Rapidl O™ Interconnect Specification
Annex 1. Software/System Bring Up
Specification

Rev. 1.3, 06/2005

© Copyright RapidlO Trade Association "fjf:' '[
RapidIO.

Rapidl O Trade Association

Revision History

Revision Description Date
10 First release 12/17/2003
13 Technical changes: the following errata showings: 02/23/2005

04-09-00020.001, 04-09-00023.001
Converted to 1SO-friendly templates
Revision bumped to align with the rest of the specification stack

13 Removed confidentiality markings for public release 06/07/2005

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS1S’. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NOWARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREESTO
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidlO Trade Association, specifications, or membership should be forwarded to:
RapidlO Trade Association

Suite 325, 3925 W. Braker Lane

Austin, TX 78759

512-305-0070 Tel.

512-305-0009 FAX.

RapidlO and the Rapidl O logo are trademarks and service marks of the Rapidl O Trade Association. All other trademarks are the property of their
respective owners.

Rapidl O Trade Association

Rapidl O Annex 1: Softwar e/System Bring Up Specification Rev. 1.3

Table of Contents

Chapter 1 Overview

11 (111070 [0 Tox 1 1)
1.2 (@Y V1= T
13 SCOPIE. ..ttt sttt
14 System Enumeration AP..........cccovevevieeeeneneseeeeese e
15 TEIMINOIOGY .. .e vttt
1.6 Software CONVENLIONS.........coeiiveeiiieie et

Chapter 2 Requirementsfor System Bring Up

2.1 (g1 (oo [UTe: (1) OO
2.2 BOOt REQUITEMENES ...t
2.3 Enumeration Completion............cooeieiineneeiene e,
2.4 Enumeration TiIME-OUL..........cocoueeiveieieicieee e
25 Function REUrN COOESooiveeeeieeee e

Chapter 3 Hardware Abstraction Layer

31 INEFOAUCTION........eceeiieeeee e
3.2 Device AAArESSING.....ccevverierieeiieieiesee et
3.3 HAL FUNCLIONS ..ot
331 Types and DefiNitions.........cccccecevererieeeesere e
3.3.2 MOGEINUMLOCAIPOITS......ccve e
333 rioConfigurationREadccoovvereerieienieee e
3.34 rOCONfiguratioNWIItecocveiiierieee e

Chapter 4 Standard Bring Up Functions

41 (111070 [0 Tox 1 o] R
4.2 Bring Up FUNCLIONS........cceeieee e
4.3 Dala SHUCLUMES.....eeeeeeiiieeeee ettt e e e e e e e e e e e e e s e sssnnnns
43.1 FHOINITLID e
4.3.2 FTOGELFEAIUNES.veeee ettt e e rrraee e
4.3.3 rOGEtSWItChPOrtINfo.......ccvveei i,
4.3.4 FOGEtEXIFEAUrESPLY ...
435 rOGEINEXtEXIFEAtUrESPLr ...
4.3.6 FOGELSOUrCEOPS. ... eeveerieterieereeiesiesreseeseessesseeseeseeseesseens
4.3.7 FOGEIDESIOPS ...ttt
4.3.8 FOGELAAAreSSMOTE. ...t
4.3.9 roGetBaseDeVvICEald.......ccocoeiivceeeee e
4.3.10 rOSEtBaseDeVICEldcoooveviieie e

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Table of Contents

4.3.11
4.3.12
4.3.13
4.3.14
4.3.15

FOACUITEDEVICEL OCK. ...ttt 24
HORE €8SEDEVICELOCK ...t e 25
(Lol €1= (Oolg 0] 010 o= o1 "o 26
FTOSELCOMPONENTTAGeveeveeieeie sttt e 26
FIOGELPOIEITSIBLUS..........eveeeeieieeeeie et 27

Chapter 5 Routing-Table Manipulation Functions

51
52
521
522

INEFOTUCTION. ...ttt e e 29
Routing Table FUNCLIONS........cccoiiiiiieiesie et 29
FOROULEATUAENTIY ... 29
FOROULEGEIENTIY ... e 30

Chapter 6 Device Access Routine Interface

6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9

(Tig11 (oo [UTei (1) o ORI 33
DAR PACKAGING ...ttt sttt sttt st sbe st ne et ssesnes 33
EXECULION ENVIFONMENToeiieeie ettt et e s eae e s e eree e 33
TYPE DEFINITIONS ... e et 33
DAR FUNCLIONS ...ttt ettt ettt st e st e s st e s e s erae e s sben e 34
rioDar_nameGetFunctionTabl ... 34
FIOD AN NITTAIIZE. ...t 35
FIOD @I TEIMINGLE. ..ottt e e e e e e e e e et e e s st e e s s rae e s sbeeessbeeesaneeas 35
(LoD === A1V, = (o o 1R 36
FIODAIREGISIENottt sr e e nrenne e 36
FODArGEIMEMOIYSIZE. ..o 37
FODArGELSWITCHINTO ... 38
FTODArSELPOIROULE.eeeieie ettt s e e e s e err e e e e e e e earees 39
FTOD A GEIPOIROULE.eveieee ettt ettt e et e e s e e et e e e s eesbreeeesssanreeeeessasrrees 40

Annex A System Bring Up Guidelines

Al
A2
A3
A31
A3.2
A4

0 L8 o o o 41
Overview of the System Bring UpP PrOCESSccooeiiririnienene e 41
System Enumeration AlQOIthmcooieeeieieseeee e 42
Data Structures, Constants, and Global Variables...........ccccvvvriininencenenn, 43
S S 10 (000 o L= TR 44
System Bring Up EXaMPIEc..ooiiiiiiiieeeeeeee et 48

Rapidl O Trade Association

Rapidl O Annex 1: Softwar e/System Bring Up Specification Rev. 1.3

List of Figures

A-1 EXQMPIE SYSIEIM ..ottt st e e nennennn 49

Rapidl O Trade Association 5

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

List of Figures

Blank page

6 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Chapter 1 Overview

1.1 Introduction

This chapter provides an overview of the RapidlO Annex 1: Software/System Bring
Up Soecification Rev. 1.3 document. This document assumes that the reader is
familiar with the Rapidl O specifications, conventions, and terminology.

1.2 Overview

The RapidlO Architectural specifications establish aframework that enablesawide
variety of implementations. The RapidlO Part 7: System and Device
Inter-operability Specification provides a standard set of device and system design
solutions to support inter-operability. This document builds upon the
inter-operability specification to define a standard set of software API functions for
use in system bring up.

Each chapter addresses a different bring up topic. This revision of the RapidlO
Annex 1. Software/System Bring Up Specification Rev. 1.3 document covers the
following issues:

Chapter 2, “Requirements for System Bring Up”
Chapter 3, “Hardware Abstraction Layer”

Chapter 4, “ Standard Bring Up Functions’

Chapter 5, “ Routing-Table Manipul ation Functions”
Chapter 6, “Device Access Routine Interface”
Annex A, “System Bring Up Guidelines’

1.3 Scope

Although Rapidl O networks provide many features and capabilities, there are afew
assumptions and restrictions that this specification relies on to simplify the bring up
process and narrow the specification scope. These assumptions and restrictions are:

* Only two hosts may simultaneously enumerate a network. Two hosts may be
needed on a network for fault tolerance purposes. System integrators must
determine which hosts can perform this function.

Rapidl O Trade Association 7

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

* Only one host actually completes the network enumeration (thisis referred to
as the winning host). The second host must retreat and wait for the
enumeration to complete or, assuming the winning host has failed, for
enumeration to time out. If atime out occurs, the second host re-enumerates
the network.

* After enumeration, other hosts in the system must passively discover the
network to gather topology information such as routing tables and memory
maps.

1.4 System Enumeration API

System enumeration API functions may be divided into two categories.

» Standard RapidI O functions that use hardware resources defined by the
Rapidl O specifications. These functions should rely on the support functions
provided by the Hardware Abstraction Layer (HAL) to ensure portability
between different platforms.

* Device-specific (vendor-specific) functions defined by a device manufacturer
that use hardware resources outside of the scope of the RapidlO
specifications. The main purpose of these functionsisto provide Hardware
Abstraction Layer (HAL) support to the standard Rapidl O functions.

An important goal of this software API specification is to minimize the number of
device-specific functions required for enumeration so that the portability of the API
across hardware platforms is maximized.

1.5 Terminology

This document uses terms such as local port, local configuration registers, etc. to
refer to hardware resources associated with a Rapidl O end point device attached to
(or combined with) the host processor that performs RapidlO system enumeration
and initialization.

1.6 Software Conventions

To describe the software API functions, this document uses syntactic and notational
conventions consistent with the C programming language. The conventions for
naming functions and variables used by these APIs are outside of scope of this
document.

8 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Chapter 2 Requirementsfor System Bring Up

2.1 Introduction

This section describes basic requirements for system bring up and discovery. An
overview of the system bring up process, including a system bring up example, is
presented in Annex A, “System Bring Up Guidelines’.

2.2 Boot Requirements
The following system state is required for proper system bring up:

After the system is powered on, the state necessary for system enumeration to occur
using multiple host processors is automatically initialized as follows (These initial
state requirements are specified in the RapidlO Part 7: System and Device
Inter-operability Specification):

* System devices are initialized with the following Base Device IDs:

— Non-boot-code and non-host device I Ds are set to OxFF (OxFFFF for
16-bit devicel D systems).
— Boot code device IDs are set to OxFE (OxOOFE for 16-bit devicel D
systems).
— Host device IDs are set to 0x00 (0x0000 for 16-bit devicel D systems).
* Physical layer link initialization of end pointsis complete.

* The default routing state of all switches between the boot code device and the
host deviceis set to route all requestsfor device ID OxFE (OxOOFE for 16-bit
devicel D systems) to the appropriate boot code device. All response packets
are routed back to the host from the boot code device.

