Rapidl O™ I nterconnect Specification
Part 5. Globally Shared Memory
L ogical Specification

Rev. 1.3, 06/2005

© Copyright RapidlO Trade Association '@‘?’ I
RapidlO.

Rapidl O Trade Association

Revision History

Revision Description Date
11 Incorporate comment review changes 03/08/2001
12 Technica changes: incorporate Rev. 1.1 erratarev. 1.1.1, errata 3 06/26/2002
13 Technical changes: incorporate Rev 1.2 errata 1 as applicable 02/23/2005

Converted to | SO-friendly templates
13 Removed confidentiality markings for public release 06/07/2005

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “ASIS’. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREESTO
ASSUME ALL OF THE RISKSASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidlO Trade Association, specifications, or membership should be forwarded to:
RapidlO Trade Association

Suite 325, 3925 W. Braker Lane

Austin, TX 78759

512-305-0070 Tel.

512-305-0009 FAX.

RapidlO and the Rapidl O logo are trademarks and service marks of the RapidlO Trade Association. All other trademarks are the property of their
respective owners.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table of Contents

Chapter 1 Overview

11 11400 [0 {0 o U 11
1.2 L@ YL VL= Y R 11
121 MEMOY SYSIEIM ..t sre e reenre e 12
13 Features of the Globally Shared Memory Specification...........cccceceeeierivienenenne. 13
131 FUNCLIONE] FEALUIES.......cveee ettt s 13
132 VS o= = L = 14
1.3.3 PerfOormManCe FEAIUINESccviiiieee ettt et sbeeeans 14
14 (00 017< | KRR 14
15 I .01 T e | S 15
1.6 (0] 1177510110 =R 15

Chapter 2 System Models

21 [F g1 oo 8 Tox o] o PSP 17
2.2 Processing Element MOEIS.........ccovieeiinincecin et 17
221 Processor-Memory Processing Element Model ... 18
222 Integrated Processor-Memory Processing Element Model ... 19
223 Memory-Only Processing Element Modelccccoiiiiiieneinnen e 19
224 Processor-Only Processing Element ... seese e 20
225 [/O Processing EIEMENtccooeiriiiieceeeen e e 20
2.2.6 Switch Processing ElEMENL..........c.coc e 20
23 Programming MOGEISc.coiiiiieeee e e e 21
231 Globally Shared Memory System Modelcocevvreevineciecce e, 21
2311 Software-Managed Cache Coherence Programming Moddlc.cc....... 23
24 Y £S5 1 23
241 OPEration OrderiNG......ccceuerverierierieeeieie sttt se e sr e e e 23
24.2 TranSaCtion DEIIVENY ..ot s 23
243 DeadlOCK CoNSIAErationS.cccuviiieeiere st sresseeneens 24

Chapter 3 Operation Descriptions

31 INEFOTUCTION. ...ttt st be s 25
3.2 GSM Operations Cross REFEIENCE.coereeeiee e 26
3.3 1S @ o= = 1o 1 27
331 READ OPEIELIONS.c.ecueieeierieieieiesesieseeeee e ste st e e et stestesaeneeneesesteseeneeneenens 28
3.3.2 Instruction Read OPErationS..........cccivveeceeresieieseseese e ee e eeeneens 29
333 Read-for-Ownership OPErations.........ccocvvvrererieeseseseseeseee e seseeseeee e seeseenes 31
3.34 Data Cache Invalidate OperationS.........cccvvieererieneeieeseseeeesie s seese e sreeneens 33
3.35 CaStOUL OPEIELIONS.......eiueeeeeeeeierieseesieseeeeseste e e seeessessessesseseeseesessessesaenensensens 34
3.36 TLB Invalidate-Entry Operations..........cccecevereereneseeinseseessesseseesesssesesenns 35

Rapidl O Trade Association 3

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table of Contents

337 TLB Invalidate-Entry Synchronization Operations.........ccccooveveevereseeseeneeseenns 35
3.38 Instruction Cache Invalidate OpEerations............coerereereeererienieneeeseseseseeeenes 35
3.39 Data Cache FIUuSh OPErationsccccereresieresesieesiesesseesesseseesseseesresseeeens 36
3.3.10 [/O RE80 OPEIaliONSccueiviieieieiieest sttt bbb e 38
34 Endian, Byte Ordering, and AlIgNMENtcccevvreerenenicrr e 40

Chapter 4 Packet Format Descriptions

41 [F g1 0T [N o1 o o PPN 43
4.2 Request Packet FOrMELS.........c.cvieeieiiiicie ettt sneas 43
421 Addressing and AlIGNMENToviiiiieneere e 44
4.2.2 Dz ez U Y 0= o RSO 44
423 Field Definitions for All Request Packet FOrmats...........cooeevevveneneeneeesenneene 47
424 Type 0 Packet Format (Implementation-Defined).........cccccvvvvvvevvivveescnnnnene 50
425 Type 1 Packet Format (Intervention-Request Class).........ccoevevervneneneneneenens 50
4.2.6 Type 2 Packet Format (ReqUESE ClaSs).....ccccivieeviereneeinsieseesie e seeses e seeeens 51
4.2.7 Type 3—4 Packet Formats (RESEIVEd)cvieivrerieeee e 52
4.2.8 Type 5 Packet Format (Wit Class).......cccvvieveerenieseeie e esieseseesee e seeeens 52
429 Type 611 Packet FOrmats (RESEIVE)ccccvvvreriereeiee e 53
4.3 ReSPONSE PaCKEL FOMMALSccuviveeieiecceie ettt sneas 53
431 Field Definitions for All Response Packet FOrmats............cccoeevveenecninicenees 53
4.3.2 Type 12 Packet Format (ReServed)ccovveieevene e seesee e 54
433 Type 13 Packet Format (ReSponSe Class)cocvvvreereeererienieneeeeee e seeeeenees 54
434 Type 14 Packet Format (ReServed)ccocevvieecine e seeses e 55
435 Type 15 Packet Format (Implementation-Defined)...........ccoeevvvivinneicnnninnns 55

Chapter 5 Globally Shared Memory Registers

51 [F g1 oo 8 Tox o] o PSP 57
5.2 REGISEEr SUMIMANYcviieieecie e ceesie et e e te et sre e eseesre s e eeesre s e eneeneesrens 57
5.3 Reserved Register and Bit BENAVIOTcoceiiiiiiieee e 58
54 Capability REJISLEIS (CARS) ..cuviiiceee st et st sre e 60
54.1 Source Operations CAR (Configuration Space Offset 0X18)........cccceeervereenene 60
54.2 Destination Operations CAR (Configuration Space Offset 0x1C).......cccccuu.eee 61
55 Command and Status RegiSters (CSRS)......cccuvvrereieinire s 62

Chapter 6 Communication Protocols

6.1 INEFOTUCTION. ...ttt st be s 63
6.2 DEfINITIONS ..ottt st e st e e e et sresaeeneenresneas 63
6.2.1 General DEfINIIONS.........coeireieie e 64
6.2.2 Request and ResSponse DEfiNitioNSccoveivireneneeeese e 66
6.2.2.1 SYSLEM REGUESE.......oueieiiieiiieieree ettt 66
6.2.2.2 oo I (=0 1 66
6.2.2.3 SYSLEM RESPONSEcovieieeitie ettt ettt sre e s saeesneesneeseesneesnee s 67

4 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table of Contents

6.2.2.4

6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.3
6.8
6.8.1
6.8.2
6.8.3
6.9
6.9.1
6.9.2
6.9.3
6.10
6.10.1
6.10.2
6.10.3
6.11
6.11.1
6.11.2
6.11.3

LOCEl RESPONSE. ... eeieiceeiesteeeeste sttt ee et e st s se e e s resneeneeneesreas 67
Operation to Protocol Cross REFEIENCEccocvviierieicerene e 67
REA0 OPEIGLIONS.......eeiieiteeecie e seese s e e ee e e ee e e e eesre s e eeeste s e eeesresneeneeseseens 68

Internal Request State Machine..........coocoveeiiiineneee s 68
ReSpoNSse State MaChiNe..........coceeieieceere e 68
External Request State MaChine..........cceeririneneceeese e 70
INnstruction Read OPEratioNSceeceerireneeieseseeseseseeseesre e e e sresee e sresseeneess 72
Internal Request State Machine..........coevveiiineneneeee e 72
ReSpoNSse State MaChiNe.........vceeiiiecere e 72
External Request State MaChine.........ccoveeriiinenieieeee e 73
Read for OWnership OPErationscccceveveeieiesieesesesee e seseese e see e seessesnes 75
Internal Request State Machine..........ooeeveeieiineneee e 75
ReSpoNSse State MaChiNe........cvceeie e enee s 75
External Request State MaChine..........cceeriiineneceeese e 78
Data Cache and Instruction Cache Invalidate Operations..........ccccceevvvrveeienennnnns 79
Internal Request State Machine..........cooceeeiinineneee e 79
RespoNse State MaChiNe........cccceeieiecere e 79
External Request State MaChine.........ccoveeriiinineiceee e 80
(O= S (o1 | Q@ 0= = 4 0] S 82
Internal Request State Maching..........cooceveeieninereeee e 82
RespoNse State MaChiNe........cvceeieiecere et 82
External Request State MaChine..........coveeriiiniineieere e 82
TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations................ 83
Internal Request State Machine..........oocveeiiiineneee e 83
ReSpONSe State MaChiNe.......ccvceeieiecere e enee s 83
External Request State MaChine..........coeeriiinieneeeeese e 83
Data Cache FIUSh Operationsccccvieneeiesie e eiee e seesee e e ee e sre e see s eeseas 84
Internal Request State Machineg..........cooceveeienineneeee e 84
ReSpONSe State MaChiNe........c.eceeieieccce e 84
External Request State MaChine..........cceeriiiiineeeese e 86
FO N == o N @]/ - (0] 88
Internal Request State Machine..........cooeoveeieneneneee s 88
ReSpONSE State MaChiNe........c.vcceeiececece e s 88
External Request State MaChine..........cceeeriiiieneecrere e 89

Chapter 7 Address Collision Resolution Tables

7.1
7.2
7.3
74
7.5
7.6
1.7
7.8
7.9

INEFOTUCTION. ...ttt st be s 91
Resolving an Outstanding READ_HOME Transactionccoccvevereeeeiesenseenes 92
Resolving an Outstanding IREAD_HOME Transaction.........c.cceevevvvveeieenennnns 93
Resolving an Outstanding READ_OWNER Transactionccoceveveeeeivnnnenne 94
Resolving an Outstanding READ_TO_OWN_HOME Transaction 95
Resolving an Outstanding READ_TO_OWN_OWNER Transaction.................. 97
Resolving an Outstanding DKILL_HOME Transactionc.cccceecvvvieeieeneennens 98
Resolving an Outstanding DKILL_SHARER Transactioncccccceevvvveneenene 100
Resolving an Outstanding IKILL_HOME TransaCtion...........ccceevecevvvieneennnn, 101

Rapidl O Trade Association 5

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table of Contents

7.10
711
7.12
7.13
7.14
7.15

Resolving an Outstanding IKILL_SHARER Transaction.........cc.ccecevvvveeieennnn 102
Resolving an Outstanding CASTOUT TranSaction.........ccoceevervneeceennsesieeneenns 103
Resolving an Outstanding TLBIE or TLBSYNC Transaction.........ccccceeeeveueene. 104
Resolving an Outstanding FLUSH Transactioncccovveevenienencennseneeeens 105
Resolving an Outstanding |IO_READ_HOME Transaction...........cccvevveeeeenn 107
Resolving an Outstanding IO_READ_OWNER Transactionccccvcvveruenne. 109

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

List of Figures

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
31
32
3-3
34
35
36
3-7
3-8
39
3-10
311
312
3-13
314
3-15
3-16
317
3-18
3-19
3-20
321
322
323
324
325
3-26
3-27
3-28
3-29
4-1
4-2
4-3
4-4

A SNo0PY BUS-Based SYSIEMcccoeeriiireeecee e 12
A Distributed MemOry SYSIEM ..o e ene e e 13
A Possible RapidlO-Based Computing SYSEM........cccooiiiiereieenese e 17
Processor-Memory Processing Element EXample.......ccoevvvvecenieniecceesn e 18
Integrated Processor-Memory Processing Element Example.........c.ccooeveiininenecnene 19
Memory-Only Processing Element EXampleccoovveveienceese e seeeens 19
Processor-Only Processing Element EXample.........ccoooiiiriiiininneecnese e 20
Switch Processing Element EXamPle ... veieeneie et 21
Read Operation to Remote Shared Coherence Granule............cccoovvereenieninceneninseninnns 28
Read Operation to Remote Modified Coherence Granule............ccooeeveveneecennnesiennnnns 28
Read Operation to Local Modified Coherence Granule...........cccoovveevenineecenenesennnens 29
Instruction Read Operation to Remote Shared Coherence Granule...........ccccoeveveveenen. 30
Instruction Read Operation to Remote Modified Coherence Granulecccoeveeeenne 30
Instruction Read Operation to Local Modified Coherence Granule............cccccceveveenene 30
Instruction Read Operation ParadoX CaSe.........ccivrereeireirenieneeeee e 31
Read-for-Ownership Operation to Remote Shared Coherence Granule...........ccccceveueene 31
Read-for-Ownership Operation to Remote Modified Coherence Granule..................... 32
Read-for-Ownership Operation to Local Shared Coherence Granule...........cccceevvveneene 32
Read-for-Ownership Operation to Local Modified Coherence Granule.............coee... 32
Data Cache Invalidate Operation to Remote Shared Coherence Granule....................... 33
Data Cache Invalidate Operation to Local Shared Coherence Granule............ccocveeennene 34
Castout Operation on Remote Modified Coherence Granule...........cccccvvvvieevienecieeceenn, 34
TLB Invalidate-Entry OPEration..........ccccvererieieeereriesiesienieesiesie st sre e 35
TLB Invalidate-Entry Synchronization Operationcccceveeceveveenesesiesse e seeseenee s 35
Instruction Cache Invalidate Operation to Remote Sharable Coherence Granule.......... 36
Instruction Cache Invalidate Operation to Local Sharable Coherence Granule............. 36
Flush Operation to Remote Shared Coherence Granule..........ccccooveeevvienienieninncnieennens 37
Flush Operation to Remote Modified Coherence Granule...........coceevevenieeveninsenieennens 38
Flush Operation to Local Shared Coherence Granule...........ccoccvvvveeveneneenesnsesieeneens 38
Flush Operation to Local Modified Coherence Granulecccooveeeveveneecenesesieennens 38
1/0 Read Operation to Remote Shared Coherence Granule..........coccooovveeeniennienceennnns 39
1/0 Read Operation to Remote Modified Coherence Granuleccccoeeevevieivveeiennne 39
1/0 Read Operation to Local Modified Coherence Granule............ccoccevvvvecenenenennnnns 39
Byte Alignment EXaMPIE.......cc.ooe et 40
Half-Word Alignment EXamMPle.........oo o 40
Word AligNMmENt EXAMPIE........cco i st eesre e e 40
Data Alignment EXaMPIE........ooueeiiiirieeeere et st 41
Type 1 Packet Bit Stream FOIMEL..........cccviieeieneniecie e seeiee et se e e sneesee e 51
Type 2 Packet Bit Stream FOrMEL.........ccccoeviiinieieeeeene e e 52
Type 5 Packet Bit Stream FOrMEL..........cccoveieeienenecie s seesee et see e sre s 53
Type 13 Packet Bit SIream FOIMEL..........cccooiviiinieieieene e e 55

Rapidl O Trade Association 7

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

List of Figures

Blank page

8 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

List of Tables

2-1
3-1
41
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
5-3
54
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17

RapidlO Memory Directory DeEfiNition ... 22
GSM Operations Cross REFEIENCE........ccvvecviir e 26
Request Packet Type to Transaction Type Cross Reference........ccocevevvveecvnnnencennene 43
Coherent 32-Byte Read Data Return Ordering.......ccccovveeeenivseeresesieenee e seeseeseeseeenee s 45
Coherent 64-Byte Read Data Return Ordering.........ccovveveneeieeenenesenieeeese e 45
Coherent 32-Byte Write Data Payloadccccccvvrveeieenie e 46
Coherent 64-Byte Write Data Payl0ads............coevriiiiininceeeeeee e 46
Genera Field Definitions for All Request PaCkets........ccccvvvveevevenceesc e 47
Read Size (rdsize) DEfiNITiONS........cccoiirierieeeere e 48
Write Size (WrSize) DEfiNItiONScccv v ieercse e e 49
Specific Field Definitions and Encodings for Type 1 Packets.........c.ccoeveeeeenenenieenne. 50
Transaction Field Encodings for Type 2 Packets........cccccvvveccnvesecvenie e 51
Transaction Field Encodings for Type 5 Packets.........ccooieeinenine e 52
Request Packet Type to Transaction Type Cross REfErence........ccoocevvveneecvnenenieennens 53
Field Definitions and Encodings for All Response Packets...........c.coeveeieneneneennenn 53
(S (= o S =g, = 57
Configuration Space Reserved AcCCesS BENAVIOccvveeeierininerceeeee e 58
Bit Settings for Source OperatioNS CARooccviiirieie e see e 60
Bit Settings for Destination Operations CAR........cocooeriierineeene e 61
Operation to Protocol Cross REFEIENCEccceevvieccrececee e s 67
Address Collision Resolution for READ_HOMEcccooiiiiininenesie e 92
Address Collision Resolution for IREAD_HOME...........ccccooiievinneniene e 93
Address Collision Resolution for READ_OWNERccccooiiiniiinee e 94
Address Collision Resolution for READ_TO_OWN_HOME.......cccccvevvivvivevivvnnenen 95
Address Collision Resolution for READ_TO_OWN_OWNERccccccovvvvinivnnnenennn, 97
Address Collision Resolution for DKILL_HOME........cccccoriennveniene e 98
Address Collision Resolution for DKILL_SHARER.........cccccviviieninieneee e 100
Address Collision Resolution for IKILL_HOMEcccooevvvn e 101
Address Collision Resolution for IKILL_SHARERccoooviiiieninenee e 102
Address Collision Resolution for CASTOUTocooiiinine e 103
Address Collision Resolution for Software Coherence Operations.............ccccoeeveneeneee 104
Address Collision Resolution for Participant FLUSH..........cccccveevevieniccn e, 105
Address Collision Resolution for Non-participant FLUSH..........ccccooiiiiniinnenene 106
Address Collision Resolution for Participant |IO_READ_HOMEccccocvecvvvennee. 107
Address Collision Resolution for Non-participant IO_READ_HOMEccceue. 108
Address Collision Resolution for Participant |IO_READ_OWNER.............cccceevennnee. 109
Address Collision Resolution for Non-participant |IO_READ_OWNER..................... 110

Rapidl O Trade Association 9

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3
List of Tables

Blank page

10 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 1 Overview

1.1 Introduction

This chapter provides an overview of the RapidlO Part 5: Globally Shared Memory
Logical Specification, including a description of the relationship between this
specification and the other specifications of the Rapidl O interconnect.

1.2 Overview

Although RapidIO is targeted toward the message passing programming model, it
supports a globally shared distributed memory (GSM) model as defined by this
specification. The globally shared memory programming model is the preferred
programming model for modern genera-purpose multiprocessing computer
systems, which requires cache coherency support in hardware. This addition of
GSM enables both distributed 1/O processing and general purpose multiprocessing
to co-exist under the same protocol.

The RapidlO Part 5: Globally Shared Memory Logical Specification is one of the
RapidlO logical layer specifications that define the interconnect’s overall protocol
and packet formats. This layer contains the information necessary for end points to
process a transaction. Other RapidlO logical layer specifications include RapidlO
Part 1: Input/Output Logical Specification and RapidlO Part 2: Message Passing
Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encodings for the transport and physical layers lower in the specification
hierarchy.

