
3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 1: Input/Output Logical

Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

1.1 First public release 03/08/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
03-05-00006.001, 03-12-00001.001, 04-02-00001.002
and the following new features showings:
04-05-00005.001
Converted to ISO-friendly templates, re-formatted

02/23/2005

2.0 Technical changes: errata showings 06-11-00000.001, 06-11-00001.004 06/14/2007

2.1 Technical changes: errata showing 07-06-00000.010 07/09/2009

2.2 Technical changes: errata showings 09-09-00001.002, 10-08-00000.003,
10-08-00001.005, Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information. No technical changes. 11/9/2013

3.1 Addition of LCS Disable functionality. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction... 9
1.2 Overview... 9
1.3 Features of the Input/Output Specification... 10
1.3.1 Functional Features... 10
1.3.2 Physical Features .. 10
1.3.3 Performance Features ... 10
1.4 Contents .. 11
1.5 Terminology.. 11
1.6 Conventions .. 11

Chapter 2 System Models

2.1 Introduction... 13
2.2 Processing Element Models.. 13
2.2.1 Processor-Memory Processing Element Model.. 13
2.2.2 Integrated Processor-Memory Processing Element Model 14
2.2.3 Memory-Only Processing Element Model ... 14
2.2.4 Processor-Only Processing Element... 15
2.2.5 I/O Processing Element .. 15
2.2.6 Switch Processing Element... 15
2.3 System Issues .. 16
2.3.1 Operation Ordering ... 16
2.3.2 Transaction Delivery... 18
2.3.2.1 Unordered Delivery System Issues... 18
2.3.2.2 Ordered Delivery System Issues... 19
2.3.3 Deadlock Considerations .. 19

Chapter 3 Operation Descriptions

3.1 Introduction... 21
3.2 I/O Operations Cross Reference ... 22
3.3 I/O Operations... 22
3.3.1 Read Operations.. 23
3.3.2 Write and Streaming-Write Operations .. 23
3.3.3 Write-With-Response Operations... 24
3.3.4 Atomic (Read-Modify-Write) Operations .. 24
3.4 System Operations .. 25
3.4.1 Maintenance Operations ... 25
3.5 Endian, Byte Ordering, and Alignment .. 25
RapidIO.org 3

Table of Contents

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 4 Packet Format Descriptions

4.1 Request Packet Formats.. 29
4.1.1 Addressing and Alignment ... 30
4.1.2 Field Definitions for All Request Packet Formats.. 30
4.1.3 Type 0 Packet Format (Implementation-Defined).. 33
4.1.4 Type 1 Packet Format (Reserved) .. 33
4.1.5 Type 2 Packet Format (Request Class)... 33
4.1.6 Type 3–4 Packet Formats (Reserved)... 34
4.1.7 Type 5 Packet Format (Write Class)... 34
4.1.8 Type 6 Packet Format (Streaming-Write Class)... 35
4.1.9 Type 7 Packet Format (Reserved) .. 36
4.1.10 Type 8 Packet Format (Maintenance Class) ... 36
4.1.11 Type 9–11 Packet Formats (Reserved)... 38
4.2 Response Packet Formats ... 38
4.2.1 Field Definitions for All Response Packet Formats ... 38
4.2.2 Type 12 Packet Format (Reserved) .. 39
4.2.3 Type 13 Packet Format (Response Class) .. 39
4.2.4 Type 14 Packet Format (Reserved) .. 40
4.2.5 Type 15 Packet Format (Implementation-Defined).. 40

Chapter 5 Input/Output Registers

5.1 Register Summary... 41
5.2 Reserved Register, Bit and Bit Field Value Behavior .. 42
5.3 Extended Features Data Structure... 43
5.4 Capability Registers (CARs) .. 45
5.4.1 Device Identity CAR .. 45
5.4.2 Device Information CAR.. 46
5.4.3 Assembly Identity CAR.. 47
5.4.4 Assembly Information CAR ... 48
5.4.5 Processing Element Features CAR... 49
5.4.6 Switch Port Information CAR .. 50
5.4.7 Source Operations CAR.. 51
5.4.8 Destination Operations CAR .. 52
5.5 Command and Status Registers (CSRs).. 53
5.5.1 Processing Element Logical Layer Control CSR ... 53
5.5.2 Local Configuration Space Base Address 0 CSR... 54
5.5.3 Local Configuration Space Base Address 1 CSR... 55
4 RapidIO.org

List of Figures

RapidIO Part 1: Input/Output Logical Specification 3.2
2-1 A Possible RapidIO-Based Computing System..13
2-2 Processor-Memory Processing Element Example ..14
2-3 Integrated Processor-Memory Processing Element Example...14
2-4 Memory-Only Processing Element Example ...15
2-5 Processor-Only Processing Element Example..15
2-6 Switch Processing Element Example ...16
3-1 Read Operation ...23
3-2 Write and Streaming-Write Operations ..24
3-3 Write-With-Response Operation ..24
3-4 Atomic (Read-Modify-Write) Operation..25
3-5 Maintenance Operation...25
3-6 Byte Alignment Example..26
3-7 Half-Word Alignment Example..26
3-8 Word Alignment Example ..26
3-9 Data Alignment Example..27
4-1 Type 2 Packet Bit Stream Format...34
4-2 Type 5 Packet Bit Stream Format...35
4-3 Type 6 Packet Bit Stream Format...36
4-4 Type 8 Request Packet Bit Stream Format ...37
4-5 Type 8 Response Packet Bit Stream Format ..38
4-6 Type 13 Packet Bit Stream Format...39
5-1 Example Extended Features Data Structure ...44
RapidIO.org 5

List of Figures

RapidIO Part 1: Input/Output Logical Specification 3.2
Blank page
6 RapidIO.org

List of Tables

RapidIO Part 1: Input/Output Logical Specification 3.2
4-1 Request Packet Type to Transaction Type Cross Reference ..29
4-2 General Field Definitions for All Request Packets...31
4-3 Read Size (rdsize) Definitions ..31
4-4 Write Size (wrsize) Definitions ..32
4-5 Transaction Fields and Encodings for Type 2 Packets ...34
4-6 Transaction Fields and Encodings for Type 5 Packets ...35
4-7 Specific Field Definitions and Encodings for Type 8 Packets37
4-8 Response Packet Type to Transaction Type Cross Reference..38
4-9 Field Definitions and Encodings for All Response Packets ...38
5-1 I/O Register Map ..41
5-2 Configuration Space Reserved Access Behavior..42
5-3 Bit Settings for Device Identity CAR ...45
5-4 Bit Settings for Device Information CAR ..46
5-5 Bit Settings for Assembly Identity CAR ..47
5-6 Bit Settings for Assembly Information CAR..48
5-7 Bit Settings for Processing Element Features CAR..49
5-8 Bit Settings for Switch Port Information CAR...50
5-9 Bit Settings for Source Operations CAR ..51
5-10 Bit Settings for Destination Operations CAR...52
5-11 Bit Settings for Processing Element Logical Layer Control CSR53
5-12 Bit Settings for Local Configuration Space Base Address 0 CSR54
5-13 Bit Settings for Local Configuration Space Base Address 1 CSR55
RapidIO.org 7

List of Tables

RapidIO Part 1: Input/Output Logical Specification 3.2
Blank page
8 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 1: Input/Output Logical
Specification, including a description of the relationship between this specification
and the other specifications of the RapidIO interconnect.

1.2 Overview
The RapidIO Part 1: Input/Output Logical Specification is one of the RapidIO
logical layer specifications that define the interconnect’s overall protocol and packet
formats. This layer contains the information necessary for end points to process a
transaction. Other RapidIO logical layer specifications include RapidIO Part 2:
Message Passing Logical Specification and RapidIO Part 5: Globally Shared
Memory Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encodings for the transport and physical layers lower in the specification
hierarchy.

RapidIO is a definition of a system interconnect. System concepts such as processor
programming models, memory coherency models and caching are beyond the scope
of the RapidIO architecture. The support of memory coherency models, through
caches, memory directories (or equivalent, to hold state and speed up remote
memory access) is the responsibility of the end points (processors, memory, and
possibly I/O devices), using RapidIO operations. RapidIO provides the operations
to construct a wide variety of systems, based on programming models that range
from strong consistency through total store ordering to weak ordering.
Inter-operability between end points supporting different
coherency/caching/directory models is not guaranteed. However, groups of
end-points with conforming models can be linked to others conforming to different
models on the same RapidIO fabric. These different groups can communicate
through RapidIO messaging or I/O operations. Any reference to these areas within
the RapidIO architecture specification are for illustration only.
RapidIO.org 9

RapidIO Part 1: Input/Output Logical Specification 3.2
1.3 Features of the Input/Output Specification
The following are features of the RapidIO I/O specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features
• A rich variety of transaction types, such as DMA-style read and writes, that

allow efficient I/O systems to be built.

• System sizes from very small to very large are supported in the same or
compatible packet formats—RapidIO plans for future expansion and
requirements.

• Read-modify-write atomic operations are useful for synchronization between
processors or other system elements.

• The RapidIO architecture supports 50- and 66-bit addresses as well as 34-bit
local addresses for smaller systems.

• DMA devices can improve the interconnect efficiency if larger non-coherent
data quantities can be encapsulated within a single packet, so RapidIO
supports a variety of data sizes within the packet formats.

1.3.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface

to other devices on the interconnect fabric.

• The protocols and packet formats are independent of the physical interconnect
topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.

• The protocols handle out-of-order packet transmission and reception.

• Certain devices have bandwidth and latency requirements for proper operation.
RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead

and be organized for fast, efficient assembly and disassembly.

• 48- and 64-bit addresses are required in the future, and must be supported
initially.

• Multiple transactions must be allowed concurrently in the system, otherwise a
majority of the potential system throughput is wasted.
10 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
1.4 Contents
Following are the contents of the RapidIO Part 1: Input/Output Logical
Specification:

• Chapter 1, “Overview” (this chapter) provides an overview of the specification

• Chapter 2, “System Models,” introduces some possible devices that could
participate in a RapidIO system environment. Transaction ordering and
deadlock prevention are discussed.

• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO I/O protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the I/O specification. The two basic types, request and
response packets, with their sub-types and fields are defined.

• Chapter 5, “Input/Output Registers,” describes the visible register set that
allows an external processing element to determine the I/O capabilities,
configuration, and status of a processing element using this logical
specification. Only registers or register bits specific to the I/O logical
specification are explained. Refer to the other RapidIO logical, transport, and
physical specifications of interest to determine a complete list of registers and
bit definitions.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits

ACTIVE_HIGH Names of active high signals are shown in uppercase text with
no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in
uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.
RapidIO.org 11

RapidIO Part 1: Input/Output Logical Specification 3.2
[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
12 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 2 System Models

2.1 Introduction
This overview introduces some possible devices in a RapidIO system.

2.2 Processing Element Models
Figure 2-1 describes a possible RapidIO-based computing system. The processing
element is a computer device such as a processor attached to a local memory and to
a RapidIO system interconnect. The bridge part of the system provides I/O
subsystem services such as high-speed PCI interfaces and gigabit ethernet ports,
interrupt control, and other system support functions.

The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element Model

Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to a local memory that has much
lower latency than memory that is local to another processing element (remote
memory accesses). It also provides an interface to the RapidIO interconnect to

Figure 2-1. A Possible RapidIO-Based Computing System

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

Firewire
RapidIO.org 13

RapidIO Part 1: Input/Output Logical Specification 3.2
service those remote memory accesses.

2.2.2 Integrated Processor-Memory Processing Element Model

Another form of a processor-memory processing element is a fully integrated
component that is designed specifically to connect to a RapidIO interconnect system
as shown in Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package.

2.2.3 Memory-Only Processing Element Model

A different processing element may not contain a processor at all, but may be a
memory-only device as shown in Figure 2-4. This type of device is much simpler
than a processor; it only responds to requests from the external system, not to local
requests as in the processor-based model. As such, its memory is remote for all
processors in the system.

Figure 2-2. Processor-Memory Processing Element Example

Figure 2-3. Integrated Processor-Memory Processing Element Example

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect

Processor

Memory

RapidIO-based
System Interconnect
14 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
2.2.4 Processor-Only Processing Element

Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing element is shown in Figure 2-5.

2.2.5 I/O Processing Element

This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory device. An I/O device
only needs to move data into and out of local or remote memory.

2.2.6 Switch Processing Element

A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidIO-compliant processing elements. A hybrid processing element may
combine a switch with end point functionality. A possible switch is shown in
Figure 2-6. Behavior of the switches, and the interconnect fabric in general, is
addressed in the RapidIO Common Transport Specification.

Figure 2-4. Memory-Only Processing Element Example

Figure 2-5. Processor-Only Processing Element Example

Memory

Memory

RapidIO-based
System Interconnect

Control

Agent

Processor

Local Interconnect

RapidIO-based
System Interconnect
RapidIO.org 15

RapidIO Part 1: Input/Output Logical Specification 3.2
2.3 System Issues
The following sections describe transaction ordering and system deadlock
considerations in a RapidIO system.

2.3.1 Operation Ordering

Most operations in an I/O system do not have any requirements as far as completion
ordering. There are, however, several tasks that require events to occur in a specific
order. As an example, a processing element may wish to write a set of registers in
another processing element. The sequence in which those writes are carried out may
be critical to the operation of the target processing element. Without some specific
system rules there would be no guarantee of completion ordering of these
operations. Ordering is mostly a concern for operations between a specific source
and destination pair.

In certain cases a processing element may communicate with another processing
element or set of processing elements in different contexts. A set or sequence of
operations issued by a processing element may have requirements for completing in
order at the target processing element. That same processing element may have
another sequence of operations that also requires a completion order at the target
processing element. However, the issuing processing element has no requirements
for completion order between the two sequences of operations. Further, it may be
desirable for one of the sequences of operations to complete at a higher priority than
the other sequence. The term “transaction request flow” is defined as one of these
sequences of operations.

A transaction request flow is defined as an ordered sequence of non-maintenance
request transactions from a given source (as indicated by the source identifier) to a
given destination (as indicated by the transaction destination identifier), where a
maintenance request is a special system support request. Each packet in a transaction
request flow has the same source identifier and the same destination identifier.

There may be multiple transaction request flows between a given source and
destination pair. When multiple flows exist between a source and destination pair,

Figure 2-6. Switch Processing Element Example

Switch
16 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
the flows are distinguished by a flow indicator (flowID). RapidIO allows multiple
transaction request flows between any source and destination pair. The flows
between each source and destination pair are identified with alphabetic characters
beginning with A.

The flows between each source and destination pair are prioritized. The flow priority
increases alphabetically with flowID A having the lowest priority, flowID B having
the next to lowest priority, etc. When multiple transaction request flows exist
between a given source and destination pair, transactions of a higher priority flow
may pass transactions of a lower priority flow, but transactions of a lower priority
flow may not pass transactions of a higher priority flow.

Maintenance transactions are not part of any transaction request flow. However,
within a RapidIO fabric, maintenance transactions may not pass other maintenance
transactions of the same or higher priority taking the same path through the fabric.

Response transactions are not part of any transaction request flow. There is no
ordering between any pair of response transactions and there is no ordering between
any response transaction and any request transaction that did not cause the
generation of the response.

