO_OWN_OWNER Transaction.................. 97
7.7 Resolving an Outstanding DKILL_HOME Transaction 98
7.8 Resolving an Outstanding DKILL_SHARER Transaction 100
7.9 Resolving an Outstanding IKILL_HOME Transaction...................................... 101
RapidIO Trade Association 5

Table of Contents

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.10 Resolving an Outstanding IKILL_SHARER Transaction.................................. 102
7.11 Resolving an Outstanding CASTOUT Transaction.. 103
7.12 Resolving an Outstanding TLBIE or TLBSYNC Transaction 104
7.13 Resolving an Outstanding FLUSH Transaction ... 105
7.14 Resolving an Outstanding IO_READ_HOME Transaction 107
7.15 Resolving an Outstanding IO_READ_OWNER Transaction 109
6 RapidIO Trade Association

List of Figures

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
1-1 A Snoopy Bus-Based System ...12
1-2 A Distributed Memory System ...13
2-1 A Possible RapidIO-Based Computing System..17
2-2 Processor-Memory Processing Element Example..18
2-3 Integrated Processor-Memory Processing Element Example...19
2-4 Memory-Only Processing Element Example ...19
2-5 Processor-Only Processing Element Example..20
2-6 Switch Processing Element Example ...21
3-1 Read Operation to Remote Shared Coherence Granule..28
3-2 Read Operation to Remote Modified Coherence Granule..28
3-3 Read Operation to Local Modified Coherence Granule ...29
3-4 Instruction Read Operation to Remote Shared Coherence Granule30
3-5 Instruction Read Operation to Remote Modified Coherence Granule30
3-6 Instruction Read Operation to Local Modified Coherence Granule...............................30
3-7 Instruction Read Operation Paradox Case ..31
3-8 Read-for-Ownership Operation to Remote Shared Coherence Granule.........................31
3-9 Read-for-Ownership Operation to Remote Modified Coherence Granule32
3-10 Read-for-Ownership Operation to Local Shared Coherence Granule32
3-11 Read-for-Ownership Operation to Local Modified Coherence Granule32
3-12 Data Cache Invalidate Operation to Remote Shared Coherence Granule33
3-13 Data Cache Invalidate Operation to Local Shared Coherence Granule..........................34
3-14 Castout Operation on Remote Modified Coherence Granule ...34
3-15 TLB Invalidate-Entry Operation...35
3-16 TLB Invalidate-Entry Synchronization Operation ...35
3-17 Instruction Cache Invalidate Operation to Remote Sharable Coherence Granule..........36
3-18 Instruction Cache Invalidate Operation to Local Sharable Coherence Granule36
3-19 Flush Operation to Remote Shared Coherence Granule ...37
3-20 Flush Operation to Remote Modified Coherence Granule ...38
3-21 Flush Operation to Local Shared Coherence Granule ..38
3-22 Flush Operation to Local Modified Coherence Granule ..38
3-23 I/O Read Operation to Remote Shared Coherence Granule ...39
3-24 I/O Read Operation to Remote Modified Coherence Granule39
3-25 I/O Read Operation to Local Modified Coherence Granule...39
3-26 Byte Alignment Example..40
3-27 Half-Word Alignment Example..40
3-28 Word Alignment Example ..40
3-29 Data Alignment Example..41
4-1 Type 1 Packet Bit Stream Format...51
4-2 Type 2 Packet Bit Stream Format...52
4-3 Type 5 Packet Bit Stream Format...53
4-4 Type 13 Packet Bit Stream Format...55
RapidIO Trade Association 7

List of Figures
RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Blank page
8 RapidIO Trade Association

List of Tables

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
2-1 RapidIO Memory Directory Definition ..22
3-1 GSM Operations Cross Reference ..26
4-1 Request Packet Type to Transaction Type Cross Reference ..43
4-2 Coherent 32-Byte Read Data Return Ordering...45
4-3 Coherent 64-Byte Read Data Return Ordering...45
4-4 Coherent 32-Byte Write Data Payload ...46
4-5 Coherent 64-Byte Write Data Payloads..46
4-6 General Field Definitions for All Request Packets...47
4-7 Read Size (rdsize) Definitions ..48
4-8 Write Size (wrsize) Definitions ..49
4-9 Specific Field Definitions and Encodings for Type 1 Packets50
4-10 Transaction Field Encodings for Type 2 Packets ...51
4-11 Transaction Field Encodings for Type 5 Packets ...52
4-12 Request Packet Type to Transaction Type Cross Reference ..53
4-13 Field Definitions and Encodings for All Response Packets ...53
5-1 GSM Register Map ...57
5-2 Configuration Space Reserved Access Behavior..58
5-3 Bit Settings for Source Operations CAR ..60
5-4 Bit Settings for Destination Operations CAR...61
6-1 Operation to Protocol Cross Reference ..67
7-1 Address Collision Resolution for READ_HOME ..92
7-2 Address Collision Resolution for IREAD_HOME...93
7-3 Address Collision Resolution for READ_OWNER ...94
7-4 Address Collision Resolution for READ_TO_OWN_HOME95
7-5 Address Collision Resolution for READ_TO_OWN_OWNER97
7-6 Address Collision Resolution for DKILL_HOME...98
7-7 Address Collision Resolution for DKILL_SHARER...100
7-8 Address Collision Resolution for IKILL_HOME ..101
7-9 Address Collision Resolution for IKILL_SHARER ..102
7-10 Address Collision Resolution for CASTOUT ..103
7-11 Address Collision Resolution for Software Coherence Operations..............................104
7-12 Address Collision Resolution for Participant FLUSH..105
7-13 Address Collision Resolution for Non-participant FLUSH..106
7-14 Address Collision Resolution for Participant IO_READ_HOME107
7-15 Address Collision Resolution for Non-participant IO_READ_HOME108
7-16 Address Collision Resolution for Participant IO_READ_OWNER.............................109
7-17 Address Collision Resolution for Non-participant IO_READ_OWNER.....................110
RapidIO Trade Association 9

List of Tables
RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Blank page
10 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 5: Globally Shared Memory
Logical Specification, including a description of the relationship between this
specification and the other specifications of the RapidIO interconnect.

1.2 Overview
Although RapidIO is targeted toward the message passing programming model, it
supports a globally shared distributed memory (GSM) model as defined by this
specification. The globally shared memory programming model is the preferred
programming model for modern general-purpose multiprocessing computer
systems, which requires cache coherency support in hardware. This addition of
GSM enables both distributed I/O processing and general purpose multiprocessing
to co-exist under the same protocol.

The RapidIO Part 5: Globally Shared Memory Logical Specification is one of the
RapidIO logical layer specifications that define the interconnect’s overall protocol
and packet formats. This layer contains the information necessary for end points to
process a transaction. Other RapidIO logical layer specifications include RapidIO
Part 1: Input/Output Logical Specification and RapidIO Part 2: Message Passing
Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encodings for the transport and physical layers lower in the specification
hierarchy.

RapidIO is a definition of a system interconnect. System concepts such as processor
programming models, memory coherency models and caching are beyond the scope
of the RapidIO architecture. The support of memory coherency models, through
caches, memory directories (or equivalent, to hold state and speed up remote
memory access) is the responsibility of the end points (processors, memory, and
possibly I/O devices), using RapidIO operations. RapidIO provides the operations
to construct a wide variety of systems, based on programming models that range
from strong consistency through total store ordering to weak ordering.
Inter-operability between end points supporting different
coherency/caching/directory models is not guaranteed. However, groups of
RapidIO Trade Association 11

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
end-points with conforming models can be linked to others conforming to different
models on the same RapidIO fabric. These different groups can communicate
through RapidIO messaging or I/O operations. Any reference to these areas within
the RapidIO architecture specification are for illustration only.

The RapidIO Interconnect Globally Shared Memory Logical Specification assumes
that the reader is familiar with the concepts and terminology of cache coherent
systems in general and with CC-NUMA systems in specific. Further information on
shared memory concepts can be found in:

Daniel E. Lenoski and Wolf-Dietrich Weber, “Scalable Shared-Memory
Multiprocessing”, Morgan Kaufmann, 1995.

and

David Culler, Jaswinder Pal Singh, and Anoop Gupta: “Parallel Computer
Architecture: A Hardware/Software Approach”, Morgan Kaufmann, 1998

1.2.1 Memory System
Under the globally shared distributed memory programming model, memory may
be physically located in different places in the machine yet may be shared amongst
different processing elements. Typically, mainstream system architectures have
addressed shared memory using transaction broadcasts sometimes known as
bus-based snoopy protocols. These are usually implemented through a centralized
memory controller for which all devices have equal or uniform access. Figure 1-1
shows a typical bus-based shared memory system.

Super computers, massively parallel, and clustered machines that have distributed
memory systems must use a different technique from broadcasting for maintaining
memory coherency. Because a broadcast snoopy protocol in these machines is not
efficient given the number of devices that must participate and the latency and
transaction overhead involved, coherency mechanisms such as memory directories

Figure 1-1. A Snoopy Bus-Based System

Processor
A

Processor
B

Processor
C

Processor
D

Bridge

XBUS

MPIC

PCI

Memory

Snoopy-bus
12 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
or distributed linked lists are required to keep track of where the most current copy
of data resides. These schemes are often referred to as cache coherent non-uniform
memory access (CC-NUMA) protocols. A typical distributed memory system
architecture is shown in Figure 1-2.

For RapidIO, a relatively simple directory-based coherency scheme is chosen. For
this method each memory controller is responsible for tracking where the most
current copy of each data element resides in the system. RapidIO furnishes a variety
of ISA specific cache control and operating system support operations such as block
flushes and TLB synchronization mechanisms.

To reduce the directory overhead required, the architecture is optimized around
small clusters of 16 processors known as coherency domains. With the concept of
domains, it is possible for multiple coherence groupings to coexist in the
interconnect as tightly coupled processing clusters.

1.3 Features of the Globally Shared Memory Specification
The following are features of the RapidIO GSM specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features
• A cache coherent non-uniform memory access (CC-NUMA) system

architecture is supported to provide a globally shared memory model because
physics is forcing component interfaces in many high-speed designs to be
point-to-point instead of traditional bus-based.

• The size of processor memory requests are either in the cache coherence
granularity, or smaller. The coherence granule size may be different for
different processor families or implementations.

Figure 1-2. A Distributed Memory System

Processor
A

Processor
B

Bridge

PCI

Memory

Snoopy-bus

Processor
A

Processor
B

Bridge

PCI

Memory

Snoopy-bus

Interconnect
Fabric
RapidIO Trade Association 13

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• Instruction sets in RapidIO support a variety of cache control and other
operations such as block flushes. These functions are supported to run legacy
applications and operating systems.

1.3.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface

to other devices on the interconnect fabric.
• The protocols and packet formats are independent of the physical interconnect

topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.
• The protocols handle out-of-order packet transmission and reception.
• Certain devices have bandwidth and latency requirements for proper operation.

RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead

and be organized for fast, efficient assembly and disassembly.
• 48- and 64-bit addresses are required in the future, and must be supported

initially.
• An interventionist (non-memory owner, direct-to-requestor data transfer,

analogous to a cache-to-cache transfer) protocol saves a large amount of
latency for memory accesses that cause another processing element to
provide the requested data.

• Multiple transactions must be allowed concurrently in the system, otherwise a
majority of the potential system throughput is wasted.

1.4 Contents
Following are the contents of the RapidIO Interconnect Globally Shared Memory
Logical Specification:

• Chapter 1, “Overview,” describes the set of operations and transactions
supported by the RapidIO globally shared memory protocols.

• Chapter 2, “System Models,” introduces some possible devices that could
participate in a RapidIO GSM system environment. The chapter explains the
memory directory-based mechanism that tracks memory accesses and
maintains cache coherence. Transaction ordering and deadlock prevention
are also covered.
14 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO globally-shared memory (GSM)
protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the GSM specification. The two basic types, request and
response packets, with their sub-types and fields are defined. The chapter
explains how memory read latency is handled by RapidIO.

• Chapter 5, “Globally Shared Memory Registers,” describes the visible register
set that allows an external processing element to determine the globally
shared memory capabilities, configuration, and status of a processing
element using this logical specification. Only registers or register bits
specific to the GSM logical specification are explained. Refer to the other
RapidIO logical, transport, and physical specifications of interest to
determine a complete list of registers and bit definitions.

• Chapter 6, “Communication Protocols,” contains the communications protocol
definitions for this GSM specification.

• Chapter 7, “Address Collision Resolution Tables,” explains the actions
necessary under the RapidIO GSM model to resolve address collisions.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits
ACTIVE_HIGH Names of active high signals are shown in uppercase text with

no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.
REG[FIELD] Abbreviations or acronyms for registers are shown in

uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.
operation Device operation types are expressed in plain text.
n A decimal value.
[n-m] Used to express a numerical range from n to m.
RapidIO Trade Association 15

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
16 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 2 System Models

2.1 Introduction
This overview introduces some possible devices in a RapidIO system.

2.2 Processing Element Models
Figure 2-1 describes a possible RapidIO-based computing system. The processing
element is a computer device such as a processor attached to a local memory and
also attached to a RapidIO system interconnect. The bridge part of the system
provides I/O subsystem services such as high-speed PCI interfaces and gigabit
ethernet ports, interrupt control, and other system support functions. Multiple
processing elements require cache coherence support in the RapidIO protocol to
preserve the traditional globally shared memory programming model (discussed in
Section 2.3.1, “Globally Shared Memory System Model”).

A processing element containing a processor typically has associated with it a
caching hierarchy to improve system performance. The RapidIO protocol supports
a set of operations sufficient to fulfill the requirements of a processor with a caching
hierarchy and associated support logic such as a processing element.

Figure 2-1. A Possible RapidIO-Based Computing System

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

Firewire
RapidIO Trade Association 17

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
RapidIO is defined so that many types of devices can be designed for specific
applications and connected to the system interconnect. These devices may
participate in the cache coherency protocol, act as a DMA device, utilize the
message passing facilities to communicate with other devices on the interconnect,
and so forth. A bridge could be designed, for example, to use the message passing
facility to pass ATM packets to and from a processing element for route processing.
The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element Model
Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to a local memory that has much
lower latency than memory that is local to another processing element (remote
memory accesses). It also provides an interface to the RapidIO interconnect to
service those remote memory accesses.

In support of the remote accesses, the agent maintains a cache of remote accesses
that includes all remote data currently residing in and owned by the local processor.
This cache may be either external or internal to the agent device.

Agent caching is necessary due to the construction of the RapidIO cache coherence
protocol combined with the cache hierarchy behavior in modern processors. Many
modern processors have multiple level non-inclusive caching structures that are
maintained independently. This implies that when a coherence granule is cast out of
the processor, it may or may not be returning ownership of the granule to the
memory system. The RapidIO protocol requires that ownership of a coherence
granule be guaranteed to be returned to the system on demand and without
ambiguous cache state changes as with the castout behavior. The remote cache can
guarantee that a coherence granule requested by the system is owned locally and can
be returned to the home memory (the physical memory containing the coherence

Figure 2-2. Processor-Memory Processing Element Example

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect

Remote
Cache
18 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
granule) on demand. A processing element that is fully integrated would also need
to support this behavior.

2.2.2 Integrated Processor-Memory Processing Element Model
Another form of a processor-memory processing element is a fully integrated
component that is designed specifically to connect to a RapidIO interconnect system
as shown in Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package. Because such a device is designed specifically for RapidIO, a remote cache
is not required because the proper support can be designed into the processor and its
associated logic rather than requiring an agent to compensate for a stand alone
processor’s behavior.

2.2.3 Memory-Only Processing Element Model
A different processing element may not contain a processor at all, but may be a
memory-only device as in Figure 2-4. This type of device is much simpler than a
processor as it is only responsible for responding to requests from the external
system, not from local requests as in the processor-based model. As such, its
memory is remote for all processors in the system.