RapidlO isadefinition of a system interconnect. System concepts such as processor
programming models, memory coherency models and caching are beyond the scope
of the RapidlO architecture. The support of memory coherency models, through
caches, memory directories (or equivalent, to hold state and speed up remote
memory access) is the responsibility of the end points (processors, memory, and
possibly 1/0 devices), using RapidlO operations. RapidlO provides the operations
to construct a wide variety of systems, based on programming models that range
from strong consistency through total store ordering to weak ordering.
Inter-operability between end points supporting different
coherency/caching/directory models is not guaranteed. However, groups of

Rapidl O Trade Association 11

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

12

end-points with conforming models can be linked to others conforming to different
models on the same RapidlO fabric. These different groups can communicate
through RapidlO messaging or 1/0 operations. Any reference to these areas within
the Rapidl O architecture specification are for illustration only.

The Rapidl O Interconnect Globally Shared Memory Logical Specification assumes
that the reader is familiar with the concepts and terminology of cache coherent
systemsin general and with CC-NUMA systemsin specific. Further information on
shared memory concepts can be found in:

Daniel E. Lenoski and Wolf-Dietrich Weber, “Scalable Shared-Memory
Multiprocessing”, Morgan Kaufmann, 1995.

and

David Culler, Jaswinder Pal Singh, and Anoop Gupta: “Parallel Computer
Architecture: A Hardware/Software Approach”, Morgan Kaufmann, 1998

1.2.1 Memory System

Under the globally shared distributed memory programming model, memory may
be physically located in different places in the machine yet may be shared amongst
different processing elements. Typically, mainstream system architectures have
addressed shared memory using transaction broadcasts sometimes known as
bus-based snoopy protocols. These are usually implemented through a centralized
memory controller for which all devices have equal or uniform access. Figure 1-1
shows atypical bus-based shared memory system.

Processor Processor Processor Processor
A B C D
Snoopy-bus
MPIC
Bridge
XBUS
Memory |
PCI

Figure 1-1. A Snoopy Bus-Based System

Super computers, massively parallel, and clustered machines that have distributed
memory systems must use a different technique from broadcasting for maintaining
memory coherency. Because a broadcast snoopy protocol in these machines is not
efficient given the number of devices that must participate and the latency and
transaction overhead involved, coherency mechanisms such as memory directories

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

or distributed linked lists are required to keep track of where the most current copy
of data resides. These schemes are often referred to as cache coherent non-uniform
memory access (CC-NUMA) protocols. A typica distributed memory system
architectureis shown in Figure 1-2.

Processor Processor Processor Processor
A B A B
Snoopy-bus Snoopy-bus
Bridge Bridge
Interconnect
Fabric
Memory | | Memory
PCI PCI

Figure 1-2. A Distributed Memory System

For Rapidl O, arelatively simple directory-based coherency scheme is chosen. For
this method each memory controller is responsible for tracking where the most
current copy of each data element resides in the system. Rapidl O furnishes a variety
of ISA specific cache control and operating system support operations such as block
flushes and TLB synchronization mechanisms.

To reduce the directory overhead required, the architecture is optimized around
small clusters of 16 processors known as coherency domains. With the concept of
domains, it is possible for multiple coherence groupings to coexist in the
interconnect as tightly coupled processing clusters.

1.3 Featuresof the Globally Shared Memory Specification

Thefollowing are features of the RapidlO GSM specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features

* A cache coherent non-uniform memory access (CC-NUMA) system
architectureissupported to provide aglobally shared memory model because
physicsis forcing component interfaces in many high-speed designs to be
point-to-point instead of traditional bus-based.

* The size of processor memory requests are either in the cache coherence
granularity, or smaller. The coherence granule size may be different for
different processor families or implementations.

Rapidl O Trade Association 13

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

* Instruction sets in RapidlO support a variety of cache control and other
operations such as block flushes. These functions are supported to run legacy
applications and operating systems.

1.3.2 Physical Features

* Rapidl O packet definition isindependent of the width of the physical interface
to other devices on the interconnect fabric.

* The protocols and packet formats are independent of the physical interconnect
topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

* RapidlO is not dependent on the bandwidth or latency of the physical fabric.
* The protocols handle out-of-order packet transmission and reception.

» Certain devices have bandwidth and latency requirementsfor proper operation.
RapidlO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features

* Packet headers must be as small as possible to minimize the control overhead
and be organized for fast, efficient assembly and disassembly.

* 48- and 64-bit addresses are required in the future, and must be supported
initialy.

 Aninterventionist (non-memory owner, direct-to-requestor data transfer,
analogous to a cache-to-cache transfer) protocol saves alarge amount of
latency for memory accesses that cause another processing element to
provide the requested data.

 Multiple transactions must be allowed concurrently in the system, otherwise a
majority of the potential system throughput is wasted.

1.4 Contents

Following are the contents of the RapidlO Interconnect Globally Shared Memory
Logical Specification:

 Chapter 1, “Overview,” describes the set of operations and transactions
supported by the RapidlO globally shared memory protocols.

* Chapter 2, “ System Models,” introduces some possible devices that could
participatein aRapidlO GSM system environment. The chapter explainsthe
memory directory-based mechanism that tracks memory accesses and
mai ntai ns cache coherence. Transaction ordering and deadlock prevention
are also covered.

14 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

* Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the Rapidl O globally-shared memory (GSM)

protocols.

* Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the GSM specification. The two basic types, request and
response packets, with their sub-types and fields are defined. The chapter
explains how memory read latency is handled by RapidlO.

* Chapter 5, “Globally Shared Memory Registers,” describesthe visible register
set that allows an external processing element to determine the globally
shared memory capabilities, configuration, and status of a processing
element using thislogical specification. Only registers or register bits
specific to the GSM logical specification are explained. Refer to the other
Rapidl O logical, transport, and physical specifications of interest to
determine a complete list of registers and bit definitions.

* Chapter 6, “ Communication Protocols,” containsthe communications protocol
definitions for this GSM specification.

* Chapter 7, “Address Collision Resolution Tables,” explains the actions
necessary under the RapidlO GSM model to resolve address collisions.

1.5 Terminology

Refer to the Glossary at the back of this document.

1.6 Conventions

ACTIVE_HIGH

ACTIVE_LOW

italics
REG[FIELD]

TRANSACTION
operation

n

[n-m]

Rapidl O Trade Association

Concatenation, used to indicate that two fields are physically
associated as consecutive bits

Namesof active high signalsare shown in uppercasetext with
no overbar. Active-high signals are asserted when high and
not asserted when low.

Names of activelow signalsare shown in uppercasetext with
an overbar. Active low signals are asserted when low and not
asserted when high.

Book titlesin text are set initalics.

Abbreviations or acronyms for registers are shownin
uppercase text. Specific bits, fields, or ranges appear in
brackets.

Transaction types are expressed in al caps.
Device operation types are expressed in plain text.
A decimal vaue.

Used to express a numerical range from nto m.

15

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Obnn A binary value, the number of bitsis determined by the
number of digits.
Oxnn A hexadecimal value, the number of bitsis determined by the

number of digits or from the surrounding context; for
example, Oxnn may beab, 6, 7, or 8 bit value.

X Thisvalueisadon’t care

16 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 2 System Models

2.1 Introduction

This overview introduces some possible devices in a Rapidl O system.

2.2 Processing Element Models

Figure 2-1 describes a possible Rapidl O-based computing system. The processing
element is a computer device such as a processor attached to a local memory and
also attached to a RapidlO system interconnect. The bridge part of the system
provides 1/0O subsystem services such as high-speed PCIl interfaces and gigabit
ethernet ports, interrupt control, and other system support functions. Multiple
processing elements require cache coherence support in the RapidlO protocol to
preserve the traditional globally shared memory programming model (discussed in
Section 2.3.1, “Globally Shared Memory System Model”).

Processing Processing Processing Processing
Element A Element B Element C Element D
Memory | Memory I Memory Memory I
C RapidlO System Interconnect Fabric)
PCI A MPIC
Bridge
PCI B XBUS
Firewire

Figure 2-1. A Possible Rapidl O-Based Computing System

A processing element containing a processor typically has associated with it a
caching hierarchy to improve system performance. The Rapidl O protocol supports
aset of operations sufficient to fulfill the requirements of a processor with a caching
hierarchy and associated support logic such as a processing element.

Rapidl O Trade Association 17

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

18

RapidlO is defined so that many types of devices can be designed for specific
applications and connected to the system interconnect. These devices may
participate in the cache coherency protocol, act as a DMA device, utilize the
message passing facilities to communicate with other devices on the interconnect,
and so forth. A bridge could be designed, for example, to use the message passing
facility to pass ATM packets to and from a processing element for route processing.
The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element M odel

Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to a local memory that has much
lower latency than memory that is local to another processing element (remote
memory accesses). It also provides an interface to the RapidlO interconnect to
service those remote memory accesses.

Processor
Local Interconnect
Agent
Memory Remote
| Cache
Rapidl O-based

System Interconnect

Figure 2-2. Processor-Memory Processing Element Example

In support of the remote accesses, the agent maintains a cache of remote accesses
that includes all remote data currently residing in and owned by the local processor.
This cache may be either external or internal to the agent device.

Agent caching is necessary due to the construction of the RapidlO cache coherence
protocol combined with the cache hierarchy behavior in modern processors. Many
modern processors have multiple level non-inclusive caching structures that are
maintained independently. Thisimplies that when a coherence granuleis cast out of
the processor, it may or may not be returning ownership of the granule to the
memory system. The RapidlO protocol requires that ownership of a coherence
granule be guaranteed to be returned to the system on demand and without
ambiguous cache state changes as with the castout behavior. The remote cache can
guarantee that acoherence granule requested by the system isowned locally and can
be returned to the home memory (the physical memory containing the coherence

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

granule) on demand. A processing element that is fully integrated would also need
to support this behavior.

2.2.2 Integrated Processor-Memory Processing Element M odel

Another form of a processor-memory processing element is a fully integrated
component that isdesigned specifically to connect to aRapidl O interconnect system
as shown in Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package. Because such adeviceisdesigned specifically for RapidlO, aremote cache
is not required because the proper support can be designed into the processor and its

associated logic rather than requiring an agent to compensate for a stand alone
processor’s behavior.

Processor

Memory

Rapidl O-based
System Interconnect

Figure 2-3. Integrated Processor-Memory Processing Element Example

2.2.3 Memory-Only Processing Element M odel

A different processing element may not contain a processor at al, but may be a
memory-only device as in Figure 2-4. This type of device is much simpler than a
processor as it is only responsible for responding to requests from the external
system, not from local requests as in the processor-based model. As such, its
memory is remote for all processorsin the system.

Memory
Control

Memory

Rapidl O-based
System I nterconnect

Figure 2-4. Memory-Only Processing Element Example

Rapidl O Trade Association 19

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

2.2.4 Processor-Only Processing Element

Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing el ement is shown in Figure 2-5.

Processor

Local Interconnect

Agent

Remote
| Cache
Rapidl O-based
System Interconnect

Figure 2-5. Processor-Only Processing Element Example

2.2.5 1/0 Processing Element

This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory. An 1/O device only
needs to move data into and out of local or remote memory in a cache coherent
fashion. This meansthat if the 1/O device needsto read from memory, it only needs
to obtain a known good copy of the data to write to the external device (such as a
disk drive or video display). If the |/O device needsto writeto memory, it only needs
to get ownership of the coherence granul e returned to the home memory and not take
ownership for itself. Both of these operations have special support in the RapidlO
protocol.

2.2.6 Switch Processing Element

A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidlO compliant processing elements. A possible switch is shown in

20 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Figure 2-6.

|

Switch

o

Figure 2-6. Switch Processing Element Example

2.3 Programming Models

RapidlO supports applications developed under globally shared memory and
software-managed cache coherence programming models.

2.3.1 Globally Shared Memory System M odel

The preferred programming model for modern computer systems provides memory
that is accessible from al processorsin acache coherent fashion. This model isaso
known as GSM, or globally shared memory. For traditiona bus-based computer
systems thisis not a difficult technical problem to solve because all participantsin
the cache coherence mechanism see all memory activity simultaneously, meaning
that communication between processors is very fast and handled without explicit
software control. However, in a non-uniform memory access system, this
simultaneous memory access visibility is not the case.

With adistributed memory system, cache coherence needs to be maintained through
some tracking mechanism that keeps records of memory access activity and
explicitly notifies specific cache coherence participant processing elements when a
cache coherence hazard is detected. For example, if a processing el ement wishesto
write to a memory address, all participant processing elements that have accessed
that coherence granule are notified to invalidate that address in their caches. Only
when all of the participant processing elements have completed the invalidate
operation and replied back to the tracking mechanism is the write allowed to
proceed.

The tracking mechanism preferred for the Rapidl O protocol isthe memory directory
based system model. This system model allows efficient, moderate scalability with
areasonable amount of information storage required for the tracking mechanism.

Cache coherence is defined around the concept of domains. The Rapidl O protocol
assumes a memory directory based cache coherence mechanism. Because the
storage requirements for the directory can be high, the protocol was optimized
assuming a 16-participant domain size as a reasonable coherence scalability limit.

Rapidl O Trade Association 21

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

22

With this limit in mind, a moderately scalable system of 16 participants can be
designed, possibly using a multicast mechanism in the transport layer for better
efficiency. This size does not limit a system designer from defining a larger or a
smaller coherent system such as the four processing element system in Figure 2-1
on page 17 since the number of domains and the number of participantsis flexible.
The total number of coherence domains and the scalability limit are determined by
the number of transport bits allowed by the appropriate transport layer specification.

Table 2-1 describes an example of the directory states assumed for the RapidlO
protocol for a small four-processing element cache coherent system (the table
assumes that processor O is the local processor). Every coherence granule that is
accessible by aremote processing element has this 4-bit field associated with it, so
some state storageis required for each globally shared granule. The least significant
bit (the right most, bit 3) indicates that a processing element has taken ownership of
acoherence granule. The remaining three bitsindicate that processing elementshave
accessed that coherence granule, or the current owner if the granule has been
modified, with bit O corresponding to processor 3, bit 1 corresponding to processor
2, and bit 2 corresponding to processor 1. These bits are also known as the sharing
mask or sharing list.

Owing to the encoding of the bits, the local processing element is always assumed
to have accessed the granule even if it has not. This definition alows us to know
exactly which processing elements have participated in the cache coherency
protocol for each shared coherence granule at all times. Other state definitions can
be implemented as long as they encompass the MSL (modified, shared, local) state
functionality described here.

Table 2-1. Rapidl O Memory Directory Definition

Sate Description
0000 Processor O (local) shared
0001 Processor O (local) modified
0010 Processor 1, 0 shared
0011 Processor 1 modified
0100 Processor 2, 0 shared
0101 Processor 2 modified
0110 Processor 2, 1, 0 shared
0111 Illegal

1000 Processor 3, 0 shared
1001 Processor 3 modified
1010 Processor 3, 1, 0 shared
1011 Illegal

1100 Processor 3, 2, 0 shared
1101 Illegal

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 2-1. RapidlO Memory Directory Definition (Continued)

1110 Processor 3, 2, 1, 0 shared

1111 lllegal

When a coherence granule is referenced, the corresponding 4-bit coherence state is
examined by the memory controller to determine if the access can be handled in
memory, or if data must be obtained from the current owner (a shared granule is
owned by the home memory). Coherence activity in the system is started using the
cache coherence protocol, if it is necessary to do so, to complete the memory
operation.

2.3.1.1 Software-Managed Cache Coherence Programming Model

The software-managed cache coherence programming model depends upon the
application programmer to guarantee that the same coherence granuleis not resident
in more than one cache in the system simultaneously if it is possible for that
coherence granule to be written by one of the processors. The application software
allows sharing of written data by using cache manipulation instructions to flush
these coherence granules to memory before they are read by another processor. This
programming model is useful in transaction and distributed processing types of
systems.

2.4 System |ssues

The following sections describe transaction ordering and system deadlock
considerationsin a RapidlO GSM system.

2.4.1 Operation Ordering

Operation completion ordering in a globally shared memory system is managed by
the completion units of the processing elements participating in the coherence
protocol and by the coherence protocol itself.

2.4.2 Transaction Delivery

There are two basic types of delivery schemes that can be built using RapidlO
processing elements. unordered and ordered. The Rapidl O logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logica protocols do not rely on transaction
interdependencies for operation. Rapidl O also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware. The specific mechanisms and definitions of how RapidlO
enforces transaction ordering are discussed in the appropriate physical layer
specification.

Rapidl O Trade Association 23

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

24

2.4.3 Deadlock Consider ations

A deadlock can occur if adependency loop exists. A dependency loop isasituation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadl ocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidiO is
designed to be a reliable fabric for use in real time tightly coupled systems,
therefore, discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency |oops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes, physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing), then topology related
dependency loops are avoided in these structures.

In addition, a processing element design shall not form dependency links between
its input and output port. A dependency link between input and output ports occurs
if aprocessing element is unable to accept an input packet until awaiting packet can
be issued from the output port.

Rapidl O supports operations, such as coherent read-for-ownership operations, that
require responses to complete. These operations can lead to a dependency link
between an processing element’s input port and output port.

Asan example of an input to output port dependency, consider a processing element
where the output port queue is full. The processing element can not accept a new
request at itsinput port since thereis no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

A further consideration is that of the read-for-ownership operation colliding with a
castout of the requested memory address by another processing element. In order for
the read-for-ownership operation to compl ete the underlying castout operation must
complete. Therefore the castout must be given higher preference in the system in
order to move ahead of other operations in order to break up the dependency.

The method by which a RapidlO system maintains a deadlock free environment is
described in the appropriate Physical Layer specification.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 3 Operation Descriptions

3.1 Introduction

This chapter describes the set of operations and transactions supported by the
RapidlO globally-shared memory (GSM) protocols. The opcodes and packet
formats are described in Chapter 4, “Packet Format Descriptions.” The complete
protocols are described in Chapter 6, “ Communication Protocols.”

The Rapidl O operation protocols use request/response transaction pairs through the
interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing el ement responds with a response transaction when the request has been
completed or if an error condition isencountered. Each transaction is sent as a packet
through theinterconnect fabric. For example, aprocessing el ement that requires data
from home memory in another processing element sends a READ_HOME
transaction in a request packet. The receiving element then reads its local memory
at the requested address and returns the datain a DONE transaction via a response
packet. Note that not al requests require responses; some requests assume that the
desired activity will complete properly.

A number of possible response transactions can be received by a requesting
processing e ement:

» A DONE response indicates to the requestor that the desired transaction has
completed and also returns data for read-type transactions as described
above.

* TheINTERVENTION, DONE_INTERVENTION, and DATA_ONLY
responses are generated as part of the processing element-to-processing
element (as opposed to processing el ement-to-home memory) data transfer
mechanism defined by the cache coherence protocol. The INTERVENTION
and DONE_INTERVENTION responses are abbreviated as INTERV and
DONE_INTERYV in this chapter.

* TheNOT_OWNER and RETRY responsesarereceived when there are address
conflicts within the system that need resolution.

» An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such

Rapidl O Trade Association 25

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

as a device number. These requirements are described in the appropriate RapidlO
transport layer specification and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
Rapidl O physical layer specification and are beyond the scope of this document.

Each request transaction sent into the system is marked with atransaction ID that is
unique for each requestor and responder processing element pair. This transaction
ID allows aresponse to be easily matched to the original request when it is returned
to the requestor. An end point cannot reuse a transaction 1D value to the same
destination until the response from the original transaction has been received by the
requestor. The number of outstanding transactions that may be supported is
implementation dependent.