To support transaction request flows, all devices that support the RapidIO logical
specification shall comply as applicable with the following Fabric Delivering
Ordering and End point Completion Ordering rules.

Fabric Delivery Ordering Rules

1. Non-maintenance request transactions within a transaction request flow
(same source identifier, same destination identifier, and same flowID)
shall be delivered to the logical layer of the destination in the same order
that they were issued by the logical layer of the source.

2. Non-maintenance request transactions that have the same source (same
source identifier) and the same destination (same destination identifier)
but different flowIDs shall be delivered to the logical layer of the
destination as follows.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source before a transaction of a
lower priority transaction request flow shall be delivered to the
logical layer of the destination before the lower priority
transaction.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source after a transaction of a
lower priority transaction request flow may be delivered to the
logical layer of the destination before the lower priority
transaction.
RapidIO.org 17

RapidIO Part 1: Input/Output Logical Specification 3.2
3. Request transactions that have different sources (different source
identifiers) or different destinations (different destination identifiers)
are unordered with respect to each other.

End point Completion Ordering Rules

1. Write request transactions in a transaction request flow shall be
completed at the logical layer of the destination in the same order that
the transactions were delivered to the logical layer of the destination.

2. A read request transaction with source A and destination B shall force the
completion at the logical layer of B of all write requests in the same
transaction request flow that were received by the logical layer of B
before the read request transaction.

Read request transactions need not be completed in the same order that they were
received by the logical layer of the destination. As a consequence, read response
transactions need not be issued by the logical layer of the destination in the same
order that the associated read request transactions were received.

Write response transactions will likely be issued at the logical level in the order that
the associated write request was received. However, since response transactions are
not part of any flow, they are not ordered relative to one another and may not arrive
at the logical level their destination in the same order as the associated write
transactions were issued. Therefore, write response transactions need not be issued
by the logical layer in the same order as the associated write request was received.

It may be necessary to impose additional rules in order to provide for inter
operability with other interface standards or programming models. However, such
additional rules are beyond the scope of this specification.

2.3.2 Transaction Delivery

There are two basic types of delivery schemes that can be built using RapidIO
processing elements: unordered and ordered. The RapidIO logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logical protocols do not rely on transaction
interdependencies for operation. RapidIO also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware. The specific mechanisms and definitions of how RapidIO
enforces transaction ordering are discussed in the appropriate physical layer
specification.

2.3.2.1 Unordered Delivery System Issues

An unordered delivery system is defined as an interconnect fabric where
transactions between a source and destination pair can arbitrarily pass each other
during transmission through the intervening fabric.
18 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Operations in the unordered system that are required to complete in a specific order
shall be properly managed at the source processing element. For example, enforcing
a specific sequence for writing a series of configuration registers, or preventing a
subsequent read from bypassing a preceding write to a specific address are cases of
ordering that may need to be managed at the source. The source of these transactions
shall issue them in a purely serial sequence, waiting for completion notification for
a write before issuing the next transaction to the interconnect fabric. The destination
processing element shall guarantee that all outstanding non-coherent operations
from that source are completed before servicing a subsequent non-coherent request
from that source.

2.3.2.2 Ordered Delivery System Issues

Ordered delivery systems place additional implementation constraints on both the
source and destination processing elements as well as any intervening hardware.
Typically an ordered system requires that all transactions between a
source/destination pair be completed in the order generated, not necessarily the
order in which they can be accepted by the destination or an intermediate device. In
one example, if several requests are sent before proper receipt is acknowledged the
destination or intermediate device shall retry all following transactions until the first
retried packet is retransmitted and accepted. In this case, the source shall “unroll” its
outstanding transaction list and retransmit the first one to maintain the proper system
ordering. In another example, an interface may make use of explicit transaction tags
which allow the destination to place the transactions in the proper order upon
receipt.

2.3.3 Deadlock Considerations

A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidIO is
designed to be a reliable fabric for use in real time tightly coupled systems, therefore
discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency loops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing), topology related dependency
loops are avoided in these structures.
RapidIO.org 19

RapidIO Part 1: Input/Output Logical Specification 3.2
In addition, a processing element design shall not form dependency links between
its input and output ports. A dependency link between input and output ports occurs
if a processing element is unable to accept an input packet until a waiting packet can
be issued from the output port.

RapidIO supports operations, such as read operations, that require responses to
complete. These operations can lead to a dependency link between a processing
element’s input port and output port.

As an example of a input to output port dependency, consider a processing element
where the output port queue is full. The processing element can not accept a new
request at its input port since there is no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

The method by which a RapidIO system maintains a deadlock free environment is
described in the appropriate Physical Layer specification.
20 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the set of operations and their associated transactions
supported by the I/O protocols of RapidIO. The transaction types, packet formats,
and other necessary transaction information are described in Chapter 4, “Packet
Format Descriptions.”

The I/O operation protocols work using request/response transaction pairs through
the interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been
completed or if an error condition is encountered. Each transaction is sent as a packet
through the interconnect fabric. For example, a processing element that requires data
from another processing element sends an NREAD transaction in a request packet
to that processing element, which reads its local memory at the requested address
and returns the data in a DONE transaction in a response packet. Note that not all
requests require responses; some requests assume that the desired activity will
complete properly.

Two possible response transactions can be received by a requesting processing
element:

• A DONE response indicates to the requestor that the desired transaction has
completed and it also returns data for read-type transactions as described
above.

• An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such
as a device number. These requirements are described in the appropriate RapidIO
transport layer specification, and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
RapidIO transport and physical layer specifications and are beyond the scope of this
document.
RapidIO.org 21

RapidIO Part 1: Input/Output Logical Specification 3.2
For most transaction types, a request transaction sent into the system is marked with
a transaction ID that is unique for each requestor and responder processing element
pair. This transaction ID allows a response to be easily matched to the original
request when it is returned to the requestor. An end point cannot reuse a transaction
ID value to the same destination until the response from the original transaction has
been received by the requestor. The number of outstanding transactions that may be
supported is implementation dependent.

Transaction IDs may also be used to indicate sequence information if ordered
reception of transactions is required by the destination processing element and the
interconnect fabric can reorder packets. The receiving device must accept and not
complete the subsequent out-of-order requests until the missing transactions in the
sequence have been received and completed.

3.2 I/O Operations Cross Reference
Table contains a cross reference of the I/O operations defined in this RapidIO
specification and their system usage.

3.3 I/O Operations
The operations described in this section are used for I/O accesses to physical
addresses in the target of the operation. Examples are accesses to non-coherent
memory, ROM boot code, or to configuration registers that do not participate in any
globally shared system memory protocol. These accesses may be of any specifiable
size allowed by the system.

Table 2-1. I/O Operations Cross Reference

Operation
Transactions

Used
Possible System Usage

Request
Transaction

Classification
for Completion
Ordering Rules

Description
Packet
Format

Read NREAD,
RESPONSE

Read operation Read Section 3.3.1 Type 2
Section 4.1.5

Write NWRITE Write operation Write Section 3.3.2 Type 5
Section 4.1.7

Write-with-response NWRITE_R,
RESPONSE

Write operation Write Section 3.3.3 Type 5
Section 4.1.7

Streaming-write SWRITE Write operation Write Section 3.3.2 Type 6
Section 4.1.8

Atomic
(read-modify-write)

ATOMIC,
RESPONSE

Read-modify-write
operation

Write Section 3.3.4 Type 2
Section 4.1.5
Type 5
Section 4.1.7

Maintenance MAINTENANCE System exploration,
initialization, and
maintenance operation

not applicable Section 3.4.1 Type 8
Section 4.1.10
22 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
All data payloads that are less than 8 bytes shall be padded and have their bytes
aligned to their proper byte position within the double-word, as in the examples
shown in Figure 3-6 through Figure 3-8.

The described behaviors are the same regardless of the actual target physical
address.

3.3.1 Read Operations

The read operation, consisting of the NREAD and RESPONSE transactions
(typically a DONE response) as shown in Figure 3-1, is used by a processing
element that needs to read data from the specified address. The data returned is of
the size requested.

If the read operation is to memory, data is returned from the memory regardless of
the state of any system-wide cache coherence mechanism for the specified cache
line or lines, although it may cause a snoop of any caches local to the memory
controller.

3.3.2 Write and Streaming-Write Operations

The write and streaming-write operations, consisting of the NWRITE and SWRITE
transactions as shown in Figure 3-2, are used by a processing element that needs to
write data to the specified address. The NWRITE transaction allows multiple
double-word, word, half-word and byte writes with properly padded and aligned (to
the 8-byte boundary) data payload. The SWRITE transaction is a double-word-only
version of the NWRITE that has less header overhead. The write size and alignment
for the NWRITE transaction are specified in Table 4-4. Non-contiguous and
unaligned writes are not supported. It is the requestor’s responsibility to break up a
write operation into multiple transactions if the block is not aligned.

NWRITE and SWRITE transactions do not receive responses, so there is no
notification to the sender when the transaction has completed at the destination.

If the write operation is to memory, data is written to the memory regardless of the
state of any system-wide cache coherence mechanism for the specified cache line or
lines, although it may cause a snoop of any caches local to the memory controller.

Figure 3-1. Read Operation

DONE, data2

NREAD1

Requestor Destination
RapidIO.org 23

RapidIO Part 1: Input/Output Logical Specification 3.2
3.3.3 Write-With-Response Operations

The write-with-response operation, consisting of the NWRITE_R and RESPONSE
transactions (typically a DONE response) as shown in Figure 3-3, is identical to the
write operation except that it receives a response to notify the sender that the write
has completed at the destination. This operation is useful for guaranteeing
read-after-write and write-after-write ordering through a system that can reorder
transactions and for enforcing other required system behaviors.

3.3.4 Atomic (Read-Modify-Write) Operations

The read-modify-write operation, consisting of the ATOMIC and RESPONSE
transactions (typically a DONE response) as shown in Figure 3-4, is used by a
number of cooperating processing elements to perform synchronization using
non-coherent memory. The allowed specified data sizes are one word (4 bytes), one
half-word (2 bytes) or one byte, with the size of the transaction specified in the same
way as for an NWRITE transaction. Double-word (8-byte) and 3, 5, 6, and 7 byte
ATOMIC transactions may not be specified.

The atomic operation is a combination read and write operation. The destination
reads the data at the specified address, returns the read data to the requestor,
performs the required operation to the data, and then writes the modified data back
to the specified address without allowing any intervening activity to that address.
Defined operations are increment, decrement, test-and-swap, set, and clear (See bit
settings in Table 5-9 and Table 5-10). Of these, only test-and-swap,
compare-and-swap, and swap require the requesting processing element to supply
data. The target data of an atomic operation may be initialized using an NWRITE
transaction.

If the atomic operation is to memory, data is written to the memory regardless of the
state of any system-wide cache coherence mechanism for the specified cache line or

Figure 3-2. Write and Streaming-Write Operations

Figure 3-3. Write-With-Response Operation

NWRITE or SWRITE, data1

Requestor Destination

NWRITE_R, data1

Requestor

DONE2

Destination
24 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
lines, although it may cause a snoop of any caches local to the memory controller.

3.4 System Operations
All data payloads that are less than 8 bytes shall be padded and have their bytes
aligned to their proper byte position within the double-word, as in the examples
shown in Figure 3-6 through Figure 3-8.

3.4.1 Maintenance Operations

The maintenance operation, which can consist of more than one MAINTENANCE
transaction as shown in Figure 3-5, is used by a processing element that needs to
read or write data to the specified CARs, CSRs, or locally-defined registers or data
structures. If a response is required, MAINTENANCE requests receive a
MAINTENANCE response rather than a normal response for both read and write
operations. Supported accesses are in 32 bit quantities and may optionally be in
double-word and multiple double-word quantities to a maximum of 64 bytes.

3.5 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means
that the RapidIO interface to devices that are little-endian shall perform the proper
endian transformation to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-6 through Figure 3-8.

Figure 3-4. Atomic (Read-Modify-Write) Operation

Figure 3-5. Maintenance Operation

DONE, data2

ATOMIC, data (opt.)1

Requestor Destination

opt. MAINTENANCE, opt. data2

MAINTENANCE, opt. data1

Requestor Destination
RapidIO.org 25

RapidIO Part 1: Input/Output Logical Specification 3.2
For write operations, a processing element shall properly align data transfers to a
double-word boundary for transmission to the destination. This alignment may
require breaking up a data stream into multiple transactions if the data is not
naturally aligned. A number of data payload sizes and double-word alignments are
defined to minimize this burden. Figure 3-9 shows a 48-byte data stream that a
processing element wishes to write to another processing element through the
interconnect fabric. The data displayed in the figure is big-endian and double-word
aligned with the bytes to be written shaded in grey. Because the start of the stream
and the end of the stream are not aligned to a double-word boundary, the sending
processing element shall break the stream into three transactions as shown in the
figure.

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and
indicates a byte lane 5, 6, and 7 three-byte write. The second transaction sends all of
the remaining data except for the final sub-double-word. The third transaction sends
the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte
lanes 0, 1, 2, 3, and 4.

Figure 3-6. Byte Alignment Example

Figure 3-7. Half-Word Alignment Example

Figure 3-8. Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
26 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Figure 3-9. Data Alignment Example

First transaction sends these three bytes
with this double-word alignment

Byte
Lane

0

Byte
Lane

1

Byte
Lane

2

Byte
Lane

3

Byte
Lane

4

Byte
Lane

5

Byte
Lane

6

Byte
Lane

7

MSB

LSB

Second transaction sends these five
double-words

Third transaction sends these five bytes
with this double-word alignment

Double-Word Boundary
RapidIO.org 27

RapidIO Part 1: Input/Output Logical Specification 3.2
Blank page
28 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 4 Packet Format Descriptions
This chapter contains the packet format definitions for the RapidIO Part 1:
Input/Output Logical Specification. Four types of I/O packet formats exist:

• Request

• Response

• Implementation-defined

• Reserved

The packet formats are intended to be interconnect fabric independent so the system
interconnect can be anything required for a particular application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.1 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such as a memory read operation.
The request packet format types and their transactions for the I/O Logical
Specification are shown in Table 4-1 below.

Table 4-1. Request Packet Type to Transaction Type Cross Reference

Request Packet
Format Type

Transaction Type Definition
Document
Section No.

Type 0 Implementation-
defined

Defined by the device implementation Section 4.1.3

Type 1 — Reserved Section 4.1.4

Type 2 ATOMIC set Read-write 1s to specified address Section 4.1.5

ATOMIC clear Read-write 0s to specified address

ATOMIC increment Read-increment-write to specified address

ATOMIC
decrement

Read-decrement-write to specified address

NREAD Read specified address

Type 3-4 — Reserved Section 4.1.6
RapidIO.org 29

RapidIO Part 1: Input/Output Logical Specification 3.2
4.1.1 Addressing and Alignment

The size of the address is defined as a system-wide parameter; thus the packet
formats do not support mixed local physical address fields simultaneously. The least
three significant bits of all addresses are not specified and are assumed to be logic 0.