Figure 2-3. Integrated Processor-Memory Processing Element Example

Figure 2-4. Memory-Only Processing Element Example

Processor

Memory

RapidIO-based
System Interconnect

Memory

Memory

RapidIO-based
System Interconnect

Control
RapidIO Trade Association 19

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
2.2.4 Processor-Only Processing Element
Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing element is shown in Figure 2-5.

2.2.5 I/O Processing Element
This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory. An I/O device only
needs to move data into and out of local or remote memory in a cache coherent
fashion. This means that if the I/O device needs to read from memory, it only needs
to obtain a known good copy of the data to write to the external device (such as a
disk drive or video display). If the I/O device needs to write to memory, it only needs
to get ownership of the coherence granule returned to the home memory and not take
ownership for itself. Both of these operations have special support in the RapidIO
protocol.

2.2.6 Switch Processing Element
A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidIO compliant processing elements. A possible switch is shown in

Figure 2-5. Processor-Only Processing Element Example

Agent

Processor

Local Interconnect

RapidIO-based
System Interconnect

Remote
Cache
20 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Figure 2-6.

2.3 Programming Models
RapidIO supports applications developed under globally shared memory and
software-managed cache coherence programming models.

2.3.1 Globally Shared Memory System Model
The preferred programming model for modern computer systems provides memory
that is accessible from all processors in a cache coherent fashion. This model is also
known as GSM, or globally shared memory. For traditional bus-based computer
systems this is not a difficult technical problem to solve because all participants in
the cache coherence mechanism see all memory activity simultaneously, meaning
that communication between processors is very fast and handled without explicit
software control. However, in a non-uniform memory access system, this
simultaneous memory access visibility is not the case.

With a distributed memory system, cache coherence needs to be maintained through
some tracking mechanism that keeps records of memory access activity and
explicitly notifies specific cache coherence participant processing elements when a
cache coherence hazard is detected. For example, if a processing element wishes to
write to a memory address, all participant processing elements that have accessed
that coherence granule are notified to invalidate that address in their caches. Only
when all of the participant processing elements have completed the invalidate
operation and replied back to the tracking mechanism is the write allowed to
proceed.

The tracking mechanism preferred for the RapidIO protocol is the memory directory
based system model. This system model allows efficient, moderate scalability with
a reasonable amount of information storage required for the tracking mechanism.

Cache coherence is defined around the concept of domains. The RapidIO protocol
assumes a memory directory based cache coherence mechanism. Because the
storage requirements for the directory can be high, the protocol was optimized
assuming a 16-participant domain size as a reasonable coherence scalability limit.

Figure 2-6. Switch Processing Element Example

Switch
RapidIO Trade Association 21

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
With this limit in mind, a moderately scalable system of 16 participants can be
designed, possibly using a multicast mechanism in the transport layer for better
efficiency. This size does not limit a system designer from defining a larger or a
smaller coherent system such as the four processing element system in Figure 2-1
on page 17 since the number of domains and the number of participants is flexible.
The total number of coherence domains and the scalability limit are determined by
the number of transport bits allowed by the appropriate transport layer specification.

Table 2-1 describes an example of the directory states assumed for the RapidIO
protocol for a small four-processing element cache coherent system (the table
assumes that processor 0 is the local processor). Every coherence granule that is
accessible by a remote processing element has this 4-bit field associated with it, so
some state storage is required for each globally shared granule. The least significant
bit (the right most, bit 3) indicates that a processing element has taken ownership of
a coherence granule. The remaining three bits indicate that processing elements have
accessed that coherence granule, or the current owner if the granule has been
modified, with bit 0 corresponding to processor 3, bit 1 corresponding to processor
2, and bit 2 corresponding to processor 1. These bits are also known as the sharing
mask or sharing list.

Owing to the encoding of the bits, the local processing element is always assumed
to have accessed the granule even if it has not. This definition allows us to know
exactly which processing elements have participated in the cache coherency
protocol for each shared coherence granule at all times. Other state definitions can
be implemented as long as they encompass the MSL (modified, shared, local) state
functionality described here.

Table 2-1. RapidIO Memory Directory Definition

State Description

0000 Processor 0 (local) shared

0001 Processor 0 (local) modified

0010 Processor 1, 0 shared

0011 Processor 1 modified

0100 Processor 2, 0 shared

0101 Processor 2 modified

0110 Processor 2, 1, 0 shared

0111 Illegal

1000 Processor 3, 0 shared

1001 Processor 3 modified

1010 Processor 3, 1, 0 shared

1011 Illegal

1100 Processor 3, 2, 0 shared

1101 Illegal
22 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
When a coherence granule is referenced, the corresponding 4-bit coherence state is
examined by the memory controller to determine if the access can be handled in
memory, or if data must be obtained from the current owner (a shared granule is
owned by the home memory). Coherence activity in the system is started using the
cache coherence protocol, if it is necessary to do so, to complete the memory
operation.

2.3.1.1 Software-Managed Cache Coherence Programming Model
The software-managed cache coherence programming model depends upon the
application programmer to guarantee that the same coherence granule is not resident
in more than one cache in the system simultaneously if it is possible for that
coherence granule to be written by one of the processors. The application software
allows sharing of written data by using cache manipulation instructions to flush
these coherence granules to memory before they are read by another processor. This
programming model is useful in transaction and distributed processing types of
systems.

2.4 System Issues

The following sections describe transaction ordering and system deadlock
considerations in a RapidIO GSM system.

2.4.1 Operation Ordering
Operation completion ordering in a globally shared memory system is managed by
the completion units of the processing elements participating in the coherence
protocol and by the coherence protocol itself.

2.4.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO
processing elements: unordered and ordered. The RapidIO logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logical protocols do not rely on transaction
interdependencies for operation. RapidIO also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware. The specific mechanisms and definitions of how RapidIO
enforces transaction ordering are discussed in the appropriate physical layer
specification.

1110 Processor 3, 2, 1, 0 shared

1111 Illegal

Table 2-1. RapidIO Memory Directory Definition (Continued)
RapidIO Trade Association 23

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
2.4.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidIO is
designed to be a reliable fabric for use in real time tightly coupled systems,
therefore, discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency loops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes, physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing), then topology related
dependency loops are avoided in these structures.

In addition, a processing element design shall not form dependency links between
its input and output port. A dependency link between input and output ports occurs
if a processing element is unable to accept an input packet until a waiting packet can
be issued from the output port.

RapidIO supports operations, such as coherent read-for-ownership operations, that
require responses to complete. These operations can lead to a dependency link
between an processing element’s input port and output port.

As an example of an input to output port dependency, consider a processing element
where the output port queue is full. The processing element can not accept a new
request at its input port since there is no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

A further consideration is that of the read-for-ownership operation colliding with a
castout of the requested memory address by another processing element. In order for
the read-for-ownership operation to complete the underlying castout operation must
complete. Therefore the castout must be given higher preference in the system in
order to move ahead of other operations in order to break up the dependency.

The method by which a RapidIO system maintains a deadlock free environment is
described in the appropriate Physical Layer specification.
24 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the set of operations and transactions supported by the
RapidIO globally-shared memory (GSM) protocols. The opcodes and packet
formats are described in Chapter 4, “Packet Format Descriptions.” The complete
protocols are described in Chapter 6, “Communication Protocols.”

The RapidIO operation protocols use request/response transaction pairs through the
interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been
completed or if an error condition is encountered. Each transaction is sent as a packet
through the interconnect fabric. For example, a processing element that requires data
from home memory in another processing element sends a READ_HOME
transaction in a request packet. The receiving element then reads its local memory
at the requested address and returns the data in a DONE transaction via a response
packet. Note that not all requests require responses; some requests assume that the
desired activity will complete properly.

A number of possible response transactions can be received by a requesting
processing element:

• A DONE response indicates to the requestor that the desired transaction has
completed and also returns data for read-type transactions as described
above.

• The INTERVENTION, DONE_INTERVENTION, and DATA_ONLY
responses are generated as part of the processing element-to-processing
element (as opposed to processing element-to-home memory) data transfer
mechanism defined by the cache coherence protocol. The INTERVENTION
and DONE_INTERVENTION responses are abbreviated as INTERV and
DONE_INTERV in this chapter.

• The NOT_OWNER and RETRY responses are received when there are address
conflicts within the system that need resolution.

• An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such
RapidIO Trade Association 25

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
as a device number. These requirements are described in the appropriate RapidIO
transport layer specification and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
RapidIO physical layer specification and are beyond the scope of this document.
Each request transaction sent into the system is marked with a transaction ID that is
unique for each requestor and responder processing element pair. This transaction
ID allows a response to be easily matched to the original request when it is returned
to the requestor. An end point cannot reuse a transaction ID value to the same
destination until the response from the original transaction has been received by the
requestor. The number of outstanding transactions that may be supported is
implementation dependent.

The transaction behaviors are also described as state machine behavior in Chapter 6,
“Communication Protocols”.

3.2 GSM Operations Cross Reference
Table 3-1 contains a cross reference of the GSM operations defined in this RapidIO
specification and their system usage.

Table 3-1. GSM Operations Cross Reference

Operation Transactions
Used Possible System Usage Description Packet Format Protocol

Read READ_HOME,
READ_OWNER,
RESPONSE

CC-NUMA operation Section 3.3.1
page 28

Types 1 and 2:
Section 4.2.5
page 50 and
Section 4.2.6
page 51

Section 6.4
page 68

Instruction read IREAD_HOME,
READ_OWNER,
RESPONSE

Combination of CC-NUMA
and software-maintained
coherence of instruction
caches

Section 3.3.2
page 29

Type 2
Section 4.2.6
page 51

Section 6.4
page 68

Read-for-
ownership

READ_TO_OWN_
HOME,
READ_TO_OWN_
OWNER,
DKILL_SHARER
RESPONSE

CC-NUMA operation Section 3.3.3
page 31

Types 1 and 2:
Section 4.2.5
page 50 and
Section 4.2.6
page 51

Section 6.6
page 75

Data cache
invalidate

DKILL_HOME,
DKILL_SHARER,
RESPONSE

CC-NUMA operation;
software-maintained
coherence operation

Section 3.3.4
page 33

Type 2
Section 4.2.6
page 51

Section 6.7
page 79

Castout CASTOUT,
RESPONSE

CC-NUMA operation Section 3.3.5
page 34

Type 5
Section 4.2.8
page 52

Section 6.8
page 82
26 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
3.3 GSM Operations
A set of transactions are used to support GSM (cache coherence) operations to
cacheable memory space. The following descriptions assume that all requests are to
system memory rather than to some other type of device.

GSM operations occur based on the size of the coherence granule. Changes in the
coherence granule for a system do not change any of the operation protocols, only
the data payload size. The only exceptions to this are flush and I/O read operations,
which may request (in the case of an I/O read), or have (in the case of a flush) a
sub-coherence granule to support coherent I/O and write-through caches. Flush
operations may also have no data payload in order to support cache manipulation
instructions.

Some transactions are sent to multiple recipients in the process of completing an
operation. These transactions can be sent either as a number of directed transactions
or as a single transaction if the transport layer has multicast capability. Multicast
capability and operation is defined in the appropriate RapidIO transport layer
specification.

TLB
invalidate-entry

TLBIE, RESPONSE Software-maintained
coherence of page table
entries

Section 3.3.6
page 35

Type 2
Section 4.2.6
page 51

Section 6.9
page 83

TLB
invalidate-entry
synchronize

TLBSYNC,
RESPONSE

Software-maintained
coherence of page table
entries

Section 3.3.7
page 35

Type 2
Section 4.2.6
page 51

Section 6.9
page 83

Instruction
cache invalidate

IKILL_HOME,
IKILL_SHARER,
RESPONSE,

Software-maintained
coherence of instruction
caches

Section 3.3.8
page 35

Type 2
Section 4.2.6
page 51

Section 6.7
page 79

Data cache flush FLUSH,
DKILL_SHARER,
READ_TO_OWN_
OWNER,
RESPONSE

CC-NUMA flush
instructions;
CC-NUMA write-through
cache support;
CC-NUMA DMA I/O device
support;
software-maintained
coherence operation.

Section 3.3.9
page 36

Types 2 and 5:
Section 4.2.6
page 51 and
Section 4.2.8
page 52

Section 6.10
page 84

I/O read IO_READ_HOME,
IO_READ_
OWNER, INTERV,
RESPONSE

CC-NUMA DMA, I/O DMA
device support

Section 3.3.10
page 38

Types 1 and 2:
Section 4.2.5
page 50 and
Section 4.2.6
page 51

Section 6.11
page 88

Table 3-1. GSM Operations Cross Reference (Continued)

Operation Transactions
Used Possible System Usage Description Packet Format Protocol
RapidIO Trade Association 27

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
3.3.1 Read Operations
The READ_HOME, READ_OWNER, and RESPONSE transactions are used
during a read operation by a processing element that needs a shared copy of
cache-coherent data from the memory system. A read operation always returns one
coherence granule-sized data payload.

The READ_HOME transaction is used by a processing element that needs to read a
shared copy of a coherence granule from a remote home memory on another
processing element.

The READ_OWNER transaction is used by a home memory processing element
that needs to read a shared copy of a coherence granule that is owned by a remote
processing element.

The following types of read operations are possible:
• If the requested data exists in the memory directory as shared, the data can be

returned immediately from memory with a DONE RESPONSE transaction
and the requesting processing element’s device ID is added to the sharing
mask as shown in Figure 3-1.

• If the requested data exists in the memory directory as modified, the up-to-date
(current) data must be obtained from the owner. The home memory then
sends a READ_OWNER request to the processing element that owns the
coherence granule. The owner passes a copy of the data to the original
requestor and to memory, memory is updated, and the directory state is
changed from modified and owner to shared by the previous owner and the
requesting processing element’s device ID as shown in Figure 3-2.

Figure 3-1. Read Operation to Remote Shared Coherence Granule

Figure 3-2. Read Operation to Remote Modified Coherence Granule

Requestor Home
Memory

DONE, data2

READ_HOME1

Requestor Home
Memory

DONE_INTERV

Owner

5

READ_HOME1 READ_OWNER2

INTERV, data4

DATA_ONLY, data3
28 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• If the processing element requesting a modified coherence granule happens to
be the home for the memory, some of the transactions can be eliminated as
shown in Figure 3-3.

3.3.2 Instruction Read Operations
Some processors have instruction caches that do not participate in the system cache
coherence mechanism. Additionally, the instruction cache load may also load a
shared instruction and data cache lower in the cache hierarchy. This can lead to a
situation where the instruction cache issues a shared read operation to the system for
a coherence granule that is owned by that processor’s data cache, resulting in a cache
coherence paradox to the home memory directory.

Due to this situation, an instruction read operation must behave like a coherent
shared read relative to the memory directory and as a non-coherent operation
relative to the requestor. Therefore, the behavior of the instruction read operation is
nearly identical to a data read operation with the only difference being the way that
the apparent coherence paradox is managed.

The IREAD_HOME and RESPONSE transactions are used during an instruction
read operation by a processing element that needs a copy of sharable instructions
from the memory system. An instruction read operation always returns one
coherence granule-sized data payload. Use of the IREAD_HOME transaction rather
than the READ_HOME transaction allows the memory directory to properly handle
the paradox case without sacrificing coherence error detection in the system. The
IREAD_HOME transaction participates in address collision detection at the home
memory but does not participate in address collision detection at the requestor.

The following types of instruction read operations are possible:

Figure 3-3. Read Operation to Local Modified Coherence Granule

Requestor,

INTERV, data2

READ_OWNER1

OwnerHome
Memory
RapidIO Trade Association 29

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• If the requested instructions exists in the memory directory as shared, the
instructions can be returned immediately from memory and the requesting
processing element’s device ID is added to the sharing mask as shown in
Figure 3-4.