» Any host that participates in discovery must change its destination ID to a
unique ID value before starting the system initialization process. Thisvalue
isused by adevice's Host Base Device ID Lock CSR to ensure only one host
can manipulate adevice at atime. The allowed ID values for a discovering
host are 0x00 (0x0000) and 0x01 (0x0001). A host with an ID of 0x00
(0Ox0000) has alower priority than ahost with an ID of 0x01 (0x0001). Host
devices must be configured to accept maintenance packets with a destination
ID of OXFF (OxFFFF for 16-bit devicel D systems) aswell as the unique host
ID.

Rapidl O Trade Association 9

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

* All host devices have their Master Enable bit (Port General Control CSR) set
to 1. Switch devices do not have a Master enable bit.

2.3 Enumeration Completion

One or two hosts can perform system enumeration in a RapidlO network. If two
hosts are present, an algorithm is needed to determine which host has the priority to
proceed with enumeration. The host with the higher priority is the winning host and
the other host is the losing host. The enumeration algorithm suggested in Appendix
A, “System Bring Up Guidelines,” on page 41 sets priority based on the value of the
power-on device ID.

Enumeration is complete when the winning host releases the lock on the losing host.
It isthe losing host’s responsibility to detect that it has been locked by the winning
host and to later detect that the lock has been released by the winning host. The
methods used to rel ease locks on nodes other than the host nodes is outside the scope
of this document.

2.4 Enumeration Time-Out

10

As mentioned in the previous section, two hosts can be used to enumerate the
RapidlO network. The algorithm in Appendix A assumes the host with the higher
power-on host device ID has priority over the other host. Because of this pre-defined
priority, only one host (the one with higher priority) can win the enumeration task.
In this case, the losing host enters await state.

If the winning host fails to enumerate the entire network, the losing host’s wait state
times out. When this occurs, the losing host attempts to enumerate the network. In
an open 8-bit devicel D system, the losing host must wait 15 seconds before timing
out and restarting the enumeration task. The length of the time-out period in aclosed
or a 16-bit devicel D system may differ from that of an open system.

To develop the 15 second timeout value, the following assumptions are made about
the network maximal size:

NUMDEV =256 devices

NUMSWITCHES = 256 switches

NUMFTE = 256 routing table entries per switch

It is assumed that a separate maintenance write packet is required to program each
routing table entry for each switch. Since we need to establish a time base for
operations, we assume:

CWTime = 100 microseconds per configuration write packet

Now we can estimate that the number of configuration writes it takes to program all

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

of the switch routing table entriesis (256 switches)* (256 routing table entries), or;

=> 256* 256* CWTIME microsecs =
=> ~6.6 seconds.

Given these rough approximations, a 15 second timeout value is seen as appropriate
and conservative for open systems. The chosen value must be such that if atimeout
were to occur, it must be guaranteed that failure HAS occured, and hence choosing
aconservative value is necessary.

2.5 Function Return Codes

The following return codes and their constant values are defined for use by the
system bring up functions.

typedef unsigned int STATUS;

#define RIO_SUCCESS 0x0 I Success status code

#define RIO_WARN_INCONSISTENT ox1 // Used by
/I rioRouteGetEntry—indicates
// that the routeportno returned is
I/ not the same for all ports

#define RIO_ERR_SLAVE 0x1001 // Another host has a higher
/] priority

#define RIO_ERR_INVALID_PARAMETER 0x1002 // One or more input parameters
/l had aninvalid value

#define RIO_ERR_RIO 0x1003 // The RapidlO fabric returned a
I/ Response Packet with ERROR
/] status reported

#define RIO_ERR_ACCESS 0x1004 /I A device-specific hardware
Il interface was unable to generate
// amaintenance transaction and
// reported an error

#define RIO_ERR_LOCK 0x1005 /I Another host aready acquired
/I the specified processor element

#define RIO_ERR_NO_DEVICE_SUPPORT 0x1006 // Device Access Routine does not

/I provide servicesfor this device
#define RIO_ERR_INSUFFICIENT_RESOURCES 0x1007 /I Insufficient storage availablein
/I Device Access Routine private

/[storage area
#define RIO_ERR_ROUTE_ERROR 0x1008 /I Switch cannot support
/I requested routing
#define RIO_ERR_NO_SWITCH 0x1009 /I Target deviceisnot aswitch

#define RIO_ERR_FEATURE_NOT_SUPPORTED Ox100A // Target deviceis not capable of
/I per-input-port routing

Rapidl O Trade Association 11

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Blank page

12 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Chapter 3 Hardware Abstraction Layer

3.1 Introduction

The Hardware Abstraction Layer (HAL) provides a standard software interface to
the device-specific hardware resources needed to support RapidiO system
configuration transactions. Configuration read and write operations are used by the
HAL functions to access Rapidl O device registers. The HAL functions are accessed
by the RapidlO enumeration API during system bring up.

This section describes the HAL functions and how they can be used to access local
and remote RapidlO device registers. These functions must be implemented by
every new device-specific host-processing element to support RapidlO system
enumeration and initialization. The HAL functions assume the following:

* All configuration read and write operations support only single word (4-byte)
accesses.

» Asrequired by the device, the size of the 8-bit or 16-bit devicel D field is
considered by the deviceimplementation (see section 2.4 of the Rapidl O Part
3: Common Transport Specification for more information).

» An enumerating processor device may have more than one Rapidl O end point
(local port).

3.2 Device Addressing

One purpose of the HAL isto provide a unified software interface to configuration
registersin both local and remote Rapidl O processing elements. Thisis done using
a universal device-addressing scheme. Such a scheme enables HAL functions to
distinguish between accesses to local and remote RapidlO end points without
requiring an additional parameter. The result is that only one set of HAL functions
must be implemented to support local and remote configuration operations.

All HAL functions use the destid and hopcount parameters to address a RapidlO
device. The HAL reserves destid=0xFFFFFFFF and hopcount of O for addressing
configuration registers within the local RapidlO end point. A destid= OxFFFFFFFF
and hopcount of 0 value must be used to address the local processing end point
regardless of the actual destination ID value. This reserved combination does not
conflict with the address of other Rapidl O devices. Thelocalport parameter is used
by the HAL functions to identify a specific local port within RapidlO devices
containing multiple ports.

Rapidl O Trade Association 13

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

3.3 HAL Functions
The functions that form the RapidlO initialization HAL are described in the
following sections.
3.3.1 Typesand Definitions

[* The HOST_REGS value below is a destination 1D used to specify that the
registers of the processor/platform on which the code is running are to be accessed.
*/

#define HOST_REGS OxFFFFFFFF

3.3.2 rioGetNumL ocalPorts

Prototype:

INT32 rioGetNumL ocal Ports (

void

)
Arguments:

None
Return Value:

0 Error

n Number of Rapidl O ports supported
Synopsis:

rioGetNumLocal Ports() returnsthetota number of loca Rapidl O ports supported by the HAL functions. The
number n returned by thisfunction should beequd to or greater than 1. A returned vaue of O indicates an error.

3.3.3 rioConfigurationRead

Prototype:
STATUS rioConfigurationRead (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *readdata
)
Arguments:
local port Local port number [IN]
destid Destination ID of the target device [IN]
hopcount Hop count [IN]
offset Word-aligned (four byte boundary) offset—in
bytes—of the CAR or CSR [IN]
*readdata Pointer to storage for received data [OUT]
Return Value:

14 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

The read operation completed successfully and valid
data was placed into the specified location.

One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioConfigurationRead() performsaconfiguration reed transection from CAR and/or CSR regigter(s) belongingtoa
local or remate Rapidl O device. Thefunction uses adevice-specific hardware interface to generate maintenance
transactionsto remote devices. This hardware sends a configuration reed request to the remote device (specified by
destid and/or hopcount) and waitsfor acorresponding configuration read response. After thefunction recaivesa
configuration read regponseit returnsdataand/or statusto thecdler. Themethod for accessing regidtersinalocd device

isdevice-gpedific.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regiders.

3.3.4 rioConfigurationWrite

Prototype:

STATUS rioConfigurationWrite (
UINT8
UINT32
UINT8
UINT32
UINT32

)

Arguments:
localport
destid
hopcount
offset

*writedata

Return Value:
RIO_SUCCESS
RIO_ERR_INVALID_PARAMETER
RIO_ERR RIO

RIO_ERR_ACCESS

Synopsis:

localport,
destid,
hopcount,
offset,
*writedata

Local port number [IN]
Destination ID of the target device [IN]
Hop count [IN]

Word-aligned (four byte boundary) offset—in
bytes—of the CAR or CSR [IN]

Pointer to storage for data to be written [IN]

The write operation completed successfully.
One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioConfigurationWrite() performsaconfiguration write transaction to CAR and/or CSR regigter(s) bdongingtoa
local or remote Rgpidl O device. Thefunction uses adevice-gpecific hardware interface to generate maintenance
transactionsto remote devices. This hardware sends a configuration write request to the remote device (specified by

Rapidl O Trade Association

15

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

destid and/or hopcount) and waits for acorresponding configuration write regponse. After the function receivesa
configuration write responseit refurns Satus to the caller. The method for accessing regisersin alocal deviceis
device-specific.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigters.

16 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Chapter 4 Sandard Bring Up Functions

4.1 Introduction

This section describes the Rapidl O functions that must be implemented to support
system bring up. Functions are defined only for device registers used during the
Rapidl O enumeration and initialization process, not for al possible RapidlO device
registers. These functions can be implemented using the HAL functions. Many of
the functions can also be implemented as macros that specify predefined parameters
for the HAL functions. The standard Rapidl O bring up functions can be combined
into alibrary if they are implemented as a set of subroutines.

4.2 bring up Functions

The functions defined for the RapidlO enumeration and initialization process are
described in the following sections.

4.3 Data Structures

typedef ADDR_MODE UINT32;
#define ADDR_MODE_34BIT_SUPPORT 0x1
#define ADDR_MODE_50_34BIT_SUPPORT 0x3
#define ADDR_MODE_66_34BIT_SUPPORT Ox5
#define ADDR_MODE_66_50_34BIT_SUPPORT Ox7

4.3.1 riolnitLib

Prototype:
STATUS riolnitLib (
void
)
Arguments:
None
Return Value:
RIO_SUCCESS Initialization completed successfully.
RIO_ERROR Generic error report. Unableto initialize library.
Synopsis:

Rapidl O Trade Association 17

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

riolnitLib() initidizesthe RgpidlO AP library. No routines defined in this chapter may be cdled unlessand untile
riolnitLib hasbeen invoked. If riolnitLib returns RIO_ERROR, no routines defined in this chepter may be caled.