All transactions are aligned to a byte, half-word, word, or double-word boundary.
Read and write request addresses are aligned to any specifiable double-word
boundary and are not aligned to the size of the data written or requested. Data
payloads start at the first double-word and proceed linearly through the address
space. Sub-double-word data payloads shall be padded and properly aligned within
the 8-byte boundary. Non-contiguous or unaligned transactions that would
ordinarily require a byte mask are not supported. A sending device that requires this
behavior shall break the operation into multiple request transactions. An example of
this is shown in Section 3.5, “Endian, Byte Ordering, and Alignment.”

4.1.2 Field Definitions for All Request Packet Formats

Table 4-2 through Table 4-4 describe the field definitions for all request packet
formats. Bit fields that are defined as “reserved” shall be assigned to logic 0s when
generated and ignored when received. Bit field encodings that are defined as
“reserved” shall not be assigned when the packet is generated. A received reserved
encoding is regarded as an error if a meaningful encoding is required for the
transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the

Type 5 ATOMIC
test-and-swap

Read-test=0-swap-write to specified address Section 4.1.7

ATOMIC swap Read-write to specified address

ATOMIC
compare-and-swap

Read-test=first data-write second data to specified address

NWRITE Write specified address

NWRITE_R Write specified address, notify source of completion

Type 6 SWRITE Write specified address Section 4.1.8

Type 7 — Reserved Section 4.1.9

Type 8 MAINTENANCE Read or write device configuration registers and perform
other system maintenance tasks

Section 4.1.10

Type 9-11 — Reserved Section 4.1.11

Table 4-1. Request Packet Type to Transaction Type Cross Reference (Continued)

Request Packet
Format Type

Transaction Type Definition
Document
Section No.
30 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
figures from left to right respectively.
Table 4-2. General Field Definitions for All Request Packets

Field Definition

ftype Format type, represented as a 4-bit value; is always the first four bits in the logical packet stream.

wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table 4-3, Table 4-4 and
Section 3.5.

rdsize Data size for read transactions, used in conjunction with the word pointer (wdptr) bit—see Table 4-3 and Section
3.5.

wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit—see
Table 4-4 and Section 3.5. For writes greater than one double-word, the size is the maximum payload that should
be expected by the receiver.

rsrv Reserved

srcTID The packet’s transaction ID

transaction The specific transaction within the format class to be performed by the recipient; also called type or ttype.

extended
address

Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and extended address
fields by 2 bits. This field provides 34-, 50-, and 66-bit addresses to be specified in a packet with the xamsbs as the
most significant bits in the address.

address Bits [0-28] of byte address [0-31] of the double-word physical address

Table 4-3. Read Size (rdsize) Definitions

wdptr rdsize
Number of

Bytes
Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000
RapidIO.org 31

RapidIO Part 1: Input/Output Logical Specification 3.2
0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16

0b0 0b1100 32

0b1 0b1100 64

0b0 0b1101 96

0b1 0b1101 128

0b0 0b1110 160

0b1 0b1110 192

0b0 0b1111 224

0b1 0b1111 256

Table 4-4. Write Size (wrsize) Definitions

wdptr wrsize
Number of

Bytes
Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

0b1 0b1000 4 0b00001111

Table 4-3. Read Size (rdsize) Definitions (Continued)

wdptr rdsize
Number of

Bytes
Byte Lanes
32 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
4.1.3 Type 0 Packet Format (Implementation-Defined)

The type 0 packet format is reserved for implementation-defined functions such as
flow control.

4.1.4 Type 1 Packet Format (Reserved)

The type 1 packet format is reserved.

4.1.5 Type 2 Packet Format (Request Class)

The type 2 format is used for the NREAD and ATOMIC transactions as specified in
the transaction field defined in Table 4-5. Type 2 packets never contain a data
payload.

The data payload size for the response to an ATOMIC transaction is 8 bytes. The
addressing scheme defined for the read portion of the ATOMIC transaction also
controls the size of the atomic operation in memory so the bytes shall be contiguous
and shall be of size byte, half-word (2 bytes), or word (4 bytes), and be aligned to
that boundary and byte lane as with a regular read transaction. Double-word
(8-byte), 3, 5, 6, and 7 byte ATOMIC transactions are not allowed.

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16
maximum

0b0 0b1100 32
maximum

0b1 0b1100 64
maximum

00b 0b1101 reserved

0b1 0b1101 128
maximum

0b0 0b1110 reserved

0b1 0b1110 reserved

0b0 0b1111 reserved

0b1 0b1111 256
maximum

Table 4-4. Write Size (wrsize) Definitions (Continued)

wdptr wrsize
Number of

Bytes
Byte Lanes
RapidIO.org 33

RapidIO Part 1: Input/Output Logical Specification 3.2
Note that type 2 packets don’t have any special fields.

Figure 4-1 displays the type 2 packet with all its fields. The field value 0b0010 in
Figure 4-1 specifies that the packet format is of type 2.

Figure 4-1. Type 2 Packet Bit Stream Format

4.1.6 Type 3–4 Packet Formats (Reserved)

The type 3–4 packet formats are reserved.

4.1.7 Type 5 Packet Format (Write Class)

Type 5 packets always contain a data payload. A data payload that consists of a
single double-word or less has sizing information as defined in Table 4-4. The
wrsize field specifies the maximum size of the data payload for multiple
double-word transactions. The data payload may not exceed that size but may be
smaller if desired. The ATOMIC, NWRITE, and NWRITE_R transactions use the
type 5 format as defined in Table 4-6. NWRITE request packets do not require a
response. Therefore, the transaction ID (srcTID) field for a NWRITE request is
undefined and may have an arbitrary value.

The ATOMIC test-and-swap transaction is limited to one double-word (8 bytes) of
data payload. The addressing scheme defined for the write transactions also controls
the size of the atomic operation in memory so the bytes shall be contiguous and shall
be of size byte, half-word (2 bytes), or word (4 bytes), and be aligned to that
boundary and byte lane as with a regular write transaction. Double-word (8-byte)
and 3, 5, 6, and 7 byte ATOMIC test-and-swap transactions are not allowed.

The ATOMIC swap transaction has the same addressing scheme and data payload

Table 4-5. Transaction Fields and Encodings for Type 2 Packets

Encoding Transaction Field

0b0000–0011 Reserved

0b0100 NREAD transaction

0b0101–1011 Reserved

0b1100 ATOMIC inc: post-increment the data

0b1101 ATOMIC dec: post-decrement the data

0b1110 ATOMIC set: set the data (write 0b11111...’)

0b1111 ATOMIC clr: clear the data (write 0b00000...’)

0 0 1 0

4 4 4 8

transaction rdsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229
34 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
restrictions as the ATOMIC test-and-swap transaction.

The ATOMIC compare-and-swap operation is different from the other ATOMIC
operations in that it requires two double-words (16 bytes) of data payload.

Note that type 5 packets don’t have any special fields.

Figure 4-2 displays the type 5 packet with all its fields. The field value 0b0101 in
Figure 4-2 specifies that the packet format is of type 5.

4.1.8 Type 6 Packet Format (Streaming-Write Class)

The type 6 packet is a special-purpose type that always contains data. The data
payload always contains a minimum of one complete double-word.
Sub-double-word data payloads shall use the type 5 NWRITE transaction. Type 6
transactions may contain any number of double-words up to the maximum defined
in Table 4-4.

Table 4-6. Transaction Fields and Encodings for Type 5 Packets

Encoding Transaction Field

0b0000–0011 Reserved

0b0100 NWRITE transaction

0b0101 NWRITE_R transaction

0b0110–1011 Reserved

0b1100 ATOMIC swap: read and return the data, unconditionally
write with supplied data.

0b1101 ATOMIC compare-and-swap: read and return the data, if
the read data is equal to the first 8 bytes of data payload,
write the second 8 bytes of data to the memory location.

0b1110 ATOMIC test-and-swap: read and return the data,
compare to 0, write with supplied data if compare is true

0b1111 Reserved

Figure 4-2. Type 5 Packet Bit Stream Format

0 1 0 1

4 4 4 8

transaction wrsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229

double-word 0

64

double-word 1

64

double-word n

64

• • •
RapidIO.org 35

RapidIO Part 1: Input/Output Logical Specification 3.2
Because the SWRITE transaction is the only transaction to use format type 6, there
is no need for the transaction field within the packet. There are also no size or
transaction ID fields.

Figure 4-3 displays the type 6 packet with all its fields. The field value 0b0110 in
Figure 4-3 specifies that the packet format is of type 6.

4.1.9 Type 7 Packet Format (Reserved)

The type 7 packet format is reserved.

4.1.10 Type 8 Packet Format (Maintenance Class)

The type 8 MAINTENANCE packet format is used to access the RapidIO capability
and status registers (CARs and CSRs) and data structures. Unlike other request
formats, the type 8 packet format serves as both the request and the response format
for maintenance operations. Type 8 packets contain no addresses and only contain
data payloads for write requests and read responses. All configuration register read
accesses are performed in word (4-byte), and optionally double-word (8-byte) or
specifiable multiple double-word quantities up to a limit of 64 bytes. All register
write accesses are also performed in word (4-byte), and optionally double-word
(8-byte) or multiple double-word quantities up to a limit of 64 bytes.

Read and write data sizes are specified as shown in Table 4-3 and Table 4-4. The
wrsize field specifies the maximum size of the data payload for multiple
double-word transactions. The data payload may not exceed that size but may be
smaller if desired. Both the maintenance read and the maintenance write request
generate the appropriate maintenance response. Maintenance read responses with a
status of ERROR may optionally include data in the response.

The maintenance port-write operation is a write operation that does not have
guaranteed delivery and does not have an associated response. This maintenance
operation is useful for sending messages such as error indicators or status
information from a device that does not contain an end point, such as a switch. The
data payload is typically placed in a queue in the targeted end point and an interrupt
is typically generated to a local processor. A port-write request to a queue that is full

Figure 4-3. Type 6 Packet Bit Stream Format

0 1 1 0

4

double-word 0

64

double-word 1

64

double-word n

64

• • •

addressextended address

0, 16, 32

rsrv xamsbs

1 229
36 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
or busy servicing another request may be discarded.

Definitions and encodings of fields specific to type 8 packets are provided in
Table 4-7. Fields that are not specific to type 8 packets are described in Table 4-2.

Figure 4-4 displays a type 8 request (read or write) packet with all its fields. The
field value 0b1000 in Figure 4-4 specifies that the packet format is of type 8. The
srcTID and config_offset fields are reserved for port-write requests.

Table 4-7. Specific Field Definitions and Encodings for Type 8 Packets

Type 8 Fields Encoding Definition

transaction 0b0000 Specifies a maintenance read request

0b0001 Specifies a maintenance write request

0b0010 Specifies a maintenance read response

0b0011 Specifies a maintenance write response

0b0100 Specifies a maintenance port-write request

0b0101–1111 Reserved

config_offset — Double-word offset into the CAR/CSR register block for reads and writes

srcTID — The type 8 request packet’s transaction ID (reserved for port-write requests)

targetTID — The corresponding type 8 response packet’s transaction ID

status 0b0000 DONE—Requested transaction has completed successfully

0b0001–0110 Reserved

0b0111 ERROR—Unrecoverable error detected

0b1000–1011 Reserved

0b1100–1111 Implementation-defined—Can be used for additional information such as an error code

Figure 4-4. Type 8 Request Packet Bit Stream Format

1 0 0 0

4 4 4 8

transaction rdsize/wrsize srcTID

config_offset

21

wdptr rsrv

1 2

64

double-word n

• • •
64

double-word 0
RapidIO.org 37

RapidIO Part 1: Input/Output Logical Specification 3.2
Figure 4-5 displays a type 8 response packet with all its fields.

4.1.11 Type 9–11 Packet Formats (Reserved)

The type 9–11 packet formats are reserved.

4.2 Response Packet Formats
A response transaction is issued by a processing element when it has completed a
request made to it by a remote processing element. Response packets are always
directed and are transmitted in the same way as request packets. Currently two
packet format types exist, as shown in Table 4-8.

4.2.1 Field Definitions for All Response Packet Formats

The field definitions in Table 4-9 apply to more than one of the response packet
formats.

Figure 4-5. Type 8 Response Packet Bit Stream Format

Table 4-8. Response Packet Type to Transaction Type Cross Reference

Response Packet
Format Type

Transaction Type Definition
Document Section

Number

Type 12 — Reserved Section 4.2.2

Type 13 RESPONSE Issued by a processing element when it completes a
request by a remote element.

Section 4.2.3

Type 14 — Reserved Section 4.2.4

Type 15
Implementation-
defined

Defined by the device implementation
Section 4.2.5

Table 4-9. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload

0b0001–0111 Reserved

0b1000 RESPONSE transaction with data payload

0b1001–1111 Reserved

1 0 0 0

4 4 4 8

transaction status targetTID

reserved

24

64

double-word n

• • •
64

double-word 0
38 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
4.2.2 Type 12 Packet Format (Reserved)

The type 12 packet format is reserved.

4.2.3 Type 13 Packet Format (Response Class)

The type 13 packet format returns status, data (if required), and the requestor’s
transaction ID. A RESPONSE packet with an “ERROR” status or a response that is
not expected to have a data payload never has a data payload. The type 13 format is
used for response packets to all request packets except maintenance and
response-less writes.

Note that type 13 packets do not have any special fields.

When a RESPONSE packet is generated with an “ERROR” status, the Transaction
field value may be 0 (RESPONSE transaction with no data) or 8 (RESPONSE
transaction with data). In both cases, the RESPONSE packet with an “ERROR”
status has no data payload. Processing elements which accept RESPONSE packets
with an “ERROR” status shall accept Transaction field values of 0 (RESPONSE
transaction with no data) and 8 (RESPONSE transaction with data).

Figure 4-6 illustrates the format and fields of type 13 packets. The field value
0b1101 in Figure 4-6 specifies that the packet format is of type 13.

targetTID — The corresponding request packet’s transaction ID

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001–0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional information such as
an error code

Figure 4-6. Type 13 Packet Bit Stream Format

Table 4-9. Field Definitions and Encodings for All Response Packets (Continued)

1 1 0 1

4 4 4 8

transaction status targetTID

double-word 0

64

double-word 1

64

double-word n

64

• • •
RapidIO.org 39

RapidIO Part 1: Input/Output Logical Specification 3.2
4.2.4 Type 14 Packet Format (Reserved)

The type 14 packet format is reserved.

4.2.5 Type 15 Packet Format (Implementation-Defined)

The type 15 packet format is reserved for implementation-defined functions such as
flow control.
40 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Chapter 5 Input/Output Registers
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

5.1 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
RapidIO maintenance operations. Any register offsets not defined are considered
reserved for this specification unless otherwise stated. Other registers required for a
processing element are defined in other applicable RapidIO specifications and by
the requirements of the specific device and are beyond the scope of this
specification. Read and write accesses to reserved register offsets shall terminate
normally and not cause an error condition in the target device. Writes to CAR
(read-only) space shall terminate normally and not cause an error condition in the
target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. I/O Register Map

Configuration
Space Byte

Offset
Register Name

0x0 Device Identity CAR

0x4 Device Information CAR

0x8 Assembly Identity CAR

0xC Assembly Information CAR

0x10 Processing Element Features CAR

0x14 Switch Port Information CAR

0x18 Source Operations CAR

0x1C Destination Operations CAR
RapidIO.org 41

RapidIO Part 1: Input/Output Logical Specification 3.2
5.2 Reserved Register, Bit and Bit Field Value Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x20–48 Reserved

0x4C Processing Element Logical Layer Control CSR

0x50 Reserved

0x58 Local Configuration Space Base Address 0 CSR

0x5C Local Configuration Space Base Address 1 CSR

0x60–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. I/O Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
42 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
When a writable bit field is set to a reserved value, device behavior is
implementation specific.