• If the requested data exists in the memory directory as modified, the up-to-date
(current) data must be obtained from the owner. The home memory then
sends a READ_OWNER request to the processing element that owns the
coherence granule. The owner passes a copy of the data to the original
requestor and to memory, memory is updated, and the directory state is
changed from modified and owner to shared by the previous owner and the
requesting processing element’s device ID as shown in Figure 3-5.

• If the processing element requesting a modified coherence granule happens to
be the home for the memory the READ_OWNER transaction is used to
obtain the coherence granule as shown in Figure 3-6.

• The apparent paradox case is if the requesting processing element is the owner
of the coherence granule as shown in Figure 3-7. The home memory sends a
READ_OWNER transaction back to the requesting processing element with
the source and secondary ID set to the home memory ID, which indicates that

Figure 3-4. Instruction Read Operation to Remote Shared Coherence Granule

Figure 3-5. Instruction Read Operation to Remote Modified Coherence Granule

Figure 3-6. Instruction Read Operation to Local Modified Coherence Granule

Requestor Home
Memory

DONE, data2

IREAD_HOME1

Requestor Home
Memory

DONE_INTERV

Owner

5

IREAD_HOME1 READ_OWNER2

INTERV, data4

DATA_ONLY, data3

Requestor,

INTERV, data2

READ_OWNER1

OwnerHome
Memory
30 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
the response behavior should be an INTERVENTION transaction rather than
an INTERVENTION and a DATA_ONLY transaction as shown in
Figure 3-5.

3.3.3 Read-for-Ownership Operations
The READ_TO_OWN_HOME, READ_TO_OWN_OWNER, DKILL_SHARER,
and RESPONSE transactions are used during read-for-ownership operations by a
processing element that needs to write to a coherence granule that does not exist in
its caching hierarchy. A read-for-ownership operation always returns one coherence
granule-sized data payload. These transactions are used as follows:

• The READ_TO_OWN_HOME transaction is used by a processing element
that needs to read a writable copy of a coherence granule from a remote home
memory on another processing element. This transaction causes a copy of the
data to be returned to the requestor, from memory if the data is shared, or
from the owner if it is modified.

• The READ_TO_OWN_OWNER transaction is used by a home memory
processing element that needs to read a writable copy of a coherence granule
that is owned by a remote processing element.

• The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the coherence granule in remote
processing elements.

Following are descriptions of the read-for-ownership operations:
• If the coherence granule is shared, DKILL_SHARER transactions are sent to

the participants indicated in the sharing mask, which results in a cache
invalidate operation for the recipients as shown in Figure 3-8.

Figure 3-7. Instruction Read Operation Paradox Case

Figure 3-8. Read-for-Ownership Operation to Remote Shared Coherence Granule

Home
Memory

Requestor

READ_OWNER2

IREAD_HOME1

and
Owner

INTERV, data3

DONE, data4

Requestor Home
Memory

DONE, data

Sharers

4

READ_TO_OWN_HOME1 DKILL_SHARER2

DONEs3
RapidIO Trade Association 31

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• If the coherence granule is modified, a READ_TO_OWN_OWNER
transaction is sent to the owner, who sends a copy of the data to the requestor
(intervention) and marks the address as invalid as shown in Figure 3-9. The
final memory directory state shows that the coherence granule is modified
and owned by the requestor’s device ID.

Because the coherence granule in the memory directory was marked as modified, home
memory does not necessarily need to be updated. However, the RapidIO protocol requires
that a processing element return the modified data and update the memory, allowing some
attempt for data recovery if a coherence problem occurs.

• If the requestor is on the same processing element as the home memory and the
coherence granule is shared, a DKILL_SHARER transaction is sent to all
sharing processing elements (see Figure 3-10). The final directory state is
marked as modified and owned by the local requestor.

• If the requestor is on the same processing element as the home memory and the
coherence granule is owned by a remote processing element, a
READ_TO_OWN_OWNER transaction is sent to the owner (see
Figure 3-11). The final directory state is marked as modified and owned by
the local requestor.

Figure 3-9. Read-for-Ownership Operation to Remote Modified Coherence Granule

Figure 3-10. Read-for-Ownership Operation to Local Shared Coherence Granule

Figure 3-11. Read-for-Ownership Operation to Local Modified Coherence Granule

Requestor Home
Memory

DONE_INTERV

Owner

5

READ_TO_OWN_HOME1 READ_TO_OWN_OWNER2

INTERV, data4

DATA_ONLY, data3

Requestor,

DONEs2

DKILL_SHARER1

SharersHome
Memory

Requestor,

INTERV, data2

READ_TO_OWN_OWNER1

OwnerHome
Memory
32 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
3.3.4 Data Cache Invalidate Operations
The DKILL_HOME, DKILL_SHARER, and RESPONSE transactions are requests
to invalidate a coherence granule in all of the participants in the coherence domain
as follows:

• The DKILL_HOME transaction is used by a processing element to invalidate
a data coherence granule that has home memory in a remote processing
element.

• The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the data coherence granule in remote
processing elements.

Data cache invalidate operations are also useful for systems that implement
software-maintained cache coherence. In this case, a requestor may send
DKILL_HOME and DKILL_SHARER transactions directly to other processing
elements without going through home memory as in a CC-NUMA system. The
transactions used for the data cache invalidate operation depend on whether the
requestor is on the same processing element as the home memory of the coherence
granule as follows:

• If the requestor is not on the same processing element as the home memory of
the coherence granule, a DKILL_HOME transaction is sent to the remote
home memory processing element. This causes the home memory for the
shared coherence granule to send a DKILL_SHARER to all processing
elements marked as sharing the granule in the memory directory state except
for the requestor (see Figure 3-12). The final memory state shows that the
coherence granule is modified and owned by the requesting processing
element’s device ID.

Figure 3-12. Data Cache Invalidate Operation to Remote Shared Coherence Granule

Requestor Home
Memory

DONE

Sharers

4

DKILL_HOME1 DKILL_SHARER2

DONEs3
RapidIO Trade Association 33

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• If the requestor is on the same processing element as the home memory of the
coherence granule, the home memory sends a DKILL_SHARER transaction
to all processing elements marked as sharing the coherence granule in the
memory directory. The final memory state shows the coherence granule
modified and owned by the local processor (see Figure 3-13).

3.3.5 Castout Operations
The CASTOUT and RESPONSE transactions are used in a castout operation by a
processing element to relinquish its ownership of a coherence granule and return it
to the home memory. The CASTOUT can be treated as a low-priority transaction
unless there is an address collision with an incoming request, at which time it must
become a high-priority transaction. The CASTOUT causes the home memory to be
updated with the most recent data and changes the directory state to owned by home
memory and shared (or owned, depending upon the default directory state) by the
local processing element (see Figure 3-14).

A CASTOUT transaction does not participate in address collision detection at the
home memory to prevent deadlocks or cache paradoxes caused by packet-to-packet
timing in the interconnect fabric. For example, consider a case where processing
element A is performing a CASTOUT that collides with an incoming
READ_OWNER transaction. If the CASTOUT is not allowed to complete at the
home memory, the system will deadlock. If the read operation that caused the
READ_OWNER completes (through intervention) before the CASTOUT
transaction is received at the home memory, the CASTOUT will appear to be illegal
because the directory state will have changed.

Figure 3-13. Data Cache Invalidate Operation to Local Shared Coherence Granule

Figure 3-14. Castout Operation on Remote Modified Coherence Granule

Requestor,

DONEs2

DKILL_SHARER1

SharersHome
Memory

DONE2

CASTOUT, data1

Requestor Home
Memory
34 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
3.3.6 TLB Invalidate-Entry Operations
The TLBIE and RESPONSE transactions are used for TLB invalidate-entry
operations. If the processor TLBs do not participate in the cache coherence protocol,
the TLB invalidate-entry operation is used when page table translation entries need
to be modified. The TLBIE transaction is sent to all participants in the coherence
domain except for the original requestor. A TLBIE transaction has no effect on the
memory directory state for the specified address and does not participate in address
collisions (see Figure 3-15).

3.3.7 TLB Invalidate-Entry Synchronization Operations
The TLBSYNC and RESPONSE transactions are used for TLB invalidate-entry
synchronization operations. It is used to force the completion of outstanding TLBIE
transactions at the participants. The DONE response for a TLBSYNC transaction is
only sent when all preceding TLBIE transactions have completed. This operation is
necessary due to possible indeterminate completion of individual TLBIE
transactions when multiple TLBIE transactions are being executed simultaneously.
The TLBSYNC transaction is sent to all participants in the coherence domain except
for the original requestor. The transaction has no effect on the memory directory
state for the specified address and does not participate in address collisions (see
Figure 3-16).

3.3.8 Instruction Cache Invalidate Operations
The IKILL_HOME, IKILL_SHARER, and RESPONSE transactions are used
during instruction cache invalidate operations to invalidate shared copies of an
instruction coherence granule in remote processing elements. Instruction cache
invalidate operations are needed if the processor instruction caches do not
participate in the cache coherence protocol, requiring instruction cache coherence to
be maintained by software.

Figure 3-15. TLB Invalidate-Entry Operation

Figure 3-16. TLB Invalidate-Entry Synchronization Operation

Requestor

DONEs

All

2

TLBIE1

Participants

Requestor

DONEs

All

2

TLBSYNC1

Participants
RapidIO Trade Association 35

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
An instruction cache invalidate operation has no effect on the memory directory
state for the specified address and does not participate in address collisions.
Following are descriptions of the instruction cache invalidate operations:

• If the requestor is not on the same processing element as the home memory of
the coherence granule, an IKILL_HOME transaction is sent to the remote
home memory processing element. This causes the home memory for the
shared coherence granule to send an IKILL_SHARER to all processing
element participants in the coherence domain because the memory directory
state only properly tracks data, not instruction, accesses. (See Figure 3-17.)

• If the requestor is on the same processing element as the home memory of the
coherence granule, the home memory sends an IKILL_SHARER transaction
to all processing element participants in the coherence domain as shown in
Figure 3-18.

3.3.9 Data Cache Flush Operations
The FLUSH, DKILL_SHARER, READ_TO_OWN_OWNER, and RESPONSE
transactions are used for data cache flush operations, which return ownership of a
coherence granule back to the home memory if it is modified and invalidate all
copies if the granule is shared. A flush operation with associated data can be used to
implement an I/O system write operation and to implement processor write-through
and cache manipulation operations. These transactions are used as follows:

• The FLUSH transaction is used by a processing element to return the
ownership and current data of a coherence granule to home memory. The data
payload for the FLUSH transaction is typically the size of the coherence
granule for the system but may be multiple double-words or one double-word
or less. FLUSH transactions without a data payload are used to support cache

Figure 3-17. Instruction Cache Invalidate Operation to Remote Sharable Coherence Granule

Figure 3-18. Instruction Cache Invalidate Operation to Local Sharable Coherence Granule

Requestor Home
Memory

DONE

Participants

4

IKILL_HOME1 IKILL_SHARER2

DONEs3

Requestor,

DONEs2

IKILL_SHARER1

ParticipantsHome
Memory
36 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
manipulation operations. The memory directory state is changed to owned by
home memory and shared (or modified, depending upon the processing
element’s normal default state) by the local processing element.

• The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the data coherence granule in remote
processing elements.

• The READ_TO_OWN_OWNER transaction is used by a home memory
processing element that needs to retrieve ownership of a coherence granule
that is owned by a remote processing element.

The FLUSH transaction is able to specify multiple double-word and
sub-double-word data payloads; however, they must be aligned to byte, half-word,
word, or double-word boundaries. Multiple double-word FLUSH transactions
cannot exceed the number of double-words in the coherence granule. The write size
and alignment for the FLUSH transaction are specified in Table 4-8. Unaligned and
non-contiguous operations are not supported and must be broken into multiple
FLUSH transactions by the sending processing element.

A flush operation internal to a processing element that would cause a FLUSH
transaction for a remote coherence granule owned by that processing element (for
example, attempting a cache write-through operation to a locally owned remote
coherence granule) must generate a CASTOUT rather than a FLUSH transaction to
properly implement the RapidIO protocol. Issuing a FLUSH under these
circumstances generates a memory directory state paradox error in the home
memory processing element.

Following are descriptions of the flush operations:
• If a flush operation is to a remote shared coherence granule, the FLUSH

transaction is sent to the home memory, which sends a DKILL_SHARER
transaction to all of the processing elements marked in the sharing list except
for the requesting processing element. The processing elements that receive
the DKILL_SHARER transaction invalidate the specified address if it is
found shared in their caching hierarchy (see Figure 3-19).

Figure 3-19. Flush Operation to Remote Shared Coherence Granule

Requestor Home
Memory

DONE

Sharers

4

FLUSH, data (opt.)1 DKILL_SHARER2

DONEs3
RapidIO Trade Association 37

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
• If the coherence granule is owned by a remote processing element, the home
memory sends a READ_TO_OWN_OWNER transaction to it with the
secondary (intervention) ID set to the home memory ID instead of the
requestor ID. The owner then invalidates the coherence granule in its caching
hierarchy and returns the coherence granule data (see Figure 3-20).

• If the requestor and the home memory for the coherence granule are in the same
processing element, DKILL_SHARER transactions are sent to all
participants marked in the sharing list (see Figure 3-21).

• If the requestor and the home memory for the coherence granule are in the same
processing element but the coherence granule is owned by a remote
processing element, a READ_TO_OWN_OWNER transaction is sent to the
owner (see Figure 3-22).

3.3.10 I/O Read Operations
The IO_READ_HOME, IO_READ_OWNER, and RESPONSE transactions are
used during I/O read operations by a processing element that needs a current copy
of cache-coherent data from the memory system, but does not need to be added to
the sharing list in the memory directory state. The I/O read operation is most useful
for DMA I/O devices. An I/O read operation always returns the requested size data
payload. The requested data payload size can not exceed the size of the coherence

Figure 3-20. Flush Operation to Remote Modified Coherence Granule

Figure 3-21. Flush Operation to Local Shared Coherence Granule

Figure 3-22. Flush Operation to Local Modified Coherence Granule

Requestor Home
Memory

DONE

Owner

4

FLUSH, data (opt.)1 READ_TO_OWN_OWNER2

INTERV, data3

Requestor,

DONEs2

DKILL_SHARER1

SharersHome
Memory

Requestor,

INTERV, data2

READ_TO_OWN_OWNER1

OwnerHome
Memory
38 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
granule. These transactions are used as follows:
• The IO_READ_HOME transaction is used by a requestor that is not in the same

processing element as the home memory for the coherence granule.
• The IO_READ_OWNER transaction is used by a home memory processing

element that needs to read a copy of a coherence granule owned by a remote
processing element.

Following are descriptions of the I/O operations:
• If the requested data exists in the memory directory as shared, the data can be

returned immediately from memory and the sharing mask is not modified
(see Figure 3-24).

• If the requested data exists in the memory directory as modified, the home
memory sends an IO_READ_OWNER transaction to the processing element
that owns the coherence granule. The owner passes a copy of the data to the
requesting processing element (intervention) but retains ownership of and
responsibility for the coherence granule (see Figure 3-24 and Figure 3-25).

Figure 3-23. I/O Read Operation to Remote Shared Coherence Granule

Figure 3-24. I/O Read Operation to Remote Modified Coherence Granule

Figure 3-25. I/O Read Operation to Local Modified Coherence Granule

Requestor Home
Memory

DONE, data2

IO_READ_HOME1

Requestor Home
Memory

DONE_INTERV

Owner

5

IO_READ_HOME1 IO_READ_OWNER2

INTERV4

DATA_ONLY, data3

Requestor,

INTERV, data2

IO_READ_OWNER1

OwnerHome
Memory
RapidIO Trade Association 39

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
3.4 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means
that the RapidIO interface to devices that are little-endian shall perform the proper
endian transformation to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-26 through Figure 3-28.