The transaction behaviors are al so described as state machine behavior in Chapter 6,
“Communication Protocols’.

3.2 GSM Operations Cross Reference

26

Table 3-1 contains a cross reference of the GSM operations defined in this RapidlO
specification and their system usage.
Table 3-1. GSM Operations Cr oss Reference

Operation Ll arljasiec:ons Possible System Usage Description Packet Format Protocol
Read READ_HOME, CC-NUMA operation Section 3.3.1 Types1land 2: Section 6.4
READ_OWNER, page 28 Section 4.2.5 page 68
RESPONSE page 50 and
Section 4.2.6
page 51
Instructionread | IREAD_HOME, Combination of CC-NUMA | Section 3.3.2 Type2 Section 6.4
READ_OWNER, and software-maintained page 29 Section 4.2.6 page 68
RESPONSE coherence of instruction page 51
caches
Read-for- READ_TO_OWN_ | CC-NUMA operation Section 3.3.3 Types1land 2: Section 6.6
ownership HOME, page 31 Section 4.2.5 page 75
READ_TO_OWN_ page 50 and
OWNER, Section 4.2.6
DKILL_SHARER page 51
RESPONSE
Data cache DKILL_HOME, CC-NUMA operation; Section 3.3.4 Type 2 Section 6.7
invalidate DKILL_SHARER, | software-maintained page 33 Section 4.2.6 page 79
RESPONSE coherence operation page 51
Castout CASTOUT, CC-NUMA operation Section 3.3.5 Type5 Section 6.8
RESPONSE page 34 Section 4.2.8 page 82
page 52

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 3-1. GSM Oper ations Cr oss Refer ence (Continued)

Operation i arljssjtec:ons Possible System Usage Description Packet Format Protocol
TLB TLBIE, RESPONSE | Software-maintained Section 3.3.6 Type 2 Section 6.9
invalidate-entry coherence of page table page 35 Section 4.2.6 page 83

entries page 51
TLB TLBSYNC, Software-maintained Section 3.3.7 Type 2 Section 6.9
invalidate-entry | RESPONSE coherence of page table page 35 Section 4.2.6 page 83
synchronize entries page 51
Instruction IKILL_HOME, Software-maintained Section 3.3.8 Type 2 Section 6.7
cacheinvalidate | IKILL_SHARER, coherence of instruction page 35 Section 4.2.6 page 79
RESPONSE, caches page 51
Data cache flush | FLUSH, CC-NUMA flush Section 3.3.9 Types2 and 5: Section 6.10
DKILL_SHARER, | instructions; page 36 Section 4.2.6 page 84
READ_TO_OWN_ | CC-NUMA write-through page 51 and
OWNER, cache support; Section 4.2.8
RESPONSE CC-NUMA DMA /O device page 52
support;
software-maintained
coherence operation.
1/O read |IO0_READ_HOME, | CC-NUMA DMA, I/ODMA | Section 3.3.10 Types1and 2: Section 6.11
I0_READ_ device support page 38 Section 4.2.5 page 88
OWNER, INTERV, page 50 and
RESPONSE Section 4.2.6
page 51

3.3 GSM Operations

A set of transactions are used to support GSM (cache coherence) operations to
cacheable memory space. The following descriptions assume that all requests are to
system memory rather than to some other type of device.

GSM operations occur based on the size of the coherence granule. Changes in the
coherence granule for a system do not change any of the operation protocols, only
the data payload size. The only exceptions to this are flush and 1/0O read operations,
which may request (in the case of an 1/O read), or have (in the case of a flush) a
sub-coherence granule to support coherent I/0O and write-through caches. Flush
operations may also have no data payload in order to support cache manipulation
instructions.

Some transactions are sent to multiple recipients in the process of completing an
operation. These transactions can be sent either as anumber of directed transactions
or as a single transaction if the transport layer has multicast capability. Multicast
capability and operation is defined in the appropriate RapidlO transport layer
specification.

Rapidl O Trade Association 27

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

28

3.3.1 Read Operations

The READ_HOME, READ_OWNER, and RESPONSE transactions are used
during a read operation by a processing element that needs a shared copy of
cache-coherent data from the memory system. A read operation always returns one
coherence granule-sized data payload.

The READ_HOME transaction is used by a processing element that needsto read a
shared copy of a coherence granule from a remote home memory on another
processing el ement.

The READ_OWNER transaction is used by a home memory processing element
that needs to read a shared copy of a coherence granule that is owned by a remote
processing el ement.

The following types of read operations are possible:

* If the requested data exists in the memory directory as shared, the data can be
returned immediately from memory with a DONE RESPONSE transaction
and the requesting processing element’s device ID is added to the sharing
mask as shown in Figure 3-1.

(@ READ_HOME

(2 DONE, data
Figure 3-1. Read Operation to Remote Shared Coherence Granule

* If therequested data existsin the memory directory as modified, the up-to-date
(current) data must be obtained from the owner. The home memory then
sends a READ_OWNER request to the processing element that owns the
coherence granule. The owner passes a copy of the data to the original
reguestor and to memory, memory is updated, and the directory stateis
changed from modified and owner to shared by the previous owner and the
requesting processing element’s device ID as shown in Figure 3-2.

(@ READ_HOME (2 READ_OWNER

Home
@
_ (5) DONE_INTERV - (@) INTERV, data

(3) DATA_ONLY, data

Figure 3-2. Read Operation to Remote M odified Coherence Granule

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

« If the processing element requesting a modified coherence granule happens to
be the home for the memory, some of the transactions can be eliminated as
shown in Figure 3-3.

(D READ_OWNER

Figure 3-3. Read Operation to L ocal Maodified Coherence Granule

3.3.2 Instruction Read Operations

Some processors have instruction caches that do not participate in the system cache
coherence mechanism. Additionally, the instruction cache load may also load a
shared instruction and data cache lower in the cache hierarchy. This can lead to a
situation where the instruction cache issues a shared read operation to the system for
acoherence granulethat isowned by that processor’s data cache, resulting in acache
coherence paradox to the home memory directory.

Due to this situation, an instruction read operation must behave like a coherent
shared read relative to the memory directory and as a non-coherent operation
relative to the requestor. Therefore, the behavior of the instruction read operation is
nearly identical to a data read operation with the only difference being the way that
the apparent coherence paradox is managed.

The IREAD_HOME and RESPONSE transactions are used during an instruction
read operation by a processing element that needs a copy of sharable instructions
from the memory system. An instruction read operation always returns one
coherence granule-sized data payload. Use of theIREAD_HOME transaction rather
than the READ_HOME transaction allows the memory directory to properly handle
the paradox case without sacrificing coherence error detection in the system. The
IREAD_HOME transaction participates in address collision detection at the home
memory but does not participate in address collision detection at the requestor.

The following types of instruction read operations are possible:

Rapidl O Trade Association 29

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

« If the requested instructions exists in the memory directory as shared, the
instructions can be returned immediately from memory and the requesting
processing element’s device ID is added to the sharing mask as shown in
Figure 3-4.

@ IREAD_HOME

(2 DONE, data
Figure 3-4. Instruction Read Oper ation to Remote Shared Coherence Granule

* If therequested data existsin the memory directory as modified, the up-to-date
(current) data must be obtained from the owner. The home memory then
sendsa READ_OWNER request to the processing element that owns the
coherence granule. The owner passes a copy of the data to the original
reguestor and to memory, memory is updated, and the directory stateis
changed from modified and owner to shared by the previous owner and the
requesting processing element’s device ID as shown in Figure 3-5.

(D IREAD_HOME (2 READ_OWNER

Home
Memory
(5) DONE_INTERV - (@ INTERV, data

(3) DATA_ONLY, data

Figure 3-5. Instruction Read Operation to Remote M odified Coherence Granule

« If the processing element requesting a modified coherence granule happens to
be the home for the memory the READ_OWNER transaction is used to
obtain the coherence granule as shown in Figure 3-6.

(D READ_OWNER

Figure 3-6. Instruction Read Operation to L ocal Modified Coherence Granule

* The apparent paradox caseisif the requesting processing element isthe owner
of the coherence granule as shown in Figure 3-7. The home memory sends a
READ_OWNER transaction back to the requesting processing element with
the source and secondary ID set to the home memory 1D, which indicatesthat

30 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

the response behavior should bean INTERVENTION transaction rather than
an INTERVENTION and a DATA_ONLY transaction as shown in
Figure 3-5.

@ IREAD_HOME

(3 INTERV, data

Requestor
and Memor
Owner y
(2) READ_OWNER>

(@ DONE, data

Figure 3-7. Instruction Read Operation Paradox Case

3.3.3 Read-for-Owner ship Operations

The READ_TO_OWN_HOME, READ_TO_OWN_OWNER, DKILL_SHARER,
and RESPONSE transactions are used during read-for-ownership operations by a
processing element that needs to write to a coherence granule that does not exist in
its caching hierarchy. A read-for-ownership operation always returns one coherence
granule-sized data payload. These transactions are used as follows:

* The READ_TO_OWN_HOME transaction is used by a processing element
that needsto read awritable copy of acoherence granulefrom aremote home
memory on another processing element. Thistransaction causesacopy of the
data to be returned to the requestor, from memory if the datais shared, or
from the owner if it ismodified.

» The READ_TO_OWN_OWNER transaction is used by a home memory
processing element that needsto read awritable copy of acoherence granule
that is owned by a remote processing element.

» The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the coherence granule in remote
processing elements.

Following are descriptions of the read-for-ownership operations:

« If the coherence granule is shared, DKILL_SHARER transactions are sent to
the participants indicated in the sharing mask, which resultsin a cache
invalidate operation for the recipients as shown in Figure 3-8.

(D) READ_TO_OWN_HOME (@ DKILL_SHARER

Home »
@
() DONE, daa (3) DONEs

Figure 3-8. Read-for-Owner ship Operation to Remote Shared Coherence Granule

Rapidl O Trade Association 31

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

« If the coherence granule is modified, aREAD_TO_OWN_OWNER
transaction is sent to the owner, who sends a copy of the datato the requestor
(intervention) and marks the address asinvalid as shown in Figure 3-9. The
final memory directory state shows that the coherence granule is modified
and owned by the requestor’s device ID.
Because the coherence granule in the memory directory was marked as modified, home
memory does not necessarily need to be updated. However, the Rapidl O protocol requires
that a processing element return the modified data and update the memory, alowing some
attempt for datarecovery if a coherence problem occurs.

(D READ_TO_OWN_HOME (2) READ_TO_OWN_OWNER

Home
@
(5) DONE_INTERV . @ INTERV, data

(3) DATA_ONLY, data

Figure 3-9. Read-for-Owner ship Operation to Remote M odified Coherence Granule

* If the requestor is on the same processing element as the home memory and the
coherence granule is shared, aDKILL_SHARER transaction is sent to all
sharing processing elements (see Figure 3-10). Thefinal directory stateis
marked as modified and owned by the local requestor.

(D DKILL_SHARER

Figure 3-10. Read-for-Owner ship Operation to Local Shared Coherence Granule

* If the requestor is on the same processing element as the home memory and the
coherence granule is owned by aremote processing element, a
READ_TO_OWN_OWNER transaction is sent to the owner (see
Figure 3-11). The final directory state is marked as modified and owned by
the local requestor.

(@ READ_TO_OWN_OWNER

Figure 3-11. Read-for-Owner ship Operation to L ocal Modified Coherence Granule

32 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

3.3.4 Data Cache Invalidate Operations

The DKILL_HOME, DKILL_SHARER, and RESPONSE transactions are requests
to invalidate a coherence granule in all of the participants in the coherence domain
asfollows:

» The DKILL_HOME transaction is used by a processing element to invalidate
a data coherence granule that has home memory in a remote processing
element.

» The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the data coherence granule in remote
processing el ements.

Data cache invalidate operations are also useful for systems that implement
software-maintained cache coherence. In this case, a requestor may send
DKILL_HOME and DKILL_SHARER transactions directly to other processing
elements without going through home memory as in a CC-NUMA system. The
transactions used for the data cache invalidate operation depend on whether the
requestor is on the same processing element as the home memory of the coherence
granule asfollows:

« If the requestor is not on the same processing element as the home memory of
the coherence granule, aDKILL_HOME transaction is sent to the remote
home memory processing element. This causes the home memory for the
shared coherence granule to send a DKILL_SHARER to all processing
elements marked as sharing the granule in the memory directory state except
for the requestor (see Figure 3-12). The final memory state shows that the
coherence granule is modified and owned by the requesting processing
element’s device ID.

(D DKILL_HOME (@ DKILL_SHARER

Figure 3-12. Data Cache Invalidate Oper ation to Remote Shared Coherence Granule

Rapidl O Trade Association 33

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

« If the requestor is on the same processing element as the home memory of the
coherence granule, the home memory sendsa DKILL _SHARER transaction
to all processing elements marked as sharing the coherence granule in the
memory directory. The final memory state shows the coherence granule
modified and owned by the local processor (see Figure 3-13).

(D DKILL_SHARER

Figure 3-13. Data Cache I nvalidate Operation to L ocal Shared Coherence Granule

3.3.5 Castout Operations

The CASTOUT and RESPONSE transactions are used in a castout operation by a
processing element to relinquish its ownership of a coherence granule and return it
to the home memory. The CASTOUT can be treated as a low-priority transaction
unless there is an address collision with an incoming request, at which time it must
become a high-priority transaction. The CASTOUT causes the home memory to be
updated with the most recent data and changes the directory state to owned by home
memory and shared (or owned, depending upon the default directory state) by the
local processing element (see Figure 3-14).

@ CASTOUT, data

Figure 3-14. Castout Operation on Remote M odified Coherence Granule

A CASTOUT transaction does not participate in address collision detection at the
home memory to prevent deadlocks or cache paradoxes caused by packet-to-packet
timing in the interconnect fabric. For example, consider a case where processing
element A is performing a CASTOUT that collides with an incoming
READ_OWNER transaction. If the CASTOUT is not alowed to complete at the
home memory, the system will deadlock. If the read operation that caused the
READ_OWNER completes (through intervention) before the CASTOUT
transaction isreceived at the home memory, the CASTOUT will appear to beillegal
because the directory state will have changed.

34 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

3.3.6 TLB Invalidate-Entry Operations

The TLBIE and RESPONSE transactions are used for TLB invalidate-entry
operations. If the processor TLBsdo not participate in the cache coherence protocol,
the TLB invalidate-entry operation is used when page table translation entries need
to be modified. The TLBIE transaction is sent to all participants in the coherence
domain except for the original requestor. A TLBIE transaction has no effect on the
memory directory state for the specified address and does not participate in address
collisions (see Figure 3-15).

@ TLBIE

All »
Participants

Figure 3-15. TLB Invalidate-Entry Operation

3.3.7 TLB Invalidate-Entry Synchronization Operations

The TLBSYNC and RESPONSE transactions are used for TLB invalidate-entry
synchronization operations. It is used to force the completion of outstanding TLBIE
transactions at the participants. The DONE response for a TLBSY NC transaction is
only sent when all preceding TLBIE transactions have completed. This operationis
necessary due to possible indeterminate completion of individual TLBIE
transactions when multiple TLBIE transactions are being executed simultaneously.
The TLBSYNC transactionissent to all participantsin the coherence domain except
for the original requestor. The transaction has no effect on the memory directory
state for the specified address and does not participate in address collisions (see
Figure 3-16).

@ TLBSYNC

All »
Participants

Figure 3-16. TL B Invalidate-Entry Synchronization Oper ation

3.3.8 Instruction Cache Invalidate Operations

The IKILL_HOME, IKILL_SHARER, and RESPONSE transactions are used
during instruction cache invalidate operations to invalidate shared copies of an
instruction coherence granule in remote processing elements. Instruction cache
invalidate operations are needed if the processor instruction caches do not
participate in the cache coherence protocol, requiring instruction cache coherence to
be maintained by software.

Rapidl O Trade Association 35

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

An instruction cache invalidate operation has no effect on the memory directory
state for the specified address and does not participate in address collisions.
Following are descriptions of the instruction cache invalidate operations:

* If the requestor is not on the same processing element as the home memory of
the coherence granule, an IKILL_HOME transaction is sent to the remote
home memory processing element. This causes the home memory for the
shared coherence granule to send an IKILL_SHARER to al processing
element participantsin the coherence domain because the memory directory
state only properly tracks data, not instruction, accesses. (See Figure 3-17.)

@ IKILL_HOME (@ IKILL_SHARER

Participants »

Figure 3-17. Instruction Cache Invalidate Oper ation to Remote Shar able Coherence Granule

(3®) DONEs

« If the requestor is on the same processing element as the home memory of the
coherence granule, the home memory sendsan IKILL_SHARER transaction
to all processing element participants in the coherence domain as shown in
Figure 3-18.

(@D IKILL_SHARER

Figure 3-18. Instruction Cache Invalidate Operation to L ocal Sharable Coherence Granule

3.3.9 Data Cache Flush Operations

The FLUSH, DKILL_SHARER, READ_TO _OWN_OWNER, and RESPONSE
transactions are used for data cache flush operations, which return ownership of a
coherence granule back to the home memory if it is modified and invalidate all
copiesif thegranuleis shared. A flush operation with associated data can be used to
implement an 1/0 system write operation and to implement processor write-through
and cache manipulation operations. These transactions are used as follows:

» The FLUSH transaction is used by a processing element to return the
ownership and current data of acoherence granuleto home memory. Thedata
payload for the FLUSH transaction is typically the size of the coherence
granulefor the system but may be multiple double-words or one double-word
or less. FLUSH transactions without adata payload are used to support cache

36 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

mani pul ation operations. The memory directory stateis changed to owned by
home memory and shared (or modified, depending upon the processing
element’s normal default state) by the local processing element.

» The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the data coherence granule in remote
processing el ements.

» The READ_TO_OWN_OWNER transaction is used by a home memory
processing element that needs to retrieve ownership of a coherence granule
that is owned by a remote processing element.

The FLUSH transaction is able to specify multiple double-word and
sub-double-word data payloads; however, they must be aligned to byte, half-word,
word, or double-word boundaries. Multiple double-word FLUSH transactions
cannot exceed the number of double-wordsin the coherence granule. Thewrite size
and alignment for the FLUSH transaction are specified in Table 4-8. Unaligned and
non-contiguous operations are not supported and must be broken into multiple
FLUSH transactions by the sending processing element.

A flush operation internal to a processing element that would cause a FLUSH
transaction for a remote coherence granule owned by that processing element (for
example, attempting a cache write-through operation to a locally owned remote
coherence granule) must generate a CASTOUT rather than a FLUSH transaction to
properly implement the RapidlO protocol. Issuing a FLUSH under these
circumstances generates a memory directory state paradox error in the home
memory processing element.

Following are descriptions of the flush operations:

« If aflush operation isto aremote shared coherence granule, the FLUSH
transaction is sent to the home memory, which sendsa DKILL_SHARER
transaction to all of the processing elements marked in the sharing list except
for the requesting processing element. The processing elements that receive
the DKILL_SHARER transaction invalidate the specified addressif it is
found shared in their caching hierarchy (see Figure 3-19).

@ FLUSH, data (opt.) (@ DKILL_SHARER

Figure 3-19. Flush Operation to Remote Shared Coherence Granule

Rapidl O Trade Association 37

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

« If the coherence granule is owned by a remote processing element, the home
memory sendsaREAD_TO_OWN_OWNER transaction to it with the
secondary (intervention) ID set to the home memory 1D instead of the
reguestor 1D. The owner then invalidatesthe coherence granuleinitscaching
hierarchy and returns the coherence granule data (see Figure 3-20).