5.3 Extended Features Data Structure
The RapidIO capability and command and status registers implement an extended
capability data structure. If the extended features bit (bit 28) in the processing
element features register is set, the extended features pointer is valid and points to
the first entry in the extended features data structure. This pointer is an offset into
the standard 16 Mbyte capability register (CAR) and command and status register
(CSR) space and is accessed with a maintenance read operation in the same way as
when accessing CARs and CSRs.

The extended features data structure is a singly linked list of double-word structures.
Each of these contains a pointer to the next structure (EF_PTR) and an extended
feature type identifier (EF_ID). The end of the list is determined when the next
extended feature pointer has a value of logic 0. All pointers and extended features
blocks shall index completely into the extended features space of the CSR space, and
all shall be aligned to a double-word boundary so the three least significant bits shall
equal logic 0. Pointer values not in extended features space or improperly aligned
are illegal and shall be treated as the end of the data structure. Figure 5-1 shows an
example of an extended features data structure. It is required that the extended
features bit is set to logic 1 in the processing element features register.

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO.org 43

RapidIO Part 1: Input/Output Logical Specification 3.2
Figure 5-1. Example Extended Features Data Structure

ExtendedFeaturesPtr

ExtendedFeatureID

0 15 16 31 32

NextExtendedFeaturePtr reserved

47 48

reserved

ExtendedFeatureID

0 15 16 31 32

NextExtendedFeaturePtr reserved

47 48

reserved

ExtendedFeatureID

0 15 16 31 32

0b0000000000000000 reserved

47 48

reserved

63

63

63
44 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities through maintenance read
operations. All registers are 32 bits wide and are organized and accessed in 32-bit (4
byte) quantities, although some processing elements may optionally allow larger
accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Device Identity CAR
(Configuration Space Offset 0x0)

The DeviceVendorIdentity field identifies the vendor that manufactured the device
containing the processing element. A value for the DeviceVendorIdentity field is
uniquely assigned to a device vendor by the registration authority of RapidIO.org.

The DeviceIdentity field is intended to uniquely identify the type of device from the
vendor specified by the DeviceVendorIdentity field. The values for the
DeviceIdentity field are assigned and managed by the respective vendor. See
Table 5-3.

Table 5-3. Bit Settings for Device Identity CAR

Bit Field Name Description

0–15 DeviceIdentity Device identifier

16–31 DeviceVendorIdentity Device vendor identifier
RapidIO.org 45

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.2 Device Information CAR
(Configuration Space Offset 0x4)

The DeviceRev field is intended to identify the revision level of the device. The
value for the DeviceRev field is assigned and managed by the vendor specified by
the DeviceVendorIdentity field. See Table 5-4.

Table 5-4. Bit Settings for Device Information CAR

Bit Field Name Description

0-31 DeviceRev Device revision level
46 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.3 Assembly Identity CAR
(Configuration Space Offset 0x8)

The AssyVendorIdentity field identifies the vendor that manufactured the assembly
or subsystem containing the device. A value for the AssyVendorIdentity field is
uniquely assigned to a assembly vendor by the registration authority of RapidIO.org.

The AssyIdentity field is intended to uniquely identify the type of assembly from the
vendor specified by the AssyVendorIdentity field. The values for the AssyIdentity
field are assigned and managed by the respective vendor. See Table 5-5.

If the value of the AssyIdentity and/or AssyVendorIdentity field is not uniquely
known at the time of device fabrication, such field shall be writable through a path
and mechanism independent from RapidIO and shall be written with the appropriate
value before the register can be accessed through RapidIO. The means for setting the
values of these fields is independent of RapidIO and are outside the scope of this
specification.

Table 5-5. Bit Settings for Assembly Identity CAR

Bit Field Name Description

0–15 AssyIdentity Assembly identifier

16–31 AssyVendorIdentity Assembly vendor identifier
RapidIO.org 47

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.4 Assembly Information CAR
(Configuration Space Offset 0xC)

This register contains additional information about the assembly; see Table 5-6

If the value of the AssyRev field is not uniquely known at the time of device
fabrication, such field shall be writable through a path and mechanism independent
from RapidIO and shall be written with the appropriate value before the register can
be accessed through RapidIO. The means for setting the values of this field is
independent of RapidIO and are outside the scope of this specification.

Table 5-6. Bit Settings for Assembly Information CAR

Bit Field Name Description

0–15 AssyRev Assembly revision level

16–31 ExtendedFeaturesPtr Pointer to the first entry in the extended features list
48 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.5 Processing Element Features CAR
(Configuration Space Offset 0x10)

This register identifies the major functionality provided by the processing element;
see Table 5-7.

Table 5-7. Bit Settings for Processing Element Features CAR

Bit Field Name Description

0 Bridge PE can bridge to another interface. Examples are PCI, proprietary processor buses,
DRAM, etc.

1 Memory PE has physically addressable local address space and can be accessed as an end
point through non-maintenance (i.e. non-coherent read and write) operations. This
local address space may be limited to local configuration registers, or could be
on-chip SRAM, etc.

2 Processor PE physically contains a local processor or similar device that executes code. A
device that bridges to an interface that connects to a processor does not count (see
bit 0 above).

3 Switch PE can bridge to another external RapidIO interface - an internal port to a local end
point does not count as a switch port. For example, a device with two RapidIO
ports and a local end point is a two port switch, not a three port switch, regardless
of the internal architecture.

4–27 — Reserved

28 Extended features PE has extended features list; the extended features pointer is valid

29-31 Extended addressing support Indicates the number address bits supported by the PE both as a source and target
of an operation. All PEs shall at minimum support 34 bit addresses.
0b111 - PE supports 66, 50, and 34 bit addresses
0b101 - PE supports 66 and 34 bit addresses
0b011 - PE supports 50 and 34 bit addresses
0b001 - PE supports 34 bit addresses
All other encodings reserved
RapidIO.org 49

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.6 Switch Port Information CAR
(Configuration Space Offset 0x14)

This register defines the switching capabilities of a processing element. This register
is only valid if bit 3 is set in the processing element features CAR; see Table 5-8.

Table 5-8. Bit Settings for Switch Port Information CAR

Bit Field Name Description

0–15 — Reserved

16–23 PortTotal The maximum number of external RapidIO ports on the processing element
0b00000000 - Reserved
0b00000001 - Reserved
0b00000010 - 2 ports
0b00000011 - 3 ports
0b00000100 - 4 ports
...
0b11111111 - 255 ports

24–31 PortNumber This is the external port number from which the maintenance read operation
accessed this register. Ports are numbered starting with 0x00.
50 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.7 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO IO logical operations that can be issued by
this processing element; see Table 5-9. It is assumed that a processing element can
generate I/O logical maintenance read and write requests if it is required to access
CARs and CSRs in other processing elements. For devices that have only switch
functionality only bit 29 is valid. RapidIO switches shall be able to route any packet.

Table 5-9. Bit Settings for Source Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16 Read PE can support a read operation

17 Write PE can support a write operation

18 Streaming-write PE can support a streaming-write operation

19 Write-with-response PE can support a write-with-response operation

20-21 — Reserved

22 Atomic (compare-and-swap) PE can support an atomic compare-and-swap operation

23 Atomic (test-and-swap) PE can support an atomic test-and-swap operation

24 Atomic (increment) PE can support an atomic increment operation

25 Atomic (decrement) PE can support an atomic decrement operation

26 Atomic (set) PE can support an atomic set operation

27 Atomic (clear) PE can support an atomic clear operation

28 Atomic (swap) PE can support an atomic swap operation

29 Port-write PE can support a port-write operation

30–31 Implementation Defined Defined by the device implementation
RapidIO.org 51

RapidIO Part 1: Input/Output Logical Specification 3.2
5.4.8 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO I/O operations that can be supported by this
processing element; see Table 5-10. It is required that all processing elements can
respond to maintenance read and write requests in order to access these registers.
The Destination Operations CAR is applicable for end point devices only. RapidIO
switches shall be able to route any packet.

Table 5-10. Bit Settings for Destination Operations CAR

Bit Field Name Description

0-13 — Reserved

14-15 Implementation Defined Defined by the device implementation

16 Read PE can support a read operation

17 Write PE can support a write operation

18 Streaming-write PE can support a streaming-write operation

19 Write-with-response PE can support a write-with-response operation

20-21 — Reserved

22 Atomic (compare-and-swap) PE can support an atomic compare-and-swap operation

23 Atomic (test-and-swap) PE can support an atomic test-and-swap operation

24 Atomic (increment) PE can support an atomic increment operation

25 Atomic (decrement) PE can support an atomic decrement operation

26 Atomic (set) PE can support an atomic set operation

27 Atomic (clear) PE can support an atomic clear operation

28 Atomic (swap) PE can support an atomic swap operation

29 Port-write PE can support a port-write operation

30-31 Implementation Defined Defined by the device implementation
52 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
5.5 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs)
that allows an external processing element to control and determine the status of its
internal hardware. All registers are 32 bits wide and are organized and accessed in
the same way as the CARs. Refer to Table 5-2 for the required behavior for accesses
to reserved registers and register bits.

5.5.1 Processing Element Logical Layer Control CSR
(Configuration Space Offset 0x4C)

The Processing Element Logical Layer Control CSR is used for general command
and status information for the logical interface.

Table 5-11. Bit Settings for Processing Element Logical Layer Control CSR

Bit Field Name Description

0-25 — Reserved

26-27 LCS Disable LCS Disable controls the operation and function of the Local Configuration Space
Base Address CSR 0 and 1 CSRs. LCS Disable shall support the following values:
0b00-0b01 - Non-maintenance Logical I/O requests whose address falls in the
address range defined by the Local Configuration Space Base Address CSR 0 and
1 CSRs shall be processed. The Local Configuration Space Base Address CSR 0
and 1 CSRs shall be readable and writeable.
0b10 - Non-maintenance Logical I/O requests whose address falls in the address
range defined by the Local Configuration Space Base Address CSR 0 and 1 CSRs
shall not be processed. The Local Configuration Space Base Address CSR 0 and 1
CSRs shall be read only.
0b11 - Reserved. Operation of the Local Configuration Space Base Address CSR 0
and 1 is undefined.
This field shall be readable and writeable.
The reset value of this field shall be 0b00 when the LCS Disable Present field reset
value is 0.
The reset value of this field shall be 0b10 when the LCS Disable Present field reset
value is 1.
This field shall be implemented when the LCS Disable Present bit is implemented
and indicates the presence of this field. This field shall not be implemented when
the LCS Disable Present bit is not implemented.

28 LCS Disable Present Indicates whether or not the LCS Disable field is implemented.
0 - The LCS Disable field is not present
1 - The LCS Disable field is present
This field shall be read only.
The reset value of this field is implementation specific.
Implementation of this field is optional.

29-31 Extended addressing control Controls the number of address bits generated by the PE as a source and processed
by the PE as the target of an operation.
0b100 - PE supports 66 bit addresses
0b010 - PE supports 50 bit addresses
0b001 - PE supports 34 bit addresses (default)
All other encodings reserved
RapidIO.org 53

RapidIO Part 1: Input/Output Logical Specification 3.2
5.5.2 Local Configuration Space Base Address 0 CSR
(Configuration Space Offset 0x58)

The local configuration space base address 0 register specifies the most significant
bits of the local physical address double-word offset for the processing element’s
configuration register space. See Section 5.5.3 below for a detailed description.

Table 5-12. Bit Settings for Local Configuration Space Base Address 0 CSR

Bit Field Name Description

0 — Reserved

1-16 LCSBA Reserved for a 34-bit local physical address
Reserved for a 50-bit local physical address
Bits 0-15 of a 66-bit local physical address

17-31 LCSBA Reserved for a 34-bit local physical address
Bits 0-14 of a 50-bit local physical address
Bits 16-30 of a 66-bit local physical address
54 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
5.5.3 Local Configuration Space Base Address 1 CSR
(Configuration Space Offset 0x5C)

The local configuration space base address 1 register specifies the least significant
bits of the local physical address double-word offset for the processing element’s
configuration register space, allowing the configuration register space to be
physically mapped in the processing element. This register allows configuration and
maintenance of a processing element through regular read and write operations
rather than maintenance operations. The double-word offset is right-justified in the
register.

Table 5-13. Bit Settings for Local Configuration Space Base Address 1 CSR

Bit Field Name Description

0 LCSBA Reserved for a 34-bit local physical address
Bit 15 of a 50-bit local physical address
Bit 31 of a 66-bit local physical address

1-31 LCSBA Bits 0-30 of a 34-bit local physical address
Bits 16-46 of a 50-bit local physical address
Bits 32-62 of a 66-bit local physical address
RapidIO.org 55

RapidIO Part 1: Input/Output Logical Specification 3.2
Blank page
56 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Agent. A processing element that provides services to a processor.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache. In other words, a
write operation to an address in the system is visible to all other
caches in the system.

Cache line. A contiguous block of data that is the standard memory access
size for a processor within a system.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

A

B

C

D

RapidIO.org 57

RapidIO Part 1: Input/Output Logical Specification 3.2
Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

End point free device. A processing element which does not contain end
point functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LSB. Least significant byte.

E

F

G

H

I

L

58 RapidIO.org

RapidIO Part 1: Input/Output Logical Specification 3.2
Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

MSB. Most significant byte.

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Port-write. An address-less maintenance write operation.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

ROM. Read-only memory.

Sender. The RapidIO interface output port on a processing element.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

SRAM. Static random access memory.