4.3.2 rioGetFeatures

Prototype:

STATUS rioGetFeatures (
UINT8
UINT32
UINT8
UINT32

)

Arguments:
local port
destid
hopcount

*features

Return Value:
RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR RIO

RIO_ERR_ACCESS

Synopsis:

localport,
destid,

hopcount,
*features

Local port number [IN]
Destination 1D of the processing element [IN]
Hop count [IN]

Pointer to storage containing the received features
[OUT]

The features were retrieved successfully and placed
into the location specified by *features.

One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioGetFeatures() usesthe HAL rioConfigurationRead() function to reed from the Processng Element Feetures
CAR of the pecified processing dement. Va uesread are placed into thelocation referenced by the* featur es pointer.

Reported gatusissmilar torioConfigurationRead()

A degtid vdue of HOST_REGS and hopcount of 0 resultsin acoessesto thelocd hosts Repidl O regigters.

4.3.3 rioGetSwitchPortl nfo

Prototype:

STATUS rioGetSwitchPortInfo (
UINT8
UINT32
UINT8
UINT32

)

Arguments:
localport
destid

hopcount

18

localport,
destid,

hopcount,
*portinfo

Local port number [IN]
Destination ID of the processing element [IN]
Hop count [IN]

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

*portinfo Pointer to storage containing the received port

information [OUT]
Return Value:

RIO_SUCCESS The port information was retrieved successfully and
placed into the location specified by * portinfo.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an
invalid value.

RIO_ERR_RIO The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetSwitchPortlnfo() usestheHAL rioConfigurationRead() functiontoreed fromthe Switch Port Information
CAR of thespecified processng e ement. Va uesread are placed into thelocation referenced by the* por tinfo pointer.
Reported Satusissimilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigers.

4.3.4 rioGetExtFeaturesPtr

Prototype:
STATUS rioGetExtFeaturesPtr (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *extfptr
)
Arguments:
local port Local port number [IN]
destid Destination 1D of the processing element [IN]
hopcount Hop count [IN]
*extfptr Pointer to storage containing the received extended
feature information [OUT]
Return Value:
RIO_SUCCESS The extended feature information was retrieved
successfully and placed into the location specified by
*extfptr.
RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.
RIO_ERR_RIO The Rapidl O fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.
RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Rapidl O Trade Association 19

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

20

Synopsis:

rioGetExtFeaturesPtr () ussstheHAL rioConfigurationRead() functiontoreed the pointer tothefirg entry inthe
extended featureslig from the Assembly Information CAR of the Specified processng el ement. That pointer isplaced
into the location referenced by the* extfptr pointer. Reported sausissmilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigers.
Notethat if the EF_PTR field of *extfptr isO, no extended featuresare availdble.

4.3.5 rioGetNextExtFeaturesPtr

Prototype:

STATUS rioGetNextExtFeaturesPtr (

UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 currfptr,
UINT32 *extfptr

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

currfptr Pointer to the last reported extended feature [IN]

*extfptr Pointer to storage containing the received extended

feature information [OUT]
Return Value:

RIO_SUCCESS The extended feature information was retrieved
successfully and placed into the location specified by
*extfptr.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The Rapidl O fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetNextExtFeaturesPtr() usestheHAL rioConfigurationRead() functionto reed the pointer tothe next entry
in the extended festures. That pointer is placed into the location referenced by the* extfptr pointer. Reported satusis
dmilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigers.

Notethet if the EF_PTR fidld of *extfptr is0, no further extended features are available. Invoking
rioGetNextExtFeaturesPtr when currfptr hesan EF_PTR fidd value of Owill result in areturn code of
RIO_ERR INVALID_PARAMETER.

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

4.3.6 rioGetSourceOps

Prototype:
STATUS rioGetSourceOps (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *srcops
)
Arguments:

local port Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*srcops Pointer to storage containing the received source
operation information [OUT]

Return Value:

RIO_SUCCESS The source operation information was retrieved
successfully and placed into the location specified by
*srcops.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid vaue.

RIO_ERR_RIO The Rapidl O fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetSourceOps() usesthe HAL rioConfigurationRead() function to reed from the Source Operaions CAR of
the specified processing dement. Va uesread are placed into the location referenced by the* sr cops pointer. Reported
detusissmilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin acoessesto thelocd hosts Repidl O regigters.

4.3.7 rioGetDestOps

Prototype:
STATUS rioGetDestOps (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *dstops
)
Arguments:
localport Local port number [IN]
destid Destination ID of the processing element [IN]
hopcount Hop count [IN]
*dstops Pointer to storage containing the received destination

operation information [OUT]

Rapidl O Trade Association 21

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Return Vaue:
RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR RIO

RIO_ERR_ACCESS

Synopsis:

The destination operation information was retrieved
successfully and placed into the location specified by
*dstops.

One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioGetDestOps() usestheHAL rioConfigurationRead() functionto reed from the Destination OperationsCAR of
the gpecified processing dement. Va uesread are placed into thelocation referenced by the* dstops pointer. Reported

detusissmilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin acoessesto thelocd hosts Repidl O regigters.

4.3.8 rioGetAddressM ode

Prototype:

STATUS rioGetAddressMode (
UINT8
UINT32
UINT8
ADDR_MODE

)

Arguments:
localport
destid
hopcount

* amode

Return Value:
RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

localport,
destid,
hopcount,
*amode

Local port number [IN]
Destination 1D of the processing element [IN]
Hop count [IN]

Pointer to storage containing the received address
mode (34-bit, 50-bit, or 66-bit address) information
[OUT]

The address mode information was retrieved
successfully and placed into the location specified by
*amode.

One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioGetAddressMode() usestheHAL rioConfigurationRead() functionto reed fromthe PE Logicd Layer CSR of
the gpecified processng dement. The number of address bits generated by the PE (asthe source of an operation) and

22

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

processed by the PE (asthetarget of an operation) are placed into the location referenced by the* amode pointer.

Reported Satusissmilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigers.

4.3.9 rioGetBaseDeviceld

Prototype:

STATUS rioGetBaseDeviceld (
UINT8
UINT32

)

Arguments:
local port

*deviceid

Return Vaue:
RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

localport,
*deviceid

Local port number [IN]

Pointer to storage containing the base device ID
[OUT]

The base device ID information was retrieved
successfully and placed into the
location specified by *deviceid.

One or more input parameters had an invalid vaue.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioGetBaseDevicel d() usestheHAL rioConfigurationRead() functionto reed from the Base Device ID CSR of
thelocd processing dement (thedestid and hopcount parametersused by rioConfigurationRead() must besst to
HOST_REGS and zero, respectively). Vauesread are placed into the location referenced by the* deviceid pointer.
Reported gatusissmilar torioConfigurationRead(). Thisfunction isuseful only for loca end-point devices

4.3.10 rioSetBaseDeviceld

Prototype:

STATUS rioSetBaseDeviceld (
UINT8
UINT32
UINT8
UINT32

)

Arguments:
local port
destid
hopcount
newdeviceid
Return Value:

Rapidl O Trade Association

localport,
destid,
hopcount,
newdeviceid

Local port number [IN]

Destination 1D of the processing element [IN]
Hop count [IN]

New base device ID to be set [IN]

23

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

24

RIO_SUCCESS
RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

The base device |D was updated successfully.
One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioSetBaseDevicel d() usestheHAL rioConfigurationWrite() functionto writethebase device ID inthe Base
DevicelD CSR of the gpecified processng element (end point devices only). Reported Satusissmilar to

rioConfigurationWrite().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigers.

4.3.11 rioAcquireDevicel ock

Prototype:

STATUS rioAcquireDevicelock (
UINTS8
UINT32
UINT8
UINT16
UINT16

)

Arguments:
localport
destid
hopcount

hostdeviceid
*hostlockid

Return Vaue:
RIO_SUCCESS
RIO_ERR_LOCK

RIO_ERR_INVALID_PARAMETER
RIO_ERR RIO

RIO_ERR_ACCESS

localport,
destid,
hopcount,
hostdeviceid,
*hostlockid

Local port number [IN]
Destination ID of the processing element [IN]
Hop count [IN]

Host base device ID for the local processing element
[IN]

Device ID of the host holding the lock if ERR_LOCK
isreturned [OUT]

The device lock was acquired successfully.

Another host already acquired the specified processor
element. ID of the device holding the lock is contained
in the location referenced by the *hostlockid
parameter.

One or more input parameters had an invalid value

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Synopsis:

rioAcquireDevicel ock() triesto acquire the hardware devicelock for the specified processing dement on behdf of
therequesting hogt. Thefunction usestheHAL rioConfigurationWrite() function towritetherequesting host device
ID intotheHost BaseLock Devicel D CSR of the gpecified processing dement. After thewritecompletes, thisfunction
ussstheHAL rioConfigurationRead() function to read the value back from the Host Base Lock DeviceID CSR.
Thewritten and read valuesarecompared. If they areequd,, thel ock was acquired successfully. Otherwise, ancther host
acquired thislock and the device I D for that hogt is reported.

Thisfunction assumes unigue host-based deviceidentifiers are assgned to discovering hosts. For more detalls, refer to
Annex A, “ System Bring Up Guiddines’.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigters.