(D) FLUSH, data (opt.) (2 READ_TO_OWN_OWNER

@
@ DONE (® INTERYV, data

Figure 3-20. Flush Operation to Remote M odified Coherence Granule

* If therequestor and the home memory for the coherence granule arein the same
processing element, DKILL_SHARER transactions are sent to all
participants marked in the sharing list (see Figure 3-21).

(D DKILL_SHARER

Figure 3-21. Flush Operation to L ocal Shared Coherence Granule

* If theregquestor and the home memory for the coherence granulearein the same
processing element but the coherence granule is owned by aremote
processing element, aREAD_TO_OWN_OWNER transaction is sent to the
owner (see Figure 3-22).

(D READ_TO_OWN_OWNER

Figure 3-22. Flush Operation to L ocal M odified Coherence Granule

3.3.10 /O Read Operations

The I0O_READ_HOME, I0_READ_OWNER, and RESPONSE transactions are
used during 1/0 read operations by a processing element that needs a current copy
of cache-coherent data from the memory system, but does not need to be added to
the sharing list in the memory directory state. The I/O read operation is most useful
for DMA 1/0 devices. An 1/O read operation always returns the requested size data
payload. The requested data payload size can not exceed the size of the coherence

38 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

granule. These transactions are used as follows:
* ThelO_READ_HOME transactionisused by arequestor that isnot inthe same
processing element as the home memory for the coherence granule.

* The|O_READ_OWNER transaction is used by a home memory processing
element that needsto read a copy of a coherence granule owned by aremote
processing el ement.

Following are descriptions of the I/O operations:

* If the requested data exists in the memory directory as shared, the data can be
returned immediately from memory and the sharing mask is not modified
(see Figure 3-24).

@ 10_READ_HOME

(2 DONE, data
Figure 3-23. 1/0 Read Operation to Remote Shared Coherence Granule

* If the requested data exists in the memory directory as modified, the home
memory sendsan |O_READ_OWNER transaction to the processing el ement
that owns the coherence granule. The owner passes a copy of the datato the
reguesting processing element (intervention) but retains ownership of and
responsibility for the coherence granule (see Figure 3-24 and Figure 3-25).

(D 10_READ_HOME (2 10_READ_OWNER

Home
@ DONE_INTERV

@ DATA_ONLY, data

Figure 3-24. 1/0 Read Operation to Remote M odified Coherence Granule

(@ 10_READ_OWNER

Figure 3-25. 1/0O Read Operation to L ocal M odified Coherence Granule

Rapidl O Trade Association 39

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

3.4 Endian, Byte Ordering, and Alignment

RapidlO has double-word (8-byte) aligned big-endian data payloads. This means
that the Rapidl O interface to devices that are little-endian shall perform the proper
endian transformation to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-26 through Figure 3-28.

Byte O 1 2 3 4 5 6 7
. rr r r [[1]

Byte address 0x0000_0002, the proper byte position is shaded.

Figure 3-26. Byte Alignment Example

Byte O 1 2 3 4 5 6 7
L | Jwsfes| [| | |

Half-word address 0x0000_0002, the proper byte positions are shaded.

Figure 3-27. Half-Word Alignment Example

Byte O 1 2 3 4 5 6 7
L [[[ws] [[is]

Word address 0x0000_0004, the proper byte positions are shaded.

Figure 3-28. Word Alignment Example

For write operations, a processing element shall properly aign data transfers to a
double-word boundary for transmission to the destination. This alignment may
require breaking up a data stream into multiple transactions if the data is not
naturally aligned. A number of data payload sizes and double-word alignments are
defined to minimize this burden. Figure 3-29 shows a 48-byte data stream that a
processing element wishes to write to another processing element through the
interconnect fabric. The data displayed in the figure is big-endian and double-word
aligned with the bytes to be written shaded in grey. Because the start of the stream
and the end of the stream are not aligned to a double-word boundary, the sending
processing element shall break the stream into three transactions as shown in the
figure.

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and
indicates abyte lane 5, 6, and 7 three-byte write. The second transaction sends all of
the remaining data except for the final sub-double-word. Thethird transaction sends
the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte

40 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

lanes 0, 1, 2, 3, and 4.

Byte Byte Byte Byte Byte Byte Byte Byte
Lane Lane Lane Lane Lane Lane Lane Lane

0 1 2 3 4 5 6 7
MSB <~—|
| First transaction sends these three bytes

~— with this double-word alignment
~— |
— > Second transaction sends these five
_ double-words
<
- | Third transaction sends these five bytes

| with this double-word alignment

< LSB

L Double-Word Boundary
Figure 3-29. Data Alignment Example

Rapidl O Trade Association 41

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Blank page

42 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 4 Packet Format Descriptions

4.1 Introduction

This chapter contains the packet format definitions for the RapidlO Interconnect
Globally Shared Memory Logical Specification. There are four types of globaly
shared memory packet formats:

* Request
* Response
* Implementation-defined
* Reserved
The packet formats are intended to be interconnect fabric independent, so the system

interconnect can be anything required for a particul ar application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.2 Request Packet Formats

A request packet isissued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such asamemory read operation.
The request packet format types and their transactions for the Rapidl O Interconnect
Globally Shared Memory Logical Specification are shown in Table 4-1.

Table 4-1. Request Packet Typeto Transaction Type Cross Reference

Request Document
Packet Transaction Type Definition .
Section No.
Format Type
Type O Implementation-defined Defined by the device implementation Section4.2.4
READ_OWNER Read shared copy of remotely owned coherence granule
Typel READ_TO_OWN_OWNER | Read for store of remotely owned coherence granule Section 4.2.5
10_READ_OWNER Read for 1/O of remotely owned coherence granule
Rapidl O Trade Association 43

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 4-1. Request Packet Typeto Transaction Type Cross Reference (Continued)

Request Document
Packet Transaction Type Definition .
Section No.
Format Type
READ_TO_OWN_HOME Read for store of home memory for coherence granule
READ_HOME Read shared copy of home memory for coherence
granule
I0_READ_HOME Read for I/O of home memory for coherence granule
DKILL_HOME Invalidate to home memory of coherence granule
IKILL_HOME Invalidate to home memory of coherence granule
Type 2 TLBIE Invalidate TLB entry Section 4.2.6
TLBSYNC Synchronize TLB invalidates
IREAD_HOME Read shared copy of home memory for instruction cache
FLUSH Force return of ownership of coherence granule to home
memory, no update to coherence granule
IKILL_SHARER Invalidate cached copy of coherence granule
DKILL_SHARER Invalidate cached copy of coherence granule
Type 34 — Reserved Section 4.2.7
CASTOUT Return ownership of coherence granule to home memory
Section 4.2.8
TypeS FLUSH (with data) Force return of ownership of coherence granule to home
memory, update returned coherence granule
Type 6-11 — Reserved Section 4.2.9

4.2.1 Addressing and Alignment

The size of the address is defined as a system-wide parameter; thus the packet
formats do not support mixed local physical address fields simultaneously. The least
three significant bits of all addresses are not specified and are assumed to belogic 0.

The coherence-granule-sized cache-coherent write requests and read responses are
aligned to a double-word boundary within the coherence granule, with the specified
data payload size matching that of the coherence granule. Sub-double-word data
payloads must be padded and properly aligned within the 8-byte boundary.
Non-contiguous or unaligned transactions that would ordinarily require a byte mask
are not supported. A sending device that requires this behavior must break the
operation into multiple request transactions. An example of this is shown in
Section 3.4, “Endian, Byte Ordering, and Alignment.”

4.2.2 Data Payloads

Cache coherent systems are very sensitive to memory read latency. One way of
reducing the latency is by returning the requested, or critical, double-word first upon
aread request. Subsequent double-words are then returned in a sequential fashion.
Table 4-2 and Table 4-3 show the return ordering for 32- and 64-byte coherence

44 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

granules. Sub-double-word data payloads due to 1/0 read operations start with the
requested size as shown.

Table 4-2. Coherent 32-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering
0 0,14,23
1 1,230
2 2,301
3 3,012

Table 4-3. Coherent 64-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0,1,23456,7
1,2304,56,7
2,3,0,1,4,56,7
3,0,1,2,45,6,7
4,5,6,7,0,1,2,3

56,7,401,23
6,7,4,501,23
7,4,5,6,0,1,2,3

N o g Al W[N] P

Data payloads for cache coherent write-type transactions are a\ways linear starting
with the specified address at the first double-word to be written, (including flush
transactions that are not the size of the coherence granule). Data payloads that cross
the coherence granule boundary can not be specified. This implies that all castout
transactions start with the first double-word in the coherence granule. Table 4-4 and
Table4-5 show the cache-coherent write-data ordering for 32- and 64-byte
coherence granules, respectively.

Rapidl O Trade Association 45

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

46

Table 4-4. Coherent 32-Byte Write Data Payload

Sarting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule

o

0

0,1

0,12

0,123

1,2

1,23

2,3

W[N] N[PFP| P[P, Ol O] O

RPN R W[N] P B W NP

Table 4-5. Coherent 64-Byte Write Data Payloads

Sarting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule

o

0

0,1

0,12

0,1,23

0,1,234

0,1,234,5

0,1,23/4,56

0,1,234,5,6,7

1

12

1,23

1,234

1,23,4,5

1,234,56

1,23,456,7

2

2,3

2,3,4

2,3,4,5

2,3,4,56

2,3,4,56,7

W[N] NI N[N NIDN|[P PP P P[P PP OlOlOl O]l O] Ol O

Rl OoOlO| Al WO NP NO| OB W[N] FRP|[OO| N[O Ol | W[N] P

3

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 4-5. Coherent 64-Byte Write Data Payloads (Continued)

Sarting Number of Double-word Data Ordering
Double-word Double-words Within Coherence Granule

w

3,4
3,4,5
3,4,56
3,4,56,7
4

4,5
4,5,6
4,5,6,7

56
56,7

6,7

N|o|lo|lga|loal o] Mf B DDA WO O
RPN R W[N] P WO N|FRP|O] W DN

4.2.3 Field Definitionsfor All Request Packet Formats

Fields that are unique to type 1, type 2, and type 5 formats are defined in their
sections. Bit fields that are defined as “reserved” shall be assigned to logic Os when
generated and ignored when received. Bit field encodings that are defined as
“reserved” shall not be assigned when the packet is generated. A received reserved
encoding is regarded as an error if a meaningful encoding is required for the
transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the
figures from left to right respectively.

The following field definitions in Table 4-6 apply to all of the request packet

formats.
Table 4-6. General Field Definitionsfor All Request Packets
Eield Definition
ftype Format type, represented as a 4-bit value; is alwaysthe first four bitsin the logical packet stream.
wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table 4-7, Table 4-8, and
Section 3.4.
rdsize Datasizefor read transactions, used in conjunction with the word pointer (wdptr) bit—see Table 4-7 and Section
34.
wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit—see
Table 4-8 and Section 3.4. For writes greater than one double-word, the size is the maximum payload.
rsrv Reserved

Rapidl O Trade Association 47

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 4-6. General Field Definitionsfor All Request Packets (Continued)

Field Definition

srcTID The packet’s transaction 1D.

transaction | The specific transaction within the format class to be performed by the recipient; also called type or ttype.

extended Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical

address address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and extended
address fields by 2 hits. Thisfield provides 34-, 50-, and 66-bit addresses to be specified in a packet with the
xamsbs as the most significant bitsin the address.

address Least significant 29 bits (bits [0-28] of byte address [0-31]) of the double-word physical address

Table 4-7. Read Size (rdsize) Definitions

wdptr rdsize Nugytt); of Byte Lanes Comment
0b0 0b0000 1 0b10000000 1/0 read only
0b0 0b0001 1 0b01000000 1/0 read only
0b0 0b0010 1 0b00100000 1/0 read only
0b0 0b0011 1 0b00010000 1/0 read only
Obl 0b0000 1 0b00001000 1/0 read only
Obl 0b0001 1 0b00000100 1/0 read only
Obl 0b0010 1 0b00000010 1/0 read only
Obl 0b0011 1 0b00000001 1/0 read only
0b0 0b0100 2 0b11000000 1/0 read only
0b0 0b0101 3 0b11100000 1/0 read only
0b0 0b0110 2 0b00110000 1/0 read only
0b0 0b0111 5 0b11111000 1/O read only
Obl 0b0100 2 0b00001100 1/0 read only
Obl 0b0101 3 0b00000111 1/0 read only
Obl 0b0110 2 0b00000011 1/0 read only
Obl 0b0111 5 0b00011111 1/0 read only
0b0 0b1000 4 0b11110000 1/0 read only
Obl 0b1000 4 0b00001111 1/0 read only
0b0 0b1001 6 0b11111100 1/0 read only
Obl 0b1001 6 0b00111111 1/0 read only
0b0 0b1010 7 0b11111110 1/0 read only
Obl 0b1010 7 0b01111111 1/0 read only
0b0 0b1011 8 0b11111111 1/0O read only
Obl 0Ob1011 16 1/0O read only
0b0 0b1100 32

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 4-7. Read Size (rdsize) Definitions (Continued)

wdptr rdsize Number of Byte Lanes Comment
Bytes
Obl 0b1100 64
0b0-1 | Ob1101 Reserved
Ob1111

Table 4-8. Write Size (wrsize) Definitions

wdptr wrsize Nuény?i of Byte Lanes
0b0 0b0000 1 0b10000000
0b0 0b0001 1 0b01000000
0b0 0b0010 1 0b00100000
0b0 0b0011 1 0b00010000
Obl 0b0000 1 0b00001000
Obl 0b0001 1 0b00000100
Obl 0b0010 1 0b00000010
Obl 0b0011 1 0b00000001
0b0 0b0100 2 0b11000000
0b0 0b0101 3 0b11100000
0b0 0b0110 2 0b00110000
0b0 0b0111 5 0b11111000
Obl 0b0100 2 0b00001100
Obl 0b0101 3 0b00000111
Obl 0b0110 2 0b00000011
Obl 0Ob0111 5 0b00011111
0b0 0b1000 4 0b11110000
Obl 0b1000 4 0b00001111
0b0 0b1001 6 0b11111100
Obl 0b1001 6 0b00111111
0b0 0b1010 7 0b11111110
Obl 0b1010 7 0b01111111
0b0 0b1011 8 0b11111111
Obl 0b1011 16

maximum
0b0 0b1100 32

maximum
Obl 0b1100 64

maximum
Ob0-1 | Ob1101-1111 Reserved

Rapidl O Trade Association 49

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

50

4.2.4 Type 0 Packet Format (I mplementation-Defined)

The type O packet format is reserved for implementation-defined functions such as
flow control.

4.2.5 Type 1 Packet Format (I ntervention-Request Class)

Type 1 request packets never include data. They are the only request types that can
cause an intervention, so the secondary domain, secondary ID, and secondary
transaction ID fields are required. The total number of bits available for the
secondary domain and secondary 1D fields (shown in Figure 4-1) is determined by
the size of the transport field defined in the appropriate transport layer specification,
so the size (labeled m and n, respectively) of these fields are not specified. The
division of the bits between the logical coherence domain and device ID fields is
determined by the specific application. For example, an 8 bit transport field allows
16 coherence domains of 16 participants.

The type 1 packet format is wused for the READ_OWNER,
READ _TO OWN_OWNER, and 10 READ OWNER transactions that are
specified in the transaction sub-field column defined in Table 4-9. Type 1 packets
are issued only by a home memory controller to allow the third party intervention
data transfer.

Definitions and encodings of fields specific to type 1 packets are displayed in
Table 4-9. Fields that are not specific to type 1 packets are described in Table 4-6.

Table 4-9. Specific Field Definitions and Encodings for Type 1 Packets

Field Encoding Sub-Field Definition
seclD — Original requestor’s, or secondary, ID for intervention
secTID — Original requestor’s, or secondary, transaction ID for
intervention
sec_domain — Origina reguestor’s, or secondary, domain for intervention
transaction 0b0000 READ_OWNER
0b0001 READ_TO_OWN_OWNER
0b0010 |10_READ_OWNER
0b0011-1111 | Reserved

Figure 4-1 displays a type 1 packet with al its fields. The field value 0b0001 in

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Figure 4-1 specifies that the packet format is of type 1.

| 0001 |transaction | rdsize | scTID |—
4 4 4 8
—>| sec_domain | seclD | secTID | extended address I—
m n 8 0, 16, 32

—>| address |wdptr | xamsbs |

29 1 2

Figure4-1. Type 1 Packet Bit Stream For mat

4.2.6 Type 2 Packet Format (Request Class)

Type 2 request packets never include data. They cannot cause an intervention so the
secondary domain and 1D fields specified in the intervention-request format are not
required. This format is used for the READ_HOME, IREAD_HOME,
READ_TO_OWN_HOME, IO_READ_HOME, DKILL_HOME,
DKILL_SHARER, IKILL_HOME, IKILL_SHARER, TLBIE, and TLBSYNC
transactions as specified in the transaction field defined in Table 4-10. Type 2
packets for READ_HOME, IREAD HOME, READ _TO OWN_HOME,
IO_READ_HOME, FLUSH without data, DKILL_HOME, and IKILL_HOME
transactions are issued to home memory by a processing element.
DKILL_SHARER and IKILL_SHARER transactions are issued by ahome memory
to the sharers of a coherence granule. DKILL_HOME, DKILL_SHARER,
IKILL_HOME, IKILL_SHARER, FLUSH without data, and TLBIE are
address-only transactions so the rdsize and wdptr fields are ignored and shall be set
to logic 0. TLBSYNC is a transaction-type-only transaction so both the address,
xamsbs, rdsize, and wdptr fields shall be set to logic 0.

The transaction field encodings for type 2 packets are displayed in Table 4-10.
Fields that are not specific to type 2 packets are described in Table 4-6.

Table 4-10. Transaction Field Encodingsfor Type 2 Packets

Encoding Transaction Field
0b0000 READ_HOME
0b0001 READ_TO_OWN_HOME
0b0010 IO_READ_HOME
0b0011 DKILL_HOME
0b0100 Reserved
0b0101 IKILL_HOME
0b0110 TLBIE
0b0111 TLBSYNC
0b1000 IREAD_HOME

Rapidl O Trade Association 51

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 4-10. Transaction Field Encodingsfor Type 2 Packets (Continued)

Encoding Transaction Field
0b1001 FLUSH without data
0b1010 IKILL_SHARER
0b1011 DKILL_SHARER
0b1100-1111 Reserved

Figure 4-2 displays a type 2 packet with al its fields. The field value 0b0010 in
Figure 4-2 specifies that the packet format is of type 2.

| 0010 |tran$\ction | rdsize | srcTID |—
4 4 4 8
—>| extended address I address |detr |xamsbs |
0, 16, 32 29 1 2

Figure 4-2. Type 2 Packet Bit Stream For mat

4.2.7 Type 3-4 Packet Formats (Reserved)
The type 3—4 packet formats are reserved.

4.2.8 Type5 Packet Format (Write Class)

Type 5 packets always contain data. A data payload that consists of a single
double-word or less has sizing information as defined in Table 4-8. Thewrsize field
specifies the maximum size of the data payload for multiple double-word
transactions. The FLUSH with dataand CASTOUT transactions use type 5 packets
as defined in Table 4-11. Note that type 5 transactions always contain data.

Fields that are not specific to type 5 packets are described in Table 4-6.
Table 4-11. Transaction Field Encodingsfor Type5 Packets

Encoding Transaction Field
0b0000 CASTOUT
0b0001 FLUSH with data

0b0010-1111 Reserved

Figure 4-3 displays a type 5 packet with al its fields. The field value 0Ob0101 in

52 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Figure 4-3 specifies that the packet format is of type 5.