For write operations, a processing element shall properly align data transfers to a
double-word boundary for transmission to the destination. This alignment may
require breaking up a data stream into multiple transactions if the data is not
naturally aligned. A number of data payload sizes and double-word alignments are
defined to minimize this burden. Figure 3-29 shows a 48-byte data stream that a
processing element wishes to write to another processing element through the
interconnect fabric. The data displayed in the figure is big-endian and double-word
aligned with the bytes to be written shaded in grey. Because the start of the stream
and the end of the stream are not aligned to a double-word boundary, the sending
processing element shall break the stream into three transactions as shown in the
figure.

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and
indicates a byte lane 5, 6, and 7 three-byte write. The second transaction sends all of
the remaining data except for the final sub-double-word. The third transaction sends
the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte

Figure 3-26. Byte Alignment Example

Figure 3-27. Half-Word Alignment Example

Figure 3-28. Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
40 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
lanes 0, 1, 2, 3, and 4.

Figure 3-29. Data Alignment Example

First transaction sends these three bytes
with this double-word alignment

Byte
Lane

0

Byte
Lane

1

Byte
Lane

2

Byte
Lane

3

Byte
Lane

4

Byte
Lane

5

Byte
Lane

6

Byte
Lane

7

MSB

LSB

Second transaction sends these five
double-words

Third transaction sends these five bytes
with this double-word alignment

Double-Word Boundary
RapidIO Trade Association 41

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Blank page
42 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 4 Packet Format Descriptions

4.1 Introduction
This chapter contains the packet format definitions for the RapidIO Interconnect
Globally Shared Memory Logical Specification. There are four types of globally
shared memory packet formats:

• Request
• Response
• Implementation-defined
• Reserved

The packet formats are intended to be interconnect fabric independent, so the system
interconnect can be anything required for a particular application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.2 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such as a memory read operation.
The request packet format types and their transactions for the RapidIO Interconnect
Globally Shared Memory Logical Specification are shown in Table 4-1.

Table 4-1. Request Packet Type to Transaction Type Cross Reference

Request
Packet

Format Type
Transaction Type Definition Document

Section No.

Type 0 Implementation-defined Defined by the device implementation Section 4.2.4

Type 1

READ_OWNER Read shared copy of remotely owned coherence granule

Section 4.2.5READ_TO_OWN_OWNER Read for store of remotely owned coherence granule

IO_READ_OWNER Read for I/O of remotely owned coherence granule
RapidIO Trade Association 43

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
4.2.1 Addressing and Alignment
The size of the address is defined as a system-wide parameter; thus the packet
formats do not support mixed local physical address fields simultaneously. The least
three significant bits of all addresses are not specified and are assumed to be logic 0.

The coherence-granule-sized cache-coherent write requests and read responses are
aligned to a double-word boundary within the coherence granule, with the specified
data payload size matching that of the coherence granule. Sub-double-word data
payloads must be padded and properly aligned within the 8-byte boundary.
Non-contiguous or unaligned transactions that would ordinarily require a byte mask
are not supported. A sending device that requires this behavior must break the
operation into multiple request transactions. An example of this is shown in
Section 3.4, “Endian, Byte Ordering, and Alignment.”

4.2.2 Data Payloads
Cache coherent systems are very sensitive to memory read latency. One way of
reducing the latency is by returning the requested, or critical, double-word first upon
a read request. Subsequent double-words are then returned in a sequential fashion.
Table 4-2 and Table 4-3 show the return ordering for 32- and 64-byte coherence

Type 2

READ_TO_OWN_HOME Read for store of home memory for coherence granule

Section 4.2.6

READ_HOME Read shared copy of home memory for coherence
granule

IO_READ_HOME Read for I/O of home memory for coherence granule

DKILL_HOME Invalidate to home memory of coherence granule

IKILL_HOME Invalidate to home memory of coherence granule

TLBIE Invalidate TLB entry

TLBSYNC Synchronize TLB invalidates

IREAD_HOME Read shared copy of home memory for instruction cache

FLUSH Force return of ownership of coherence granule to home
memory, no update to coherence granule

IKILL_SHARER Invalidate cached copy of coherence granule

DKILL_SHARER Invalidate cached copy of coherence granule

Type 3–4 — Reserved Section 4.2.7

Type 5
CASTOUT Return ownership of coherence granule to home memory

Section 4.2.8
FLUSH (with data) Force return of ownership of coherence granule to home

memory, update returned coherence granule

Type 6–11 — Reserved Section 4.2.9

Table 4-1. Request Packet Type to Transaction Type Cross Reference (Continued)

Request
Packet

Format Type
Transaction Type Definition Document

Section No.
44 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
granules. Sub-double-word data payloads due to I/O read operations start with the
requested size as shown.

Data payloads for cache coherent write-type transactions are always linear starting
with the specified address at the first double-word to be written, (including flush
transactions that are not the size of the coherence granule). Data payloads that cross
the coherence granule boundary can not be specified. This implies that all castout
transactions start with the first double-word in the coherence granule. Table 4-4 and
Table 4-5 show the cache-coherent write-data ordering for 32- and 64-byte
coherence granules, respectively.

Table 4-2. Coherent 32-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0, 1, 2, 3

1 1, 2, 3, 0

2 2, 3, 0, 1

3 3, 0, 1, 2

Table 4-3. Coherent 64-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0, 1, 2, 3, 4, 5, 6, 7

1 1, 2, 3, 0, 4, 5, 6, 7

2 2, 3, 0, 1, 4, 5, 6, 7

3 3, 0, 1, 2, 4, 5, 6, 7

4 4, 5, 6, 7, 0, 1, 2, 3

5 5, 6, 7, 4, 0, 1, 2, 3

6 6, 7, 4, 5, 0, 1, 2, 3

7 7, 4, 5, 6, 0, 1, 2, 3
RapidIO Trade Association 45

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Table 4-4. Coherent 32-Byte Write Data Payload

Starting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule

0 1 0

0 2 0, 1

0 3 0, 1, 2

0 4 0, 1, 2, 3

1 1 1

1 2 1, 2

1 3 1, 2, 3

2 1 2

2 2 2, 3

3 1 3

Table 4-5. Coherent 64-Byte Write Data Payloads

Starting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule

0 1 0

0 2 0, 1

0 3 0, 1, 2

0 4 0, 1, 2, 3

0 5 0, 1, 2, 3, 4

0 6 0, 1, 2, 3, 4, 5

0 7 0, 1, 2, 3, 4, 5, 6

0 8 0, 1, 2, 3, 4, 5, 6, 7

1 1 1

1 2 1, 2

1 3 1, 2, 3

1 4 1, 2, 3, 4

1 5 1, 2, 3, 4, 5

1 6 1, 2, 3, 4, 5, 6

1 7 1, 2, 3, 4, 5, 6, 7

2 1 2

2 2 2, 3

2 3 2, 3, 4

2 4 2, 3, 4, 5

2 5 2, 3, 4, 5, 6

2 6 2, 3, 4, 5, 6, 7

3 1 3
46 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
4.2.3 Field Definitions for All Request Packet Formats
Fields that are unique to type 1, type 2, and type 5 formats are defined in their
sections. Bit fields that are defined as “reserved” shall be assigned to logic 0s when
generated and ignored when received. Bit field encodings that are defined as
“reserved” shall not be assigned when the packet is generated. A received reserved
encoding is regarded as an error if a meaningful encoding is required for the
transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the
figures from left to right respectively.

The following field definitions in Table 4-6 apply to all of the request packet
formats.

3 2 3, 4

3 3 3, 4, 5

3 4 3, 4, 5, 6

3 5 3, 4, 5, 6, 7

4 1 4

4 2 4, 5

4 3 4, 5, 6

4 4 4, 5, 6, 7

5 1 5

5 2 5, 6

5 3 5, 6, 7

6 1 6

6 2 6, 7

7 1 7

Table 4-6. General Field Definitions for All Request Packets

Field Definition

ftype Format type, represented as a 4-bit value; is always the first four bits in the logical packet stream.

wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table 4-7, Table 4-8, and
Section 3.4.

rdsize Data size for read transactions, used in conjunction with the word pointer (wdptr) bit—see Table 4-7 and Section
3.4.

wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit—see
Table 4-8 and Section 3.4. For writes greater than one double-word, the size is the maximum payload.

rsrv Reserved

Table 4-5. Coherent 64-Byte Write Data Payloads (Continued)

Starting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule
RapidIO Trade Association 47

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
srcTID The packet’s transaction ID.

transaction The specific transaction within the format class to be performed by the recipient; also called type or ttype.

extended
address

Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical
address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and extended
address fields by 2 bits. This field provides 34-, 50-, and 66-bit addresses to be specified in a packet with the
xamsbs as the most significant bits in the address.

address Least significant 29 bits (bits [0-28] of byte address [0-31]) of the double-word physical address

Table 4-7. Read Size (rdsize) Definitions

wdptr rdsize Number of
Bytes Byte Lanes Comment

0b0 0b0000 1 0b10000000 I/O read only

0b0 0b0001 1 0b01000000 I/O read only

0b0 0b0010 1 0b00100000 I/O read only

0b0 0b0011 1 0b00010000 I/O read only

0b1 0b0000 1 0b00001000 I/O read only

0b1 0b0001 1 0b00000100 I/O read only

0b1 0b0010 1 0b00000010 I/O read only

0b1 0b0011 1 0b00000001 I/O read only

0b0 0b0100 2 0b11000000 I/O read only

0b0 0b0101 3 0b11100000 I/O read only

0b0 0b0110 2 0b00110000 I/O read only

0b0 0b0111 5 0b11111000 I/O read only

0b1 0b0100 2 0b00001100 I/O read only

0b1 0b0101 3 0b00000111 I/O read only

0b1 0b0110 2 0b00000011 I/O read only

0b1 0b0111 5 0b00011111 I/O read only

0b0 0b1000 4 0b11110000 I/O read only

0b1 0b1000 4 0b00001111 I/O read only

0b0 0b1001 6 0b11111100 I/O read only

0b1 0b1001 6 0b00111111 I/O read only

0b0 0b1010 7 0b11111110 I/O read only

0b1 0b1010 7 0b01111111 I/O read only

0b0 0b1011 8 0b11111111 I/O read only

0b1 0b1011 16 I/O read only

0b0 0b1100 32

Table 4-6. General Field Definitions for All Request Packets (Continued)

Field Definition
48 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3

0b1 0b1100 64

0b0-1 0b1101
0b1111

Reserved

Table 4-8. Write Size (wrsize) Definitions

wdptr wrsize Number of
Bytes Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16
maximum

0b0 0b1100 32
maximum

0b1 0b1100 64
maximum

0b0-1 0b1101-1111 Reserved

Table 4-7. Read Size (rdsize) Definitions (Continued)

wdptr rdsize Number of
Bytes Byte Lanes Comment
RapidIO Trade Association 49

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
4.2.4 Type 0 Packet Format (Implementation-Defined)
The type 0 packet format is reserved for implementation-defined functions such as
flow control.

4.2.5 Type 1 Packet Format (Intervention-Request Class)
Type 1 request packets never include data. They are the only request types that can
cause an intervention, so the secondary domain, secondary ID, and secondary
transaction ID fields are required. The total number of bits available for the
secondary domain and secondary ID fields (shown in Figure 4-1) is determined by
the size of the transport field defined in the appropriate transport layer specification,
so the size (labeled m and n, respectively) of these fields are not specified. The
division of the bits between the logical coherence domain and device ID fields is
determined by the specific application. For example, an 8 bit transport field allows
16 coherence domains of 16 participants.

The type 1 packet format is used for the READ_OWNER,
READ_TO_OWN_OWNER, and IO_READ_OWNER transactions that are
specified in the transaction sub-field column defined in Table 4-9. Type 1 packets
are issued only by a home memory controller to allow the third party intervention
data transfer.

Definitions and encodings of fields specific to type 1 packets are displayed in
Table 4-9. Fields that are not specific to type 1 packets are described in Table 4-6.

Figure 4-1 displays a type 1 packet with all its fields. The field value 0b0001 in

Table 4-9. Specific Field Definitions and Encodings for Type 1 Packets

Field Encoding Sub-Field Definition

secID — Original requestor’s, or secondary, ID for intervention

secTID — Original requestor’s, or secondary, transaction ID for
intervention

sec_domain — Original requestor’s, or secondary, domain for intervention

transaction 0b0000 READ_OWNER

0b0001 READ_TO_OWN_OWNER

0b0010 IO_READ_OWNER

0b0011–1111 Reserved
50 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Figure 4-1 specifies that the packet format is of type 1.

4.2.6 Type 2 Packet Format (Request Class)
Type 2 request packets never include data. They cannot cause an intervention so the
secondary domain and ID fields specified in the intervention-request format are not
required. This format is used for the READ_HOME, IREAD_HOME,
READ_TO_OWN_HOME, IO_READ_HOME, DKILL_HOME,
DKILL_SHARER, IKILL_HOME, IKILL_SHARER, TLBIE, and TLBSYNC
transactions as specified in the transaction field defined in Table 4-10. Type 2
packets for READ_HOME, IREAD_HOME, READ_TO_OWN_HOME,
IO_READ_HOME, FLUSH without data, DKILL_HOME, and IKILL_HOME
transactions are issued to home memory by a processing element.
DKILL_SHARER and IKILL_SHARER transactions are issued by a home memory
to the sharers of a coherence granule. DKILL_HOME, DKILL_SHARER,
IKILL_HOME, IKILL_SHARER, FLUSH without data, and TLBIE are
address-only transactions so the rdsize and wdptr fields are ignored and shall be set
to logic 0. TLBSYNC is a transaction-type-only transaction so both the address,
xamsbs, rdsize, and wdptr fields shall be set to logic 0.

The transaction field encodings for type 2 packets are displayed in Table 4-10.
Fields that are not specific to type 2 packets are described in Table 4-6.

Figure 4-1. Type 1 Packet Bit Stream Format

Table 4-10. Transaction Field Encodings for Type 2 Packets

Encoding Transaction Field

0b0000 READ_HOME

0b0001 READ_TO_OWN_HOME

0b0010 IO_READ_HOME

0b0011 DKILL_HOME

0b0100 Reserved

0b0101 IKILL_HOME

0b0110 TLBIE

0b0111 TLBSYNC

0b1000 IREAD_HOME

0 0 0 1

4 4 4 8

transaction rdsize srcTID

sec_domain

m n 8

secID secTID

address

29

extended address

0, 16, 32

wdptr xamsbs

1 2
RapidIO Trade Association 51

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Figure 4-2 displays a type 2 packet with all its fields. The field value 0b0010 in
Figure 4-2 specifies that the packet format is of type 2.

Figure 4-2. Type 2 Packet Bit Stream Format

4.2.7 Type 3–4 Packet Formats (Reserved)
The type 3–4 packet formats are reserved.

4.2.8 Type 5 Packet Format (Write Class)
Type 5 packets always contain data. A data payload that consists of a single
double-word or less has sizing information as defined in Table 4-8. The wrsize field
specifies the maximum size of the data payload for multiple double-word
transactions. The FLUSH with data and CASTOUT transactions use type 5 packets
as defined in Table 4-11. Note that type 5 transactions always contain data.

Fields that are not specific to type 5 packets are described in Table 4-6.