4.3.12 rioReleaseDevicel ock

Prototype:
STATUS rioReleaseDevicel ock (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 hostdeviceid,
UINT16 *hostlockid
)
Arguments:
local port Local port number [IN]
destid Destination 1D of the processing element [IN]
hopcount Hop count [IN]
hostdeviceid Host base device ID for the local processing element
[IN]
*hostlockid Device ID of the host holding the lock if ERR_LOCK
isreturned [OUT]
Return Vaue:
RIO_SUCCESS The device lock was released successfully.
RIO_ERR_LOCK Another host already acquired the specified processor
element.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value

RIO_ERR_RIO The Rapidl O fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioRel easeDevicelock() triesto release the hardware devicelock for the specified processng dement on behdf of
therequesting hogt. Thefunction usesthe HAL rioConfigurationWrite() function towritetherequesting host device
ID intotheHost Base L ock Devicel D CSR of the gpecified processing d ement. After thewritecompletes, thisfunction
ussstheHAL rioConfigurationRead() function to read the value back from the Host Base Lock DeviceID CSR.
Thewritten and reed vauesarecompared. If they areequal, thel ock was acquired successfully. Otherwise, ancther host
acquired thislock and the device I D for thet hogt is reported.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin acoessesto thelocd hostsRepidl O regigters.

Rapidl O Trade Association 25

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

4.3.13 rioGetComponentTag

Prototype:

STATUS rioGetComponentTag (
UINT8
UINT32
UINT8
UINT32

)

Arguments:
local port
destid
hopcount

* componenttag

Return Vaue:
RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

localport,
destid,
hopcount,

* componenttag

Local port number [IN]
Destination ID of the processing element [IN]
Hop count [IN]

Pointer to storage containing the received component
tag information [OUT]

The component tag information was retrieved
successfully and placed into the location specified by
* componenttag.

One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioGetComponentTag() usestheHAL rioConfigurationRead() functionto reed fromthe Component Tag CSR of
the gpecified processing d ement. Vauesread are placed into the location referenced by the* componenttag pointer.

Reported gatusissmilar torioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin acoessesto thelocd hosts Repidl O regigters.

4.3.14 rioSetComponentTag

Prototype:

STATUS rioSetComponentTag (
UINT8
UINT32
UINT8
UINT32

)

Arguments:
localport
destid
hopcount
componenttag
Return Value:

26

localport,
destid,
hopcount,
componenttag

Local port number [IN]

Destination ID of the processing element [IN]
Hop count [IN]

Component tag value to be set [IN]

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

RIO_SUCCESS
RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

The component tag was updated successfully.
One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioSetComponentTag() usesthe HAL rioConfigurationWrite() function to writethe component tag into the
Component Tag CSR of the gpecified processng dement. Reported Satusissmilar torioConfigurationWrite().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigers.

4.3.15 rioGetPortErrSatus

Prototype:

STATUS rioGetPortErrStatus (
UINT8
UINT32
UINT8
UINT16
UINT8
UINT32

)

Arguments:
localport
destid
hopcount

extfoffset

portnum

* porterrorstatus
Return Value:

RIO_SUCCESS

RIO_ERR_INVALID_PARAMETER
RIO_ERR_RIO

RIO_ERR_ACCESS

Synopsis:

localport,
destid,
hopcount,
extfoffset,
portnum,
*porterrorstatus

Local port number [IN]
Destination ID of the processing element [IN]
Hop count [IN]

Offset from the previously reported extended features
pointer [IN]

Port number to be accessed [IN]
Pointer to storage for the returned value [OUT]

The read completed successfully and valid datawas
placed into the location specified by * porterrorstatus.

One or more input parameters had aninvalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

rioGetPortErr Satus() usestheHAL rioConfigurationRead() functiontoreed thecontents of the Port n Error
and Status CSR of the specified processing dement. Reported statusissimilar to rioConfigurationRead().

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigers.

Rapidl O Trade Association

27

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Blank page

28 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Chapter 5 Routing-Table Manipulation
Functions

5.1 Introduction

This section describes the RapidlO functions that must be provided to support
routing tables used within the switch fabric. The RapidlO common transport
specification requires implementing device-identifier-based packet routing. The
detailed implementation of routing tables is beyond the scope of this specification.
The routing-table manipulation functions assume the following:

 The destination ID of the device that receives a packet routed by the switch is
the route destination ID.

* The specific port at the route destination I D that receives a packet routed by the
switch is the route port number.

* The software paradigm used for routing tablesis alinear routing table indexed
by the route destination ID.

* Switches may implement a global routing table, “per port” routing tables, or a
combination of both.

5.2 Routing Table Functions

The functions defined for Rapidl O routing-table manipulation are described in the
following sections.

5.2.1 rioRouteAddEntry

Prototype:
STATUS rioRouteAddEntry (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 routeportno
)
Arguments:
localport Local port number (RapidlO switch) [IN]
destid Destination ID of the processing element (RapidlO

Rapidl O Trade Association 29

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

30

hopcount
tableidx

routedestid
routeportno

Return Value:
RIO_SUCCESS
RIO_ERR_INVALID_PARAMETER
RIO_ERR RIO

RIO_ERR_ACCESS

RIO_WARN_INCONSISTENT

Synopsis:

switch) [IN]
Hop count [IN]

Routing table index for per-port switch
implementations [IN]

Route destination ID—used to select an entry into the
specified routing table [IN]

Route port number—value written to the selected
routing table entry [IN]

The routing table entry was added successfully.
One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with

ERROR status reported. Error status returned by this

function may contain additional information from the
Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Used by rioRouteGetEntry—indicates that the
routeportno returned is not the same for all ports.

rioRouteAddEntry() addsan entry to arouting tablefor the Rapidl O switch specified by thedestid and hopcount
parameters. Thetableidx parameter isused to select apecific routing table in the case of implementationswith “ per
port” routing tebles. A vaue of tabl ei dx=0xFFFFFFFF specifiesagloba routing tablefor the Rapidl O switch. The
routeportno parameter iswritten to therouting table entry sdlected by ther outedestid parameter.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigters.

5.2.2 rioRouteGetEntry

Prototype:

STATUS rioRouteGetEntry (
UINTS8
UINT32
UINTS8
UINTS8
UINT16
UINTS8

)

Arguments:
localport
destid

hopcount
tableidx

routedestid

*routeportno

localport,
destid,
hopcount,
tableidx,
routedestid,
*routeportno

Local port number (RapidlO switch) [IN]

Destination ID of the processing element (RapidlO
switch) [IN]

Hop count [IN]

Routing table index for per-port switch
implementations [IN]

Route destination |D—used to select an entry into the
specified routing table [IN]

Route port number—pointer to value read from the
selected routing table entry [OUT]

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Return Value:
RIO_SUCCESS
RIO_ERR_INVALID_PARAMETER
RIO_ERR RIO

RIO_ERR_ACCESS

RIO_WARN_INCONSISTENT

Synopsis:

The routing table entry was added successfully.
One or more input parameters had an invalid value.

The Rapidl O fabric returned a Response Packet with
ERROR status reported.

Error status returned by this function may contain
additional information from the Response Packet.

A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Used by rioRouteGetEntry—indicates that the
routeportno returned is not the same for all ports.

rioRouteGetEnNtry() reedsan entry from arouting tablefor the Repidl O switch specified by thedestid and
hopcount paraneters Thetabl ei dx parameter isused to select agpecific routing tablein the case of implementations
with“per port” routing tables. A vauedf tabl el dx=0xFF specifiesaglobd routing tablefor the RgpidlO switch. The
value in the routing teble entry sdlected by theroutedestid parameter isread from the table and placed into the

location referenced by the* routepor tno pointer.

Reedsfrom the globd routing table may be undefined in the case where per-port routing tebles exigt.
A degtid vdue of HOST_REGS and hopcount of 0 resultsin acoessesto thelocd hosts Repidl O regigters.

Rapidl O Trade Association

31

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Blank page

32 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Chapter 6 Device Access Routine Interface

6.1 Introduction

This section definesthe device accessroutine (DAR) interface that must be provided
for RapidlO device configuration. The client for this interface is the boot loader
responsiblefor Rapidl O network enumeration and initialization. By using astandard
DAR interface, the firmware does not need to include knowledge of device-specific
configuration operations. Thus, enumeration and initialization firmware can operate
transparently with devices from many component vendors.

6.2 DAR Packaging

For each processor type supported by a DAR provider, linkable object files for
DARs shall be supplied using ELF format. Device-specific configuration DARS
shall be supplied using C-language source code format.

6.3 Execution Environment

The functions provided by device-specific configuration DARs must be able to link
and execute within a minimal execution context (e.g., a system-boot monitor or
firmware). In general, configuration DARSs should not call an external function that
is not implemented by the DAR, unless the externa function is passed to the
configuration DAR by the initialization function. Also, configuration DAR
functions may not call standard C-language 1/0 functions (e.g., printf) or standard
C-language library functions that might manipul ate the execution environment (e.g.,
malloc or exit).

6.4 Type Definitions

The following type definitions are to be used by the DAR functionsin Section 6.5.

typedef struct RDCDAR_PLAT_OPS_STRUCT {
UINT32 specversion;

UINT32 (*rioConfigurationRead) (UINT8 localport,
UINT16 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *readdata);

UINT32 (*rioConfigurationWrite) (UINT8 localport,
UINT16 destid,
UINT8 hopcount,

Rapidl O Trade Association 33

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

UINT32 offset,
UINT32 *writedata);
} RDCDAR_PLAT_OPS;

typedef struct RDCDAR_OPS_STRUCT {
UINT32 specversion;
UINT32 (*rioDarlnitialize)
UINT32 (*rioDar Terminate)
UINT32 (*rioDarTestMatch)
UINT32 (*rioDarRegister)
UINT32 (*rioDarGetSwitchinfo)
UINT32 (*rioDarSetPortRoute)
UINT32 (*rioDarGetPortRoute)
UINT32 (*rioDarGetMemorySize)

} RDCDAR_OPS

typedef struct RDCDAR_DATA_STRUCT {
UINT32 databytesall ocated;
CHAR *data;

} RDCDAR_DATA

typedef struct RDCDAR_SWITCH_INFO_STRUCT {
BOOL useslutmodel;
BOOL separatel utperinputport;
UINT32 maxlutentries;

} RDCDAR_SWITCH_INFO

6.5 DAR Functions

The functions that must be provided for a RapidlO device-specific configuration
DAR ae described in the following sections. For the
rioDar_nameGetFunctionTable functions, the rioDar_name portion of the function
name shall be replaced by an appropriate name for the implemented driver.