0101 transaction wrsize scTID
| | | | —

4 4 4 8

—>| extended address I address |wdptr |xamsbs |—

0, 16, 32 29 1 2
—>| double-word 0 | double-word 1 I—
64 64
—>| double-word n |
64

Figure 4-3. Type 5 Packet Bit Stream For mat

4.2.9 Type 6-11 Packet Formats (Reserved)
The type 6-11 packet formats are reserved.

4.3 Response Packet Formats

A response transaction is issued by a processing element when it has completed a
reguest made by aremote processing el ement. Response packets are aways directed
and are transmitted in the same way as request packets. Currently two response
packet format types exist, as shown in Table 4-12.

Table 4-12. Request Packet Typeto Transaction Type Cross Reference

Request Document
Packet Transaction Type Definition .
Section No.
Format Type
Type 12 — Reserved Section 4.3.2
Type 13 RESPONSE Issued by a processing element when it completes a Section 4.3.3
reguest by aremote element.
Type 14 — Reserved Section 4.3.4
Type 15 Implementation-defined Defined by the device implementation Section 4.3.5

4.3.1 Field Definitionsfor All Response Packet For mats

The field definitions in Table 4-13 apply to more than one of the response packet
formats.

Table 4-13. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

Rapidl O Trade Association 53

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 4-13. Field Definitions and Encodings for All Response Packets (Continued)

transaction | Ob0000 RESPONSE transaction with no data payload
0b0001-0111 Reserved
0b1000 RESPONSE transaction with data payload
0b1001-1111 Reserved

targetTID — The corresponding request packet's transaction |ID

status Type of status and encoding

0b0000 DONE Reguested transaction has been successfully completed
0b0001 DATA_ONLY Thisisadataonly response

0b0010 NOT_OWNER Not owner of requested coherence granule

0b0011 RETRY Requested transaction is not accepted; must retry the request
0b0100 INTERVENTION Update home memory with intervention data

0b0101 DONE_INTERVENTION | Done for atransaction that resulted in an intervention
0b0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000-1011 — Reserved

0b1100-1111 Implementation Implementation defined—Can be used for additional

information such as an error code

4.3.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

4.3.3 Type 13 Packet Format (Response Class)

The type 13 packet format returns status, data (if required), and the requestor’s
transaction ID. A RESPONSE packet with an “ERROR” status or aresponse that is
not expected to have a data payload never has a data payload. Thetype 13 format is
used for response packets to all request transactions.

Note that type 13 packets do not have any special fields.

Figure 4-4 illustrates the format and fields of type 13 packets. The field value
0b1101 in Figure 4-4 specifies that the packet format is of type 13.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

| 1101 |tran§action status targetTID |—
4 4 4 8
—>| double-word 0 I double-word 1 I—
64 64
—>| double-word n |
64

Figure 4-4. Type 13 Packet Bit Stream Format
4.3.4 Type 14 Packet Format (Reserved)

The type 14 packet format is reserved.

4.3.5 Type 15 Packet Format (Implementation-Defined)

Thetype 15 packet format is reserved for implementation-defined functions such as
flow control.

Rapidl O Trade Association 55

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Blank page

56 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 5 Globally Shared Memory Registers

5.1 Introduction

This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidlO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-hit
boundary.

5.2 Register Summary

Table 5-1 shows the register map for this RapidlO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
the RapidlO Part 1. Input/Output Logical Specification maintenance operations.
Any register offsets not defined are considered reserved for this specification unless
otherwise stated. Other registers required for a processing element are defined in
other applicable RapidlO specifications and by the requirements of the specific
device and are beyond the scope of this specification. Read and write accesses to
reserved register offsets shall terminate normally and not cause an error condition in
the target device. Writesto CAR (read-only) space shall terminate normally and not
cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidlO

specification.

Table5-1. GSM Register Map
Configuration

Space Byte Register Name
Offset

0x0-14 Reserved
0x18 Source Operations CAR
0x1C Destination Operations CAR
0x20-FC Reserved

Rapidl O Trade Association 57

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table5-1. GSM Register Map (Continued)

Configuration
Space Byte
Offset

Register Name

0x100-
FFFC

Extended Features Space

FFFFFC

0x10000-

Implementation-defined Space

5.3 Reserved Register and Bit Behavior

Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the Rapidl O register space,

Table 5-2. Configuration Space Reserved Access Behavior

58

Byte Offset Space Name Item Initiator behavior Target behavior
0x0-3C Capability Register Space | Reserved bit read - ignore returned value! | read - return logic 0
E;ﬁii@?ﬁ - this spaceis write - write - ignored
Implementation- | read - ignore returned value read - return
defined bit unless implementation-defined value
implementation-defined
function understood
write - write - ignored
Reserved read - ignore returned vaelue | read - return logic Os
register write - write - ignored
0x40-FC Command and Status Reserved bit read - ignore returned value read - return logic 0

Register Space (CSR
Space)

write - preserve current value?

write - ignored

Implementation-

read - ignore returned value

read - return

defined bit unless implementation-defined value
implementation-defined
function understood
write - preserve current value | write -
if implementation-defined implementation-defined
function not understood

Reserved register | read - ignore returned value read - return logic Os

write -

write - ignored

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
0x100- Extended Features Space Reserved bit read - ignore returned value read - return logic O
FFFC - —
write - preserve current value | write - ignored
Implementation- | read - ignore returned value | read - return
defined bit unless implementation-defined value
implementation-defined
function understood
write - preserve current value | write -
if implementation-defined implementation-defined
function not understood
Reserved register | read - ignore returned value | read - return logic Os
write - write - ignored
0x10000- Implementation-defined Reserved bit and | All behavior implementation-defined
FFFFFC Space register

1 Donot depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value.
2 Al register writes shall be in the form: read the register to obtain the values of all reserved bits, mergein the desired values
for defined bits to be modified, and write the register, thus preserving the value of all reserved bits.

Rapidl O Trade Association

59

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

5.4 Capability Registers (CARS)

Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs areread-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Source Operations CAR

(Configuration Space Offset 0x18)

This register defines the set of RapidlO GSM logical operations that can be issued
by this processing element; see Table 5-3. It is assumed that a processing element
can generate 1/0 logical maintenance read and write requests if it is required to
access CARs and CSRs in other processing elements. RapidlO switches shall be

able to route any packet.

Table 5-3. Bit Settingsfor Source Operations CAR

Bit Field Name Description
0 Read PE can support a read operation
1 Instruction read PE can support an instruction read operation
2 Read-for-ownership PE can support a read-for-ownership operation
3 Data cacheinvalidate PE can support a data cache invalidate operation
4 Castout PE can support a castout operation
5 Data cache flush PE can support a data cache flush operation
6 1/0 read PE can support an 1/O read operation
7 Instruction cache invalidate PE can support an instruction cache invalidate operation
8 TLB invalidate-entry PE can support a TLB invalidate-entry operation
9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync operation
1013 | — Reserved
14-15 | Implementation Defined Defined by the device implementation
1629 | — Reserved
30-31 | Implementation Defined Defined by the device implementation

60

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

5.4.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidlO GSM operations that can be supported by
this processing element; see Table 5-4. It isrequired that all processing elements can

respond to 1/0 logical maintenance read and write requests in order to access these

registers. The Destination Operations CAR is applicable for end point devices only.
Rapidl O switches shall be able to route any packet.

Table 5-4. Bit Settingsfor Destination Operations CAR

Bit Field Name Description
0 Read PE can support aread operation
1 Instruction read PE can support an instruction read operation
2 Read-for-ownership PE can support a read-for-ownership operation
3 Data cache invalidate PE can support a data cache invalidate operation
4 Castout PE can support a castout operation
5 Data cache flush PE can support a flush operation
6 1/0 read PE can support an /O read operation
7 Instruction cache invalidate PE can support an instruction cache invalidate operation
8 TLB invalidate-entry PE can support a TLB invalidate-entry operation
9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync operation
1013 | — Reserved
14-15 | Implementation Defined Defined by the device implementation
16-29 | — Reserved
30-31 | Implementation Defined Defined by the device implementation

Rapidl O Trade Association

61

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

5.5 Command and Status Registers (CSRs)

The RapidlO Globally Shared Memory Logical Specification does not define any
command and status registers (CSRs).

62 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 6 Communication Protocols

6.1 Introduction

This chapter contains the Rapidl O globally shared memory (GSM) communications
protocol definitions. Three state machines are required for a processing element on
the Rapidl O interface: one for local system accesses to local and remote space, one
for remote accesses to local space, and one for handling responses made by the
remote system to requests from the local system. The protocols are documented as
pseudo-code partitioned by operation type. The Rapidl O protocols as defined here
assume a directory state definition that uses a modified bit with the local processor
always sharing as described in Chapter 2, “System Models.” The protocols can be
easlly modified to use an alternate directory scheme that allows breaking the
SHARED state into a REMOTE_SHARED and a
REMOTE_AND_LOCAL_SHARED state pair.

Similarly, it may be desirable for an implementation to have an UNOWNED state
instead of defaulting to LOCAL_SHARED or LOCAL_MODIFIED. These
optimizations only affect the RapidlO transaction issuing behavior within a
processing element, not the globally shared memory protocol itself. This flexibility
allowsavariety of local processor cache state coherence definitions such asM S| or
MESI.

Some designs may not have a source of local system requests, for example, the
memory only processing element described in Section 2.2.3, “Memory-Only
Processing Element Model”. The protocols for these devices are much less
complicated, only requiring the external request state machine and a portion of the
response state machine. Similarly, adesign may not have alocal memory controller,
which isalso amuch less complicated device, requiring only aportion of theinternal
reguest and response state machines. The protocol s assume a processor element and
memory processing element as described in Figure 2-2.

6.2 Definitions

The general definitions of Section 6.2.1 apply throughout the protocol, and the
requests and responses of state machines are defined in Section 6.2.2, “ Request and
Response Definitions.”

Rapidl O Trade Association 63

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.2.1 General Definitions

address_collisionAn address match between the new request and an address
currently being serviced by the state machines or some other
address-based internal hazard. This frequently causes aretry
of the new request.

assign_entry() Assign resources (such as a queue entry) to service arequest, mark
the address as ableto participatein address collision detection
(if appropriate), and assign a transaction 1D

data Any data associated with the transaction; thisfield is frequently null
directory_state The memory directory state for the address being serviced
error() Signal an error (usually through an interrupt structure) to software,

usually to indicate a coherence violation problem

free entry() Releaseall resources assigned to this transaction, remove it from
address collision detection, and deall ocate the transaction ID

local Memory local to the processing element

local_request(m,n,...)A local request to alocal processor caused by an incoming
external request that requires a snoop of the processor’s
caches

local_response(m,n,.)A local responseto alocal request; usually indicatesthe cache
state for the requesting processor to mark the requested data

LOCAL_RTYPEThisisthe response from the local agent to the local processor in
response to alocal request.

LOCAL_TTYPEThisisthe transaction type for arequest passed from the RapidlO
interconnect to alocal device.

(mask <= (mask ~= received _srcid))
“Assign the mask field to the old mask field with the received
ID bit cleared.” Thisresult is generated when aresponseto a
multicast isreceived and it is not the last one expected.
((mask ~= (my_id OR received_id)) ==0)
“The mask field not including my ID or the received ID
equals0.” Thisresult indicatesthat we havereceived all of the
expected responses to a multicast request.

(mask ~= my_id)"“ The sharing mask not including my ID.” Thisresult is used for
multicast operations where the requestor isin the sharing list
but does not need to be included in the multicast transaction
because it is the source of the transaction.

(mask <= (participant_list ~= my_id))
“The sharing mask includes all participants except my ID.”
Thisresult isused for the IKILL operation, which does not

64 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

use the memory directory information.

(mask <= (participant_list ~= (received_srcid AND my _id)))
“The sharing mask includes all participants except the
requestor’sand my IDs.” Thisresult is used for the IKILL
operation, which does not use the memory directory
information.

(mask == received_srcid)
“The sharing mask only includes the requestor’sID.” This
result is used for the DKILL operation to detect a
write-hit-on-shared case where the requestor has the only
remote copy of the coherence granule.

origina_srcid The ID of the initia requestor for atransaction, saved in the state
associated with the transaction 1D

received data The response contained data

received data only message
Flag set by set_received _data only message()

received_done message
Flag set by set_received_done_message()

remote_request(m,n,...)
Make arequest to the interconnect fabric

remote_response(m,n,...)
Send aresponse to the interconnect fabric

RESPONSE TTYPE
Thisisthe Rapidl O transaction type for aresponse to a
request

return_data() Return datato thelocal requesting processor, either from memory or
from ainterconnect fabric buffer; the source can be
determined from the context

secondary_id Thethird party identifier for intervention responses; the processing
element ID concatenated with the processing element
domain.

set_received data only_message()
Remember that a DATA_ONLY response was received for
this transaction ID

set_recelved_done_message()
Remember that a DONE response was received for this
transaction ID

source_id Thesourcedeviceidentifier; the processing el ement I D concatenated
with the processing element domain

target_id The destination device identifier; the processing element 1D

Rapidl O Trade Association 65

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

66

concatenated with the processing element domain
TRANSACTIONThe Rapidl O transaction type code for the request
update_memory()Write memory with data received from aresponse

update_state(m,n,...)Modify the memory directory state to reflect the new system
status

6.2.2 Reguest and Response Definitions

Following are the formats used in the pseudocode to describe request and response
transactions sent between processing el ements and the formats of local requests and
responses between the cache coherence controller and the local cache hierarchy and
memory controllers.

6.2.2.1 System Request

The system request format is:
remote_request(TRANSACTION, target_id, source _id, secondary_id, data)
which describes the necessary RapidlO request to implement the protocol.

6.2.2.2 Local Request

The local request format is:
local_request(LOCAL_TTYPE)

that is the necessary local processor request to implement the protocol; the
pseudocode assumes a generic local bus. A local request also examines the remote
cache as part of the processing element’s caching hierarchy. The local transactions
are defined as:

DKILL Causes the processor to transition the coherence granule to invalid
regardless of the current state; datais not pushed if current
state is modified

IKILL Causes the processor to invalidate the coherence granule in the
instruction cache

READ Causes the processor to transition the coherence granule to shared
and push data if necessary

READ_LATEST Causesthe processor to push dataif modified but not transition the
cache state

READ_TO_OWNCauses the processor to transition the coherence granule to
invalid and push data

TLBIE Causes the processor to invalidate the specified translation
look-aside buffer entry

TLBSYNC Causesthe processor to indicate when all outstanding TLBIEs have
completed

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.2.2.3 System Response
The system response format is:
remote_response(RESPONSE_TTY PE, target_id, source_id, data (opt.))
which is the proper response to implement the protocol.

6.2.2.4 Local Response

The local response format is:
local_response(LOCAL_RTY PE)

In genera, a transaction ID (TID) is associated with each device ID in order to
uniquely identify a request. This TID is frequently a queue index in the source
processing element. These TIDs are not explicitly called out in the pseudocode
below. The local responses are defined as:

EXCLUSIVE The processor has exclusive access to the coherence granule

OK The transaction requested by the processor has or will complete
properly

RETRY Causes the processor to re-issue the transaction; this response may
causealocal busspinloop until the protocol allowsadifferent
response

SHARED The processor has a shared copy of the coherence granule

6.3 Operation to Protocol Cross Reference

Table6-1 contains a cross reference of the operations defined in the RapidlO
Interconnect Globally Shared Memory Logical Specification and their system usage.

Table 6-1. Operation to Protocol Cross Reference

Operations Protocol

Read Section 6.4
Instruction read Section 6.4
Read for ownership Section 6.6
Data cache invalidate Section 6.7
Instruction cache invalidate Section 6.7
Castout Section 6.8
TLB invalidate entry Section 6.9
TLB invalidate entry Section 6.9
synchronize

Data cache flush Section 6.10
1/O read Section 6.11

Rapidl O Trade Association 67

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.4 Read Operations
This operation isacoherent data cache read; refer to the description in Section 3.3.1.

6.4.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local

processor.
if (address_collision) I thisis dueto an external request
//'in progress or a cache
local_response(RETRY); /I index hazard from a previous request
elsaf (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED: I/l local modified is OK if we default
//'local memory to owned
local_response(EXCLUSIVE);
return_data();
case LOCAL_SHARED, /l'local, owned by memory
case SHARED: /I shared local and remote
local_response(SHARED));
return_data(); /I keep directory state

// theway it was
case REMOTE_MODIFIED:
local_response(SHARED);
assign_entry(); /I this meansto assign
/l atransaction ID,
[/ usually a queue entry
remote_request(READ_OWNER, mask_id, my_id, my_id);

default:
error();
dse I/l remote - we've got to go
// to another processing element
assign_entry();
local_response(RETRY); /I can’t guarantee data before a

// snoop yet
remote_request(READ_HOME, mem_id, my_id);
endif;

6.4.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

if (my_id ==mem_id == origina_srcid) [/ original requestor is home memory
switch(remote_response) /I matchesmy_id only for
/ REMOTE_MODIFIED case
case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);

return_data();

free_entry();
case NOT_OWNER, I/ due to address collision or
case RETRY: /I passing requests

switch (directory_state)
case LOCAL_MODIFIED:
local_response(EXCLUSIVE);
I/l when processor re-requests
return_data();
free_entry();
case LOCAL_SHARED:

68 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

local_response(SHARED);
/I when processor re-requests
return_data();
free_entry();
case REMOTE_MODIFIED: // mask_id must match received_srcid

/lor error; spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:
error();
default
error();
elseif(my_id == mem_id ~== origina_id /['i"m home memory working for
[/l athird party

switch(remote_response)

case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE_INTERVENTION, original_srcid, my_id);

free_entry();
case NOT_OWNER, /I data comes from memory,
/I mimic intervention
case RETRY:

switch(directory_state)
case LOCAL_SHARED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,
my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,
my_id);
free_entry();
case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,
my_id);
free_entry();
case REMOTE_MODIFIED: /Il spin or wait for castout
remote_request(READ_OWNER, received_srcid,
my_id, my_id);
default:
error();
default:
error();
else /I'my_id~=mem_id- I'm

I/ requesting aremote
/I memory location
switch(remote_response)

case DONE:
local_response(SHARED); I/ when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: /l must be from third party

set_received_done message();
if (received_data_only_message)

free_entry();
else
Il wait for aDATA_ONLY
endif;
case DATA_ONLY: // thisis dueto an intervention, a
// DONE_INTERVENTION should come
I/ separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

Rapidl O Trade Association 69

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

70

return_data();
free_entry();
ese
return_data(); /I OK for weak ordering
endif;
case RETRY:

remote_request(READ_HOME, received_srcid, my_id);
default
error();
endif;

6.4.3 External Request State Machine

This state machine handl es requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision) /' use collision tablesin
/I Chapter 7, “Address Collision Resolution
Tables
esef (READ_HOME) // remote request to our local memory
gn_entry();
switch (directory_state)
case LOCAL_MODIFIED:
local_request(READ);
update_state(SHARED, received_srcid);
/I after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case LOCAL_SHARED,
case SHARED:
update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)
I intervention case
remote_request(READ_OWNER, mask_id,
my_id, received_srcid);
else
error(); I he already owned it;
/I cache paradox (or |-fetch after d-
I/ store it not fixed elsewhere)
endif;
default:
error();
dse /I READ_OWNER request to our caches
gn_entry();
local_request(READ); // spin until avalid response

// from caches
switch (local_response)
case MODIFIED: /I processor indicated a push;
/l wait for it
cache_state(SHARED or INVALID);
I/ surrender ownership
if (received_srcid == received_secid)
[/ original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else
remote_response(DATA_ONLY, received secid,
my_id, data);
remote_response(INTERVENTION, received _srcid,
my_id, data);
endif;
case INVALID: Il must have cast it out

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

remote_response(NOT_OWNER, received_srcid, my_id);
default;
error();
free_entry();
endif;

Rapidl O Trade Association 71

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.5 Instruction Read Operations

This operation is a partialy coherent instruction cache read; refer to the description
in Section 3.3.2.