M

N

O

P

R

S

RapidIO.org 59

RapidIO Part 1: Input/Output Logical Specification 3.2
Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

T

W

60 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 2: Message Passing Logical

Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

1.1 First public release 03/08/2001

1.2 No technical changes 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
03-05-00006.001, 03-07-00001.001, 04-02-00001.002, 04-05-00001.002
and the following new features showings:
02-05-00013.001
Converted to ISO-friendly templates; re-formatted

02/23/2005

2.0 No technical changes 06/14/2007

2.1 No technical changes 07/09/2009

2.2 Technical changes: errata showing: 10-08-00001.005,
Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information. No technical changes. 10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction... 9
1.2 Overview... 9
1.3 Features of the Message Passing Specification .. 9
1.3.1 Functional Features... 9
1.3.2 Physical Features .. 10
1.3.3 Performance Features ... 10
1.4 Contents .. 10
1.5 Terminology.. 11
1.6 Conventions .. 11

Chapter 2 System Models

2.1 Introduction... 13
2.2 Processing Element Models.. 13
2.2.1 Processor-Memory Processing Element Model.. 13
2.2.2 Integrated Processor-Memory Processing Element Model 14
2.2.3 Memory-Only Processing Element Model ... 14
2.2.4 Processor-Only Processing Element... 15
2.2.5 I/O Processing Element .. 15
2.2.6 Switch Processing Element... 15
2.3 Message Passing System Model ... 16
2.3.1 Data Message Operations ... 17
2.3.2 Doorbell Message Operations... 18
2.4 System Issues .. 18
2.4.1 Operation Ordering ... 18
2.4.2 Transaction Delivery... 18
2.4.3 Deadlock Considerations .. 19

Chapter 3 Operation Descriptions

3.1 Introduction... 21
3.2 Message Passing Operations Cross Reference ... 22
3.3 Message Passing Operations... 22
3.3.1 Doorbell Operations.. 22
3.3.2 Data Message Operations ... 23
3.4 Endian, Byte Ordering, and Alignment .. 24
RapidIO.org 3

Table of Contents

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 4 Packet Format Descriptions

4.1 Introduction... 27
4.2 Request Packet Formats.. 27
4.2.1 Field Definitions for All Request Packet Formats.. 27
4.2.2 Type 0 Packet Format (Implementation-Defined).. 28
4.2.3 Type 1–9 Packet Formats (Reserved)... 28
4.2.4 Type 10 Packet Formats (Doorbell Class).. 28
4.2.5 Type 11 Packet Format (Message Class).. 28
4.3 Response Packet Formats ... 30
4.3.1 Field Definitions for All Response Packet Formats ... 30
4.3.2 Type 12 Packet Format (Reserved) .. 31
4.3.3 Type 13 Packet Format (Response Class) .. 31
4.3.4 Type 14 Packet Format (Reserved) .. 32
4.3.5 Type 15 Packet Format (Implementation-Defined).. 32

Chapter 5 Message Passing Registers

5.1 Introduction... 33
5.2 Register Summary... 33
5.3 Reserved Register, Bit and Bit Field Value Behavior .. 34
5.4 Capability Registers (CARs) .. 36
5.4.1 Source Operations CAR.. 36
5.4.2 Destination Operations CAR .. 37
5.5 Command and Status Registers (CSRs).. 38
0.1 Introduction... 39
0.2 Definitions and Goals ... 39
0.3 Message Operations .. 40
0.4 Inbound Mailbox Structure ... 41
0.4.1 Simple Inbox... 42
0.4.2 Extended Inbox ... 42
0.4.3 Received Messages ... 43
0.5 Outbound Message Queue Structure .. 44
0.5.1 Simple Outbox .. 44
0.5.2 Extended Outbox .. 45
4 RapidIO.org

List of Figures

RapidIO Part 2: Message Passing Logical Specification 3.2
2-1 A Possible RapidIO-Based Computing System..13
2-2 Processor-Memory Processing Element Example ..14
2-3 Integrated Processor-Memory Processing Element Example...14
2-4 Memory-Only Processing Element Example ...15
2-5 Processor-Only Processing Element Example..15
2-6 Switch Processing Element Example ...16
3-1 Doorbell Operation ...23
3-2 Message Operation ...23
3-3 Byte Alignment Example..24
3-4 Half-Word Alignment Example..24
3-5 Word Alignment Example ..25
4-1 Type 10 Packet Bit Stream Format...28
4-2 Type 11 Packet Bit Stream Format...30
4-3 target_info Field for Message Responses ...32
4-4 Type 13 Packet Bit Stream Format...32
A-1 Simple Inbound Mailbox Port Structure ...42
A-2 Inbound Mailbox Structure ...43
A-3 Outbound Message Queue ..44
A-4 Extended Outbound Message Queue..45
RapidIO.org 5

List of Figures

RapidIO Part 2: Message Passing Logical Specification 3.2
Blank page
6 RapidIO.org

List of Tables

RapidIO Part 2: Message Passing Logical Specification 3.2
3-1 Message Passing Operations Cross Reference ...22
4-1 Request Packet Type to Transaction Type Cross Reference ..27
4-2 General Field Definitions for All Request Packets...28
4-3 Specific Field Definitions for Type 10 Packets ..28
4-4 Specific Field Definitions and Encodings for Type 11 Packets29
4-5 Response Packet Type to Transaction Type Cross Reference..30
4-6 Field Definitions and Encodings for All Response Packets ...31
4-7 Specific Field Definitions for Type 13 Packets ..31
5-1 Message Passing Register Map...33
5-2 Configuration Space Reserved Access Behavior..34
5-3 Bit Settings for Source Operations CAR ..36
5-4 Bit Settings for Destination Operations CAR...37
RapidIO.org 7

List of Tables

RapidIO Part 2: Message Passing Logical Specification 3.2
Blank page
8 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction
Part 2 is intended for users who need to understand the message passing architecture
of the RapidIO interconnect.

1.2 Overview
The RapidIO Part 2: Message Passing Logical Specification is part of RapidIO’s
logical layer specifications that define the interconnect’s overall protocol and packet
formats. This layer contains the transaction protocols necessary for end points to
process a transaction. Other RapidIO logical layer specifications include RapidIO
Part 1: Input/Output Logical Specification and RapidIO Part 5: Globally Shared
Memory Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encoding for the transport and physical layers lower in the RapidIO
three-layer hierarchy.

RapidIO is targeted toward memory mapped distributed memory systems. A
message passing programming model is supported to enable distributed I/O
processing.

1.3 Features of the Message Passing Specification
The following are features of the RapidIO I/O specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features
• Many embedded systems are multiprocessor systems, not multiprocessing

systems, and prefer a message passing or software-based coherency
programming model over the traditional computer-style globally shared
memory programming model in order to support their distributed I/O and
processing requirements, especially in the networking and routing markets.
RapidIO supports all of these programming models.
RapidIO.org 9

RapidIO Part 2: Message Passing Logical Specification 3.2
• System sizes from very small to very large are supported in the same or
compatible packet formats—RapidIO plans for future expansion and
requirements.

• Message passing devices can improve the interconnect efficiency if larger
non-coherent data quantities can be encapsulated within a single packet, so
RapidIO supports a variety of data sizes within the packet formats.

• Because the message passing programming model is fundamentally a
non-coherent non-shared memory model, RapidIO can assume that portions
of the memory space are only directly accessible by a processor or device
local to that memory space. A remote device that attempts to access that
memory space must do so through a local device controlled message passing
interface.

1.3.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface

to other devices on the interconnect fabric.

• The protocols and packet formats are independent of the physical interconnect
topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.

• The protocols handle out-of-order packet transmission and reception.

• Certain devices have bandwidth and latency requirements for proper operation.
RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead

and be organized for fast, efficient assembly and disassembly.

• Multiple transactions must be allowed concurrently in the system, otherwise a
majority of the potential system throughput is wasted.

1.4 Contents
Following are the contents of RapidIO Part 2: Message Passing Logical
Specification:

• Chapter 1, “Overview” (this chapter) provides an overview of the specification
10 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
• Chapter 2, “System Models,” introduces some possible devices that might
participate in a RapidIO message passing system environment. The chapter
also explains the message passing model, detailing the data and doorbell
message types used in a RapidIO system. System issues such as the lack of
transaction ordering and deadlock prevention are presented.

• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO message passing protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the message passing specification. The two basic types,
request and response packets, and their fields and sub-fields are explained.

• Chapter 5, “Message Passing Registers,” displays the RapidIO register map
that allows an external processing element to determine the message passing
capabilities, configuration, and status of a processing element using this
logical specification. Only registers or register bits specific to the message
passing logical specification are explained. Refer to the other RapidIO
logical, transport, and physical specifications of interest to determine a
complete list of registers and bit definitions.

• Annex A, “Message Passing Interface (Informative),” contains an informative
discussion on possible programming models for the message passing logical
layer.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits

ACTIVE_HIGH Names of active high signals are shown in uppercase text with
no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in
uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.
RapidIO.org 11

RapidIO Part 2: Message Passing Logical Specification 3.2
[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
12 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 2 System Models

2.1 Introduction
This overview introduces some possible devices in a RapidIO system.

2.2 Processing Element Models
Figure 2-1 describes a possible RapidIO-based system. The processing element is a
computer device such as a processor attached to local memory and a RapidIO
interconnect. The bridge part of the system provides I/O subsystem services such as
high-speed PCI interfaces and Gbit ethernet ports, interrupt control, and other
system support functions.

The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element Model

Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to local memory. It also provides an
interface to the RapidIO interconnect to service message requests that are used for
communications with other processing elements.

Figure 2-1. A Possible RapidIO-Based Computing System

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

Firewire
RapidIO.org 13

RapidIO Part 2: Message Passing Logical Specification 3.2
2.2.2 Integrated Processor-Memory Processing Element Model

Another form of a processor-memory processing element is a fully integrated
component that is designed specifically to connect to a RapidIO interconnect
system, Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package.

2.2.3 Memory-Only Processing Element Model

A different processing element may not contain a processor at all, but may be a
memory-only device as in Figure 2-4. This type of device is much simpler than a
processor in that it is only responsible for responding to requests from the external
system, not from local requests as in the processor-based model. As such, its
memory is remote for all processors in the system.

Figure 2-2. Processor-Memory Processing Element Example

Figure 2-3. Integrated Processor-Memory Processing Element Example

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect

Processor

Memory

RapidIO-Based
System Interconnect
14 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
2.2.4 Processor-Only Processing Element

Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing element is shown in Figure 2-5.

2.2.5 I/O Processing Element

This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory. An I/O device only
needs to move data into and out of local or remote memory.

2.2.6 Switch Processing Element

A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidIO-compliant processing elements. A possible switch is shown in
Figure 2-6. Behavior of the switches, and the interconnect fabric in general, is
addressed in the RapidIO Common Transport Specification.

Figure 2-4. Memory-Only Processing Element Example

Figure 2-5. Processor-Only Processing Element Example

Memory

Memory

Control

RapidIO-Based
System Interconnect

Agent

Processor

Local Interconnect

RapidIO-based
System Interconnect
RapidIO.org 15

RapidIO Part 2: Message Passing Logical Specification 3.2
2.3 Message Passing System Model
RapidIO supports a message passing programming model. Message passing is a
programming model commonly used in distributed memory system machines. In
this model, processing elements are only allowed to access memory that is local to
themselves, and communication between processing elements is handled through
specialized hardware manipulated through application or OS software. For two
processors to communicate, the sending processor writes to a local message passing
device that reads a section of the sender’s local memory and moves that information
to the receiving processor’s local message passing device. The recipient message
passing device then stores that information in local memory and informs the
recipient processor that a message has arrived, usually via an interrupt. The recipient
processor then accesses its local memory to read the message.

For example, referring to Figure 2-1, processing element A can only access the
memory attached to it, and cannot access the memory attached to processing
elements B, C, or D. Correspondingly, processing element B can only access the
memory attached to it and cannot access the memory attached to processing element
A, C, or D, and so on. If processing element A needs to communicate with
processing element B, the application software accesses special message passing
hardware (also called mailbox hardware) through operating system calls or API
libraries and configure it to assemble the message and send it to processing element
B. The message passing hardware for processing element B receives the message
and puts it into local memory at a predetermined address, then notifies processing
element B.

Many times a message is required to be larger than a single packet allows, so the
source needs to break up the message into multiple packets before transmitting it. At
times it may also be useful to have more than one message being transmitted at a
time. RapidIO has facilities for both of these features.

Figure 2-6. Switch Processing Element Example

Switch
16 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
2.3.1 Data Message Operations

A source may generate a single message operation of up to 16 individual packets
containing as much as 256 data bytes per packet. A variety of data payload sizes
exist, allowing a source to choose a smaller size data payload if needed for an
application. RapidIO defines all data message packets as containing the same
amount of data with the exception of the last one, which can contain a smaller data
payload if desired. The packets are formatted with three fields:

• One field specifies the size of the data payload for all except the last packet for
the data message operation.

• The second field specifies the size of the data payload for that packet, and

• The third field contains the packet sequence order information.

The actual packet formats are shown in Chapter 4, “Packet Format Descriptions.”

Because all packets except the last have the same data payload size, the receiver is
able to calculate the local memory storage addresses if the packets are received out
of order, allowing operation with an interconnect fabric that does not guarantee
packet delivery ordering.

For multiple packet messages, a letter field and a mailbox field allow a source to
simultaneously have up to four data message operations (or “letters”) in progress to
each of four different mailboxes, allowing up to sixteen concurrent data message
operations between a sender and a receiver. The mailbox field can be used to indicate
the priority of a data message, allowing a higher priority message to interrupt a lower
priority one at the sender, or it can be used as a simple mailbox identifier for a
particular receiver if the receiver allows multiple mailbox addresses. If the mailbox
number is used as a priority indicator, mailbox number 0 is the highest priority and
mailbox 3 is the lowest.

For single packet messages, the letter and mailbox fields instead allow four
concurrent letters to sixty-four possible mailboxes. As for multiple packet messages,
if the mailbox number is used as a priority indicator, mailbox number 0 is the highest
priority and mailbox 63 is the lowest.

The number of packets comprising a data message operation, the maximum data
payload size, the number of concurrent letters, and the number of mailboxes that can
be sent or received is determined by the implementation of a particular processing
element. For example, a processing element could be designed to generate two
concurrent letters of at most four packets with a maximum 64-byte data payload.
That same processing element could also be designed to receive data messages in
two mailboxes with two concurrent letters for each, all with the maximum data
payload size and number of packets.

There is further discussion of the data message operation programming model and
the necessary hardware support in Annex A, “Message Passing Interface
(Informative)”.
RapidIO.org 17

RapidIO Part 2: Message Passing Logical Specification 3.2
2.3.2 Doorbell Message Operations

RapidIO supports a second message type, the doorbell message operation. The
doorbell message operation sends a small amount of software-defined information
to the receiver and the receiver controls all local memory addressing as with the data
message operation. It is the responsibility of the processor receiving the doorbell
message to determine the action to undertake by examining the ID of the sender and
the received data. All information supplied in a doorbell message is embedded in the
packet header so the doorbell message never has a data payload.

The generation, transmission, and receipt of a doorbell message packet is handled in
a fashion similar to a data message packet. If processing element A wants to send a
doorbell message to processing element B, the application software accesses special
doorbell message hardware through operating system calls or API libraries and
configures it to assemble the doorbell message and send it to processing element B.
The doorbell message hardware for processing element B receives the doorbell
message and puts it into local memory at a predetermined address, then notifies
processing element B, again, usually via an interrupt.

There is further discussion of the doorbell message operation programming model
and the necessary hardware support in Annex A, “Message Passing Interface
(Informative)”.

2.4 System Issues
The following sections describe transaction ordering and system deadlock
considerations in a RapidIO system.

2.4.1 Operation Ordering

The RapidIO Part 2: Message Passing Logical Specification requires no special
system operation ordering. Message operation completion is managed by the
overlying system software.

It is important to recognize that systems may contain a mix of transactions that are
maintained under the message passing model as well as under another model. As an
example, I/O traffic may be interspersed with message traffic. In this case, the shared
I/O traffic may require strong ordering rules to maintain coherency. This may set an
operation ordering precedence for that implementation, especially in the case where
the connection fabric cannot discern between one type of operation and another.

2.4.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO
processing elements: unordered and ordered. The RapidIO logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logical protocols do not rely on transaction
18 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
interdependencies for operation. RapidIO also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware.

A message operation may consist of several transactions. It is possible for these
transactions to arrive at a target mailbox in an arbitrary order. A message transaction
contains explicit tagging information to allow the message to be reconstructed as it
arrives at the target processing element.