NSNS AN AN
NN NN NN NN

6.5.1 rioDar_nameGetFunctionTable

Prototype:

UINT32 rioDar_nameGetFunctionTable(

UINT32 specversion,
RDCDAR_OPS STRUCT *darops,

UINT32 maxdevices,

UINT32 * darspecificdatabytes

)

Arguments:

specversion Version number of the DAR interface specification
indicating the caller’ simplementation of the type
definition structures [IN]

*darops Pointer to a structure of DAR functions that are
alocated by the caller and filled in by the called
function (see Section 6.4) [OUT]

maxdevices Maximum expected number of RapidlO devices that
must be serviced by thisconfiguration DAR [IN]

* darspecificdatabytes Number of bytes needed by the DAR for the DAR
private data storage area [OUT]

Return value:
RIO_SUCCESS On successful completion

34 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Synopsis:

rioDar_nameGetFunctionTable() iscaled by adient to obtain thelist of functionsimplemented by aRepidlO
device-specific configuration DAR module. It shal be cdled once before enumerating the Rapidl O network.

Thespecver sion parameter isthe verson number defined by therevison leve of the specification fromwhich the
DAR type definition structures are taken (see Section 6.4).

Themaxdevices parameter isan etimate of the maximum number of RapidlO devicesin the network that thisDAR
must service. The DAR usesthisestimate to determine the sizerequiired for the DAR private datastorage area. The
sorage sizeisreturned to thelocation referenced by the* dar specificdatabytes pointer. After thedient cdlsthis
function, thedient shal dlocateaDAR privete datastorage areaof asze no lessthan thet indicated by

*dar specificdatabytes. Thedient shal providethat private datastorage areatorioDar I nitialize().

6.5.2 rioDarlnitialize

Prototype:
UINT32 rioDarlnitialize (
UINT32 specversion,
UINT32 maxdevices,
RDCDAR_PLAT_OPS *platops,
RDCDAR _DATA *privdata
)
Arguments:
specversion Version number of the DAR interface specification
indicating the caller’ simplementation of the type
definition structures [IN]
maxdevices Maximum expected number of RapidlO devices that
must be serviced by this configuration DAR [IN]
*platops Pointer to a structure of platform functions for use by
the DAR (see Section 6.4) [IN]
*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]
Return value:
RIO_SUCCESS On successful completion
Synopsis:

rioDar|nitialize() iscaled by adient toinitialize a Rapidl O device-specific configuration DAR module. This
function shdl be cdled onceafter cdling therioDar_nameGetFunctionTable() functionsand before enumerating
the Rgpidl O network.

Thespecver sion parameter isthe verson number defined by therevison leve of the specification from which the
DAR type definition structures are taken (see Section 6.4).

Themaxdevices parameter isan etimate of the maximum number of RapidlO devicesin the network thet thisDAR
must sarvice Themaxdevices vaue must be equa to the vaue used in the corresponding
rioDar_nameGetFunctionTable() function cdl. Thedient isresponsblefor dlocating the structure referenced by
*privdata. Thedientisasoresponsblefor dlocatingaDAR private datastorage areaat least aslarge asthat pecified
by therioDar_nameGetFunctionTable() cdl. Thedient must initidizethestructurereferenced by * privdata with
thenumber of bytesalocated tothe DAR privete datagtorage areaand with the pointer to the storage area. After calling
rioDarnitialize(), thedient may not dedllocatethe DAR privatedatastorageareauntil after therioDar Terminate()
function hasbeen cdled.

6.5.3 rioDar Ter minate

Prototype:

UINT32 rioDarTerminate (
RDCDAR_DATA *privdata

Rapidl O Trade Association 35

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

)

Arguments:

*privdata

Return value:
RIO_SUCCESS

Synopsis:

Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

On successful completion

rioDar Terminate() isinvoked by adient to terminate aRapidl O device-gpecific configuration DAR module. This
function shdl be cdled once after dl use of the DAR servicesis completed. After cdling thisfunction, the dient may
dedllocate the DAR private data storage areaiin the structure referenced by * privdata.

6.5.4 rioDarTestM atch

Prototype:

UINT32 rioDarTestMatch (
RDCDAR_DATA

UINT8
UINT32
UINT8

)
Arguments:

*privdata

localport
destid

hopcount

Return value:
RIO_SUCCESS

RIO_ERR_NO_DEVICE_SUPPORT

Synopsis:

*privdata,
localport,
destid,

hopcount

Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Local port number used to access the network [IN]
Destination device ID for the target device [IN]

Number of switch hops needed to reach the target
device[IN]

Device DAR does provide services for this device

Device DAR does not provide services for this device.

rioDar TestMatch() isinvoked by adient to determinewhether or not aRapidl O device-spedific configuration DAR
module provides servicesfor the device specified by destid. The DAR interrogatesthe device (using the platform
functions supplied during DAR initidization), examinesthe deviceidentity and any necessary deviceregisers, and

determineswhether or not the deviceishandled by the DAR.

TheDAR doesnot assumethat apostivemeatch (return va ueof 0) meansthe DARwill actudly provideservicesfor the
device Thedient must explicitly register thedevicewithrioDARregister () if the dient will berequesting services

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regiders.

6.5.5 rioDarRegister

Prototype:
UINT32 rioDarRegister (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,

36 Rapidl O Trade Association

Arguments:

*privdata

local port
destid

hopcount

Return value:
RIO_SUCCESS

RIO_ERR NO_DEVICE_SUPPORT

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Local port number used to access the network [IN]
Destination device ID for the target device [IN]

Number of switch hops needed to reach the target
device[IN]

Device DAR successfully registered this device.

Device DAR does not provide servicesfor this device.

RIO_ERR_INSUFFICIENT_RESOURCES Insufficient storage available in DAR private storage

Synopsis:

area

rioDar Register () isinvoked by adient toregister atarget devicewith aRapidl O device-specific configuration DAR.
Thedient mugt cdl thisfunction oncefor eech device serviced by the DAR. Thedient should firgt usethe
rioDar TestMatch() function to verify thet the DAR is capable of providing servicesto the device.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigers.

6.5.6 rioDarGetMemorySize

Prototype:

UINT32 rioDarGetMemorySize (
RDCDAR_DATA

UINT8

UINT32
UINT8

UINT32
UINT32
UINT32
UINT32

)

Arguments:

*privdata

local port
destid

hopcount
regionix
*nregions

*regbytes
* startoffset

Return value:
RIO_SUCCESS

Rapidl O Trade Association

*privdata,
localport,
destid,
hopcount,
regionix,
*nregions,
*regbytes2],
*startoffset[2]

Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Local port number used to access the network [IN]
Destination device ID for the target device [IN]

Number of switch hops needed to reach the target
device[IN]

Index of the memory region being queried (0, 1, 2, 3,
) [IN]

Number of memory regions provided by the target
device [OUT]

Size (in bytes) of the queried memory region [OUT]

Starting address offset for the queried memory region
[OUT]

Device DAR successfully returned memory size

37

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

38

information for the target device.

RIO_ERR_NO_DEVICE_SUPPORT
Device DAR could not determine memory size
information for the target device.

Synopsis:

rioDar GetMemorySize() isinvoked by adient to determine the number of, the sizes of, and the offsetsfor the
memory regionssupported by aRapidl O target device. Thefunctionisintended to support themapping of PCI or other
addresswindowsto Rapidl O devices. If ther egionix parameter isgregter than the number of regionsprovided by the
device (* nregions), the DAR should return avaue of zero for the* regbytes and * star toffset parameters, and
indicatea“ successful” (0) return code.

rioDarGetMemorySizedwaysreturnsat leest oneregion. Thefirstindex, index 0, dwaysreferstotheregion controlled
by the Loca Configuration Space Base Address Registers.

Thedient must register the target device with the Repidl O device-specific configuration DAR before calling this
function.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigters.

6.5.7 rioDar GetSwitchlnfo

Prototype:
UINT32 rioDarGetSwitchinfo (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
RDCDAR_SWITCH_INFO *info
)
Arguments:
*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]
local port Local port number to be used to access network [IN]
destid Destination device ID to reach target switch device
[IN]
hopcount Number of switch hops to reach target switch device
[IN]
*info Pointer to switch information data structure (see
Section 6.4) [OUT]
Return value:
RIO_SUCCESS Device DAR successfully retrieved the information
for RDCDAR PLAT OPS STRUCT.
RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.
RIO_ERR_NO_SWITCH Target device is not aswitch.
Synopsis:

rioDar GetSwitchinfo() isinvoked by adient to retrieve the datanecessary to initidize the
RDCDAR_SWITCH_INFO gtructure.

Thedient mudt regiger the target device with the Repidl O device-gpecific configuration DAR before cdling this
function.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigters.

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

6.5.8 rioDar SetPortRoute

Prototype:
UINT32 rioDarSetPortRoute (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINTS8 routeportno
)
Arguments:
*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]
local port Local port number to be used to access network [IN]
destid Destination device ID to reach target switch device
[IN]
hopcount Number of switch hops to reach target switch device
[IN]
inport Target switch device input port [IN]
tableidx Routing table index for per-port switch
implementations [IN]
routedestid Route destination |D—used to select an entry into the
specified routing table [IN]
routeportno Route port number—value written to the selected
routing table entry [IN]
Return value:
RIO_SUCCESS Device DAR successfully modified the packet routing
configuration for the target switch device.
RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.
RIO_ERR_ROUTE_ERROR Switch cannot support requested routing.
RIO_ERR_NO_SWITCH Target deviceis not aswitch.
RIO_ERR _FEATURE_NOT_SUPPORTED Target device is not capable of per-input-port routing.
Synopsis:
rioDar SetPortRoute() isinvoked by adlient to modify the packet routing configuration for aRapidl O target switch
device
Thedient must regiger the target device with the Rapidl O device-gpecific configuration DAR before cdling this
function.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hosts Repidl O regigers.