6.5.1 Internal Request State M achine

This state machine handles requests to both local and remote memory from thelocal

processor.
if (address_collision) // thisis due to an externa
Il request in progress or a cache
local_response(RETRY); I/ index hazard from a previous request
elseif (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED: I/ local modified is OK if we default
//'local memory to owned
local_response(EXCLUSIVE);
return_data();
case LOCAL_SHARED, /I local, owned by memory
case SHARED: /I shared local and remote
local_response(SHARED);
return_data(); I/ keep directory state the way it was

case REMOTE_MODIFIED:
locd_response(SHARED);
assign_entry(); // this means to assign a transaction
/11D, usually a queue entry
remote_request(READ_OWNER, mask_id, my_id, my_id);

default:
error();
dse I/ remote - we' ve got to go
/I to another processing element
assign_entry();

local_response(RETRY);
// can't guarantee data before a
I/ snoop yet
remote_request(IREAD_HOME, mem_id, my_id);
endif;

6.5.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

if (my_id ==mem_id == origina_srcid) /I original requestor is home memory
error();
elseif(my_id == mem_id ~== origina_id) //'i"m home memory working for a
// third party

switch(remote_response)

case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);

free_entry();
case NOT_OWNER, /I data comes from memory,
/I mimic intervention
case RETRY:

switch(directory_state)

case LOCAL_SHARED:
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);

72 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev.

free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);

free_entry();
case REMOTE_MODIFIED: I/ spin or wait for castout
remote_request(READ_OWNER, received_srcid,
my_id, my_id);
default:
error();
default:
error();
else /I my_id ~= mem_id - I'm requesting
/I aremote memory location
switch(remote_response)
case DONE:
local_response(SHARED); I/ when processor re-requests
return_data();
free_entry();
case DONE_INTERVENTION: /l must be from third party
set_received_done_message();
if (received_data_only_message)
free_entry();
else
/l wait for aDATA_ONLY
endif;
case DATA_ONLY: / thisis dueto an intervention; a
// DONE_INTERVENTION should come
I/ separately
local_response(SHARED);
set_received_data_only_message();
if (received_done_message)
return_data();
free_entry();
ese
return_data(); /I OK for weak ordering
endif;
case RETRY:
remote_request(IREAD_HOME, received_srcid, my_id);
default
error();
endif;

6.5.3 External Request State Machine

This state machine handl es requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision)

Tables’
dsaif(IREAD_HOME)

/I use collision tablesin

13

/I Chapter 7, “Address Collision Resolution

// remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

/I after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

Rapidl O Trade Association

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

73

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)
Il intervention case
remote_request(READ_OWNER, mask_id,
my_id, received_srcid);
else I/ he dlready owned it in his
//data cache; cache paradox case
remote_request(READ_OWNER, mask_id, my_id, my_id);
endif;
default:
error();
endif;

74 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.6 Read for Ownership Operations

Thisis the coherent cache store miss operation.

6.6.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local

processor.
if (address_collision) I thisis dueto an external request
/l'in progress or a cache index
local_response(RETRY); /I hazard from a previous request
elsaf (local) // our local memory
switch (directory_state
case LOCAL_MODIFIED, /I local modified isOK if we

/ default memory to owned locally
case LOCAL_SHARED:
local_response(EXCLUSIVE); /I give ownership to processor
return_data();
if (directory_state == LOCAL_SHARED)
update_state(LOCAL_MODIFIED)
endif;
case REMOTE_MODIFIED: /I owned by another, get a copy
[/l and ownership
assign_entry();

local_response(RETRY); Il retry
remote _request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);
case SHARED: Il invalidate the sharing list

assign_entry();
local_response(RETRY); // retry
remote_request(DKILL_SHARER, (mask ~=my_id), my_id, my_id);

default:
error();
dse // remote - we' ve got to go to another
/I processing element
assign_entry();

local_response(RETRY);
remote_request(READ_TO_OWN_HOME, mem_id, my_id);
endif;

6.6.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

if (my_id ==mem_id == original_srcid) /I original requestor is home memory
switch (received_response)
case DONE: /I SHARED, so invalidate case

if ((mask ~= (my_id OR received_id)) == 0)
/I thisisthe last DONE
local_response(EXCLUSIVE);

return_data();
update_state(LOCAL_MODIFIED);
free_entry();
ese
mask <= (mask ~= received_srcid);
I/ flip the responder’ s shared
/I bit and wait for next DONE
endif;
case NOT_OWNER: /I due to address collision with

/I CASTOUT or FLUSH

Rapidl O Trade Association 75

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

switch(directory_state)
case LOCAL_MODIFIED;:
local_response(EXCLUSIVE);
return_data();
free_entry();
case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();
case REMOTE_MODIFIED:
I/ spin or wait for castout
remote_request(READ_TO_OWN_OWNER, mask_id,

my_id, my_id);
default:
error();
case INTERVENTION: I/ remotely owned
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();
case RETRY:

switch (directory_state)

case LOCAL_MODIFIED:
local_response(EXCLUSIVE);
return_data();
free_entry();

case LOCAL_SHARED:
local_response(EXCLUSIVE);

return_data();
update_state(LOCAL_MODIFIED);
free_entry();
case REMOTE_MODIFIED: //mask_id must match received_srcid

// or error condition
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,
my_id);
default:
error();
default:
error();

elsalf (my_id == mem_id ~= original_srcid)
//'i"m home memory working
[/ for athird party
switch(received_response)
case DONE: I/l invalidates for shared
/I directory states
if ((mask ~= (my_id OR received_id)) == 0)

I/l thisisthe last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id, data);
free_entry();

else
mask <= (mask ~= received_srcid);
I/ flip the responder’ s shared bit
endif; /1 and wait for next DONE
case INTERVENTION:

/I remote_modified case

update_memory(); /I for possible coherence error

/I recovery

update_state(REMOTE_MODIFIED, original_id);
remote_response(DONE_INTERVENTION, origina_id, my_id);
free_entry();
case NOT_OWNER: // data comes from memory, mimic
I intervention

76 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

switch(directory_state)
case LOCAL_SHARED:
case LOCAL_MODIFIED:
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, orlglnal srcid, my_id,
data);
remote_response(DONE, origina_srcid, my_id);
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, original_srcid);
default:
error();
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, orlglnal srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();
case REMOTE_MODIFIED: /I mask_id must match received_srcid

// or error condition
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,
my_id);
default:
error();
default:
error();
else /I my_id ~=mem_id - I’'m requesting

/I aremote memory location
switch (received_response)
case DONE:
local_response(EXCLUSIVE);
return_data();
free_entry();
case DONE_INTERVENTION:
set_received_done message();
if (received data_message)
“free entry();
ese
/l wait for DATA_ONLY
endif;
case DATA_ONLY:
set_received_data message();
local_response(EXCLUSIVE);
if (received_done_message)

return_data();
free_entry();
else
return_data(); /I OK for weak ordering
endif; /1 and wait for aDONE
case RETRY: /l lost at remote memory so retry

remote_request(READ_TO_OWN_HOME, mem_id, my_id);
default:
error();
endif;

Rapidl O Trade Association 77

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.6.3 External Request State Machine

78

This state machine handles requests from the interconnect to the local memory or
the local system. This may require making further external requests.

if (address_collision) /I use collision tables
//'in Chapter 7, “Address Collision Resolution
Tables’
elsef (READ_TO_OWN_HOME) // remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
loca_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id, data);
/I after possible push
update_state(REMOTE_MODIFIED, received_srcid);
free_entry();
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)
/lintervention case
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
received_srcid);
else
error(); I/ he already owned it!
endif;
case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)

/Irequestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);

// from memory
free_entry();

else [lthere are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid),
my_id, my_id);
endif;
default:
error();
elsaf(READ_TO_OWN_OWNER) // request to our caches
assign_entry();
local_request(READ_TO_OWN); /I spin until avalid response from
/I the caches
switch (local_response)
case MODIFIED: /I processor indicated a push
cache_state(INVALID);
/I surrender ownership
if (received_srcid == received_secid)

[/lthe original request is from the home

remote_response(INTERVENTION, received_srcid, my_id,
data);
ese // the original request isfrom a
[/ third party
remote_response(DATA_ONLY, received secid, my_id,
data);
remote_response(INTERVENTION, received_srcid, my_id,
data);
endif;
free_entry();
case INVALID: // castout address collision
remote_response(NOT_OWNER, received_srcid, my_id);
default:
error();
endif;

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.7 Data Cache and Instruction Cache Invalidate
Operations

This operation is used with coherent cache store-hit-on-shared, cache operations;
refer to the description in Section 3.3.4.

6.7.1 Internal Request State M achine

This state machine handles requests to both local and remote memory from thelocal

processor.
if (address_collision) [thisis due to an external request in
/I progress or a cache index
local_response(RETRY); /I hazard from a previous request
elseif (local) /I our local memory and we won
if (DKILL) /I DKILL checksthe directory
switch (directory_state)
case LOCAL_MODIFIED, /l'local modified is OK if we default
/l memory to owned locally
case LOCAL_SHARED:
local_response(EXCLUSIVE);
if LOCAL_SHARED)
update_state(LOCAL_MODIFIED, my_id);
endif;
case REMOTE_MODIFIED: /I cache paradox; DKILL is
[write-hit-on-shared
error();
case SHARED:
local_response(RETRY);
assign_entry(); /I Multicast if possible otherwise
// issue direct to each sharer
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);
default:
error();
else /' KILL always goes to everyone
remote _request(IKILL_SHARER,
(mask <= (participant_list ~= my_id)), my_id);
endif;
else // remote - we' ve got to go to another
I/ processing element
assign_entry();
local_response(RETRY);
remote_request({ DKILL_HOME, IKILL_HOME}, mem_id, my_id);
endif;

6.7.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

if (my_id ==mem_id == origina_srcid) /[original requestor is home memory
switch (received_response)
case DONE: /] shared cases

if ((mask ~= (my_id OR received_id)) == 0)
/[thisisthe last DONE
if (DKILL) // don’t update state for IKILLs
update_state(LOCAL_MODIFIED);
endif;
free_entry();
ese

Rapidl O Trade Association 79

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

mask <= (mask ~= received_srcid);
/I flip the responder’ s shared bit and

endif; /I wait for next DONE
case RETRY:
remote_request({ DKILL_SHARER, IKILL_SHARERY}, received_srcid,
my_id); I/ retry the transaction
default:
error();

elseif (my_id == mem_id ~= original_srcid)
/I i’ m home memory working
[/ for athird party
switch(received_response)
case DONE: I/l invalidates for shared
/[directory states
if ((mask ~= (my_id OR received_id)) == 0)
Il thisisthelast DONE
if (DKILL) // don’t update state for IKILLs
update_state(REMOTE_MODIFIED, original_srcid);

endif;
remote_response(DONE, original_srcid, my_id);
free_entry();
else
mask <= (mask ~= received_srcid);
I/ flip the responder’ s shared bit
endif; /l and wait for next DONE
case RETRY:
remote_request({ DKILL_SHARER, IKILL_SHARERY}, received_srcid,
my_id); I/ retry
default:
error();
else /I my_id ~= mem_id - I''m requesting

/I aremote memory location
switch (received_response)

case DONE:
local_response(EXCLUSIVE);
free_entry();
case RETRY:
remote_request({ DKILL_HOME, IKILL_HOME}, received_srcid,
my_id); I/ retry the transaction
default:
error();

endif;

6.7.3 External Request State Machine

This state machine handles requests from the system to thelocal memory or thelocal
system. This may require making further external requests.

if (address_collision) I/l use collision tablesin

/I Chapter 7, “Address Collision Resolution
Tables’
elsalf (DKILL_HOME || IKILL_HOME) // remote request to our local memory

assign_entry();
if (DKILL_HOME)
switch (directory_state)
case LOCAL_MODIFIED, /I cache paradoxes, DKILL is
I/ write-hit-on-shared
case LOCAL_SHARED,
case REMOTE_MODIFIED:
error();
case SHARED: [/ thisisthe right case, send
/l invalidates to the sharing list
local_request(DKILL);
if (mask == received_srcid
/I requestor is only remote sharer

80 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

if (DKILL)// don't update state for (IKILLS)
update_state(REMOTE_MODIFIED,
received_srcid);
endif;
remote_response(DONE, received_srcid, my_id);
free_entry();
else I/ there are other remote sharers
remote_request(DKILL_SHARER,
(mask ~= received_srcid), my_id, NULL);
endif;
default:
error();
else /I NKILL goesto everyone except the
// requestor
remote_request(IKILL_SHARER,
(mask <= (participant_list ~=
(received_srcid AND my_id), my_id);
else /I DKILL_SHARER or IKILL_SHARER to
our caches
assign_entry();
local_request({READ_TO_OWN, IKILL});
I/ spin until avalid response from the

/I caches
switch (local_response)
case SHARED,
case INVALID: [l invalidating for shared cases
cache_state(INVALID); I surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();
default:
error();

endif;

Rapidl O Trade Association 81

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.8 Castout Operations

This operation is used to return ownership of a coherence granule to home memory,
leaving it invalid in the cache; refer to the description in Section 3.3.5.

6.8.1 Internal Request State M achine

A castout is always done to remote memory space. A castout may require local
activity to flush al cachesin the hierarchy.

if (local) I/ our local memory
switch (directory_state)

case LOCAL_MODIFIED: /I if the processor is doing a castout
/[thisisthe only legal state
local_response(OK);

update_memory();
update_state(L OCAL_SHARED);
default:
error();
else /l remote - we' ve got to go to another
I/ processing element
gn_entry();
local_response(OK);
remote_request(CASTOUT, mem_id, my_id, data);
endif;

6.8.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

switch (received_response)
case DONE:

free_entry();
default:

error();

6.8.3 External Request State Machine

This state machine handl es requests from the system to the local memory or the local
system. This may require making further external requests.

assign_entry();

update_memory();

state_update(LOCAL_SHARED, my_id); / may be LOCAL_MODIFIED if the
// default is owned locally

remote_response(DONE, received_srcid, my_id);

free_entry();

82 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.9 TLB Invalidate Entry, TLB Invalidate Entry
Synchronize Operations

These operations are used for software coherence management of the TLBs; refer to
the descriptionsin Section 3.3.6 and Section 3.3.7.

6.9.1 Internal Request State M achine

The TLBIE and TLBSY NC transactions are always sent to all domain participants
except the sender and are always to the processor not home memory.

assign_entry();
remote_request({ TLBIE, TLBSYNC}, participant_id, my_id);
endif;

6.9.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system. The responses are aways from a coherence
participant, not a home memory.

switch (received_response)
case DONE:
if ((mask ~= (my_id OR received_id)) == 0)
[/ thisisthe last DONE
free_entry();
else
mask <= (mask ~= received_srcid);
/[flip the responder’ s participant
/I bit and wait for next DONE
endif;
case RETRY:
remote_request({ TLBIE, TLBSYNC}, received_srcid, my_id, my_id);
default
error();

6.9.3 External Request State Machine

This state machine handles requests from the system to thelocal memory or thelocal
system. The requests are always to the local caching hierarchy.

assign_entry();

local_request({ TLBIE, TLBSYNC}); /I spin until avalid response
/I from the caches

remote_response(DONE, received_srcid, my_id);

free_entry();

Rapidl O Trade Association 83

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.10 Data Cache Flush Operations

This operation returns ownership of a coherence granule to home memory and
performs a coherent write; refer to the description in Section 3.3.9.

6.10.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from thelocal
Processor.

if (address_collision) // thisis due to an externa
I request in progress or a cache index
local_response(RETRY); I/ hazard from a previous request
elseif (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
local_response(OK);
update_memory();
case REMOTE_MODIFIED:
assign_entry();
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);
case SHARED:
gn_entry();
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);
default:
error();
else /l remote - we' ve got to go to
[/ another processing element
gn_entry();
remote_request(FLUSH, mem_id, my_id, data);
// datais optional
endif;

6.10.2 Response State M achine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

if (my_id == mem_id == original_srcid) /I original requestor is home memory
switch (received_response)
case DONE:
if ((mask ~= (my_id OR received_id)) == 0)
[/l thisisthe last DONE
if (received_data)
/I with local request or response
update_memory();
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();
else
mask <= (mask ~= received_srcid);
I/ flip responder’ s shared bit
endif; /I and wait for next DONE
case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:
if (received_data)
Il with local request from memory

84 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

update_memory();
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
e default
ault:
error();
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
if (received_data)
// with local request
update_memory();
/I if there was some write data
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();
case REMOTE_MODIFIED: /I mask_id must match
/I received_srcid or error
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,
my_id);
default:
error();
default:
error();

elsaf (my_id == mem_id ~= original_srcid)
//'i"m home memory working for athird

I/ party
switch(received_response)
case DONE: [l invalidates for shared directory
I/ states

if ((mask ~= (my_id OR received_id)) == 0)

/[thisisthe last DONE
remote_response(DONE, original_srcid, my_id, my_id);
if (received_data)

// with original request or response

update_memory();
endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
free_entry();
ese
mask <= (mask ~= received_srcid);
I/ flip responder’ s shared bit
endif; /1 and wait for next DONE
case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:
remote_response(DONE, original_srcid, my_id);
if (received_data)
/I with original request
update_memory();
endif;
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);
default:
error();

Rapidl O Trade Association 85

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

case RETRY:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:
remote_response(DONE, original_srcid, my_id);
if (received_data)
/I with original request
update_memory();
endif;
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id);
default:
error();
default:
error();
else /I my_id ~=mem_id - I’'m requesting

/I aremote memory location
switch (received_response)
case DONE:
local_response(OK);
free_entry();
case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);
// datais optional
default:
error();
endif;

6.10.3 External Request State Machine

This state machine handles requests from the system to the local memory or thelocal
system. This may require making further external requests.

if (address_collision) Il use collision tablein

/I Chapter 7, “Address Collision Resolution
Tables’
elseif (FLUSH) Il remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id);
/I after snoop completes
if (received_data) /I from reguest or local response
update_memory();
endif;
update_state(LOCAL_SHARED, my_id);
/l or LOCAL_MODIFIED
free_entry();
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid) I/ owned elsewhere
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
my_id); // secondary TID isadon't care since datais
/I not forwarded to original requestor
else /I requestor owned it; shouldn’t
/I generate aflush
error();
endif;
case SHARED:
local_request(READ_TO_OWN);

86 Rapidl O Trade Association

default:

endif;

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

if (mask == received_srcid) Il requestor is only remote sharer
remote_response(DONE, received_srcid, my_id);
/I after snoop completes
if (received_data) // from request or response
update_memory();

endif;
update_state(LOCAL_SHARED, my _id); // or LOCAL_MODIFIED
free_entry();

ese /lthere are other remote sharers
remote_request(DKILL_SHARER, (mask ~=received_srcid), my_id,

my_id);
endif;
error();

87

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

6.11 1/0 Read Operations

This operation is used for 1/0 reads of globally shared memory space; refer to the
description in Section 3.3.10.