2.4.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidIO is
designed to be a reliable fabric for use in real time tightly coupled systems, therefore
discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency loops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes, physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing) then topology related
dependency loops are avoided in these structures.

In addition, a processing element design must not form dependency links between
its input and output port. A dependency link between input and output ports occurs
if a processing element is unable to accept an input packet until a waiting packet can
be issued from the output port.

RapidIO supports operations, such as read operations, that require responses to
complete. These operations can lead to a dependency link between an processing
element’s input port and output port.

As an example of a input to output port dependency, consider a processing element
where the output port queue is full. The processing element cannot accept a new
request at its input port since there is no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

The method by which a RapidIO system maintains a deadlock free environment is
RapidIO.org 19

RapidIO Part 2: Message Passing Logical Specification 3.2
described in the appropriate Physical Layer specification.
20 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the set of operations and transactions supported by the
RapidIO message passing protocols. The opcodes and packet formats are described
in Chapter 4, “Packet Format Descriptions”.

The RapidIO operation protocols use request/response transaction pairs through the
interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been
completed or if an error condition is encountered. Each transaction is sent as a packet
through the interconnect fabric. For example, a processing element that needs to
send part of a message operation to another processing element sends a MESSAGE
request packet to that processing element, which processes the message packet and
returns a DONE response packet.

Three possible response transactions can be received by a requesting processing
element:

• A DONE response indicates to the requestor that the desired transaction has
completed.

• A RETRY response shall be generated for a message transaction that attempts
to access a mailbox that is busy servicing another message operation, as can
a doorbell transaction that encounters busy doorbell hardware. A transaction
request which receives a RETRY response must be re-transmitted in order to
complete the operation.

• An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such
as a device number. These requirements are described in the appropriate RapidIO
transport layer specification, and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
RapidIO physical layer specification and are beyond the scope of this document.
RapidIO.org 21

RapidIO Part 2: Message Passing Logical Specification 3.2
Each request transaction sent into the system is marked with a transaction ID that is
unique for each requestor and responder processing element pair. This transaction
ID allows a response to be easily matched to the original request when it is returned
to the requestor. An end point cannot reuse a transaction ID value to the same
destination until the response from the original transaction has been received by the
requestor. The number of outstanding transactions that may be supported is
implementation dependent.

3.2 Message Passing Operations Cross Reference
Table 3-1 contains a cross-reference list of the message passing operations defined
in this RapidIO specification and their system usage.

3.3 Message Passing Operations
The two kinds of message passing transactions are described in this section and
defined as follows:

• Doorbell

• Data Message

3.3.1 Doorbell Operations

The doorbell operation, consisting of the DOORBELL and RESPONSE transactions
(typically a DONE response) as shown in Figure 3-1, is used by a processing
element to send a very short message to another processing element through the
interconnect fabric. The DOORBELL transaction contains the info field to hold
information and does not have a data payload. This field is software-defined and can
be used for any desired purpose; see Section 4.2.4, “Type 10 Packet Formats
(Doorbell Class),” for information about the info field.

A processing element that receives a doorbell transaction takes the packet and puts
it in a doorbell message queue within the processing element. This queue may be
implemented in hardware or in local memory. This behavior is similar to that of
typical message passing mailbox hardware. The local processor is expected to read
the queue to determine the sending processing element and the info field and
determine what action to take based on that information.

Table 3-1. Message Passing Operations Cross Reference

Operation
Transactions

Used
Possible System Usage Description Packet Format

Doorbell DOORBELL,
RESPONSE

Section 3.3.1 Type 10
Section 4.2.4

Data Message MESSAGE,
RESPONSE

Section 3.3.2 Type 11
Section 4.2.5
22 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Figure 3-1. Doorbell Operation

3.3.2 Data Message Operations

The data message operation, consisting of the MESSAGE and RESPONSE
transactions (typically a DONE response) as shown in Figure 3-2, is used by
a processing element’s message passing support hardware to send a data
message to other processing elements. Completing a data message operation
can consist of up to 16 individual MESSAGE transactions. MESSAGE
transaction data payloads are always multiples of doubleword quantities.

Figure 3-2. Message Operation

The processing element’s message passing hardware that is the recipient of a
data message operation examines a number of fields in order to place an
individual MESSAGE packet data in local memory:

• Message length (msglen) field—Specifies the number of transactions
that comprise the data message operation.

• Message segment (msgseg) field—Identifies which part of the data
message operation is contained in this transaction. The message length
and segment fields allow the individual packets of a data message to
be sent or received out of order.

• Mailbox (mbox) field—Specifies which mailbox is the target of the data
message.

• Letter (letter) field —Allows receipt of multiple concurrent data
message operations from the same source to the same mailbox.

• Standard size (ssize) field—Specifies the data size of all of the
transactions except (possibly) the last transaction in the data message.

From this information, the message passing hardware of the recipient
processing element can calculate to which local memory address the
transaction data should be placed.

DOORBELL1

Requestor Destination

DONE2

MESSAGEs, data1

Requestor Destination

DONEs2
RapidIO.org 23

RapidIO Part 2: Message Passing Logical Specification 3.2
For example, assume that the mailbox starting addresses for the recipient processing
element are at addresses 0x1000 for mailbox 0, 0x2000 for mailbox 1, 0x3000 for
mailbox 2, and 0x4000 for mailbox 3, and that the processing element receives a
message transaction with the following fields:

• message length of 6 packets

• message segment is 3rd packet

• mailbox is mailbox 2

• letter is 1

• standard size is 32 bytes

• data payload is 32 bytes (it shall be 32 bytes since this is not the last transaction)

Using this information, the processing element’s message passing hardware can
determine that the 32 bytes contained in this part of the data message shall be put
into local memory at address 0x3040.

The message passing hardware may also snoop the local processing element’s
caching hierarchy when writing local memory if the mailbox memory is defined as
being cacheable by that processing element.

3.4 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means
that the RapidIO interface to devices that are little-endian shall perform the proper
endian transformation at the output to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-3 through Figure 3-5.

Figure 3-3. Byte Alignment Example

Figure 3-4. Half-Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB
24 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Figure 3-5. Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
RapidIO.org 25

RapidIO Part 2: Message Passing Logical Specification 3.2
Blank page
26 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 4 Packet Format Descriptions

4.1 Introduction
This chapter contains the packet format definitions for the RapidIO Part 2: Message
Passing Logical Specification. There are four types of message passing packet
formats:

• Request

• Response

• Implementation-defined

• Reserved

The packet formats are intended to be interconnect fabric independent so the system
interconnect can be anything required for a particular application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.2 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such as a doorbell operation. The
request packet format types and their transactions for the RapidIO Part 2: Message
Passing Logical Specification are shown in Table 4-1.

4.2.1 Field Definitions for All Request Packet Formats

The field definitions in Table 4-2 apply to all of the request packet formats. Fields
that are unique to type 10 and type 11 formats are defined in the sections that
describe each type. Bit fields that are defined as “reserved” shall be assigned to logic
0s when generated and ignored when received. Bit field encodings that are defined

Table 4-1. Request Packet Type to Transaction Type Cross Reference

Request Packet
Format Type

Transaction Type Definition
Document Section

Number

Type 0 Implementation-
defined

Defined by the device implementation Section 4.2.2

Type 1–9 — Reserved Section 4.2.3

Type 10 DOORBELL Send a short message Section 4.2.4

Type 11 MESSAGE Send a message Section 4.2.5
RapidIO.org 27

RapidIO Part 2: Message Passing Logical Specification 3.2
as “reserved” shall not be assigned when the packet is generated. A received
reserved encoding is regarded as an error if a meaningful encoding is required for
the transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the
figures from left to right respectively.

4.2.2 Type 0 Packet Format (Implementation-Defined)

The type 0 packet format is reserved for implementation-defined functions such as
flow control.

4.2.3 Type 1–9 Packet Formats (Reserved)

The type 1–9 formats are reserved.

4.2.4 Type 10 Packet Formats (Doorbell Class)

The type 10 packet format is the DOORBELL transaction format. Type 10 packets
never have data payloads. The field value 0b1010 in Figure 4-1 specifies that the
packet format is of type 10.

Definitions and encodings of fields specific to type 10 packets are provided in
Table 4-3. Fields that are not specific to type 10 packets are described in Table 4-2.

Figure 4-1 displays a type 10 packet with all its fields.

4.2.5 Type 11 Packet Format (Message Class)

The type 11 packet is the MESSAGE transaction format. Type 11 packets always
have a data payload. Sub-double-word messages are not specifiable and must be
managed in software.

Table 4-2. General Field Definitions for All Request Packets

Field Definition

ftype Format type—Represented as a 4-bit value; is always the first four bits in the logical packet stream.

rsrv Reserved

Table 4-3. Specific Field Definitions for Type 10 Packets

Field Encoding Definition

info — Software-defined information field

Figure 4-1. Type 10 Packet Bit Stream Format

1 0 1 0

4 8 8

rsrv srcTID

8

info (msb)

8

info (lsb)
28 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Definitions and encodings of fields specific to type 11 packets are provided in
Table 4-4. Fields that are not specific to type 11 packets are described in Table 4-2.

Table 4-4. Specific Field Definitions and Encodings for Type 11 Packets

Field Encoding Definition

msglen — Total number of packets comprising this message operation. A value of 0 indicates a
single-packet message. A value of 15 (0xF) indicates a 16-packet message, etc. See example in
Section 3.3.2, “Data Message Operations”.

msgseg — For multiple packet data message operations, specifies the part of the message supplied by this
packet. A value of 0 indicates that this is the first packet in the message. A value of 15 (0xF)
indicates that this is the sixteenth packet in the message, etc. See example in Section 3.3.2, “Data
Message Operations”.

xmbox — For single packet data message operations, specifies the upper 4 bits of the mailbox targeted by
the packet.
xmbox || mbox are specified as follows:
0000 00 - mailbox 0
0000 01 - mailbox 1
0000 10 - mailbox 2
0000 11 - mailbox 3
0001 00 - mailbox 4
....
1111 11 - mailbox 63

ssize — Standard message packet data size. This field informs the receiver of a message the size of the
data payload to expect for all of the packets for a single message operations except for the last
packet in the message. This prevents the sender from having to pad the data field excessively for
the last packet and allows the receiver to properly put the message in local memory. See example
in Section 3.3.2, “Data Message Operations”.

0b0000–1000 Reserved

0b1001 8 bytes

0b1010 16 bytes

0b1011 32 bytes

0b1100 64 bytes

0b1101 128 bytes

0b1110 256 bytes

0b1111 Reserved

mbox — Specifies the recipient mailbox in the target processing element

letter — Identifies a slot within a mailbox. This field allows a sending processing element to concurrently
send up to four messages to the same mailbox on the same processing element.
RapidIO.org 29

RapidIO Part 2: Message Passing Logical Specification 3.2
Figure 4-2 displays a type 11 packet with all its fields. The value 0b1011 in
Figure 4-2 specifies that the packet format is of type 11.

The combination of the letter, mbox, and the msgseg or xmbox fields uniquely
identifies the message packet in the system for each requestor and responder
processing element pair in the same way as the transaction ID is used for other
request types. Care must be taken to prevent aliasing of the combination of these
values.

4.3 Response Packet Formats
A response transaction is issued by a processing element when it has completed a
request made by a remote processing element. Response packets are always directed
and are transmitted in the same way as request packets. Currently two response
packet format types exist, as shown in Table 4-5.

4.3.1 Field Definitions for All Response Packet Formats

The field definitions in Table 4-6 apply to more than one of the response packet
formats. Fields that are unique to the type 13 format are defined in Section 4.3.3,
“Type 13 Packet Format (Response Class).”

Figure 4-2. Type 11 Packet Bit Stream Format

Table 4-5. Response Packet Type to Transaction Type Cross Reference

Response Packet
Format Type

Transaction Type Definition
Document Section

Number

Type 12 — Reserved Section 4.3.2

Type 13 RESPONSE Issued by a processing element when it completes a
request by a remote element.

Section 4.3.3

Type 14 — Reserved Section 4.3.4

Type 15
Implementation-
defined

Defined by the device implementation
Section 4.3.5

letter

2

double-word 0

64

double-word 1

64

double-word n

64

• • •

1 0 1 1

4 4 4

msglen ssize msgseg/xmbox

4

mbox

2

30 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
4.3.2 Type 12 Packet Format (Reserved)

The type 12 packet format is reserved.

4.3.3 Type 13 Packet Format (Response Class)

The type 13 packet format returns status and the requestor’s transaction ID or
message segment and mailbox information. The type 13 format is used for response
packets to all request packets. Responses to message and doorbell packets never
contain data.

Definitions and encodings of fields specific to type 13 packets are provided in
Table 4-7. Fields that are not specific to type 13 packets are described in Table 4-6.

Figure 4-3 shows the format of the target_info field for message responses.

Table 4-6. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload (including DOORBELL
RESPONSE)

0b0001 MESSAGE RESPONSE transaction

0b0010–1111 Reserved

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001–0010 — Reserved

0b0011 RETRY Requested transaction is not accepted; re-transmission of the request is
needed to complete the transaction

0b0100–0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional information such
as an error code

Table 4-7. Specific Field Definitions for Type 13 Packets

Field Sub-Field Definition

target_info As shown in Figure 4-3, when the response is the target_info field, these three sub-fields are used:

msgseg Specifies the part of the message supplied by the corresponding message packet. A value of
0 indicates that this is the response for the first packet in the message. A value of 15 (0xF)
indicates that this is the response for the sixteenth (and last) packet in the message, etc.

mbox Specifies the recipient mailbox from the corresponding message packet.

letter Identifies the slot within the target mailbox. This field allows a sending processing element
to concurrently send up to four messages to the same mailbox on the same processing
element.

targetTID — Transaction ID of the request that caused this response (except for message responses
defined in Figure 4-3).
RapidIO.org 31

RapidIO Part 2: Message Passing Logical Specification 3.2
Figure 4-4 displays a type 13 packet with all its fields. The value 0b1101 in
Figure 4-4 specifies that the packet format is of type 13.

4.3.4 Type 14 Packet Format (Reserved)

The type 14 packet format is reserved.

4.3.5 Type 15 Packet Format (Implementation-Defined)

The type 15 packet format is reserved for implementation-defined functions such as
flow control.

Figure 4-3. target_info Field for Message Responses

Figure 4-4. Type 13 Packet Bit Stream Format

mbox

2

letter

2

msgseg

4

1 1 0 1

4 4 4 8

transaction status target_info/targetTID
32 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Chapter 5 Message Passing Registers

5.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

5.2 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
Part 1: Input/Output Logical Specification maintenance operations. Any register
offsets not defined are considered reserved for this specification unless otherwise
stated. Other registers required for a processing element are defined in other
applicable RapidIO specifications and by the requirements of the specific device and
are beyond the scope of this specification. Read and write accesses to reserved
register offsets shall terminate normally and not cause an error condition in the target
device. Writes to CAR (read-only) space shall terminate normally and not cause an
error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. Message Passing Register Map

Configuration
Space Byte

Offset
Register Name

0x0-14 Reserved

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20–FC Reserved
RapidIO.org 33

RapidIO Part 2: Message Passing Logical Specification 3.2
5.3 Reserved Register, Bit and Bit Field Value Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. Message Passing Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
34 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
When a writable bit field is set to a reserved value, device behavior is
implementation specific.