Rapidl O Trade Association 39

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

6.5.9 rioDar GetPortRoute

Prototype:

UINT32 rioDarGetPortRoute (

RDCDAR_DATA
UINT8

UINT32

UINT8

UINT8

UINT16

UINT8

)

Arguments:

*privdata

local port
destid

hopcount
tableidx
routedestid
*routeportno

Return value:
RIO_SUCCESS

RIO_ERR_NO_DEVICE_SUPPORT
RIO_ERR_ROUTE_ERROR
RIO_ERR_NO_SWITCH

Synopsis:

*privdata,
localport,
destid,
hopcount,
tableidx,
routedestid,
*routeportno

Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Local port number to be used to access network [IN]

Destination device ID to reach target switch device
[IN]

Number of switch hops to reach target switch device
[IN]

Routing table index for per-port switch
implementations [IN]

Route destination |D—used to select an entry into the
specified routing table [IN]

Route port number—pointer to value read from the
selected routing table entry [OUT]

Device DAR successfully modified the packet routing
configuration for the target switch device.

Insufficient switch routing resources available.
Switch cannot support requested routing.

Target deviceis not aswitch.

rioDar GetPortRoute() isinvoked by adient to read the packet routing configuration for aRapidl O target switch

device

Thedient mudt regiger the target device with the Repidl O device-gpecific configuration DAR before cdling this

function.

A degtid vdue of HOST_REGS and hopcount of 0 resultsin accessesto thelocd hostsRepidl O regigters.

40

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Annex A System Bring Up Guidelines

A.1 Introduction

The RapidlO Annex 1. Software/System Bring Up Specification Rev. 1.3 defines a
standard set of software APl functions for use in system enumeration and
initialization. These API functions enable up to two Rapidl O hosts to cooperatively
enumerate and configure a Rapidl O network.

This appendix is provided as areference model for the system bring up process. An
algorithm is presented that enables up to two cooperating host processorsin a Rapid
IO system to enumerate the entire network, set up aroute to every system node, and
enable the booting software to start the next boot-process phase. The actual
implementation of the algorithm used to bring up a RapidlO network can vary
greatly from this model in both capability and complexity.

A.2 Overview of the System Bring Up Process

This section presents a high-level overview of the system bring up process.

1. The system is powered on. Refer to Chapter 2, “ Requirements for System
Bring Up” for the system power-on requirements.

2. The host processor fetches the initial boot code (if necessary). If two
processors are present, both can fetch theinitial boot code.

3. The system exploration and enumeration algorithm is started. The algorithm
for this process is outlined in Section A.3 on page 42.

4. All devices have been enumerated and stored in the device database, and
routes have been set up between the host device and al end point devices.
The enumeration process may optionally choose to do the following:

a) Compute and configure optimal routes between the host device and
end point devices, and between different end point devices.

b) Configure the switch devices with the optimal route information.

c) Storethe optimal route and alternate route information in the device
database.

5. The address space is mapped.

The host may access the network across a host-Rapidl O bridge or host-PCI bridge. The
address-space mapping across this bridge must be done when devices are enumerated and
stored in the device database. Thisallowsthe address of afound deviceto beretrieved later
and presented to the device access routines during operating system (OS) initialization. The
pseudocode for this processis as follows:

1 ACQUIRE the host bridge address-space requirement
2 MAP the address space into a host address partition X
3 FOR every device in the database

Rapidl O Trade Association 41

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

4 IF the component is a Rapidl O device

5 ACQUIRE the device' s address-space requirement

6 MAP the address space into a new host address partition

7 EXPAND the partition X window to cover the new partition
8 UPDATE the device database with the new host address

9 EL SE IF the component is a PCl bridge

10 ACQUIRE the bridge’ s PCI bus 1D

11 ACQUIRE the bridge’ s address-space requirement

12 /I All devices that appear behind this PCI bridge must have their address spaces
/I mapped within the region specified for this bridge.

13 MAP the address space into a new host address partition

14 EXPAND the partition X window to cover the new partition

15 UPDATE the device database with the new host address

16 ENDIF

17 ENDFOR

After discovery has been concluded, it is expected that the majority of systemswill then
attempt to load in a software image from a boot device.

A.3 System Enumeration Algorithm

42

The system enumeration algorithm is designed for use by one or two host
processors. The outline of the algorithm is as follows:

1. Access the RapidlO network. This step may involve generating special
transaction cycles to ensure that the Rapidl O network is accessible.

2. Discover the host and assign adevice ID toit.
3. Discover the neighbor, if present.

4. If necessary, repeat the previous step recursively to discover additional
devices.

5. Clear up.

When a host begins exploring, it must acquire the Host Base Device ID Lock before
it can proceed. Once acquired, it can set its device ID and discover its neighbor (if
necessary).

If two hosts are used, both can execute the enumeration algorithm. However, only
one host (the one with higher priority) can win the enumeration task. Thelosing host
enters a wait state. The guidelines for prioritizing hosts to enumerate the network
and restarting enumeration should the winning host fail to complete the task are
described in Chapter 2, “Requirements for System Bring Up,” on page 9.

The enumeration algorithm described below sets priority based on the value of the
power-on device ID. The winning host is the device with the higher power-on host
device ID. The losing host has the lower power-on host device ID. The losing host
enters a wait state until the winning host completes enumeration or until the wait
state times out.

The prioritization mechanism never resultsin adeadlock if the priorities of both host

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

processors are unigue. The enumeration processisinitially performed in parallel by
both hosts until they meet at a device. When a meeting occurs, prioritization
guarantees one winning host—the other host retreats (enters a wait state).

The enumeration algorithm described below uses a recursive, depth-first graph
traversal to discover the network. It may be possible to improve the agorithm using
non-recursive or breadth-first graph traversal. However, those improvements and
optimizations are implementation dependent and beyond the scope of this
document.

A.3.1 Data Structures, Constants, and Global Variables

This section outlines the data structures, constants, and global variables used by the
system enumeration algorithm pseudocode.

The example system is composed of only 8 bit capable devices.

Data Structures

struct rioRouteTable {

/I The switch routing table isimplemented as alinear routing table for destination IDs. The tableis
/I indexed using the destination ID and the table index range is equal to the maximum destination 1D
/I value. The value of atable entry indicates the output port number used to route messages for the

// destination ID. The table entry default value is implementation dependent. Table entries must be
I initialized to support FLASH memory accesses. The algorithm pseudocode described in this

/I document assumesthe deviceD isequal to the Rapidl O protocols destination ID. Thisassignment
/lis not a general requirement.

UINT8 LFT[MAX_DEVICEID];

}
struct rioSwitch {
UINT16 Switchldentity; /I Switch Identity
UINT16 hopCount; /I Hop Count to reach this switch
UINT16 DevicelD; /I Associated Device ID in the path to this switch
struct rioRouteTable RouteTable; /I Switch Routing Table
}
Constants
RIO_GEN_DFLT_DID OxOOFFFFFF /I RIO_GEN_DFLT_DID isthe genera default device
//'1D assigned to non-host and non-boot code end
/I points
RIO_BOOT_DFLT_DID 0x0000FFFE // RIO_BOOT_DFLT_DID isthe default device ID
/I assigned to boot code devices
RIO_HOST_DFLT_DID 0x00000000 // RIO_HOST_DFLT_DID isthe default device ID
/I assigned to host devices
Global Variables
UINT16 DevicelD = 0; Il Currently available Device ID to be assigned to the
// end point device
UINT16 SwitchID = 0; /I Currently available Switch ID. Thisis used

[l internally by the to index
/I switches that have been discovered.

Rapidl O Trade Association 43

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

/I The following global arrays are used to store device
/I information

/I collected from rioGetFeatures and

I rioGetSwitchPortInfo. They are

/I also used to store the hopCount and Devicel D

/I assigned to switches.

struct rioSwitch Switche§ MAX_SWITCHES];

A.3.2 Pseudocode

This section outlines the detail ed pseudocode for the system enumeration algorithm.

P OO~NO UL, WNPE

hgwwwwwwwwOJ(AJI\)I\)I\)I\)I\)I\)I\)I\)I\)I\)HI—‘HI—‘HI—‘HI—‘H
[OCO~NOOUOBRARWNPFPOOO~NOUOUOPR_ARWNPRPOOONOULWDNEO

I NFARS

/**
/I System enumeration and initialization using the power-on device ID as the hostDevicel D

/I —Discover the host first
/l —Discover the host’ s neighbor recursively

STATUS rioSystemEnumerate (hostDevicel D)

{
/I Discover the host first.

status = rioEnumerateHost (hostDevicel D);

if (status== ERR_SLAVE) {
rioClearUp (hostDevicel D);
return ERR_SLAVE;

}

/I Discover the host neighbor
status = rioEnumerateNeighbor (hostDevicel D, hopCount = 1);

if (status== ERR_SLAVE) {
rioClearUp (hostDevicel D);
return ERR_SLAVE;

}

/I 1f the code advances to this point successfully, the host must acquire the
/I HostBaseDeviceldLock for al devices in the system. When thisis done, the Discovered bit
/I Master Enable bit, etc. can be set for all devices.