6.11.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from thelocal

processor.
if (address_collision) /I thisis due to an external request
/l'in progress or a cache index hazard
local_response(RETRY); // from a previous request
elseif (local) I our local memory

local_response(OK);
switch (directory_state)
case LOCAL_MODIFIED: I/ local modified is OK if we default
//'local memory to owned
local_request(READ_LATEST);

return_data()) /I after possible push
case LOCAL_SHARED,
case SHARED:
return_data(); I/ keep directory state the way it was
case REMOTE_MODIFIED:
assign_entry();
remote_request(IO_READ_OWNER, mask_id, my_id, my_id);
default:
error();
dse // remote - we've got to go to
/l another processing element
assign_entry();

local_response(OK);
remote_request(I0_READ_HOME, mem_id, my_id);
endif;

6.11.2 Response State Machine

This state machine handles responses to requests made to the Rapidl O interconnect
on behalf of the local system or athird party.

if (my_id ==mem_id == origina_srcid)
[/ original requestor is home memory
switch(remote_response) // matches my_id only for
/l REMOTE_MODIFIED case
case INTERVENTION:
return_data();
free_entry();
case NOT_OWNER, /I due to address collision or
/I passing requests
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:
case LOCAL_SHARED
return_data();
free_entry();
case REMOTE_MODIFIED: // mask_id must match received_srcid or
/I error; spin or wait for castout
remote_request(I0_READ_OWNER, received_srcid, my_id,
my_id);
default:
error();

88 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

default

error();
elsaif(my_id == mem_id ~== original _id) /I " m home memory working for athird
I/ party

switch(remote_response)

case INTERVENTION:
update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);

free_entry();
case NOT_OWNER, // data comes from memory, mimic
[/l intervention
case RETRY:

switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE_INTERVENTION, original_srcid,
my_id);
free_entry();
case REMOTE_MODIFIED: // spin or wait for castout
remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);
default:
error();
default:
error();
else /I'my_id ~=mem_id - I’'m requesting a
/I remote memory location
switch(remote_response)
case DONE:
return_data();
free_entry();
case DONE_INTERVENTION: // must be from third party

set_received_done message();
if (received_data_only_message)

free_entry();
ese
/l wait for aDATA_ONLY
endif;
case DATA_ONLY: /I thisis due to an intervention, a
/I DONE_INTERVENTION should come
I/ separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();
ese
return_data(); /I OK for weak ordering
endif;
case RETRY:

remote_request(IO_READ_HOME, received_srcid, my_id);
default
error();
endif;

6.11.3 External Request State Machine

This state machine handles requests from the system to thelocal memory or thelocal
system. This may require making further external requests.

if (address_collision) I/l use collision tablesin

/I Chapter 7, “Address Collision Resolution
Tables’
elsaf (I0_READ_HOME) I/ remote request to our local memory

Rapidl O Trade Association 89

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:
local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);
/I after push completes
free_entry();
case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case REMOTE_MODIFIED:
remote_request(I0_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();
default:
error();
else //'10_READ_OWNER request to our caches
assign_entry();
local_request(READ_LATEST); /I spin until avalid response from
/I the caches
switch (local_response)
case MODIFIED: /I processor indicated a push;
I/ wait for it

if (received_srcid == received_secid)
// original requestor is also home

/l memory
remote_response(INTERVENTION, received_srcid, my_id,
data);
else
remote_response(DATA_ONLY, received_secid, my_id,
data);
remote_response(INTERVENTION, received_srcid, my_id);
endif;
case INVALID: /I must have cast it out during
// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);
default:
error();
free_entry();

endif;

90 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Chapter 7 Address Collision Resolution Tables

7.1 Introduction

Address collisions are conflicts between incoming cache coherence requests to a
processing element and outstanding cache coherence requests within it. A collision
isusually due to a match between the associated addresses, but also may be because
of a conflict for some internal resource such as a cache index. Within a processing
element, actions taken in response to an address collision vary depending upon the
outstanding request and the incoming request. These actions are described in
Table7-1 through Table7-17. Non-cache coherent transactions (transactions
specified in other RapidlO logica specifications) do not cause address collisions.

Some of the table entries specify that an outstanding request should be canceled at
the local processor and that the incoming transaction then be issued immediately to
the processor. This choosing between transactions is necessary to prevent deadlock
conditions between multiple processing elements vying for ownership of a
coherence granule.

Rapidl O Trade Association 91

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.2 Resolving an Outstanding READ_HOME Transaction

Table 7-1 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_HOME transaction.

Table 7-1. Address Collision Resolution for READ_HOME

Outstanding Request Incoming Request Resolution

READ_HOME READ_HOME Generate “ERROR” response

READ_HOME IREAD_HOME Generate “ERROR” response

READ_HOME READ_OWNER Generate “NOT_OWNER” response

READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response

READ_HOME DKILL_HOME Generate “ERROR” response

READ_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final responseis “DONE”, return dataif necessary and
forward DKILL_SHARER to processor then generate a
“DONE" response. If final responseis“RETRY”, cancel
the read at the processor and forward DKILL_SHARED
to processor then generate a“DONE” response
If no outstanding request, cancel the read at the processor
and forward DKILL_SHARER to processor then generate
a“DONE” response (this case should be very rare).

READ_HOME CASTOUT Generate “ERROR” response

READ_HOME TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

READ_HOME TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

READ_HOME IKILL_HOME Generate “ERROR” response

READ_HOME IKILL_SHARER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

READ_HOME FLUSH Generate “ERROR” response

READ_HOME IO_READ_HOME Generate “ERROR” response

READ_HOME IO0_READ_OWNER Generate “NOT_OWNER"” response

92

Rapidl O Trade Association

Transaction

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.3 Resolving an Outstanding IREAD_HOME

Table 7-2 describes the address collision resolution for an incoming transaction that
collides with an outstanding IREAD_HOME transaction.

Table 7-2. Address Collision Resolution for IREAD_HOME

Outstanding Request Incoming Request Resolution

IREAD_HOME READ_HOME Generate “ERROR” response

IREAD_HOME IREAD_HOME Generate “ERROR” response

IREAD_HOME READ_OWNER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME READ_TO_OWN_HOME Generate “ERROR” response

IREAD_HOME READ_TO_OWN_OWNER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME DKILL_HOME Generate “ERROR” response

IREAD_HOME DKILL_SHARER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME CASTOUT Generate “ERROR” response

IREAD_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IREAD_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IREAD_HOME IKILL_HOME Generate “ERROR” response

IREAD_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME FLUSH Generate “ERROR” response

IREAD_HOME 10_READ_HOME Generate “ERROR” response

IREAD_HOME I0_READ_OWNER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

Rapidl O Trade Association

93

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.4 Resolving an Outstanding READ_OWNER

94

Transaction

Table 7-3 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_OWNER transaction.

Table 7-3. Address Collision Resolution for READ_OWNER

Outstanding Request

Incoming Request

Resolution

READ_OWNER READ_HOME Generate “RETRY” response

READ_OWNER IREAD_HOME Generate “RETRY” response

READ_OWNER READ_OWNER Generate “ERROR” response

READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_OWNER DKILL_HOME Generate “RETRY” response

READ_OWNER DKILL_SHARER Generate “ERROR” response

READ_OWNER CASTOUT No collision, update directory state, generate “DONE”
response (CASTOUT bypasses address collision
detection)

READ_OWNER TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

READ_OWNER TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

READ_OWNER IKILL_SHARER Generate “ERROR” response

READ_OWNER FLUSH Generate “RETRY” response

READ_OWNER IO_READ_HOME Generate “RETRY” response

READ_OWNER I0_READ_OWNER Generate “ERROR” response

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.5 Resolving an Outstanding READ TO_OWN_HOME

Transaction

Table 7-4 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_TO_OWN_HOME transaction.

Table 7-4. Address Collision Resolution for READ_TO_OWN_HOME

Outstanding Request

Incoming Request

Resolution

READ_TO_OWN_HOME READ_HOME Generate “ERROR” response
READ_TO_OWN_HOME IREAD_HOME Generate “ERROR” response
READ_TO_OWN_HOME READ_OWNER If outstanding request, wait for all expected responses. If

final responseis “DONE”, return dataif necessary and
forward READ_OWNER to processor and generate an
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator asin Section 3.3.1. If final
responseis“RETRY” generate an “ERROR” response
If no outstanding request generate an “NOT_OWNER”
response.

READ_TO_OWN_HOME

READ_TO_OWN_HOME

Generate “ERROR” response

READ_TO_OWN_HOME

READ_TO_OWN_OWNER

If outstanding request, wait for all expected responses. If
final responseis “DONE”, return dataif necessary and
forward READ_TO_OWN_OWNER to processor and
generate an “DONE_INTERVENTION” with data
response and a“DATA_ONLY” to originator asin
Section 3.3.3. If final responseis“RETRY” generate an
“ERROR” response

READ_TO_OWN_HOME

DKILL_HOME

Generate “ERROR” response

READ_TO_OWN_HOME

DKILL_SHARER

If outstanding request, wait for all expected responses. If
final responseis“DONE” generate an “ERROR”
response (we own the coherence granule and should never
seeaDKILL). If final responseis“RETRY” generate a
“DONE” response and continue the
READ_TO_OWN_HOME.

If no outstanding request generate a“DONE” response.

READ_TO_OWN_HOME CASTOUT Generate “ERROR” response

READ_TO_OWN_HOME TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_HOME TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_HOME IKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

READ_TO_OWN_HOME FLUSH If outstanding request, wait for all expected responses. If

final responseis “DONE”, return dataif necessary and
forward FLUSH to processor and generate a“DONE”
with dataresponse as in Section 3.3.9. If final responseis
“RETRY” generate an “ERROR” response (we didn’t
own the data and we lost at home memory)

If no outstanding request generate an “ERROR” response
(wedidn’t own the data).

Rapidl O Trade Association

95

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

96

Table 7-4. Address Collision Resolution for READ_TO_OWN_HOME (Continued)

Outstanding Request

Incoming Request

Resolution

READ_TO_OWN_HOME

|0_READ_HOME

Generate “ERROR” response

READ_TO_OWN_HOME

|0_READ_OWNER

If outstanding request, wait for all expected responses. If
final responseis“DONE”, return data if necessary and
forward |O_READ_OWNER to processor then generate a
“DONE" with data response, etc. asin Section 3.3.10. If
final responseis“RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)

If no outstanding request generate an “NOT_OWNER”
response.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.6 Resolving an Outstanding
READ _TO _OWN_OWNER Transaction

Table 7-5 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_TO_OWN_OWNER transaction.

Table 7-5. Address Collision Resolution for READ_TO_OWN_OWNER

Outstanding Request

Incoming Request

Resolution

READ_TO OWN_OWNER | READ_HOME Generate *RETRY” response
READ_TO_ OWN_OWNER | IREAD_HOME Generate " RETRY” response
READ_TO OWN_OWNER | READ_OWNER Generate “ ERROR” response

READ_TO_OWN_OWNER

READ_TO_OWN_HOME

Generate “RETRY” response

READ_TO_OWN_OWNER

READ_TO_OWN_OWNER

Generate “ERROR” response

READ_TO_OWN_OWNER DKILL_HOME Generate “RETRY” response
READ_TO_OWN_OWNER DKILL_SHARER Generate “ERROR” response
READ_TO_OWN_OWNER CASTOUT No collision, update directory state, generate “DONE”
response (CASTOUT bypasses address collision
detection)
READ_TO_OWN_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)
READ_TO_OWN_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)
READ_TO_OWN_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)
READ_TO_OWN_OWNER IKILL_SHARER Generate “ERROR” response
READ_TO_OWN_OWNER FLUSH Generate “RETRY” response

READ_TO_OWN_OWNER

|0_READ_HOME

Generate “RETRY” response

READ_TO_OWN_OWNER

|0_READ_OWNER

Generate “ERROR” response

Rapidl O Trade Association

97

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.7 Resolving an Outstanding DKILL _HOME

Transaction

Table 7-6 describes the address collision resolution for an incoming transaction that
collides with an outstanding DKILL_HOME transaction.

Table 7-6. Address Collision Resolution for DKILL_HOME

Outstanding Request

Incoming Request

Resolution

DKILL_HOME

READ_HOME

Generate “ERROR” response

DKILL_HOME

IREAD_HOME

Generate “ERROR” response

DKILL_HOME

READ_OWNER

If outstanding request, wait for all expected responses. If
final responseis “DONE”, return dataif necessary and
forward READ_OWNER to processor and generate a
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator asin Section 3.3.1. If final
responseis“RETRY” generate an “ERROR” response
(we didn’t own the data and we lost at home memory)

If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_HOME

READ_TO_OWN_HOME

Generate “ERROR” response

DKILL_HOME

READ_TO_OWN_OWNER

If outstanding request, wait for all expected responses. If
final responseis“DONE” forward
READ_TO_OWN_OWNER to processor and generate a
“DONE_INTERVENTION" with dataresponse and a
“DATA_ONLY" to originator asin Section 3.3.3. If fina
responseis“RETRY” generate an “ERROR” response
(we didn’t own the data and we lost at home memory)

If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_HOME

DKILL_HOME

Generate “ERROR” response

DKILL_HOME

DKILL_SHARER

If outstanding request, wait for all expected responses. If
final responseis“DONE” generate an “ERROR”
response (we should never seeaDKILL_SHARER if we
own the coherence granule). If final responseis
“RETRY” cancel the data cache invalidate at the
processor and forward DKILL_SHARER to processor
then generate a“DONE” response

If no outstanding request, cancel the data cache invalidate
at the processor and forward DKILL_SHARER to
processor then generate a“DONE” response.

DKILL_HOME

CASTOUT

Generate “ERROR” response (cache paradox, can’'t have
a SHARED granule also MODIFIED in another
processing el ement)

DKILL_HOME

TLBIE

No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

DKILL_HOME

TLBSYNC

No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

DKILL_HOME

IKILL_HOME

Generate “ERROR” response

DKILL_HOME

IKILL_SHARER

No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

98

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 7-6. Address Collision Resolution for DKILL_HOME (Continued)

Outstanding Request

Incoming Request

Resolution

DKILL_HOME FLUSH Generate “ERROR” response
DKILL_HOME 10_READ_HOME Generate “ERROR” response
DKILL_HOME 10_READ_OWNER If outstanding request, wait for all expected responses. If

final responseis“DONE” forward |IO_READ_OWNER
to processor then generate a“ DONE” with data response,
etc. asin Section 3.3.10. If final responseis“RETRY”
generate an “ERROR” response (we didn’'t own the data
and we lost at home memory)

If no outstanding request generate an “ERROR” response
(wedidn’t own the data).

Rapidl O Trade Association

99

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.8 Resolving an Outstanding DKILL _SHARER

Transaction

Table 7-7 describes the address collision resolution for an incoming transaction that
collides with an outstanding DKILL_SHARER transaction.

Table 7-7. Address Collision Resolution for DKILL_SHARER

Outstanding Request

Incoming Request

Resolution

DKILL_SHARER READ_HOME Generate "RETRY” response
DKILL_SHARER IREAD_HOME Generate " RETRY” response
DKILL_SHARER READ_OWNER Generate " ERROR” response

DKILL_SHARER

READ_TO_OWN_HOME

Generate “RETRY” response

DKILL_SHARER

READ_TO_OWN_OWNER

Generate “ERROR” response

DKILL_SHARER

DKILL_HOME

Generate “RETRY” response

DKILL_SHARER

DKILL_SHARER

Generate “ERROR” response

DKILL_SHARER CASTOUT Generate “ERROR” response (cache paradox, can’'t have
a SHARED granule also MODIFIED in another
processing element)

DKILL_SHARER TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

DKILL_SHARER TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

DKILL_SHARER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

DKILL_SHARER IKILL_SHARER Generate “ERROR” response

DKILL_SHARER FLUSH Generate “RETRY” response

DKILL_SHARER

|0_READ_HOME

If processing element isHOME: generate a“RETRY”
response

If processing element is not HOME: If outstanding
request, wait for all expected responses. If final response
is“DONE” forward |O_READ to processor then generate
a“DONE" with dataresponse, etc. asin Section 3.3.10. If
final responseis“RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)

If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_SHARER

10_READ_OWNER

Generate “ERROR” response

100

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.9 Resolving an Outstanding IKILL HOME Transaction

Table 7-8 describes the address collision resolution for an incoming transaction that
collides with an outstanding IKILL_HOME transaction.

Table 7-8. Address Collision Resolution for IKILL_HOME

Outstanding Request Incoming Request Resolution

IKILL_HOME READ_HOME Generate “ERROR” response

IKILL_HOME IREAD_HOME Generate “ERROR” response

IKILL_HOME READ_OWNER No collision, process normally

IKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

IKILL_HOME READ_TO_OWN_OWNER No collision, process normally

IKILL_HOME DKILL_HOME Generate “ERROR” response

IKILL_HOME DKILL_SHARER No collision, process normally

IKILL_HOME CASTOUT No collision, process normally

IKILL_HOME TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

IKILL_HOME TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

IKILL_HOME IKILL_HOME Generate “ERROR” response

IKILL_HOME IKILL_SHARER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

IKILL_HOME FLUSH Generate “ERROR” response

IKILL_HOME 10_READ_HOME Generate “ERROR” response

IKILL_HOME 10_READ_OWNER No collision, process normally

Rapidl O Trade Association

101

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.10 Resolving an Outstanding IKILL _SHARER
Transaction

Table 7-9 describes the address collision resolution for an incoming transaction that
collides with an outstanding IKILL_SHARER transaction.

Table 7-9. Address Collision Resolution for IKILL_SHARER

Outstanding Request

Incoming Request

Resolution

102

IKILL_SHARER READ_HOME No collision, process normally

IKILL_SHARER IREAD_HOME No collision, process normally

IKILL_SHARER READ_OWNER Generate “ERROR” response

IKILL_SHARER READ_TO_OWN_HOME No collision, process normally

IKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

IKILL_SHARER DKILL_HOME No collision, process normally

IKILL_SHARER DKILL_SHARER Generate “ERROR” response

IKILL_SHARER CASTOUT No collision, process normally

IKILL_SHARER TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

IKILL_SHARER TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

IKILL_SHARER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to al participants except requestor (software must
maintain instruction cache coherence)

IKILL_SHARER IKILL_SHARER Generate “ERROR” response

IKILL_SHARER FLUSH No collision, process normally

IKILL_SHARER I0_READ_HOME If processing element isHOME: generate a“RETRY”
response
If processing element is not HOME: If outstanding
reguest, wait for all expected responses. If final response
is“DONE”" forward |O_READ to processor then generate
a“DONE" with dataresponse, etc. asin Section 3.3.10. If
final responseis“RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

IKILL_SHARER 10_READ_OWNER Generate “ERROR” response

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.11 Resolving an Outstanding CASTOUT Transaction

Table 7-10 describes the address collision resolution for an incoming transaction
that collides with an outstanding CASTOUT transaction.

Table 7-10. Address Collision Resolution for CASTOUT

Outstanding Request

Incoming Request

Resolution

CASTOUT READ_HOME Generate “ERROR” response

CASTOUT IREAD_HOME Generate “ERROR” response

CASTOUT READ_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state

CASTOUT READ_TO_OWN_HOME Generate “ERROR” response

CASTOUT READ_TO_OWN_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state

CASTOUT DKILL_HOME Generate “ERROR” response

CASTOUT DKILL_SHARER Generate “ERROR” response

CASTOUT CASTOUT Generate “ERROR” response

CASTOUT TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

CASTOUT TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

CASTOUT IKILL_HOME Generate “ERROR” response

CASTOUT IKILL_SHARER No collision, forward to processor then generate “ DONE”
response (software must maintain instruction cache
coherence)

CASTOUT FLUSH Generate “ERROR” response

CASTOUT |IO_READ_HOME Generate “ERROR” response

CASTOUT 10_READ_OWNER Generate “RETRY” response; the CASTOUT will bypass

address collision at home memory and modify the
directory state

Rapidl O Trade Association

103

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.12 Resolving an Outstanding TLBIE or TLBSYNC
Transaction

Table 7-11 describes the address collision resolution for an incoming transaction
that collides with an outstanding TLBIE or TLBSY NC transaction.