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO.org 35

RapidIO Part 2: Message Passing Logical Specification 3.2
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO message passing logical operations that can
be issued by this processing element; see Table 5-3. It is assumed that a processing
element can generate I/O logical maintenance read and write requests if it is required
to access CARs and CSRs in other processing elements. RapidIO switches shall be
able to route any packet.

Table 5-3. Bit Settings for Source Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–19 — Reserved

20 Data message PE can support a data message operation

21 Doorbell PE can support a doorbell operation

22–29 — Reserved

30–31 Implementation Defined Defined by the device implementation
36 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
5.4.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO message passing operations that can be
supported by this processing element; see Table 5-4. It is required that all processing
elements can respond to I/O logical maintenance read and write requests in order to
access these registers. The Destination Operations CAR is applicable for end point
devices only. RapidIO switches shall be able to route any packet.

Table 5-4. Bit Settings for Destination Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–19 — Reserved

20 Data message PE can support a data message operation

21 Doorbell PE can support a doorbell operation

22–29 — Reserved

30–31 Implementation Defined Defined by the device implementation
RapidIO.org 37

RapidIO Part 2: Message Passing Logical Specification 3.2
5.5 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs)
that allows an external processing element to control and determine the status of its
internal hardware. All registers are 32 bits wide and are organized and accessed in
the same way as the CARs. Refer to Table 5-2 for the required behavior for accesses
to reserved registers and register bits.

Currently there are no CSRs defined by the message passing logical layer
specification.
38 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Annex A Message Passing Interface
(Informative)

A.1 Introduction
The RapidIO Part 2: Message Passing Logical Specification defines several packet
formats that are useful for sending messages from a source device to a destination.
These formats do not describe a specific programming model but are instantiated as
an example packetizing mechanism. Because the actual programming models for
message passing can vary greatly in both capability and complexity, they have been
deemed beyond the scope of this specification. This appendix is provided as a
reference model for message passing and is not intended to be all encompassing.

A.2 Definitions and Goals
A system may be made up of several processors and distributed memory elements.
These processors may be tightly coupled and operating under a monolithic operating
system in certain applications. When this is true the operating system is tasked with
managing the pool of processors and memory to solve a set of tasks. In most of these
cases, it is most efficient for the processors to work out of a common
hardware-maintained coherent memory space. This allows processors to
communicate initialization and completion of tasks through the use of semaphores,
spin locks, and inter-process interrupts. Memory is managed centrally by the
operating system with a paging protection scheme.

In other such distributed systems, processors and memory may be more loosely
coupled. Several operating systems or kernels may be coexistent in the system, each
kernel being responsible for a small part of the entire system. It is necessary to have
a communication mechanism whereby kernels can communicate with other kernels
in a system of this nature. Since this is a shared nothing environment, it is also
desirable to have a common hardware and software interface mechanism to
accomplish this communication. This model is typically called message passing.

In these message passing systems, two mechanisms typically are used to move data
from one portion of memory space to another. The first mechanism is called direct
memory access (DMA), the second is messaging. The primary difference between
the two models is that DMA transactions are steered by the source whereas messages
are steered by the target. This means that a DMA source not only requires access to
a target but must also have visibility into the target’s address space. The message
RapidIO.org 39

RapidIO Part 2: Message Passing Logical Specification 3.2
source only requires access to the target and does not need visibility into the target’s
address space. In distributed systems it is common to find a mix of DMA and
messaging deployed.

The RapidIO architecture contains a packet transport mechanism that can aid in the
distributed shared nothing environment. The RapidIO message passing model meets
several goals:

• A message is constructed of one or more transactions that can be sent and
received through a possibly unordered interconnect

• A sender can have a number of outstanding messages queued for sending

• A sender can send a higher priority message before a lower priority message
and can also preempt a lower priority message to send a higher priority one
and have the lower priority message resume when the higher is complete
(prioritized concurrency)

• A sender requires no knowledge of the receiver’s internal structure or memory
map

• A receiver of a message has complete control over it’s local address space

• A receiver can have a number of outstanding messages queued for servicing if
desired

• A receiver can receive a number of concurrent multiple-transaction messages
if desired

A.3 Message Operations
The RapidIO Part 2: Message Passing Logical Specification defines the type 11
packet as the MESSAGE transaction format. The transaction may be used in a
number of different ways dependent on the specific system architecture. The
transaction header contains the following field definitions:

mbox Specifies the recipient mailbox in the target processing element.
RapidIO allows up to four mailbox ports in each target device.
This can be useful for defining blocks of different message
frame sizes or different local delivery priority levels.

letter A RapidIO message operation may be made up of several
transactions. It may be desirable in some systems to have
more than one multi-transaction message concurrently in
transit to the target mailbox. The letter identifies the specific
message within the mailbox. This field allows a sending of up
to four messages to the same mailbox in the same target
device.

multi-transaction fieldsIn cases where message operations are made up of multiple
transactions, the following fields allow reconstruction of a
message transported through an unordered interconnect
40 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
fabric:

msglen Specifies the total number of transactions comprising this message.
A value of 0 indicates a single transaction message. A value
of 15 (0xF) indicates a 16 transaction message, and so forth.

msgseg Specifies the part of the message operation supplied by this
transaction. A value of 0 indicates that this is the first
transaction in the message. A value of 15 (0xF) indicates that
this is the sixteenth transaction in the message, and so on.

ssize Standard message transaction data size. This field tells the receiver
to expect a message the size of the data field for all of the
transactions except the last one. This prevents the sender from
having to pad the data field excessively for the last transaction
and allows the receiver to properly put the message in local
memory; otherwise, if the last transaction is the first one
received, the address calculations will be in error when
writing the transaction to memory.

For a more detailed description of the message packet format, refer to Section 4.2.5,
“Type 11 Packet Format (Message Class).”

The second type of message packet is the type 10 doorbell transaction packet. The
doorbell transaction is a lightweight transaction that contains only a 16-bit
information field that is completely software defined. The doorbell is intended to be
an in-band mechanism to send interrupts between processors. In this usage the
information field would be used to convey interrupt level and target information to
the recipient. For a more detailed description of the doorbell packet format, refer to
Section 4.2.4, “Type 10 Packet Formats (Doorbell Class).”

There are two transaction format models described in this appendix, a simple model
and an extended model. The simple model is recommended for both the type 10
(doorbell) and type 11 (message) packet format messages. The extended model is
only recommended for the type 11 (message) packet format messages.

A.4 Inbound Mailbox Structure
RapidIO provides two message transaction packet formats. By nature of having such
formats it is possible for one device to pass a message to another device without a
specific memory mapped transaction. The transaction allows for the concept of a
memory map independent port. As mentioned earlier, how the transactions are
generated and what is done with them at the destination is beyond the scope of the
RapidIO Part 2: Message Passing Logical Specification. There are, however, a few
examples as to how they could be deployed. First, look at the destination of the
message.
RapidIO.org 41

RapidIO Part 2: Message Passing Logical Specification 3.2
A.4.1 Simple Inbox

Probably the most simple inbound mailbox structure is that of a single-register port
or direct map into local memory space (see Figure A-1).

In this structure, the inbound single transaction message is posted to either a register,
set of registers, or circular queue in local memory. In the case of the circular queue,
hardware maintains a head and tail pointer that points at a fixed window of
pre-partitioned message frames in memory. Whenever the head pointer equals the
tail pointer, no more messages can be accepted and they are retried on the RapidIO
interface. When messages are posted, the local processor is interrupted. The
interrupt service routine reads the mailbox port that contains the message located at
the tail pointer. The message frame is equal to the largest message operation that can
be received.

The RapidIO MESSAGE transaction allows up to four such inbound mailbox ports
per target address. The DOORBELL transaction is defined as a single mailbox port.

A.4.2 Extended Inbox

A second more extensible structure similar to that used in the intelligent I/O (I2O)
specification, but managed differently, also works for the receiver (see Figure A-2).

Figure A-1. Simple Inbound Mailbox Port Structure

Head Pointer

Tail Pointer

Inbound
Mailbox

Port

Transactions
from

RapidIO Interface

Local Processor
Read

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Local Memory

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Tail Pointer
42 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2

One of these structures is required for each priority level supported in an
implementation. There are inbound post and free list FIFOs which function as
circular queues of a fixed size. The message frames are of a size equal to the
maximum message size that can be accepted by the receiver. Smaller messages can
be accepted if allowed by the overlaying software. The sender only specifies the
mailbox and does not request the frame pointer and perform direct memory access
as with I2O, although the I2O model can be supported in software with this structure.
All pointers are managed by the inbound hardware and the local processor. Message
priority and letter number are managed by software.

The advantage of the extended structure is that it allows local software to service
message frames in any order. It also allows memory regions to be moved in and out
of the message structure instead of forcing software to copy the message to a
different memory location.

A.4.3 Received Messages

When a message transaction is received, the inbound mailbox port takes the message
frame address (MFA) pointed at by the inbound free list tail pointer and increments
that pointer (this may cause a memory read to prefetch the next MFA), effectively
taking the MFA from the free list. Subsequent message transactions from a different
sender or with a different letter number are now retried until all of the transactions
for this message operation have been received, unless there is additional hardware
to handle multiple concurrent message operations for the same mailbox,
differentiated by the letter slots.

Figure A-2. Inbound Mailbox Structure

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Letter Slot

Letter Slot

Letter Slot

Letter Slot

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA
Tail Pointer

Head Pointer

Tail Pointer

Head Pointer

Inbound
Mailbox

Port

Transactions
from

RapidIO Interface

Local Processor
Read

Local Memory
Local Memory

Inbound
Post
List
FIFO

Inbound
Free
List
FIFO

Local Processor
Write

Optional
Letter Slots

allow multiple
multi-transaction
messages to
arrive in the

Inbox
concurrently
RapidIO.org 43

RapidIO Part 2: Message Passing Logical Specification 3.2
The inbound mailbox port uses the MFA to write the transaction data into local
memory at that base address with the exact address calculated as described in
Section 2.3.1, “Data Message Operations” and Section 3.3.2, “Data Message
Operations.” When the entire message is received and written into memory, the
inbound post list pointer is incremented and the MFA is written into that location. If
the queue was previously empty, an interrupt is generated to the local processor to
indicate that there is a new message pending. This causes a window where the letter
hardware is busy and cannot service a new operation between the receipt of the final
transaction and the MFA being committed to the local memory.

When the local processor services a received message, it reads the MFA indicated
by the inbound post FIFO tail pointer and increments the tail pointer. When the
message has been processed (or possibly deferred), it puts a new MFA in the
memory address indicated by the inbound free list head pointer and increments that
pointer, adding the new MFA to the free list for use by the inbound message
hardware.

If the free list head and tail pointer are the same, the FIFO is empty and there are no
more MFAs available and all new messages are retried. If the post list head and tail
pointers are the same, there are no outstanding messages awaiting service from the
local processor. Underflow conditions are fatal since they indicate improper system
behavior. This information can be part of an associated status register.

A.5 Outbound Message Queue Structure
Queueing messages in RapidIO is accomplished either through a simple or a more
extended outbox.

A.5.1 Simple Outbox

Generation of a message can be as simple as writing to a memory-mapped descriptor
structure either in local registers or memory. The outbound message queue (see
Figure A-3) looks similar to the inbox.

Figure A-3. Outbound Message Queue

Tail Pointer

Head Pointer

Outbound
Mailbox

Port

Transactions
to

RapidIO Interface

Local Processor
Write

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Local Memory
44 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
The local processor reads a port in the outbound mailbox to obtain the position of a
head pointer in local memory. If the read results in a pre-determined pattern the
message queue is full. The processor then writes a descriptor structure and message
to that location. When it is done, it writes the message port to advance the head point
and mark the message as queued. The outbound mailbox hardware then reads the
messages pointed to by the tail pointer and transfers them to the target device
pointed at by the message descriptor.

One of these structures is required for each priority level of outbound messages
supported.

A.5.2 Extended Outbox

A more extensible method of queueing messages is again a two-level approach (see
Figure A-4). Multiple structures are required if concurrent operation is desired in an
implementation. The FIFO is a circular queue of some fixed size. The message
frames are of a size that is equal to the maximum message operation size that can be
accepted by the receivers in the system. Smaller message operations can be sent if
allowed by the hardware and the overlaying software. As with the receive side, the
outbound slots can be virtual and any letter number can be handled by an arbitrary
letter slot.

When the local processor wishes to send a message, it stores the message in local
memory, writes the message frame descriptor (MFD) to the outbound mailbox port
(which in-turn writes it to the location indicated by the outbound post FIFO head
pointer), and increments the head pointer.

The advantage of this method is that software can have pre-set messages stored in
local memory. Whenever it needs to communicate an event to a specific end point it
writes the address of the message frame to the outbound mailbox, and the outbound
mailbox generates the message transactions and completes the operation.

If the outbound post list FIFO head and tail pointers are not equal, there is a message
waiting to be sent. This causes the outbound mailbox port to read the MFD pointed

Figure A-4. Extended Outbound Message Queue

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Letter Slot

Letter Slot

Letter Slot

Letter Slot MFD

MFD

MFD

Tail Pointer

Head Pointer

Outbound
Mailbox

Port

Transactions
to

RapidIO Interface

Local Memory

Outbound
Post
List
FIFO

MFD

MFD

Local Memory

Local Processor
Write
RapidIO.org 45

RapidIO Part 2: Message Passing Logical Specification 3.2
to by the outbound post list tail pointer and then increment the pointer (this may
cause a memory read to prefetch the next MFD). The hardware then uses the
information stored in the MFD to read the message frame, packetize it, and transmit
it to the receiver. Multiple messages can be transmitted concurrently if there is
hardware to support them, differentiated by the letter slots in Figure A-4.

If the free list head and tail pointer are the same, the FIFO is empty and there are no
more MFDs to be processed. Underflow conditions are fatal because they indicate
improper system behavior. This information can also be part of a status register.

Because the outbound and inbound hardware are independent entities, it is possible
for more complex outbound mailboxes to communicate with less complex inboxes
by simply reducing the complexity of the message descriptor to match. Likewise
simple outboxes can communicate with complex inboxes. Software can determine
the capabilities of a device during initial system setup. The capabilities of a devices
message hardware are stored in the port configuration registers.
46 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Agent. A processing element that provides services to a processor.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

CCITT. Consultive Communication for International Telegraph and
Telephone.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

A

B

C

D

RapidIO.org 47

RapidIO Part 2: Message Passing Logical Specification 3.2
Distributed memory. System memory that is distributed throughout the
system, as opposed to being centrally located.

Doorbell. A port on a device that is capable of generating an interrupt to a
processor.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

FIFO. First in, first out.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

I2O. Intelligent I/O architecture specification.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LSB. Least significant byte.

Mailbox. Dedicated hardware that receives messages.

E

F

G

H

I

L

M

48 RapidIO.org

RapidIO Part 2: Message Passing Logical Specification 3.2
Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

MFA. Message frame address.

MFD. Message frame descriptor.

MSB. Most significant byte.

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PCB. Printed circuit board.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

Sender. The RapidIO interface output port on a processing element.

Semaphore. A technique for coordinating activities in which multiple
processing elements compete for the same resource, typically
requiring atomic operations.