Figure 4-3 displays a type 5 packet with all its fields. The field value 0b0101 in

0b1001 FLUSH without data

0b1010 IKILL_SHARER

0b1011 DKILL_SHARER

0b1100–1111 Reserved

Table 4-11. Transaction Field Encodings for Type 5 Packets

Encoding Transaction Field

0b0000 CASTOUT

0b0001 FLUSH with data

0b0010–1111 Reserved

Table 4-10. Transaction Field Encodings for Type 2 Packets (Continued)

Encoding Transaction Field

0 0 1 0

4 4 4 8

transaction rdsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229
52 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Figure 4-3 specifies that the packet format is of type 5.

4.2.9 Type 6–11 Packet Formats (Reserved)
The type 6–11 packet formats are reserved.

4.3 Response Packet Formats
A response transaction is issued by a processing element when it has completed a
request made by a remote processing element. Response packets are always directed
and are transmitted in the same way as request packets. Currently two response
packet format types exist, as shown in Table 4-12.

4.3.1 Field Definitions for All Response Packet Formats
The field definitions in Table 4-13 apply to more than one of the response packet
formats.

Figure 4-3. Type 5 Packet Bit Stream Format

Table 4-12. Request Packet Type to Transaction Type Cross Reference

Request
Packet

Format Type
Transaction Type Definition Document

Section No.

Type 12 — Reserved Section 4.3.2

Type 13 RESPONSE Issued by a processing element when it completes a
request by a remote element. Section 4.3.3

Type 14 — Reserved Section 4.3.4

Type 15 Implementation-defined Defined by the device implementation Section 4.3.5

Table 4-13. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

0 1 0 1

4 4 4 8

transaction wrsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229

double-word 0

64

double-word 1

64

double-word n

64

• • •
RapidIO Trade Association 53

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
4.3.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

4.3.3 Type 13 Packet Format (Response Class)
The type 13 packet format returns status, data (if required), and the requestor’s
transaction ID. A RESPONSE packet with an “ERROR” status or a response that is
not expected to have a data payload never has a data payload. The type 13 format is
used for response packets to all request transactions.

Note that type 13 packets do not have any special fields.

Figure 4-4 illustrates the format and fields of type 13 packets. The field value
0b1101 in Figure 4-4 specifies that the packet format is of type 13.

transaction 0b0000 RESPONSE transaction with no data payload

0b0001–0111 Reserved

0b1000 RESPONSE transaction with data payload

0b1001–1111 Reserved

targetTID — The corresponding request packet’s transaction ID

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001 DATA_ONLY This is a data only response

0b0010 NOT_OWNER Not owner of requested coherence granule

0b0011 RETRY Requested transaction is not accepted; must retry the request

0b0100 INTERVENTION Update home memory with intervention data

0b0101 DONE_INTERVENTION Done for a transaction that resulted in an intervention

0b0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional
information such as an error code

Table 4-13. Field Definitions and Encodings for All Response Packets (Continued)
54 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
4.3.4 Type 14 Packet Format (Reserved)
The type 14 packet format is reserved.

4.3.5 Type 15 Packet Format (Implementation-Defined)
The type 15 packet format is reserved for implementation-defined functions such as
flow control.

Figure 4-4. Type 13 Packet Bit Stream Format

1 1 0 1

4 4 4 8

transaction status targetTID

double-word 0

64

double-word 1

64

double-word n

64

• • •
RapidIO Trade Association 55

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Blank page
56 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 5 Globally Shared Memory Registers

5.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

5.2 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
the RapidIO Part 1: Input/Output Logical Specification maintenance operations.
Any register offsets not defined are considered reserved for this specification unless
otherwise stated. Other registers required for a processing element are defined in
other applicable RapidIO specifications and by the requirements of the specific
device and are beyond the scope of this specification. Read and write accesses to
reserved register offsets shall terminate normally and not cause an error condition in
the target device. Writes to CAR (read-only) space shall terminate normally and not
cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. GSM Register Map

Configuration
Space Byte

Offset
Register Name

0x0-14 Reserved

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20-FC Reserved
RapidIO Trade Association 57

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
5.3 Reserved Register and Bit Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x100-
FFFC Extended Features Space

0x10000-
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0-3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40-FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. GSM Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
58 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
0x100-
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000-
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1 Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value.
2 All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values

for defined bits to be modified, and write the register, thus preserving the value of all reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO Trade Association 59

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO GSM logical operations that can be issued
by this processing element; see Table 5-3. It is assumed that a processing element
can generate I/O logical maintenance read and write requests if it is required to
access CARs and CSRs in other processing elements. RapidIO switches shall be
able to route any packet.

Table 5-3. Bit Settings for Source Operations CAR

Bit Field Name Description

0 Read PE can support a read operation

1 Instruction read PE can support an instruction read operation

2 Read-for-ownership PE can support a read-for-ownership operation

3 Data cache invalidate PE can support a data cache invalidate operation

4 Castout PE can support a castout operation

5 Data cache flush PE can support a data cache flush operation

6 I/O read PE can support an I/O read operation

7 Instruction cache invalidate PE can support an instruction cache invalidate operation

8 TLB invalidate-entry PE can support a TLB invalidate-entry operation

9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync operation

10–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–29 — Reserved

30–31 Implementation Defined Defined by the device implementation
60 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
5.4.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO GSM operations that can be supported by
this processing element; see Table 5-4. It is required that all processing elements can
respond to I/O logical maintenance read and write requests in order to access these
registers. The Destination Operations CAR is applicable for end point devices only.
RapidIO switches shall be able to route any packet.

Table 5-4. Bit Settings for Destination Operations CAR

Bit Field Name Description

0 Read PE can support a read operation

1 Instruction read PE can support an instruction read operation

2 Read-for-ownership PE can support a read-for-ownership operation

3 Data cache invalidate PE can support a data cache invalidate operation

4 Castout PE can support a castout operation

5 Data cache flush PE can support a flush operation

6 I/O read PE can support an I/O read operation

7 Instruction cache invalidate PE can support an instruction cache invalidate operation

8 TLB invalidate-entry PE can support a TLB invalidate-entry operation

9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync operation

10–13 — Reserved

14-15 Implementation Defined Defined by the device implementation

16-29 — Reserved

30-31 Implementation Defined Defined by the device implementation
RapidIO Trade Association 61

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
5.5 Command and Status Registers (CSRs)
The RapidIO Globally Shared Memory Logical Specification does not define any
command and status registers (CSRs).
62 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 6 Communication Protocols

6.1 Introduction
This chapter contains the RapidIO globally shared memory (GSM) communications
protocol definitions. Three state machines are required for a processing element on
the RapidIO interface: one for local system accesses to local and remote space, one
for remote accesses to local space, and one for handling responses made by the
remote system to requests from the local system. The protocols are documented as
pseudo-code partitioned by operation type. The RapidIO protocols as defined here
assume a directory state definition that uses a modified bit with the local processor
always sharing as described in Chapter 2, “System Models.” The protocols can be
easily modified to use an alternate directory scheme that allows breaking the
SHARED state into a REMOTE_SHARED and a
REMOTE_AND_LOCAL_SHARED state pair.

Similarly, it may be desirable for an implementation to have an UNOWNED state
instead of defaulting to LOCAL_SHARED or LOCAL_MODIFIED. These
optimizations only affect the RapidIO transaction issuing behavior within a
processing element, not the globally shared memory protocol itself. This flexibility
allows a variety of local processor cache state coherence definitions such as MSI or
MESI.

Some designs may not have a source of local system requests, for example, the
memory only processing element described in Section 2.2.3, “Memory-Only
Processing Element Model”. The protocols for these devices are much less
complicated, only requiring the external request state machine and a portion of the
response state machine. Similarly, a design may not have a local memory controller,
which is also a much less complicated device, requiring only a portion of the internal
request and response state machines. The protocols assume a processor element and
memory processing element as described in Figure 2-2.

6.2 Definitions
The general definitions of Section 6.2.1 apply throughout the protocol, and the
requests and responses of state machines are defined in Section 6.2.2, “Request and
Response Definitions.”
RapidIO Trade Association 63

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.2.1 General Definitions
address_collisionAn address match between the new request and an address

currently being serviced by the state machines or some other
address-based internal hazard. This frequently causes a retry
of the new request.

assign_entry() Assign resources (such as a queue entry) to service a request, mark
the address as able to participate in address collision detection
(if appropriate), and assign a transaction ID

data Any data associated with the transaction; this field is frequently null
directory_state The memory directory state for the address being serviced
error() Signal an error (usually through an interrupt structure) to software,

usually to indicate a coherence violation problem
free_entry() Release all resources assigned to this transaction, remove it from

address collision detection, and deallocate the transaction ID
local Memory local to the processing element
local_request(m,n,...)A local request to a local processor caused by an incoming

external request that requires a snoop of the processor’s
caches

local_response(m,n,.)A local response to a local request; usually indicates the cache
state for the requesting processor to mark the requested data

LOCAL_RTYPEThis is the response from the local agent to the local processor in
response to a local request.

LOCAL_TTYPEThis is the transaction type for a request passed from the RapidIO
interconnect to a local device.

(mask <= (mask ~= received_srcid))
“Assign the mask field to the old mask field with the received
ID bit cleared.” This result is generated when a response to a
multicast is received and it is not the last one expected.

((mask ~= (my_id OR received_id)) == 0)
“The mask field not including my ID or the received ID
equals 0.” This result indicates that we have received all of the
expected responses to a multicast request.

(mask ~= my_id)“The sharing mask not including my ID.” This result is used for
multicast operations where the requestor is in the sharing list
but does not need to be included in the multicast transaction
because it is the source of the transaction.

(mask <= (participant_list ~= my_id))
“The sharing mask includes all participants except my ID.”
This result is used for the IKILL operation, which does not
64 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
use the memory directory information.
(mask <= (participant_list ~= (received_srcid AND my_id)))

“The sharing mask includes all participants except the
requestor’s and my IDs.” This result is used for the IKILL
operation, which does not use the memory directory
information.

(mask == received_srcid)
“The sharing mask only includes the requestor’s ID.” This
result is used for the DKILL operation to detect a
write-hit-on-shared case where the requestor has the only
remote copy of the coherence granule.

original_srcid The ID of the initial requestor for a transaction, saved in the state
associated with the transaction ID

received_data The response contained data
received_data_only_message

Flag set by set_received_data_only_message()
received_done_message

Flag set by set_received_done_message()
remote_request(m,n,...)

Make a request to the interconnect fabric
remote_response(m,n,...)

Send a response to the interconnect fabric
RESPONSE_TTYPE

This is the RapidIO transaction type for a response to a
request

return_data() Return data to the local requesting processor, either from memory or
from a interconnect fabric buffer; the source can be
determined from the context

secondary_id The third party identifier for intervention responses; the processing
element ID concatenated with the processing element
domain.

set_received_data_only_message()
Remember that a DATA_ONLY response was received for
this transaction ID

set_received_done_message()
Remember that a DONE response was received for this
transaction ID

source_id The source device identifier; the processing element ID concatenated
with the processing element domain

target_id The destination device identifier; the processing element ID

RapidIO Trade Association 65

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
concatenated with the processing element domain
TRANSACTIONThe RapidIO transaction type code for the request
update_memory()Write memory with data received from a response
update_state(m,n,...)Modify the memory directory state to reflect the new system

status

6.2.2 Request and Response Definitions
Following are the formats used in the pseudocode to describe request and response
transactions sent between processing elements and the formats of local requests and
responses between the cache coherence controller and the local cache hierarchy and
memory controllers.

6.2.2.1 System Request
The system request format is:

remote_request(TRANSACTION, target_id, source_id, secondary_id, data)

which describes the necessary RapidIO request to implement the protocol.

6.2.2.2 Local Request
The local request format is:

local_request(LOCAL_TTYPE)

that is the necessary local processor request to implement the protocol; the
pseudocode assumes a generic local bus. A local request also examines the remote
cache as part of the processing element’s caching hierarchy. The local transactions
are defined as:
DKILL Causes the processor to transition the coherence granule to invalid

regardless of the current state; data is not pushed if current
state is modified

IKILL Causes the processor to invalidate the coherence granule in the
instruction cache

READ Causes the processor to transition the coherence granule to shared
and push data if necessary

READ_LATESTCauses the processor to push data if modified but not transition the
cache state

READ_TO_OWNCauses the processor to transition the coherence granule to
invalid and push data

TLBIE Causes the processor to invalidate the specified translation
look-aside buffer entry

TLBSYNC Causes the processor to indicate when all outstanding TLBIEs have
completed
66 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.2.2.3 System Response
The system response format is:

remote_response(RESPONSE_TTYPE, target_id, source_id, data (opt.))

which is the proper response to implement the protocol.

6.2.2.4 Local Response
The local response format is:

local_response(LOCAL_RTYPE)

In general, a transaction ID (TID) is associated with each device ID in order to
uniquely identify a request. This TID is frequently a queue index in the source
processing element. These TIDs are not explicitly called out in the pseudocode
below. The local responses are defined as:
EXCLUSIVE The processor has exclusive access to the coherence granule
OK The transaction requested by the processor has or will complete

properly
RETRY Causes the processor to re-issue the transaction; this response may

cause a local bus spin loop until the protocol allows a different
response

SHARED The processor has a shared copy of the coherence granule

6.3 Operation to Protocol Cross Reference
Table 6-1 contains a cross reference of the operations defined in the RapidIO
Interconnect Globally Shared Memory Logical Specification and their system usage.

Table 6-1. Operation to Protocol Cross Reference

Operations Protocol

Read Section 6.4

Instruction read Section 6.4

Read for ownership Section 6.6

Data cache invalidate Section 6.7

Instruction cache invalidate Section 6.7

Castout Section 6.8

TLB invalidate entry Section 6.9

TLB invalidate entry
synchronize

Section 6.9

Data cache flush Section 6.10

I/O read Section 6.11
RapidIO Trade Association 67

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.4 Read Operations
This operation is a coherent data cache read; refer to the description in Section 3.3.1.

6.4.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local
processor.
if (address_collision) // this is due to an external request

// in progress or a cache
local_response(RETRY); // index hazard from a previous request

elseif (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default

// local memory to owned
local_response(EXCLUSIVE);
return_data();

case LOCAL_SHARED, // local, owned by memory
case SHARED: // shared local and remote

local_response(SHARED);
return_data(); // keep directory state

// the way it was
case REMOTE_MODIFIED:

local_response(SHARED);
assign_entry(); // this means to assign

// a transaction ID,
// usually a queue entry

remote_request(READ_OWNER, mask_id, my_id, my_id);
default:

error();
else // remote - we’ve got to go

// to another processing element
assign_entry();
local_response(RETRY); // can’t guarantee data before a

// snoop yet
remote_request(READ_HOME, mem_id, my_id);

endif;

6.4.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
if (my_id == mem_id == original_srcid) // original requestor is home memory

switch(remote_response) // matches my_id only for
// REMOTE_MODIFIED case

case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);
return_data();
free_entry();

case NOT_OWNER, // due to address collision or
case RETRY: // passing requests

switch (directory_state)
case LOCAL_MODIFIED:

local_response(EXCLUSIVE);
// when processor re-requests

return_data();
free_entry();

case LOCAL_SHARED:
68 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
local_response(SHARED);
// when processor re-requests

return_data();
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid

//or error; spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default

error();
elseif(my_id == mem_id ~== original_id // i’m home memory working for

// a third party
switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory,
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case REMOTE_MODIFIED: // spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m

// requesting a remote
// memory location

switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)
RapidIO Trade Association 69

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(READ_HOME, received_srcid, my_id);
default

error();
endif;

6.4.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.
if (address_collision) // use collision tables in

// Chapter 7, “Address Collision Resolution
Tables”
elseif (READ_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,

my_id, received_srcid);
else

error(); // he already owned it;
// cache paradox (or I-fetch after d-
// store if not fixed elsewhere)

endif;
default:

error();
else // READ_OWNER request to our caches

assign_entry();
local_request(READ); // spin until a valid response

// from caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
cache_state(SHARED or INVALID);

// surrender ownership
if (received_srcid == received_secid)

// original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else

remote_response(DATA_ONLY, received_secid,
my_id, data);

remote_response(INTERVENTION, received_srcid,
my_id, data);

endif;
case INVALID: // must have cast it out
70 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
remote_response(NOT_OWNER, received_srcid, my_id);
default;

error();
free_entry();

endif;
RapidIO Trade Association 71

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.5 Instruction Read Operations
This operation is a partially coherent instruction cache read; refer to the description
in Section 3.3.2.