Table 7-11. Address Collision Resolution for Softwar e Coherence Oper ations

Outstanding Request Incoming Request Resolution
TLBIE, ANY No collision, process request as described in Chapter 6,
TLBSYNC “Communication Protocols”

104 Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.13 Resolving an Outstanding FLUSH Transaction

The flush operation has two distinct versions. The first is for processing elements
that participate in the coherence protocol such as a processor and it's associated
agent, which may aso have a local 1/0 device. The second is for processing
elementsthat do not participate in the coherence protocols such as a pure 1/0 device
that does not have a corresponding bit in the directory sharing mask. Table 7-12
describes the address collision resolution for an incoming transaction that collides
with an outstanding participant FLUSH transaction.

Table 7-12. Address Collision Resolution for Participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response

FLUSH IREAD_HOME Generate “ERROR” response

FLUSH READ_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
bea CASTOUT)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response

FLUSH READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
bea CASTOUT)

FLUSH DKILL_HOME Generate “ERROR” response

FLUSH DKILL_SHARER If outstanding request, wait for all expected responses. If
final responseis“DONE” generate an “ERROR”
response (we should never seeaDKILL_SHARER if we
own the coherence granule). If final responseis
“RETRY"” cancel the flush at the processor and forward
DKILL_SHARER to processor then generate a“DONE”
response
If no outstanding request, cancel the data cache invalidate
at the processor and forward DKILL_SHARER to
processor then generate a“DONE” response.

FLUSH CASTOUT Generate “ERROR” response

FLUSH TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

FLUSH TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

FLUSH FLUSH Generate “ERROR” response

FLUSH I0_READ_HOME Generate “ERROR” response

FLUSH I0_READ_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
bea CASTOUT)

Rapidl O Trade Association

105

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 7-13 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant FLUSH transaction.

Table 7-13. Address Collision Resolution for Non-participant FL USH

Outstanding Request

Incoming Request

Resolution

FLUSH READ_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

FLUSH DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

FLUSH CASTOUT Generate “ERROR” response (should never receive
coherent operation)

FLUSH TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

FLUSH TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence) - non-participant may have software
coherence.

FLUSH FLUSH Generate “ERROR” response (should never receive
coherent operation)

FLUSH I0_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH I0_READ_OWNER Generate “ERROR” response (should never receive

coherent operation)

106

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.14 Resolving an Outstanding |O_READ HOME

Transaction

Thel/O read operation is used by processing elementsthat do not want to participate
in the coherence protocol but do want to get current copies of cached data. There are
two versionsof thisoperation, onefor processing elementsthat have both processors
and 1/0 devices, the second for pure I/O devices that do not have a corresponding
bit in the directory sharing mask. Table 7-14 describes the address collision
resolution for an incoming transaction that collides with an outstanding participant
IO_READ_HOME transaction.

Table 7-14. Address Collision Resolution for Participant |IO_READ_HOME

Outstanding Request

Incoming Request

Resolution

I0_READ_HOME READ_HOME Generate “ERROR” response

I0_READ_HOME IREAD_HOME Generate “ERROR” response

10_READ_HOME READ_OWNER Generate “NOT_OWNER” response (we don't own the
data otherwise we could have obtained a copy locally)

I0_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

I0_ READ_HOME

READ_TO_OWN_OWNER

Generate “NOT_OWNER” response (we don't own the
data otherwise we could have obtained a copy locally)

10_READ_HOME

DKILL_HOME

Generate “ERROR” response

10_READ_HOME

DKILL_SHARER

If outstanding request, wait for all expected responses. If
final responseis“DONE”, return dataif necessary and
forward DKILL_SHARER to processor then generate a
“DONE” response. If final responseis“RETRY” forward
DKILL_SHARED to processor then generate a“DONE”
response

If no outstanding request forward DKILL_SHARER to
processor then generate a“DONE” response

|I0_READ_HOME CASTOUT Generate “ERROR” response

10_READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

I0_READ_HOME TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

10_READ_HOME IKILL_HOME Generate “ERROR” response

10_READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

I0_READ_HOME FLUSH Generate “ERROR” response

10_READ_HOME

|0_READ_HOME

Generate “ERROR” response

10_READ_HOME

|0_READ_OWNER

Generate “NOT_OWNER” response (we don't own the
data otherwise we could have obtained a copy locally)

Rapidl O Trade Association

107

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

108

Table 7-15 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant IO_READ_HOME transaction.

Table 7-15. Address Collision Resolution for Non-participant |IO_READ_HOME

Outstanding Request

Incoming Request

Resolution

I0_READ_HOME READ_HOME Generate “ERROR” response (should never receive
coherent operation)

I0_READ_HOME IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

I0_READ_HOME READ_OWNER Generate “ERROR” response (should never receive

coherent operation)

10_READ_HOME

READ_TO_OWN_HOME

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

READ_TO_OWN_OWNER

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

DKILL_HOME

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

DKILL_SHARER

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

CASTOUT

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

TLBIE

No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence) -
broadcast operation and non-participant may have page
table hardware.

10_READ_HOME

TLBSYNC

No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
broadcast operation and non-participant may have page
table hardware.

|0_READ_HOME

IKILL_HOME

Generate “ERROR” response

10_READ_HOME

IKILL_SHARER

No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence) - broadcast operation and non-participant may
have software coherence.

10_READ_HOME

FLUSH

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

10_READ_HOME

Generate “ERROR” response (should never receive
coherent operation)

10_READ_HOME

10_READ_OWNER

Generate “ERROR” response (should never receive
coherent operation)

Rapidl O Trade Association

Transaction

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

7.15 Resolving an Outstanding |O_READ OWNER

Thel/O read operation is used by processing elementsthat do not want to participate
in the coherence protocol but do want to get current copies of cached data. There are
two versionsof thisoperation, onefor processing elementsthat have both processors
and 1/0 devices, the second for pure I/O devices that do not have a corresponding
bit in the directory sharing mask. Table 7-16 describes the address collision
resolution for an incoming transaction that collides with an outstanding
IO_READ_OWNER transaction.

Table 7-16. Address Collision Resolution for Participant |IO_READ_OWNER

Outstanding Request

Incoming Request

Resolution

|0_READ_OWNER READ_HOME Generate " RETRY” response
|0_READ_OWNER IREAD_HOME Generate " RETRY” response
I0_READ_OWNER READ_OWNER Generate "ERROR” response

|0_READ_OWNER

READ_TO_OWN_HOME

Generate “RETRY” response

|0_READ_OWNER

READ_TO_OWN_OWNER

Generate “ERROR” response

I0_READ_OWNER DKILL_HOME Generate “RETRY” response

|0_READ_OWNER DKILL_SHARER Generate “ERROR” response

10_READ_OWNER CASTOUT No collision, update directory state and memory, generate
DONE response (CASTOUT bypasses address collision
detection)

|I0_READ_OWNER TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

|I0_READ_OWNER TLBSYNC No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence)

10_READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

I0_READ_OWNER IKILL_SHARER Generate “ERROR” response

|0_READ_OWNER FLUSH Generate “RETRY” response

|0_READ_OWNER

|0_READ_HOME

Generate “RETRY” response

|0_READ_OWNER

|0_READ_OWNER

Generate “ERROR” response (we don’t own the data
otherwise we could have obtained a copy locally)

Rapidl O Trade Association

109

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Table 7-17 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant IO_READ_OWNER transaction.

Table 7-17. Address Collision Resolution for Non-participant IO_READ_OWNER

Outstanding Request

Incoming Request

Resolution

10_READ_OWNER READ_HOME Generate “ERROR” response (should never receive
coherent operation)

I0_READ_OWNER IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

I0_READ_OWNER READ_OWNER Generate “ERROR” response (should never receive

coherent operation)

I0_READ_OWNER

READ_TO_OWN_HOME

Generate “ERROR” response (should never receive

coherent operation)

I0_READ_OWNER

READ_TO_OWN_OWNER

Generate “ERROR” response (should never receive

coherent operation)

I0_READ_OWNER

DKILL_HOME

Generate “ERROR” response (should never receive

coherent operation)

|0_READ_OWNER

DKILL_SHARER

Generate “ERROR” response (should never receive

coherent operation)

10_READ_OWNER CASTOUT Generate “ERROR” response (should never receive
coherent operation)

10_READ_OWNER TLBIE No collision, forward to processor then generate “ DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page teble hardware.

10_READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

10_READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

|I0_READ_OWNER IKILL_SHARER Generate “ERROR” response

10_READ_OWNER FLUSH Generate “ERROR” response (should never receive

coherent operation)

10 READ_OWNER

|0_READ_HOME

Generate “ERROR” response (should never receive

coherent operation)

10 READ_OWNER

|0_READ_OWNER

Generate “ERROR” response (should never receive

coherent operation)

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Glossary of Termsand Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

A Address collision. An address based conflict between two or more cache
coherence operations when referencing the same coherence granule.

Agent. A processing element that provides services to a processor.

Asychronoustransfer mode (ATM). A standard networking protocol which
dynamically allocates bandwidth using a fixed-size packet.

B Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with O
being the most significant byte.

Block flush. An operation that returns the latest copy of a block of datafrom
caches within the system to memory.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Broadcast. The concept of sending a packet to all processing elementsin a
system.

Bus-based snoopy protocol. A broadcast cache coherence protocol that
assumes that all cachesin the system are on a common bus.

C Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if aprocessor performing aread from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache. In other words, a
write operation to an address in the system is visible to all other
cachesin the system. Also referred to as memory coherence.

Rapidl O Trade Association 111

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

112

Cache coherent-non uniform memory access (CC-NUMA). A cache
coherent system in which memory accesses have different latencies
depending upon the physical location of the accessed address.

Cache paradox. A circumstance in which the caches in a system have an
undefined or disallowed state for a coherence granule, for example,
two caches have the same coherence granule marked “modified”.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Castout operation. An operation used by a processing element to relinquish
its ownership of acoherence granule and return it to home memory.

Coherence domain. A logically associated group of processing elements that
participate in the globally shared memory protocol and are able to
maintain cache coherence among themselves.

Coherence granule. A contiguous block of data associated with an address
for the purpose of guaranteeing cache coherence.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing el ement’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in ahalt of system operation.

Destination. The termination point of a packet on the Rapidl O interconnect,
also referred to as atarget.

Device. A generic participant on the RapidlO interconnect that sends or
receives Rapidl O transactions, also called a processing element.

DevicelD. Theidentifier of an end point processing element connected to the
RapidI O interconnect.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Distributed memory. System memory that is distributed throughout the
system, as opposed to being centrally located.

Domain. A logically associated group of processing el ements.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

E End point. A processing element which is the source or destination of
transactions through a RapidI O fabric.

Ethernet. A common local area network (LAN) technology.

Exclusive. A processing element has the only cached copy of a sharable
coherence granule. The exclusive state allows the processing
element to modify the coherence granule without notifying the rest
of the system.

F Field or Field name. A sub-unit of aregister, where bitsin the register are
named and defined.

Flush operation. An operation used by a processing element to return the
ownership and current data of a coherence granule to home memory.

G Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processorsin a system.

H Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Home memory. The physical memory corresponding to the physical address
of acoherence granule.

| Initiator. The origin of apacket on the Rapidl O interconnect, also referred to
asasource.

Instruction cache. High-speed memory containing recently accessed
instructions (subset of main memory) associated with a processor.

Instruction cache invalidate operation. An operation that is used if the
instruction cache coherence must be maintained by software.

Instruction read operation. An operation used to obtain a globally shared
copy of a coherence granule specifically for an instruction cache.

Instruction set architecture (ISA). The instruction set for a certain
processor or family of processors.

Intervention. A datatransfer between two processing elements that does not
go through the coherence granule’'s home memory, but directly
between the requestor of the coherence granule and the current
owner.

Invalidate operation. An operation used to remove a coherence granule from
caches within the coherence domain.

Rapidl O Trade Association 113

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

114

[/O. Input-outpuit.

I/O read operation. An operation used by an 1/O processing element to
obtain a globally shared copy of a coherence granule without
disturbing the coherence state of the granule.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

L ocal memory. Memory associated with the processing element in question.

L SB. Least significant byte.

Memory coherence. Memory is coherent if a processor performing a read
from its cacheis supplied with data corresponding to the most recent
value written to memory or to another processor’s cache. In other
words, awrite operation to an address in the system isvisible to all
other cachesin the system. Also referred to as cache coherence.

Memory controller. The point through which home memory is accessed.

Memory directory. A table of information associated with home memory
that is used to track the location and state of coherence granules
cached by coherence domain participants.

M essage passing. An application programming model! that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

Modified. A processing element has written to a locally cached coherence
granule and so has the only valid copy of the coherence granule in
the system.

Modified exclusive shared invalid (MESI). A standard 4 state cache
coherence definition.

Modified shared invalid (MSI). A standard 3 state cache coherence
definition.

Modified shared local (MSL). A standard 3 state cache coherence
definition.

MSB. Most significant byte.

Multicast. The concept of sending a packet to more than one processing
elementsin asystem.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidlO
system (requests and associated responses) such asaread or awrite.

Ownership. A processing element has the only valid copy of a coherence
granule and is responsible for returning it to home memory.

Packet. A set of information transmitted between devices in a RapidlO
system.

Peripheral component interface (PCl). A bus commonly used for
connecting 1/0O devicesin a system.

Priority. The relative importance of a packet; in most systems a higher
priority packet will be serviced or transmitted before one of lower
priority.

Processing Element (PE). A generic participant on the Rapidl O interconnect
that sends or receives Rapidl O transactions, also called adevice.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Read operation. An operation used to obtain a globally shared copy of a
coherence granule.

Read-for-owner ship operation. An operation used to obtain ownership of a
coherence granule for the purposes of performing a write operation.

Remote access. An access by a processing element to memory located in
another processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

Shared. A processing element has a cached copy of a coherence granul e that
may be cached by other processing elements and is consistent with
the copy in home memory.

Sharing mask. The state associated with a coherence granule in the memory
directory that tracks the processing elements that are sharing the
coherence granule.

Source. The origin of a packet on the Rapidl O interconnect, also referred to
asan initiator.

Rapidl O Trade Association 115

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

116

Sub-double-word. Aligned on eight byte boundaries.

Switch. A multiple port processing element that directs a packet received on
one of itsinput ports to one of its output ports.

Target. The termination point of a packet on the Rapidl O interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devicesin a RapidlO system.

Trandation look-aside buffer (TLB). Part of a processor’'s memory
management unit; a TLB contains a set of virtual to physical page
address trandations, along with a set of attributes that describe
access behavior for that portion of physical memory.

Write-through. A cache policy that passes all write operations through the
caching hierarchy directly to home memory.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

Rapidl O Trade Association

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Blank page

Rapidl O Trade Association 117

Rapidl O Part 5: Globally Shared Memory Logical Specification Rev. 1.3

Blank page

118 Rapidl O Trade Association

	RapidIO™ Interconnect Specification Part 5: Globally Shared Memory Logical Specification
	Chapter�1 Overview
	1.1 Introduction
	1.2 Overview
	1.2.1 Memory System

	1.3 Features of the Globally Shared Memory Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter�2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 Programming Models
	2.3.1 Globally Shared Memory System Model
	2.3.1.1 Software-Managed Cache Coherence Programming Model

	2.4 System Issues
	2.4.1 Operation Ordering
	2.4.2 Transaction Delivery
	2.4.3 Deadlock Considerations

	Chapter�3 Operation Descriptions
	3.1 Introduction
	3.2 GSM Operations Cross Reference
	3.3 GSM Operations
	3.3.1 Read Operations
	3.3.2 Instruction Read Operations
	3.3.3 Read-for-Ownership Operations
	3.3.4 Data Cache Invalidate Operations
	3.3.5 Castout Operations
	3.3.6 TLB Invalidate-Entry Operations
	3.3.7 TLB Invalidate-Entry Synchronization Operations
	3.3.8 Instruction Cache Invalidate Operations
	3.3.9 Data Cache Flush Operations
	3.3.10 I/O Read Operations

	3.4 Endian, Byte Ordering, and Alignment

	Chapter�4 Packet Format Descriptions
	4.1 Introduction
	4.2 Request Packet Formats
	4.2.1 Addressing and Alignment
	4.2.2 Data Payloads
	4.2.3 Field Definitions for All Request Packet Formats
	4.2.4 Type 0 Packet Format (Implementation-Defined)
	4.2.5 Type 1 Packet Format (Intervention-Request Class)
	4.2.6 Type 2 Packet Format (Request Class)
	4.2.7 Type 3–4 Packet Formats (Reserved)
	4.2.8 Type 5 Packet Format (Write Class)
	4.2.9 Type 6–11 Packet Formats (Reserved)

	4.3 Response Packet Formats
	4.3.1 Field Definitions for All Response Packet Formats
	4.3.2 Type 12 Packet Format (Reserved)
	4.3.3 Type 13 Packet Format (Response Class)
	4.3.4 Type 14 Packet Format (Reserved)
	4.3.5 Type 15 Packet Format (Implementation-Defined)

	Chapter�5 Globally Shared Memory Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register and Bit Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Source Operations CAR (Configuration Space Offset 0x18)
	5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)

	5.5 Command and Status Registers (CSRs)

	Chapter�6 Communication Protocols
	6.1 Introduction
	6.2 Definitions
	6.2.1 General Definitions
	6.2.2 Request and Response Definitions
	6.2.2.1 System Request
	6.2.2.2 Local Request
	6.2.2.3 System Response
	6.2.2.4 Local Response

	6.3 Operation to Protocol Cross Reference
	6.4 Read Operations
	6.4.1 Internal Request State Machine
	6.4.2 Response State Machine
	6.4.3 External Request State Machine

	6.5 Instruction Read Operations
	6.5.1 Internal Request State Machine
	6.5.2 Response State Machine
	6.5.3 External Request State Machine

	6.6 Read for Ownership Operations
	6.6.1 Internal Request State Machine
	6.6.2 Response State Machine
	6.6.3 External Request State Machine

	6.7 Data Cache and Instruction Cache Invalidate Operations
	6.7.1 Internal Request State Machine
	6.7.2 Response State Machine
	6.7.3 External Request State Machine

	6.8 Castout Operations
	6.8.1 Internal Request State Machine
	6.8.2 Response State Machine
	6.8.3 External Request State Machine

	6.9 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations
	6.9.1 Internal Request State Machine
	6.9.2 Response State Machine
	6.9.3 External Request State Machine

	6.10 Data Cache Flush Operations
	6.10.1 Internal Request State Machine
	6.10.2 Response State Machine
	6.10.3 External Request State Machine

	6.11 I/O Read Operations
	6.11.1 Internal Request State Machine
	6.11.2 Response State Machine
	6.11.3 External Request State Machine

	Chapter�7 Address Collision Resolution Tables
	7.1 Introduction
	7.2 Resolving an Outstanding READ_HOME Transaction
	7.3 Resolving an Outstanding IREAD_HOME Transaction
	7.4 Resolving an Outstanding READ_OWNER Transaction
	7.5 Resolving an Outstanding READ_TO_OWN_HOME Transaction
	7.6 Resolving an Outstanding READ_TO_OWN_OWNER Transaction
	7.7 Resolving an Outstanding DKILL_HOME Transaction
	7.8 Resolving an Outstanding DKILL_SHARER Transaction
	7.9 Resolving an Outstanding IKILL_HOME Transaction
	7.10 Resolving an Outstanding IKILL_SHARER Transaction
	7.11 Resolving an Outstanding CASTOUT Transaction
	7.12 Resolving an Outstanding TLBIE or TLBSYNC Transaction
	7.13 Resolving an Outstanding FLUSH Transaction
	7.14 Resolving an Outstanding IO_READ_HOME Transaction
	7.15 Resolving an Outstanding IO_READ_OWNER Transaction

	Glossary of Terms and Abbreviations