} /I end rioSystemEnumerate

/**

/I System Delay
/I —Wait for other host to release the lock

rioDelay () {
} /' endrioDelay

”**

/l Host enumeration and initialization

STATUS rioEnumerateHost (hostDevicel D)
{

I/ Try to acquire the lock
rioAcquireDevicel ock (0, hostDevicel D, 0, hostDevicel D);

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

45 while (HostBaseDevicel dLockCSR.HostBaseDevicel D < hostDevicel D) {

46 // Delay for awhile

47 rioDelay ();

48

49 /I Retry lock acquisition

50 rioAcquireDevicel ock (0, hostDevicel D, 0, hostDevicel D, & lockingHost);
51 }

52

53 /I Check to seeif there is a master with alarger host device ID
54 if (HostBaseDeviceldLock.HostBaseDevicel D > hostDevicel D) {

55 /I Release the current lock

56 rioReleaseDevicel ock (0, hostDevicel D, 0, hostDevicel D);
57

58 return ERR_SLAVE;

59 }

60

61 /I Lock has been acquired so enumeration can begin

62

63 /I Assign the default host 1D to the host

64 rioSetBaseDeviceld (0, hostDevicel D, hostDevicel D);

65

66 /I Increment the available device ID

67 if (DevicelD == hostDevicel D) {

68 DevicelD ++;

69 }

70

71 return RIO_SUCCESS;

72 '} [/l end rioEnumerateHost

73

74 //**
75 /I Neighbor enumeration

76

77 STATUS rioEnumerateNeighbor (hostDevicel D, hopCount)

78 {

79 /I The host has already discovered this nodeif it currently owns the lock
80 rioGetCurHostLock (0O, 0, O, &owner_device id);

81 if (owner_device_id == hostDevicel D) {

82 return RIO_SUCCESS;

83 }

84

85 /I Try to acquire the lock

86 rioAcquireDeviceLock (0, RIO_GEN_DFLT_DID, hopCount, hostDevicel D, &lockingHost);

87

88 while (HostBaseDeviceldL ockCSR.HostBaseDevicel D < hostDevicel D) {

89 /I Delay for awhile

90 rioDelay ();

91

92 /I Retry lock acquisition

93 rioAcquireDevicelLock(0, RIO_GEN_DFLT_DID, hopCount, hostDevicelD,
&lockingHost);

94 }

95

96 /I Check to seeif there is a master with alarger host device ID

97 if (HostBaseDeviceldLock.HostBaseDevicel D > hostDevicel D) {
98 return ERR_SLAVE;

99 }

Rapidl O Trade Association 45

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

46

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151
152
153

/I Lock has been acquired so enumeration can begin

/I Check Source Operation CAR and Destination Operation CAR to see if aDevice ID can be
/I assigned

rioGetSourceOps (0, RIO_GEN_DFLT_DID, hopCount, & SourceOperationCAR);
rioGetDestOps (0, RIO_GEN_DFLT_DID, hopCount, & DestinationOperationCAR);

if ((SourceOperationCAR.Read || Write || Atomic) & &
(DestinationOperationCAR.Read || Write || Atomic)) {

/I Set the device ID
rioSetBaseDeviceld (0, RIO_GEN_DFLT_DID, DevicelD);

/I Increment the available device ID
DevicelD ++;
if (DevicelD == hostDevicel D) {
DevicelD ++;
}
}

/I Check to seeif the deviceis aswitch
rioGetFeatures (0, RIO_GEN_DFLT_DID, hopCount, & ProcessingElementFeatureCAR);
if (ProcessingElementFeatureCAR.Switch == TRUE) {

/I Read the switch information
rioGetSwitchPortinfo (0, RIO_GEN_DFLT_DID, hopCount,
& SwitchPortInformationCAR);

/I Record the switch device identity
Switches Switchl D].Switchl dentity = DeviceldentityCAR.Devicel dentity;

/I Bookkeeping for the current switch ID
curSwitchlD = SwitchlID;

/I Increment the available switch ID
SwitchID ++;

/l'nitialize the current switch routing table to add entries for all previously discovered
I/ devices so that they are routed correctly. Start with the host device ID (0x00) and end with
// Devicel D-1.
for (each devicelD in [0..DevicelD-1]) {
rioRouteAddEntry (0, RIO_GEN_DFLT_DID, hopCount, RIO_GEN_DFLT_DID,
devicelD,
SwitchPortlnformationCAR.PortNumber, NULL);

}

/I Synchronize the current switch routing table with the global table
for (each devicelD in [0.. Devicel D-1]) {
Switcheg curSwitchlD].RouteTable.LFT[devicel D] =
SwitchPortlnformationCAR.PortNumber;

}

/I Update the hopCount to reach the current switch
Switcheg[curSwitchl D].HopCount = hopCount;

Rapidl O Trade Association

154
155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
170
1711
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

for (each portNum in SwitchPortInformationCAR.PortTotal) {
if (SwitchPortInformationCAR.PortNumber == portNum) {
continue;

}

/I Bookkeeping for the current available device ID
curDevicel D = DevicelD;

rioGetPortErrStatus (0, RIO_GEN_DFLT_DID, hopCount,
& PortErrorStatusCSR[portNum]);

/I Check if it is possible to have a neighbor
if (PortErrorStatusCSR[portNum].PortUninitialized == TRUE) {
continue;

}

elseif (PortErrorStatusCSR[portNum].PortOK == TRUE) {

/I Check if it is an enumeration boundary port

if (PortControl CSR[portNum].PortEnumerationBoundary == TRUE) {
continue;

}

rioRouteAddEntry(0, RIO_GEN_DFLT_DID, hopCount, RIO_GEN_DFLT_DID, 0,
portNumber, NULL);

/I Discover the neighbor recursively
if (status = rioEnumerateNeighbor(hopCount + 1) != RIO_SUCCESS) {
return status;

}

/I'1f more than one end point device was found, update the current switch routing table
/I entries beginning with the curDevicel D entry and ending with the Devicel D-1
Il entry.
if (DevicelD > curDevicel D) {
for (each devicel D in [curDevicel D..Devicel D-1]) {
rioRouteAddEntry(0, RIO_GEN_DFLT_DID, hopCount, devicel D,
portNumber);

}

/I ' Synchronize the current switch routing table with the global table
for (each devicel D in [curDevicel D..Devicel D-1]) {
Switcheg curSwitchl D].RouteTable.L FT[devicel D] = portNumber;

}

[/l Update the associated Device ID in the path.
Switcheg curSwitchlD].Devicel D = curDevicel D;
} Nendif
} /endeseif
} /lendfor
} /I end if (ProcessingElementFeatureCAR.Switch == TRUE)

return RIO_SUCCESS,

} /I end rioEnumerateNeighbor

Rapidl O Trade Association 47

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

207 // dhkhkkhkkhkhkhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhdrhhhrdrhrhrhrhrhhhhxd

208 // System clear up

209 /I —Reset the previously acquired lock because a master exists elsewhere. Use hostDevicel D to
210 // reset the lock

211

212 STATUSTioClearUp (hostDevicel D) {

213

214 /I Clear the host lock

215 if (hostDevicelD > DevicelD 1) {

216 rioReleaseDevicel ock (0, hostDevicel D, 0, hostDevicel D);
217}

218

219 /I Clear the discovered end point device lock

220 while (DevicelD >=1) {

221 rioReleaseDevicel ock (0, Devicel D-1, 0, hostDevicel D);
222 DevicelD --;

223}

224

225 // Clear the discovered switch device lock
226 while (SwitchlD >=1) {

227 rioReleaseDevicelock (0, Switches[SwitchlD—1].Devicel D,

228 Switches Switchl D-1].hopCount, hostDevicel D);
229 SwitchID --;

230 }

231

232 return RIO_SUCCESS;
233 } //endrioClearUp

A.4 System Bring Up Example

This section walks-through a system bring up example. The system described in this
exampleis shown in Figure A-1.

48 Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

System . . System
Microprocessor Microprocessor
Host A P P Host B
Host RapidO RapidO Host
Bridge Board Switch Board Switch Bridge
al [[o
o Board Interconnect B
— Switch —
3 (Midplane Switch)
2 [J1
Rapidlo to RapidO to Rapidio to DSP
PCI/X Bridge PCI/X Bridge PCI/X Bridge
Ethernet ATM pSP DSP
. DSP
High-Speed 1/0 Card DSP
gh-Sp Farm

Figure A-1. Example System

Referring to Figure A-1, system Host A is preloaded with device ID 0x00 and
system Host B is preloaded with device ID 0x01. Host A is configured to accept
maintenance packets with destination IDs of 0x00 and OxFF. Host B is configured
to accept maintenance packets with destination 1Ds of 0x01 and OxFF. System Bring
Up advances through time slots along the following timeline:

T+0 T+1 T+2 T+3 T+4 T+5 T+6 T+7

The time slots shown above are defined as follows:
» T+0: Host A begins RapidlO enumeration.
» T+1: Host B begins RapidlO enumeration and Host A continues RapidlO
enumeration.
» T+2: Host B discovers another host in the system (Host A) and waits.

» T+3: Host A discovers a higher priority host in the system (Host B) and
retreats.

Rapidl O Trade Association 49

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

50

» T+4: Host B assumes sole enumeration of the system.

» T+5: Host B enumerates the PE on switch port 1.

» T+6: Host B enumerates the PESs on switch ports 2, 3 and 4.
» T+7: System enumeration is complete.

The following describes the actions taken during each time slot in more detail:
TimeT+0

Host A attempts to acquire the lock from its Host Base Device ID Lock CSR by
writing Ox00 to the CSR. Host A confirmsit has acquired the lock when it reads the
value of 0x00 (the host device ID) from the Lock CSR. Host A continues by reading
the Processing Element Features CAR and adding the information from the CAR to
its Rapidl O device database. Host A updates its Base Device ID CSR with the host
device ID (0x00).

TimeT+1

Host B attempts to acquire the lock from its Host Base Device ID Lock CSR by
writing Ox01 to the CSR. Host B confirms it has acquired the lock when it reads the
value of 0x01 (the host device ID) from the Lock CSR. Host B continues by reading
the Processing Element Features CAR and adding the information from the CAR to
its Rapidl O device database. Host B updates its Base Device ID CSR with the host
device ID (0x01).

Host A begins neighbor enumeration. It attempts to acquire the lock from the Host
Base Device ID Lock CSR of the Board Interconnect Switch. A maintenance write
of the host device ID (0x00), the destination device ID (OxFF), and the hop count (0)
isissued for the Lock CSR. Host A confirms it has acquired the lock when it reads
the value of 0x00 (the host device ID) from the Lock CSR.

TimeT+2

Host B begins neighbor enumeration. It attempts to acquire the lock from the Host
Base Device ID Lock CSR of the Board Interconnect Switch. A maintenance write
of the host device ID (0x01), the destination device ID (0xFF), and the hop count (0)
isissued for the Lock CSR. However, after Host B issues a maintenance read from
the Lock CSR it finds that the device was already locked by host device ID 0x00.
Because Host B has a higher priority than the current lock holder (OxO1 is greater
than 0x00), Host B spinsin adelay loop and repeatedly attemptsto acquire the lock.