6.5.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local
processor.
if (address_collision) // this is due to an external

 // request in progress or a cache
local_response(RETRY); // index hazard from a previous request

elseif (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default

// local memory to owned
local_response(EXCLUSIVE);
return_data();

case LOCAL_SHARED, // local, owned by memory
case SHARED: // shared local and remote

local_response(SHARED);
return_data(); // keep directory state the way it was

case REMOTE_MODIFIED:
local_response(SHARED);
assign_entry(); // this means to assign a transaction

// ID, usually a queue entry
remote_request(READ_OWNER, mask_id, my_id, my_id);

default:
error();

else // remote - we’ve got to go
// to another processing element

assign_entry();
local_response(RETRY);

// can’t guarantee data before a
// snoop yet

remote_request(IREAD_HOME, mem_id, my_id);
endif;

6.5.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
if (my_id == mem_id == original_srcid) // original requestor is home memory

error();
elseif(my_id == mem_id ~== original_id) // i’m home memory working for a

// third party
switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory,
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
72 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
free_entry();
case LOCAL_MODIFIED:

update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention; a
// DONE_INTERVENTION should come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IREAD_HOME, received_srcid, my_id);
default

error();
endif;

6.5.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.
if (address_collision) // use collision tables in

// Chapter 7, “Address Collision Resolution
Tables”
elseif(IREAD_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();
RapidIO Trade Association 73

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,

my_id, received_srcid);
else // he already owned it in his

//data cache; cache paradox case
remote_request(READ_OWNER, mask_id, my_id, my_id);

endif;
default:

error();
endif;
74 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.6 Read for Ownership Operations
This is the coherent cache store miss operation.

6.6.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local
processor.
if (address_collision) // this is due to an external request

// in progress or a cache index
local_response(RETRY); // hazard from a previous request

elseif (local) // our local memory
switch (directory_state
case LOCAL_MODIFIED, // local modified is OK if we

// default memory to owned locally
case LOCAL_SHARED:

local_response(EXCLUSIVE); // give ownership to processor
return_data();
if (directory_state == LOCAL_SHARED)
 update_state(LOCAL_MODIFIED)
endif;

case REMOTE_MODIFIED: // owned by another, get a copy
// and ownership

assign_entry();
local_response(RETRY); // retry
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);

case SHARED: // invalidate the sharing list
assign_entry();
local_response(RETRY); // retry
remote_request(DKILL_SHARER, (mask ~= my_id), my_id, my_id);

default:
error();

else // remote - we’ve got to go to another
// processing element

assign_entry();
local_response(RETRY);
remote_request(READ_TO_OWN_HOME, mem_id, my_id);

endif;

6.6.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
if (my_id == mem_id == original_srcid) // original requestor is home memory

switch (received_response)
case DONE: // SHARED, so invalidate case

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared
// bit and wait for next DONE

endif;
case NOT_OWNER: // due to address collision with

// CASTOUT or FLUSH
RapidIO Trade Association 75

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
switch(directory_state)
case LOCAL_MODIFIED,:

local_response(EXCLUSIVE);
return_data();
free_entry();

case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

case REMOTE_MODIFIED:
// spin or wait for castout

remote_request(READ_TO_OWN_OWNER, mask_id,
my_id, my_id);

default:
error();

case INTERVENTION: // remotely owned
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:

local_response(EXCLUSIVE);
return_data();
free_entry();

case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

case REMOTE_MODIFIED: //mask_id must match received_srcid
// or error condition

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();
elseif (my_id == mem_id ~= original_srcid)

// i’m home memory working
// for a third party

switch(received_response)
case DONE: // invalidates for shared

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id, data);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE

case INTERVENTION:
// remote_modified case

update_memory(); // for possible coherence error
// recovery

update_state(REMOTE_MODIFIED, original_id);
remote_response(DONE_INTERVENTION, original_id, my_id);
free_entry();

case NOT_OWNER: // data comes from memory, mimic
// intervention
76 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
switch(directory_state)
case LOCAL_SHARED:
case LOCAL_MODIFIED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
default:

error();
case RETRY:

switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid
// or error condition

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch (received_response)
case DONE:

local_response(EXCLUSIVE);
return_data();
free_entry();

case DONE_INTERVENTION:
set_received_done_message();
if (received_data_message)

free_entry();
else

// wait for DATA_ONLY
endif;

case DATA_ONLY:
set_received_data_message();
local_response(EXCLUSIVE);
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif; // and wait for a DONE
case RETRY: // lost at remote memory so retry

remote_request(READ_TO_OWN_HOME, mem_id, my_id);
default:

error();
endif;
RapidIO Trade Association 77

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.6.3 External Request State Machine
This state machine handles requests from the interconnect to the local memory or
the local system. This may require making further external requests.
if (address_collision) // use collision tables

// in Chapter 7, “Address Collision Resolution
Tables”
elseif (READ_TO_OWN_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id, data);

// after possible push
update_state(REMOTE_MODIFIED, received_srcid);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

//intervention case
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,

received_srcid);
else

error(); // he already owned it!
endif;

case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)

//requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);

// from memory
free_entry();

else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid),

my_id, my_id);
endif;

default:
error();

elseif(READ_TO_OWN_OWNER) // request to our caches
assign_entry();
local_request(READ_TO_OWN); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push

cache_state(INVALID);
// surrender ownership

if (received_srcid == received_secid)
//the original request is from the home

remote_response(INTERVENTION, received_srcid, my_id,
data);

else // the original request is from a
// third party

remote_response(DATA_ONLY, received_secid, my_id,
data);

remote_response(INTERVENTION, received_srcid, my_id,
data);

endif;
free_entry();

case INVALID: // castout address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

endif;
78 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.7 Data Cache and Instruction Cache Invalidate
Operations

This operation is used with coherent cache store-hit-on-shared, cache operations;
refer to the description in Section 3.3.4.

6.7.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local
processor.
if (address_collision) // this is due to an external request in

// progress or a cache index
local_response(RETRY); // hazard from a previous request

elseif (local) // our local memory and we won
if (DKILL) // DKILL checks the directory

switch (directory_state)
case LOCAL_MODIFIED, // local modified is OK if we default

// memory to owned locally
case LOCAL_SHARED:

local_response(EXCLUSIVE);
if (LOCAL_SHARED)

update_state(LOCAL_MODIFIED, my_id);
endif;

case REMOTE_MODIFIED: // cache paradox; DKILL is
// write-hit-on-shared

error();
case SHARED:

local_response(RETRY);
assign_entry(); // Multicast if possible otherwise

// issue direct to each sharer
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);

default:
error();

else // IKILL always goes to everyone
remote_request(IKILL_SHARER,

(mask <= (participant_list ~= my_id)), my_id);
endif;

else // remote - we’ve got to go to another
// processing element

assign_entry();
local_response(RETRY);
remote_request({DKILL_HOME, IKILL_HOME}, mem_id, my_id);

endif;

6.7.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
if (my_id == mem_id == original_srcid) // original requestor is home memory

switch (received_response)
case DONE: // shared cases

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

if (DKILL) // don’t update state for IKILLs
update_state(LOCAL_MODIFIED);

endif;
free_entry();

else
RapidIO Trade Association 79

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
mask <= (mask ~= received_srcid);
// flip the responder’s shared bit and

endif; // wait for next DONE
case RETRY:

remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,
my_id); // retry the transaction

default:
error();

elseif (my_id == mem_id ~= original_srcid)
// i’m home memory working
// for a third party

switch(received_response)
case DONE: // invalidates for shared

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
if (DKILL) // don’t update state for IKILLs

update_state(REMOTE_MODIFIED, original_srcid);
endif;
remote_response(DONE, original_srcid, my_id);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE

case RETRY:
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,

my_id); // retry
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch (received_response)
case DONE:

local_response(EXCLUSIVE);
free_entry();

case RETRY:
remote_request({DKILL_HOME, IKILL_HOME}, received_srcid,

my_id); // retry the transaction
default:

error();
endif;

6.7.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.
if (address_collision) // use collision tables in

// Chapter 7, “Address Collision Resolution
Tables”
elseif (DKILL_HOME || IKILL_HOME) // remote request to our local memory

assign_entry();
if (DKILL_HOME)

switch (directory_state)
case LOCAL_MODIFIED, // cache paradoxes; DKILL is

// write-hit-on-shared
case LOCAL_SHARED,
case REMOTE_MODIFIED:

error();
case SHARED: // this is the right case, send

// invalidates to the sharing list
local_request(DKILL);
if (mask == received_srcid

// requestor is only remote sharer
80 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
if (DKILL)// don’t update state for (IKILLs)
update_state(REMOTE_MODIFIED,

received_srcid);
endif;
remote_response(DONE, received_srcid, my_id);
free_entry();

else // there are other remote sharers
remote_request(DKILL_SHARER,

(mask ~= received_srcid), my_id, NULL);
endif;

default:
error();

else // IKILL goes to everyone except the
// requestor

remote_request(IKILL_SHARER,
(mask <= (participant_list ~=
(received_srcid AND my_id), my_id);

else // DKILL_SHARER or IKILL_SHARER to
our caches

assign_entry();
local_request({READ_TO_OWN, IKILL});

// spin until a valid response from the
// caches

switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases

cache_state(INVALID); // surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();

default:
error();

endif;
RapidIO Trade Association 81

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.8 Castout Operations
This operation is used to return ownership of a coherence granule to home memory,
leaving it invalid in the cache; refer to the description in Section 3.3.5.

6.8.1 Internal Request State Machine
A castout is always done to remote memory space. A castout may require local
activity to flush all caches in the hierarchy.
if (local) // our local memory

switch (directory_state)
case LOCAL_MODIFIED: // if the processor is doing a castout

// this is the only legal state
local_response(OK);
update_memory();
update_state(LOCAL_SHARED);

default:
error();

else // remote - we’ve got to go to another
// processing element

assign_entry();
local_response(OK);
remote_request(CASTOUT, mem_id, my_id, data);

endif;

6.8.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
switch (received_response)
case DONE:

free_entry();
default:

error();

6.8.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.
assign_entry();
update_memory();
state_update(LOCAL_SHARED, my_id); // may be LOCAL_MODIFIED if the

// default is owned locally
remote_response(DONE, received_srcid, my_id);
free_entry();
82 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.9 TLB Invalidate Entry, TLB Invalidate Entry
Synchronize Operations

These operations are used for software coherence management of the TLBs; refer to
the descriptions in Section 3.3.6 and Section 3.3.7.

6.9.1 Internal Request State Machine
The TLBIE and TLBSYNC transactions are always sent to all domain participants
except the sender and are always to the processor not home memory.
assign_entry();
remote_request({TLBIE, TLBSYNC}, participant_id, my_id);
endif;

6.9.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system. The responses are always from a coherence
participant, not a home memory.
switch (received_response)
case DONE:

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

free_entry();
else

mask <= (mask ~= received_srcid);
// flip the responder’s participant
// bit and wait for next DONE

endif;
case RETRY:

remote_request({TLBIE, TLBSYNC}, received_srcid, my_id, my_id);
default

error();

6.9.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. The requests are always to the local caching hierarchy.
assign_entry();
local_request({TLBIE, TLBSYNC}); // spin until a valid response

// from the caches
remote_response(DONE, received_srcid, my_id);
free_entry();
RapidIO Trade Association 83

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.10 Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and
performs a coherent write; refer to the description in Section 3.3.9.

6.10.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local
processor.
if (address_collision) // this is due to an external

// request in progress or a cache index
local_response(RETRY); // hazard from a previous request

elseif (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_response(OK);
update_memory();

case REMOTE_MODIFIED:
assign_entry();
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);

case SHARED:
assign_entry();
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);

default:
error();

else // remote - we’ve got to go to
// another processing element

assign_entry();
remote_request(FLUSH, mem_id, my_id, data);

// data is optional
endif;

6.10.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
if (my_id == mem_id == original_srcid) // original requestor is home memory

switch (received_response)
case DONE:

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

if (received_data)
// with local request or response

update_memory();
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip responder’s shared bit
endif; // and wait for next DONE

case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

if (received_data)
// with local request from memory
84 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
update_memory();
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,

my_id);
default:

error();
case RETRY:

switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

if (received_data)
// with local request

update_memory();
// if there was some write data

endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();

case REMOTE_MODIFIED: // mask_id must match
// received_srcid or error

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();
elseif (my_id == mem_id ~= original_srcid)

// i’m home memory working for a third
// party

switch(received_response)
case DONE: // invalidates for shared directory

// states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
remote_response(DONE, original_srcid, my_id, my_id);
if (received_data)

// with original request or response
update_memory();

endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
free_entry();

else
mask <= (mask ~= received_srcid);

// flip responder’s shared bit
endif; // and wait for next DONE

case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
default:

error();
RapidIO Trade Association 85

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
case RETRY:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
case SHARED:

remote_request(DKILL_SHARER, received_srcid, my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

// data is optional
default:

error();
endif;

6.10.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.
if (address_collision) // use collision table in

// Chapter 7, “Address Collision Resolution
Tables”
elseif (FLUSH) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id);

// after snoop completes
if (received_data) // from request or local response

update_memory();
endif;
update_state(LOCAL_SHARED, my_id);

// or LOCAL_MODIFIED
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid) // owned elsewhere

remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
my_id); // secondary TID is a don’t care since data is

// not forwarded to original requestor
else // requestor owned it; shouldn’t

// generate a flush
error();

endif;
case SHARED:

local_request(READ_TO_OWN);
86 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
if (mask == received_srcid) // requestor is only remote sharer
remote_response(DONE, received_srcid, my_id);

// after snoop completes
if (received_data) // from request or response

update_memory();
endif;
update_state(LOCAL_SHARED, my_id); // or LOCAL_MODIFIED
free_entry();

else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid), my_id,

my_id);
endif;

default:
error();

endif;
RapidIO Trade Association 87

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
6.11 I/O Read Operations
This operation is used for I/O reads of globally shared memory space; refer to the
description in Section 3.3.10.

6.11.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local
processor.
if (address_collision) // this is due to an external request

// in progress or a cache index hazard
local_response(RETRY); // from a previous request

elseif (local) // our local memory
local_response(OK);
switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default

// local memory to owned
local_request(READ_LATEST);
return_data()) // after possible push

case LOCAL_SHARED,
case SHARED:

return_data(); // keep directory state the way it was
case REMOTE_MODIFIED:

assign_entry();
remote_request(IO_READ_OWNER, mask_id, my_id, my_id);

default:
error();

else // remote - we’ve got to go to
// another processing element

assign_entry();
local_response(OK);
remote_request(IO_READ_HOME, mem_id, my_id);

endif;

6.11.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.
if (my_id == mem_id == original_srcid)

// original requestor is home memory
switch(remote_response) // matches my_id only for

// REMOTE_MODIFIED case
case INTERVENTION:

return_data();
free_entry();

case NOT_OWNER, // due to address collision or
// passing requests

case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:
case LOCAL_SHARED

return_data();
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid or
// error; spin or wait for castout

remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();
88 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
default
error();

elseif(my_id == mem_id ~== original_id) // i’m home memory working for a third
// party

switch(remote_response)
case INTERVENTION:

update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, mimic
// intervention

case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

remote_response(DATA_ONLY, original_srcid, my_id,
data);

remote_response(DONE_INTERVENTION, original_srcid,
my_id);

free_entry();
case REMOTE_MODIFIED: // spin or wait for castout

remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();

default:
error();

else // my_id ~= mem_id - I’m requesting a
// remote memory location

switch(remote_response)
case DONE:

return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IO_READ_HOME, received_srcid, my_id);
default

error();
endif;

6.11.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.
if (address_collision) // use collision tables in

// Chapter 7, “Address Collision Resolution
Tables”
elseif (IO_READ_HOME) // remote request to our local memory
RapidIO Trade Association 89

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);

// after push completes
free_entry();

case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

default:
error();

else // IO_READ_OWNER request to our caches
assign_entry();
local_request(READ_LATEST); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
if (received_srcid == received_secid)

// original requestor is also home
// memory

remote_response(INTERVENTION, received_srcid, my_id,
data);

else
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id);

endif;
case INVALID: // must have cast it out during

// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

free_entry();
endif;
90 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Chapter 7 Address Collision Resolution Tables

7.1 Introduction
Address collisions are conflicts between incoming cache coherence requests to a
processing element and outstanding cache coherence requests within it. A collision
is usually due to a match between the associated addresses, but also may be because
of a conflict for some internal resource such as a cache index. Within a processing
element, actions taken in response to an address collision vary depending upon the
outstanding request and the incoming request. These actions are described in
Table 7-1 through Table 7-17. Non-cache coherent transactions (transactions
specified in other RapidIO logical specifications) do not cause address collisions.

Some of the table entries specify that an outstanding request should be canceled at
the local processor and that the incoming transaction then be issued immediately to
the processor. This choosing between transactions is necessary to prevent deadlock
conditions between multiple processing elements vying for ownership of a
coherence granule.
RapidIO Trade Association 91

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.2 Resolving an Outstanding READ_HOME Transaction
Table 7-1 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_HOME transaction.

Table 7-1. Address Collision Resolution for READ_HOME

Outstanding Request Incoming Request Resolution

READ_HOME READ_HOME Generate “ERROR” response

READ_HOME IREAD_HOME Generate “ERROR” response

READ_HOME READ_OWNER Generate “NOT_OWNER” response

READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response

READ_HOME DKILL_HOME Generate “ERROR” response

READ_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward DKILL_SHARER to processor then generate a
“DONE” response. If final response is “RETRY”, cancel
the read at the processor and forward DKILL_SHARED
to processor then generate a “DONE” response
If no outstanding request, cancel the read at the processor
and forward DKILL_SHARER to processor then generate
a “DONE” response (this case should be very rare).

READ_HOME CASTOUT Generate “ERROR” response

READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_HOME IKILL_HOME Generate “ERROR” response

READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

READ_HOME FLUSH Generate “ERROR” response

READ_HOME IO_READ_HOME Generate “ERROR” response

READ_HOME IO_READ_OWNER Generate “NOT_OWNER” response
92 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.3 Resolving an Outstanding IREAD_HOME
Transaction
Table 7-2 describes the address collision resolution for an incoming transaction that
collides with an outstanding IREAD_HOME transaction.

Table 7-2. Address Collision Resolution for IREAD_HOME

Outstanding Request Incoming Request Resolution

IREAD_HOME READ_HOME Generate “ERROR” response

IREAD_HOME IREAD_HOME Generate “ERROR” response

IREAD_HOME READ_OWNER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME READ_TO_OWN_HOME Generate “ERROR” response

IREAD_HOME READ_TO_OWN_OWNER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME DKILL_HOME Generate “ERROR” response

IREAD_HOME DKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME CASTOUT Generate “ERROR” response

IREAD_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IREAD_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IREAD_HOME IKILL_HOME Generate “ERROR” response

IREAD_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME FLUSH Generate “ERROR” response

IREAD_HOME IO_READ_HOME Generate “ERROR” response

IREAD_HOME IO_READ_OWNER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)
RapidIO Trade Association 93

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.4 Resolving an Outstanding READ_OWNER
Transaction
Table 7-3 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_OWNER transaction.

Table 7-3. Address Collision Resolution for READ_OWNER

Outstanding Request Incoming Request Resolution

READ_OWNER READ_HOME Generate “RETRY” response

READ_OWNER IREAD_HOME Generate “RETRY” response

READ_OWNER READ_OWNER Generate “ERROR” response

READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_OWNER DKILL_HOME Generate “RETRY” response

READ_OWNER DKILL_SHARER Generate “ERROR” response

READ_OWNER CASTOUT No collision, update directory state, generate “DONE”
response (CASTOUT bypasses address collision
detection)

READ_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

READ_OWNER IKILL_SHARER Generate “ERROR” response

READ_OWNER FLUSH Generate “RETRY” response

READ_OWNER IO_READ_HOME Generate “RETRY” response

READ_OWNER IO_READ_OWNER Generate “ERROR” response
94 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.5 Resolving an Outstanding READ_TO_OWN_HOME
Transaction

Table 7-4 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_TO_OWN_HOME transaction.

Table 7-4. Address Collision Resolution for READ_TO_OWN_HOME

Outstanding Request Incoming Request Resolution

READ_TO_OWN_HOME READ_HOME Generate “ERROR” response

READ_TO_OWN_HOME IREAD_HOME Generate “ERROR” response

READ_TO_OWN_HOME READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward READ_OWNER to processor and generate an
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator as in Section 3.3.1. If final
response is “RETRY” generate an “ERROR” response
If no outstanding request generate an “NOT_OWNER”
response.

READ_TO_OWN_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_TO_OWN_HOME READ_TO_OWN_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward READ_TO_OWN_OWNER to processor and
generate an “DONE_INTERVENTION” with data
response and a “DATA_ONLY” to originator as in
Section 3.3.3. If final response is “RETRY” generate an
“ERROR” response

READ_TO_OWN_HOME DKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE” generate an “ERROR”
response (we own the coherence granule and should never
see a DKILL). If final response is “RETRY” generate a
“DONE” response and continue the
READ_TO_OWN_HOME.
If no outstanding request generate a “DONE” response.

READ_TO_OWN_HOME CASTOUT Generate “ERROR” response

READ_TO_OWN_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_HOME IKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

READ_TO_OWN_HOME FLUSH If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward FLUSH to processor and generate a “DONE”
with data response as in Section 3.3.9. If final response is
“RETRY” generate an “ERROR” response (we didn’t
own the data and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).
RapidIO Trade Association 95

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
READ_TO_OWN_HOME IO_READ_HOME Generate “ERROR” response

READ_TO_OWN_HOME IO_READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward IO_READ_OWNER to processor then generate a
“DONE” with data response, etc. as in Section 3.3.10. If
final response is “RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “NOT_OWNER”
response.

Table 7-4. Address Collision Resolution for READ_TO_OWN_HOME (Continued)

Outstanding Request Incoming Request Resolution
96 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.6 Resolving an Outstanding
READ_TO_OWN_OWNER Transaction

Table 7-5 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_TO_OWN_OWNER transaction.

Table 7-5. Address Collision Resolution for READ_TO_OWN_OWNER

Outstanding Request Incoming Request Resolution

READ_TO_OWN_OWNER READ_HOME Generate “RETRY” response

READ_TO_OWN_OWNER IREAD_HOME Generate “RETRY” response

READ_TO_OWN_OWNER READ_OWNER Generate “ERROR” response

READ_TO_OWN_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_TO_OWN_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_TO_OWN_OWNER DKILL_HOME Generate “RETRY” response

READ_TO_OWN_OWNER DKILL_SHARER Generate “ERROR” response

READ_TO_OWN_OWNER CASTOUT No collision, update directory state, generate “DONE”
response (CASTOUT bypasses address collision
detection)

READ_TO_OWN_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

READ_TO_OWN_OWNER IKILL_SHARER Generate “ERROR” response

READ_TO_OWN_OWNER FLUSH Generate “RETRY” response

READ_TO_OWN_OWNER IO_READ_HOME Generate “RETRY” response

READ_TO_OWN_OWNER IO_READ_OWNER Generate “ERROR” response
RapidIO Trade Association 97

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.7 Resolving an Outstanding DKILL_HOME
Transaction

Table 7-6 describes the address collision resolution for an incoming transaction that
collides with an outstanding DKILL_HOME transaction.

Table 7-6. Address Collision Resolution for DKILL_HOME

Outstanding Request Incoming Request Resolution

DKILL_HOME READ_HOME Generate “ERROR” response

DKILL_HOME IREAD_HOME Generate “ERROR” response

DKILL_HOME READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward READ_OWNER to processor and generate a
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator as in Section 3.3.1. If final
response is “RETRY” generate an “ERROR” response
(we didn’t own the data and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

DKILL_HOME READ_TO_OWN_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE” forward
READ_TO_OWN_OWNER to processor and generate a
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator as in Section 3.3.3. If final
response is “RETRY” generate an “ERROR” response
(we didn’t own the data and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_HOME DKILL_HOME Generate “ERROR” response

DKILL_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE” generate an “ERROR”
response (we should never see a DKILL_SHARER if we
own the coherence granule). If final response is
“RETRY” cancel the data cache invalidate at the
processor and forward DKILL_SHARER to processor
then generate a “DONE” response
If no outstanding request, cancel the data cache invalidate
at the processor and forward DKILL_SHARER to
processor then generate a “DONE” response.

DKILL_HOME CASTOUT Generate “ERROR” response (cache paradox, can’t have
a SHARED granule also MODIFIED in another
processing element)

DKILL_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_HOME IKILL_HOME Generate “ERROR” response

DKILL_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)
98 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
DKILL_HOME FLUSH Generate “ERROR” response

DKILL_HOME IO_READ_HOME Generate “ERROR” response

DKILL_HOME IO_READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE” forward IO_READ_OWNER
to processor then generate a “DONE” with data response,
etc. as in Section 3.3.10. If final response is “RETRY”
generate an “ERROR” response (we didn’t own the data
and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

Table 7-6. Address Collision Resolution for DKILL_HOME (Continued)

Outstanding Request Incoming Request Resolution
RapidIO Trade Association 99

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.8 Resolving an Outstanding DKILL_SHARER
Transaction
Table 7-7 describes the address collision resolution for an incoming transaction that
collides with an outstanding DKILL_SHARER transaction.

Table 7-7. Address Collision Resolution for DKILL_SHARER

Outstanding Request Incoming Request Resolution

DKILL_SHARER READ_HOME Generate “RETRY” response

DKILL_SHARER IREAD_HOME Generate “RETRY” response

DKILL_SHARER READ_OWNER Generate “ERROR” response

DKILL_SHARER READ_TO_OWN_HOME Generate “RETRY” response

DKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

DKILL_SHARER DKILL_HOME Generate “RETRY” response

DKILL_SHARER DKILL_SHARER Generate “ERROR” response

DKILL_SHARER CASTOUT Generate “ERROR” response (cache paradox, can’t have
a SHARED granule also MODIFIED in another
processing element)

DKILL_SHARER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_SHARER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_SHARER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

DKILL_SHARER IKILL_SHARER Generate “ERROR” response

DKILL_SHARER FLUSH Generate “RETRY” response

DKILL_SHARER IO_READ_HOME If processing element is HOME: generate a “RETRY”
response
If processing element is not HOME: If outstanding
request, wait for all expected responses. If final response
is “DONE” forward IO_READ to processor then generate
a “DONE” with data response, etc. as in Section 3.3.10. If
final response is “RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_SHARER IO_READ_OWNER Generate “ERROR” response
100 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.9 Resolving an Outstanding IKILL_HOME Transaction
Table 7-8 describes the address collision resolution for an incoming transaction that
collides with an outstanding IKILL_HOME transaction.

Table 7-8. Address Collision Resolution for IKILL_HOME

Outstanding Request Incoming Request Resolution

IKILL_HOME READ_HOME Generate “ERROR” response

IKILL_HOME IREAD_HOME Generate “ERROR” response

IKILL_HOME READ_OWNER No collision, process normally

IKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

IKILL_HOME READ_TO_OWN_OWNER No collision, process normally

IKILL_HOME DKILL_HOME Generate “ERROR” response

IKILL_HOME DKILL_SHARER No collision, process normally

IKILL_HOME CASTOUT No collision, process normally

IKILL_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_HOME IKILL_HOME Generate “ERROR” response

IKILL_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IKILL_HOME FLUSH Generate “ERROR” response

IKILL_HOME IO_READ_HOME Generate “ERROR” response

IKILL_HOME IO_READ_OWNER No collision, process normally
RapidIO Trade Association 101

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.10 Resolving an Outstanding IKILL_SHARER
Transaction
Table 7-9 describes the address collision resolution for an incoming transaction that
collides with an outstanding IKILL_SHARER transaction.

Table 7-9. Address Collision Resolution for IKILL_SHARER

Outstanding Request Incoming Request Resolution

IKILL_SHARER READ_HOME No collision, process normally

IKILL_SHARER IREAD_HOME No collision, process normally

IKILL_SHARER READ_OWNER Generate “ERROR” response

IKILL_SHARER READ_TO_OWN_HOME No collision, process normally

IKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

IKILL_SHARER DKILL_HOME No collision, process normally

IKILL_SHARER DKILL_SHARER Generate “ERROR” response

IKILL_SHARER CASTOUT No collision, process normally

IKILL_SHARER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_SHARER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_SHARER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

IKILL_SHARER IKILL_SHARER Generate “ERROR” response

IKILL_SHARER FLUSH No collision, process normally

IKILL_SHARER IO_READ_HOME If processing element is HOME: generate a “RETRY”
response
If processing element is not HOME: If outstanding
request, wait for all expected responses. If final response
is “DONE” forward IO_READ to processor then generate
a “DONE” with data response, etc. as in Section 3.3.10. If
final response is “RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

IKILL_SHARER IO_READ_OWNER Generate “ERROR” response
102 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.11 Resolving an Outstanding CASTOUT Transaction
Table 7-10 describes the address collision resolution for an incoming transaction
that collides with an outstanding CASTOUT transaction.

Table 7-10. Address Collision Resolution for CASTOUT

Outstanding Request Incoming Request Resolution

CASTOUT READ_HOME Generate “ERROR” response

CASTOUT IREAD_HOME Generate “ERROR” response

CASTOUT READ_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state

CASTOUT READ_TO_OWN_HOME Generate “ERROR” response

CASTOUT READ_TO_OWN_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state

CASTOUT DKILL_HOME Generate “ERROR” response

CASTOUT DKILL_SHARER Generate “ERROR” response

CASTOUT CASTOUT Generate “ERROR” response

CASTOUT TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

CASTOUT TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

CASTOUT IKILL_HOME Generate “ERROR” response

CASTOUT IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

CASTOUT FLUSH Generate “ERROR” response

CASTOUT IO_READ_HOME Generate “ERROR” response

CASTOUT IO_READ_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state
RapidIO Trade Association 103

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.12 Resolving an Outstanding TLBIE or TLBSYNC
Transaction

Table 7-11 describes the address collision resolution for an incoming transaction
that collides with an outstanding TLBIE or TLBSYNC transaction.

Table 7-11. Address Collision Resolution for Software Coherence Operations

Outstanding Request Incoming Request Resolution

TLBIE,
TLBSYNC

ANY No collision, process request as described in Chapter 6,
“Communication Protocols”
104 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.13 Resolving an Outstanding FLUSH Transaction
The flush operation has two distinct versions. The first is for processing elements
that participate in the coherence protocol such as a processor and it’s associated
agent, which may also have a local I/O device. The second is for processing
elements that do not participate in the coherence protocols such as a pure I/O device
that does not have a corresponding bit in the directory sharing mask. Table 7-12
describes the address collision resolution for an incoming transaction that collides
with an outstanding participant FLUSH transaction.