TimeT+3

Host A continues neighbor enumeration. It issues a maintenance read cycle to the
Device Identity CAR of the Board Interconnect Switch and looks for a matching
entry in the device database. Device configuration continues because no maich is
found (Host A has not enumerated the device). Host A reads the Source Operations
and Destination Operations CARs for the device. It is determined that the device

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

does not support read/write/atomic operations and does not require a device ID.
Host A reads the Processing Element Feature CAR for the device and determines
that it isaswitch element.

Because the device is a switch, Host A reads the Switch Port Information CAR and
records the device identity in the switch database. Next, Host A adds a set of entries
to the switch's routing table. For each previously discovered device ID, an entry is
created containing a target ID (OxFF), hop count (0), and the route port number
(from the Switch Port Information CAR). The switch database is updated with the
same routing information. Host A reads the Port Error Status CSR for switch port 0,
verifying that it is possible for the port to have aneighbor PE. An entry is created in
the switch’s routing table containing target 1D (OxFF), hop count (0), and the route
port number (0).

Host A continues neighbor enumeration using a hop count of 1. It attempts to
acquirethelock from the Host Base Device ID Lock CSR of the neighbor PE on port
0. A maintenance write of the host device ID (0x00), the destination device 1D
(OxFF), and the hop count (1) is issued for the Lock CSR. However, after Host B
issues a maintenance read from the Lock CSR it finds that the device was already
locked by host device ID 0x01. Because Host A has alower priority than the current
lock holder (Ox00 islessthan 0x01), Host A retreats. It beginsthe process of backing
out all enumeration and configuration changes it has made.

Host A checks its device and switch databases to find all host locks it obtained
within the system (System Host A and the Board Interconnect Switch). It issues a
maintenance write transaction to their Host Base Device ID Lock CSRs to release
the locks.

TimeT+4

AsHost B spinsinitsdelay loop, it attempts to acquire the lock from the Host Base
Device D Lock CSR of the Board Interconnect Switch. A maintenance write of the
host device ID (0x01), the destination device ID (OxFF), and the hop count (0) is
issued for the Lock CSR. Because Host A released the lock, Host B is able to
confirm it has acquired the lock when it reads the value of 0x01 from the Lock CSR.

Host B continues neighbor enumeration. It issues a maintenance read cycle to the
Device Identity CAR of the Board Interconnect Switch and looks for a matching
entry in the device database. Device configuration continues because no match is
found (Host B has not enumerated the device). Host B reads the Source Operations
and Destination Operations CARSs for the device. It is determined that the device
does not support read/write/atomic operations and does not require a device ID.
Host B reads the Processing Element Feature CAR for the device and determines
that it isa switch element.

Because the device is a switch, Host B reads the Switch Port Information CAR and
records the device identity in the switch database. Next, Host B adds a set of entries
to the switch's routing table. For each previously discovered device ID, an entry is

Rapidl O Trade Association 51

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

52

created containing a target ID (OxFF), hop count (0), and the route port number
(from the Switch Port Information CAR). The switch database is updated with the
same routing information. Host B reads the Port Error Status CSR for switch port 0,
verifying that it is possible for the port to have aneighbor PE. An entry is created in
the switch’s routing table containing target ID (OxFF), hop count (0), and the route
port number (0). Host B detects that it is attached to port 0. Because Host B has
already been enumerated, neighbor enumeration continues on the next port.

TimeT+5

Host B readsthe Port Error Status CSR for switch port 1, verifying that it is possible
for the port to have a neighbor PE. An entry is created in the switch’s routing table
containing target 1D (OxFF), hop count (0), and the route port number (1).

Host B continues neighbor enumeration using ahop count of 1. It attemptsto acquire
the lock from the Host Base Device ID Lock CSR of the neighbor PE on port 1. A
maintenance write of the host device ID (0x01), the destination device ID (OxFF),
and the hop count (1) isissued for the Lock CSR. Host B confirms it has acquired
the lock when it reads the value of 0x01 from the Lock CSR.

Host B issues amaintenance read cycleto the Device ldentity CAR of the DSP Farm
and looks for a matching entry in the device database. Device configuration
continues because no match is found (Host B has not enumerated the device).
Host B reads the Source Operations and Destination Operations CARs for the
device. It is determined that the device supports read/write/atomic operations. A
maintenance write is used to update the Base Device ID CSR with the value of 0x00
(the first available device ID). DevicelD is incremented and compared with the
Host B device ID. Because they are equal, devicelD is assigned the next available
deviceID.

TimeT+6

The process described in the previous step (Time T+5) is repeated on switch ports
2-4. Device IDs 0x02, 0x03, and 0x04 are assigned to the PEs on switch ports 2, 3
and 4, respectively.

TimeT+7

Host A detects that its Host Base Device Lock CSR has been acquired by another
host device, indicating it has been enumerated. Host A caninitiate passive discovery
to build alocal system database.

Rapidl O Trade Association

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Glossary of Termsand Abbreviations

The glossary contains an aphabetical list of terms, phrases, and abbreviations used

in this book.

A Application programming interface (API.). A standard software interface
that promotes portability of application programs across multiple
devices.

C Capability registers (CARs). High-speed memory containing recently

accessed data and/or instructions (subset of main memory)
associated with a processor.

Command and status registers (CSRs). A set of registers that alows a
processing element to control and determine the status of another
processing element’s internal hardware.

D Destination. The termination point of a packet on the Rapidl O interconnect,
also referred to as atarget.

Device. A generic participant on the RapidlO interconnect that sends or
receives Rapidl O transactions, also called a processing el ement.

DevicelD. Theidentifier of an end point processing element connected to the
RapidI O interconnect.

Discovery. The passive exploration of a RapidlO network fabric. This
process involves walking an already enumerated Rapidl O fabric to
determine network topology and resource allocations.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

E End point. A processing element which is the source or destination of
transactions through a RapidI O fabric.

End point device. A processing element which contains end point
functionality.

Rapidl O Trade Association 53

Rapidl O Annex 1: Softwar e/System Bring Up Specification Rev. 1.3

Enumeration. The active exploration of a RapidlO network fabric. This
process involves configuring device identifiers and maintaining
proper host locking.

H Hardware abstraction layer (HAL). A a standard software interface to
device-specific hardware resources.

| Initiator. The origin of apacket on the Rapidl O interconnect, also referred to
asasource.

O Operation. A set of transactions between end point devices in a RapidlO
system (requests and associated responses) such asaread or awrite.

P Packet. A set of information transmitted between devices in a RapidlO
system.

Processing Element (PE). A generic participant on the Rapidl O interconnect
that sends or receives Rapidl O transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

S Sender. The RapidlO interface output port on a processing element.

Source. The origin of a packet on the Rapidl O interconnect, also referred to
asaninitiator.

Switch. A multiple port processing element that directs a packet received on
one of itsinput ports to one of its output ports.

T Target. The termination point of a packet on the Rapidl O interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a Rapidl O system.

wW Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

Write port. Hardware within a processing element that is the target of a
portwrite operation.

54 Rapidl O Trade Association

Rapidl O Annex 1: Softwar e/System Bring Up Specification Rev. 1.3

Blank page

Rapidl O Trade Association 55

Rapidl O Annex 1: Software/System Bring Up Specification Rev. 1.3

Blank page

56 Rapidl O Trade Association

	RapidIO™ Interconnect Specification Annex 1: Software/System Bring Up Specification
	Chapter�1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Scope
	1.4 System Enumeration API
	1.5 Terminology
	1.6 Software Conventions

	Chapter�2 Requirements for System Bring Up
	2.1 Introduction
	2.2 Boot Requirements
	2.3 Enumeration Completion
	2.4 Enumeration Time-Out
	2.5 Function Return Codes

	Chapter�3 Hardware Abstraction Layer
	3.1 Introduction
	3.2 Device Addressing
	3.3 HAL Functions
	3.3.1 Types and Definitions
	3.3.2 rioGetNumLocalPorts
	3.3.3 rioConfigurationRead
	3.3.4 rioConfigurationWrite

	Chapter�4 Standard Bring Up Functions
	4.1 Introduction
	4.2 bring up Functions
	4.3 Data Structures
	4.3.1 rioInitLib
	4.3.2 rioGetFeatures
	4.3.3 rioGetSwitchPortInfo
	4.3.4 rioGetExtFeaturesPtr
	4.3.5 rioGetNextExtFeaturesPtr
	4.3.6 rioGetSourceOps
	4.3.7 rioGetDestOps
	4.3.8 rioGetAddressMode
	4.3.9 rioGetBaseDeviceId
	4.3.10 rioSetBaseDeviceId
	4.3.11 rioAcquireDeviceLock
	4.3.12 rioReleaseDeviceLock
	4.3.13 rioGetComponentTag
	4.3.14 rioSetComponentTag
	4.3.15 rioGetPortErrStatus

	Chapter�5 Routing-Table Manipulation Functions
	5.1 Introduction
	5.2 Routing Table Functions
	5.2.1 rioRouteAddEntry
	5.2.2 rioRouteGetEntry

	Chapter�6 Device Access Routine Interface
	6.1 Introduction
	6.2 DAR Packaging
	6.3 Execution Environment
	6.4 Type Definitions
	6.5 DAR Functions
	6.5.1 rioDar_nameGetFunctionTable
	6.5.2 rioDarInitialize
	6.5.3 rioDarTerminate
	6.5.4 rioDarTestMatch
	6.5.5 rioDarRegister
	6.5.6 rioDarGetMemorySize
	6.5.7 rioDarGetSwitchInfo
	6.5.8 rioDarSetPortRoute
	6.5.9 rioDarGetPortRoute

	Annex�A System Bring Up Guidelines
	A.1 Introduction
	A.2 Overview of the System Bring Up Process
	A.3 System Enumeration Algorithm
	A.3.1 Data Structures, Constants, and Global Variables
	A.3.2 Pseudocode

	A.4 System Bring Up Example