Table 7-12. Address Collision Resolution for Participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response

FLUSH IREAD_HOME Generate “ERROR” response

FLUSH READ_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
be a CASTOUT)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response

FLUSH READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
be a CASTOUT)

FLUSH DKILL_HOME Generate “ERROR” response

FLUSH DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE” generate an “ERROR”
response (we should never see a DKILL_SHARER if we
own the coherence granule). If final response is
“RETRY” cancel the flush at the processor and forward
DKILL_SHARER to processor then generate a “DONE”
response
If no outstanding request, cancel the data cache invalidate
at the processor and forward DKILL_SHARER to
processor then generate a “DONE” response.

FLUSH CASTOUT Generate “ERROR” response

FLUSH TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

FLUSH TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

FLUSH FLUSH Generate “ERROR” response

FLUSH IO_READ_HOME Generate “ERROR” response

FLUSH IO_READ_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
be a CASTOUT)
RapidIO Trade Association 105

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Table 7-13 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant FLUSH transaction.

Table 7-13. Address Collision Resolution for Non-participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

FLUSH DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

FLUSH CASTOUT Generate “ERROR” response (should never receive
coherent operation)

FLUSH TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

FLUSH TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence) - non-participant may have software
coherence.

FLUSH FLUSH Generate “ERROR” response (should never receive
coherent operation)

FLUSH IO_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH IO_READ_OWNER Generate “ERROR” response (should never receive
coherent operation)
106 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.14 Resolving an Outstanding IO_READ_HOME
Transaction

The I/O read operation is used by processing elements that do not want to participate
in the coherence protocol but do want to get current copies of cached data. There are
two versions of this operation, one for processing elements that have both processors
and I/O devices, the second for pure I/O devices that do not have a corresponding
bit in the directory sharing mask. Table 7-14 describes the address collision
resolution for an incoming transaction that collides with an outstanding participant
IO_READ_HOME transaction.

Table 7-14. Address Collision Resolution for Participant IO_READ_HOME

Outstanding Request Incoming Request Resolution

IO_READ_HOME READ_HOME Generate “ERROR” response

IO_READ_HOME IREAD_HOME Generate “ERROR” response

IO_READ_HOME READ_OWNER Generate “NOT_OWNER” response (we don’t own the
data otherwise we could have obtained a copy locally)

IO_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

IO_READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we don’t own the
data otherwise we could have obtained a copy locally)

IO_READ_HOME DKILL_HOME Generate “ERROR” response

IO_READ_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward DKILL_SHARER to processor then generate a
“DONE” response. If final response is “RETRY” forward
DKILL_SHARED to processor then generate a “DONE”
response
If no outstanding request forward DKILL_SHARER to
processor then generate a “DONE” response

IO_READ_HOME CASTOUT Generate “ERROR” response

IO_READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_HOME IKILL_HOME Generate “ERROR” response

IO_READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IO_READ_HOME FLUSH Generate “ERROR” response

IO_READ_HOME IO_READ_HOME Generate “ERROR” response

IO_READ_HOME IO_READ_OWNER Generate “NOT_OWNER” response (we don’t own the
data otherwise we could have obtained a copy locally)
RapidIO Trade Association 107

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Table 7-15 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant IO_READ_HOME transaction.

Table 7-15. Address Collision Resolution for Non-participant IO_READ_HOME

Outstanding Request Incoming Request Resolution

IO_READ_HOME READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME CASTOUT Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
broadcast operation and non-participant may have page
table hardware.

IO_READ_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
broadcast operation and non-participant may have page
table hardware.

IO_READ_HOME IKILL_HOME Generate “ERROR” response

IO_READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence) - broadcast operation and non-participant may
have software coherence.

IO_READ_HOME FLUSH Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME IO_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME IO_READ_OWNER Generate “ERROR” response (should never receive
coherent operation)
108 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
7.15 Resolving an Outstanding IO_READ_OWNER
Transaction

The I/O read operation is used by processing elements that do not want to participate
in the coherence protocol but do want to get current copies of cached data. There are
two versions of this operation, one for processing elements that have both processors
and I/O devices, the second for pure I/O devices that do not have a corresponding
bit in the directory sharing mask. Table 7-16 describes the address collision
resolution for an incoming transaction that collides with an outstanding
IO_READ_OWNER transaction.

Table 7-16. Address Collision Resolution for Participant IO_READ_OWNER

Outstanding Request Incoming Request Resolution

IO_READ_OWNER READ_HOME Generate “RETRY” response

IO_READ_OWNER IREAD_HOME Generate “RETRY” response

IO_READ_OWNER READ_OWNER Generate “ERROR” response

IO_READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

IO_READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

IO_READ_OWNER DKILL_HOME Generate “RETRY” response

IO_READ_OWNER DKILL_SHARER Generate “ERROR” response

IO_READ_OWNER CASTOUT No collision, update directory state and memory, generate
DONE response (CASTOUT bypasses address collision
detection)

IO_READ_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

IO_READ_OWNER IKILL_SHARER Generate “ERROR” response

IO_READ_OWNER FLUSH Generate “RETRY” response

IO_READ_OWNER IO_READ_HOME Generate “RETRY” response

IO_READ_OWNER IO_READ_OWNER Generate “ERROR” response (we don’t own the data
otherwise we could have obtained a copy locally)
RapidIO Trade Association 109

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Table 7-17 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant IO_READ_OWNER transaction.

Table 7-17. Address Collision Resolution for Non-participant IO_READ_OWNER

Outstanding Request Incoming Request Resolution

IO_READ_OWNER READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER CASTOUT Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

IO_READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

IO_READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

IO_READ_OWNER IKILL_SHARER Generate “ERROR” response

IO_READ_OWNER FLUSH Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER IO_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER IO_READ_OWNER Generate “ERROR” response (should never receive
coherent operation)
110 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Address collision. An address based conflict between two or more cache
coherence operations when referencing the same coherence granule.

Agent. A processing element that provides services to a processor.

Asychronous transfer mode (ATM). A standard networking protocol which
dynamically allocates bandwidth using a fixed-size packet.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Block flush. An operation that returns the latest copy of a block of data from
caches within the system to memory.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Broadcast. The concept of sending a packet to all processing elements in a
system.

Bus-based snoopy protocol. A broadcast cache coherence protocol that
assumes that all caches in the system are on a common bus.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache. In other words, a
write operation to an address in the system is visible to all other
caches in the system. Also referred to as memory coherence.

A

B

C

RapidIO Trade Association 111

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Cache coherent-non uniform memory access (CC-NUMA). A cache
coherent system in which memory accesses have different latencies
depending upon the physical location of the accessed address.

Cache paradox. A circumstance in which the caches in a system have an
undefined or disallowed state for a coherence granule, for example,
two caches have the same coherence granule marked “modified”.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Castout operation. An operation used by a processing element to relinquish
its ownership of a coherence granule and return it to home memory.

Coherence domain. A logically associated group of processing elements that
participate in the globally shared memory protocol and are able to
maintain cache coherence among themselves.

Coherence granule. A contiguous block of data associated with an address
for the purpose of guaranteeing cache coherence.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the
RapidIO interconnect.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Distributed memory. System memory that is distributed throughout the
system, as opposed to being centrally located.

Domain. A logically associated group of processing elements.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

D

112 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

Ethernet. A common local area network (LAN) technology.

Exclusive. A processing element has the only cached copy of a sharable
coherence granule. The exclusive state allows the processing
element to modify the coherence granule without notifying the rest
of the system.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Flush operation. An operation used by a processing element to return the
ownership and current data of a coherence granule to home memory.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Home memory. The physical memory corresponding to the physical address
of a coherence granule.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

Instruction cache. High-speed memory containing recently accessed
instructions (subset of main memory) associated with a processor.

Instruction cache invalidate operation. An operation that is used if the
instruction cache coherence must be maintained by software.

Instruction read operation. An operation used to obtain a globally shared
copy of a coherence granule specifically for an instruction cache.

Instruction set architecture (ISA). The instruction set for a certain
processor or family of processors.

Intervention. A data transfer between two processing elements that does not
go through the coherence granule’s home memory, but directly
between the requestor of the coherence granule and the current
owner.

Invalidate operation. An operation used to remove a coherence granule from
caches within the coherence domain.

E

F

G

H

I

RapidIO Trade Association 113

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
I/O. Input-output.

I/O read operation. An operation used by an I/O processing element to
obtain a globally shared copy of a coherence granule without
disturbing the coherence state of the granule.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LSB. Least significant byte.

Memory coherence. Memory is coherent if a processor performing a read
from its cache is supplied with data corresponding to the most recent
value written to memory or to another processor’s cache. In other
words, a write operation to an address in the system is visible to all
other caches in the system. Also referred to as cache coherence.

Memory controller. The point through which home memory is accessed.

Memory directory. A table of information associated with home memory
that is used to track the location and state of coherence granules
cached by coherence domain participants.

Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

Modified. A processing element has written to a locally cached coherence
granule and so has the only valid copy of the coherence granule in
the system.

Modified exclusive shared invalid (MESI). A standard 4 state cache
coherence definition.

Modified shared invalid (MSI). A standard 3 state cache coherence
definition.

Modified shared local (MSL). A standard 3 state cache coherence
definition.

MSB. Most significant byte.

Multicast. The concept of sending a packet to more than one processing
elements in a system.

KL

M

114 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Ownership. A processing element has the only valid copy of a coherence
granule and is responsible for returning it to home memory.

Packet. A set of information transmitted between devices in a RapidIO
system.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Priority. The relative importance of a packet; in most systems a higher
priority packet will be serviced or transmitted before one of lower
priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Read operation. An operation used to obtain a globally shared copy of a
coherence granule.

Read-for-ownership operation. An operation used to obtain ownership of a
coherence granule for the purposes of performing a write operation.

Remote access. An access by a processing element to memory located in
another processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

Shared. A processing element has a cached copy of a coherence granule that
may be cached by other processing elements and is consistent with
the copy in home memory.

Sharing mask. The state associated with a coherence granule in the memory
directory that tracks the processing elements that are sharing the
coherence granule.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

N

O

P

R

S

RapidIO Trade Association 115

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3
Sub-double-word. Aligned on eight byte boundaries.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Translation look-aside buffer (TLB). Part of a processor’s memory
management unit; a TLB contains a set of virtual to physical page
address translations, along with a set of attributes that describe
access behavior for that portion of physical memory.

Write-through. A cache policy that passes all write operations through the
caching hierarchy directly to home memory.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

T

W

116 RapidIO Trade Association

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3

RapidIO Trade Association 117

Blank page

RapidIO Part 5: Globally Shared Memory Logical Specification Rev. 1.3

118 RapidIO Trade Association

Blank page

	RapidIO™ Interconnect Specification Part 5: Globally Shared Memory Logical Specification
	Chapter�1 Overview
	1.1 Introduction
	1.2 Overview
	1.2.1 Memory System

	1.3 Features of the Globally Shared Memory Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter�2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 Programming Models
	2.3.1 Globally Shared Memory System Model
	2.3.1.1 Software-Managed Cache Coherence Programming Model

	2.4 System Issues
	2.4.1 Operation Ordering
	2.4.2 Transaction Delivery
	2.4.3 Deadlock Considerations

	Chapter�3 Operation Descriptions
	3.1 Introduction
	3.2 GSM Operations Cross Reference
	3.3 GSM Operations
	3.3.1 Read Operations
	3.3.2 Instruction Read Operations
	3.3.3 Read-for-Ownership Operations
	3.3.4 Data Cache Invalidate Operations
	3.3.5 Castout Operations
	3.3.6 TLB Invalidate-Entry Operations
	3.3.7 TLB Invalidate-Entry Synchronization Operations
	3.3.8 Instruction Cache Invalidate Operations
	3.3.9 Data Cache Flush Operations
	3.3.10 I/O Read Operations

	3.4 Endian, Byte Ordering, and Alignment

	Chapter�4 Packet Format Descriptions
	4.1 Introduction
	4.2 Request Packet Formats
	4.2.1 Addressing and Alignment
	4.2.2 Data Payloads
	4.2.3 Field Definitions for All Request Packet Formats
	4.2.4 Type 0 Packet Format (Implementation-Defined)
	4.2.5 Type 1 Packet Format (Intervention-Request Class)
	4.2.6 Type 2 Packet Format (Request Class)
	4.2.7 Type 3–4 Packet Formats (Reserved)
	4.2.8 Type 5 Packet Format (Write Class)
	4.2.9 Type 6–11 Packet Formats (Reserved)

	4.3 Response Packet Formats
	4.3.1 Field Definitions for All Response Packet Formats
	4.3.2 Type 12 Packet Format (Reserved)
	4.3.3 Type 13 Packet Format (Response Class)
	4.3.4 Type 14 Packet Format (Reserved)
	4.3.5 Type 15 Packet Format (Implementation-Defined)

	Chapter�5 Globally Shared Memory Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register and Bit Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Source Operations CAR (Configuration Space Offset 0x18)
	5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)

	5.5 Command and Status Registers (CSRs)

	Chapter�6 Communication Protocols
	6.1 Introduction
	6.2 Definitions
	6.2.1 General Definitions
	6.2.2 Request and Response Definitions
	6.2.2.1 System Request
	6.2.2.2 Local Request
	6.2.2.3 System Response
	6.2.2.4 Local Response

	6.3 Operation to Protocol Cross Reference
	6.4 Read Operations
	6.4.1 Internal Request State Machine
	6.4.2 Response State Machine
	6.4.3 External Request State Machine

	6.5 Instruction Read Operations
	6.5.1 Internal Request State Machine
	6.5.2 Response State Machine
	6.5.3 External Request State Machine

	6.6 Read for Ownership Operations
	6.6.1 Internal Request State Machine
	6.6.2 Response State Machine
	6.6.3 External Request State Machine

	6.7 Data Cache and Instruction Cache Invalidate Operations
	6.7.1 Internal Request State Machine
	6.7.2 Response State Machine
	6.7.3 External Request State Machine

	6.8 Castout Operations
	6.8.1 Internal Request State Machine
	6.8.2 Response State Machine
	6.8.3 External Request State Machine

	6.9 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations
	6.9.1 Internal Request State Machine
	6.9.2 Response State Machine
	6.9.3 External Request State Machine

	6.10 Data Cache Flush Operations
	6.10.1 Internal Request State Machine
	6.10.2 Response State Machine
	6.10.3 External Request State Machine

	6.11 I/O Read Operations
	6.11.1 Internal Request State Machine
	6.11.2 Response State Machine
	6.11.3 External Request State Machine

	Chapter�7 Address Collision Resolution Tables
	7.1 Introduction
	7.2 Resolving an Outstanding READ_HOME Transaction
	7.3 Resolving an Outstanding IREAD_HOME Transaction
	7.4 Resolving an Outstanding READ_OWNER Transaction
	7.5 Resolving an Outstanding READ_TO_OWN_HOME Transaction
	7.6 Resolving an Outstanding READ_TO_OWN_OWNER Transaction
	7.7 Resolving an Outstanding DKILL_HOME Transaction
	7.8 Resolving an Outstanding DKILL_SHARER Transaction
	7.9 Resolving an Outstanding IKILL_HOME Transaction
	7.10 Resolving an Outstanding IKILL_SHARER Transaction
	7.11 Resolving an Outstanding CASTOUT Transaction
	7.12 Resolving an Outstanding TLBIE or TLBSYNC Transaction
	7.13 Resolving an Outstanding FLUSH Transaction
	7.14 Resolving an Outstanding IO_READ_HOME Transaction
	7.15 Resolving an Outstanding IO_READ_OWNER Transaction

	Glossary of Terms and Abbreviations