N

O

P

R

S

RapidIO.org 49

RapidIO Part 2: Message Passing Logical Specification 3.2
Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

T

W

50 RapidIO.org

RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 3: Common Transport

Specification

RapidIO.org

Revision History

Revision Description Date

1.1 First public release 03/08/2001

1.2 No technical changes 06/26/2002

1.3 Technical changes: the following new features showings:
03-01-00002.006, 03-03-00002.002
Converted to ISO-friendly templates; re-formatted

02/23/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.1 No technical changes 07/09/2009

2.1 Removed confidentiality markings for public release 08/13/2009

2.2 Technical changes: errata showings 10-08-00000.003, 10-08-00001.005,
Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information.
Technical changes:
Support for 32-bit device IDs in packet formats.
Added register block for Dev32 standard routing table support.
Added Annex A Dev32 Programming Model Examples (Informative)
Changed RTA contact information.
Added Implementation Specific field to “Standard Route Default Port CSR”

10/11/2013

3.1 Minor typographical errors corrected.
Technical changes:
Added implementation specific bits to “Standard Route Cfg Port Select CSR”.

09/18/2014

3.2 Added resolution of Errata 13 Dev32 Routing Table Examples Correction. 01/28/2016

RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

RapidIO.org

Table of Contents

RapidIO.org 5

RapidIO Part 3: Common Transport Specification 3.2

Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.3 Transport Layer Features .. 11
1.3.1 Functional Features... 11
1.3.2 Physical Features .. 12
1.3.3 Performance Features ... 12
1.4 Contents .. 12
1.5 Terminology.. 12
1.6 Conventions .. 12

Chapter 2 Transport Format Description

2.1 Introduction... 15
2.2 System Topology .. 15
2.2.1 Switch-Based Systems.. 15
2.2.2 Ring-Based Systems ... 16
2.3 System Packet Routing ... 17
2.4 Field Alignment and Definition .. 18
2.5 Routing Maintenance Packets... 19

Chapter 3 Common Transport Registers

3.1 Introduction... 21
3.2 Register Summary... 21
3.3 Reserved Register, Bit and Bit Field Value Behavior .. 22
3.4 Capability Registers (CARs) .. 24
3.4.1 Processing Element Features CAR... 24
3.4.2 Switch Route Table Destination ID Limit CAR... 25
3.5 Command and Status Registers (CSRs).. 26
3.5.1 Base Device ID CSR... 26
3.5.2 Dev32 Base Device ID CSR... 27
3.5.3 Host Base Device ID Lock CSR... 28
3.5.4 Component Tag CSR.. 29
3.5.5 Standard Route Cfg Destination ID Select CSR... 30
3.5.6 Standard Route Cfg Port Select CSR.. 31
3.5.7 Standard Route Default Port CSR .. 33
3.6 Switch Routing Table Register Block .. 34
3.6.1 Register Map... 34
3.6.2 Switch Routing Table Register Block Header.. 36
3.6.3 Broadcast Routing Table Control CSR... 37

6 RapidIO.org

Table of Contents

RapidIO Part 3: Common Transport Specification 3.2

3.6.4 Broadcast Level 0 Info CSR ... 38
3.6.5 Broadcast Level 1 Info CSR ... 39
3.6.6 Broadcast Level 2 Info CSR ... 40
3.6.7 Port n Routing Table Control CSRs ... 41
3.6.8 Port n Level 0 Info CSRs.. 42
3.6.9 Port n Level 1 Info CSRs.. 43
3.6.10 Port n Level 2 Info CSRs.. 44
3.7 Routing Table Group Register Format ... 45
3.7.1 Broadcast Level 0 Group x Entry y Routing Table Entry CSR........................ 46
3.7.2 Broadcast Level 1 Group x Entry y Routing Table Entry CSR........................ 47
3.7.3 Broadcast Level 2 Group x Entry y Routing Table Entry CSR........................ 48
3.7.4 Level 0 Group x Entry y Routing Table Entry CSR... 49
3.7.5 Level 1 Group x Entry y Routing Table Entry CSR... 50
3.7.6 Level 2 Group x Entry y Routing Table Entry CSR... 51

Annex A Dev32 Hierarchical Programming Model (Informative)

A.1 Dev32 Configuration Examples.. 53
A.1.1 Example 1: Routing 0x00_11_20_** to Port 14 .. 53
A.1.2 Example 2: Routing 0x00_11_0X_** to Port X... 54
A.1.3 Example 3: Routing 0x00_ZZ_**_** to Port 15, ZZ=[0,0x10]....................... 55
A.1.4 Example 4: All Other Packets Must Be Dropped... 56
A.1.5 Example 5: Flat Routing Table Operation.. 56

List of Figures

RapidIO.org 7

RapidIO Part 3: Common Transport Specification 3.2

2-1 A Small Switch-Based System ...16
2-2 A Small Ring-Based System...17
2-3 Destination-Source Transport Bit Stream...18
2-4 Maintenance Packet Transport Bit Stream ...19

List of Figures

8 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

Blank page

RapidIO.org 9

List of Tables

RapidIO Part 3: Common Transport Specification 3.2

2-1 tt Field Definition..18
3-1 Common Transport Register Map ..21
3-2 Configuration Space Reserved Access Behavior..22
3-3 Bit Settings for Processing Element Features CAR..24
3-4 Bit Settings for Switch Route Table Destination ID Limit CAR25
3-5 Bit Settings for Base Device ID CSR ...26
3-6 Bit Settings for Base Device ID CSR ...27
3-7 Bit Settings for Host Base Device ID Lock CSR ...28
3-8 Bit Settings for Component ID CSR...29
3-9 Bit Settings for Standard Route Configuration Destination ID Select CSR...................30
3-10 Bit Settings for Standard Route Configuration Port Select CSR....................................32
3-11 Bit Settings for Standard Route Default Port CSR ...33
3-12 Switch Routing Table Register Map...34
3-13 Bit Settings for Switch Routing Table Register Block Header36
3-14 Bit Settings for Port n Routing Table Control CSR..37
3-15 Bit Settings for Broadcast Level 0 Info CSR..38
3-16 Bit Settings for Broadcast Level 1 Info CSR..39
3-17 Bit Settings for Broadcast Level 2 Info CSR..40
3-18 Bit Settings for Port n Routing Table Control CSRs ..41
3-19 Bit Settings for Port n Level 0 Info CSRs ..42
3-20 Bit Settings for Port n Level 1 Info CSRs ..43
3-21 Bit Settings for Port n Level 2 Info CSRs ..44
3-22 Bit Settings for Broadcast Level 0 Group x Entry y Routing Table Entry CSR46
3-23 Level 1 Group x Entry y Routing Table Entry CSR...47
3-24 Bit Settings for Broadcast Level 2 Group x Entry y Routing Table Entry CSR48
3-25 Bit Settings for Level 0 Group x Entry y Routing Table Entry CSR49
3-26 Bit Settings for Level 1 Group x Entry y Routing Table Entry CSR50
3-27 Bit Settings for Level 2 Group x Entry y Routing Table Entry CSR51
A-1 Example Port 7 Routing Table Register Block Registers...53
A-2 Example 1 Accesses..54
A-3 Example 2 Accesses..54
A-4 Example 3 Accesses..55
A-5 Example 5 Port 7 Routing Table Register Block Registers..56
A-6 Example 5 Accesses..57

10 RapidIO.org

List of Tables

RapidIO Part 3: Common Transport Specification 3.2

Blank page

RapidIO.org 11

RapidIO Part 3: Common Transport Specification 3.2

Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 3: Common Transport
Specification, including a description of the relationship between this specification
and the other specifications of the RapidIO interconnect.

1.2 Overview
The RapidIO Part 3: Common Transport Specification defines a standard transport
mechanism. In doing so, it specifies the header information added to a RapidIO
logical packet and the way the header information is interpreted by a switching
fabric. The RapidIO interconnect defines this mechanism independent of a physical
implementation. The physical features of an implementation using RapidIO are
defined by the requirements of the implementation, such as I/O signaling levels,
interconnect topology, physical layer protocol, and error detection. These
requirements are specified in the appropriate RapidIO physical layer specification.

This transport specification is also independent of any RapidIO logical layer
specification.

1.3 Transport Layer Features
The transport layer functions of the RapidIO interconnect have been addressed by
incorporating the following functional, physical, and performance features.

1.3.1 Functional Features

Functional features at the transport layer include the following:

• System sizes from very small to very large are supported in the same or
compatible packet formats.

• Because RapidIO has only a single transport specification, compatibility
among implementations is assured.

• The transport specification is flexible, so that it can be adapted to future
applications.

• Packets are assumed, but not required, to be directed from a single source to a
single destination.

12 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

1.3.2 Physical Features

The following are physical features of the RapidIO fabric that apply at the transport
layer:

• The transport definition is independent of the width of the physical interface
between devices in the interconnect fabric.

• No requirement exists in RapidIO for geographical addressing; a device’s
identifier does not depend on its location in the address map but can be
assigned by other means.

1.3.3 Performance Features

Performance features that apply to the transport layer include the following:

• Packet headers are as small as possible to minimize the control overhead and
are organized for fast, efficient assembly and disassembly.

• Broadcasting and multicasting can be implemented by interpreting the
transport information in the interconnect fabric.

• Certain devices have bandwidth and latency requirements for proper operation.
RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.4 Contents
RapidIO Part 3: Common Transport Specification contains three chapters:

• Chapter 1, “Overview” (this chapter) provides an overview of the specification

• Chapter 2, “Transport Format Description,” describes the routing methods used
in RapidIO for sending packets across the systems of switches described in
this chapter.

• Chapter 3, “Common Transport Registers,” describes the visible register set
that allows an external processing element to determine the capabilities,
configuration, and status of a processing element using this RapidIO
transport layer definition.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits

ACTIVE_HIGH Names of active high signals are shown in uppercase text with

RapidIO.org 13

RapidIO Part 3: Common Transport Specification 3.2

no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in
uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care

14 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

Blank page

RapidIO.org 15

RapidIO Part 3: Common Transport Specification 3.2

Chapter 2 Transport Format Description

2.1 Introduction
This chapter contains the transport format definition for the RapidIO Part 3:
Common Transport Specification. Three transport fields are added to the packet
formats described in the RapidIO logical specifications. The transport formats are
intended to be fabric independent so the system interconnect can be anything
required for a particular application; therefore all descriptions of the transport fields
and their relationship with the logical packets are shown as bit streams.

2.2 System Topology
RapidIO is intended to be interconnect fabric independent. This section describes
several of the possible system topologies and routing methodologies allowed by the
processing element models described in the Models chapters of the different Logical
Specifications.

2.2.1 Switch-Based Systems

A RapidIO system can be organized around the concept of switches. Figure 2-1
shows a small system in which five processing elements are interconnected through
two switches. A logical packet sent from one processing element to another is routed
through the interconnect fabric by the switches by interpreting the transport fields.
Because a request usually requires a response, the transport fields must somehow
indicate the return path from the requestor to the responder.

16 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

2.2.2 Ring-Based Systems

A simplification of the switch structure is a ring as shown in Figure 2-2. A ring is a
point-to-point version of a common bus; therefore, it is required to have a unique
identifier for each processing element in the system. A packet put onto the ring
contains the source and destination identifier in the transport fields. Each packet
issued is examined by the downstream processing element. If that processing
element’s identifier matches that of the destination, it removes the packet from the
ring for processing. If the destination identifier does not match the packet, it is
passed to the next processing element in the ring.

Figure 2-1. A Small Switch-Based System

ID=12

ID=2

ID=7

ID=9

ID=4

Switch
Element

Switch
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

RapidIO.org 17

RapidIO Part 3: Common Transport Specification 3.2

2.3 System Packet Routing
There are many algorithms that can be used for routing through a system. The
RapidIO Part 3: Common Transport Specification requires device identifier based
packet routing. Each directly addressable device in the system shall have one or
more unique device identifiers. When a packet is generated, the device ID of the
destination of the packet is put in the packet header. The device ID of the source of
the packet is also put in the packet header for use by the destination when generating
response packets. All devices must provide a mechanism such that the receiver of a
request shall process any received supported request regardless of device ID values.
When the destination of a request packet generates a response packet, it swaps the
source and destination fields from the request, making the original source the new
destination. Many applications and system designers may require that devices also
provide some means to restrict processing requests to a list of acceptable device IDs.
For those applications, it is recommended, however, that a device process all
maintenance read requests. The behavior when a request is received with a device
ID that is not on the acceptable list is implementation-dependant. Packets are routed
through the fabric based on the destination device ID.

One method of routing packets in a switch fabric using device ID information
incorporates routing tables. Each switch in the interconnect fabric contains a table
that tells the switch how to route every destination ID from an input port to the
proper output port. The simplest form of this method allows only a single path from
every processing element to every other processing element. More complex forms
of this method may allow adaptive routing for redundancy and congestion relief.
However, the actual method by which packets are routed between the input of a
switch and the output of a switch is implementation dependent.

Figure 2-2. A Small Ring-Based System

ID=12

ID=2

ID=7

ID=9

ID=4

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

18 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

2.4 Field Alignment and Definition
The RapidIO Part 3: Common Transport Specification adds a transport type (tt) field
to the logical specification packet that allows four different transport packet types to
be specified. The tt field indicates which type of additional transport fields are added
to the packet.

The three fields (tt, destinationID, and sourceID) added to the logical packets allow
for three different sizes of the device ID fields: Dev32 (32-bit), Dev16 (16-bit), and
a Dev8 (8-bit), as shown in Table 2-1. The three sizes of device ID fields allow three
different system scalability points to optimize packet header overhead, and only
affix additional transport field overhead if the additional addressing is required. The
Dev32 fields enable large system scalability while allowing packets to be routed to
specific functions within a device based on destination ID. The Dev8 fields allow a
maximum of 256 devices to be attached to the fabric. The Dev16 fields allow
systems with up to 65,536 devices. The Dev32 fields allow systems with up to
4,294,967,296 devices.

Figure 2-3 shows the transport header definition bit stream. The shaded fields are the
bits associated with the logical packet definition that are related to the transport bits.
Specifically, the field labeled “Logical ftype” is the format type field defined in the
logical specifications. This field comprises the first four bits of the logical packet.
The second logical field shown (“Remainder of logical packet”) is the remainder of
the logical packet of a size determined by the logical specifications, not including
the logical ftype field which has already been included in the combined bit stream.
The unshaded fields (tt, destinationID and sourceID fields) are the transport fields
added to the logical packet by the common transport specification.

Table 2-1. tt Field Definition

tt Definition

0b00 Dev8 8-bit deviceID fields

0b01 Dev16 16-bit deviceID fields

0b10 Dev32 32-bit deviceID fields

0b11 Reserved

Figure 2-3. Destination-Source Transport Bit Stream

Remainder of logical packet

n

sourceIDtt

2 4 8, 16 or 32

Logical ftype destinationID

8, 16 or 32

RapidIO.org 19

RapidIO Part 3: Common Transport Specification 3.2

2.5 Routing Maintenance Packets
Routing maintenance packets in a switch-based network may be difficult because a
switch processing element may not have its own device ID. An alternative method
of addressing for maintenance packets for these devices uses an additional
hop_count field in the packet to specify the number of switches (or hops) into the
network from the issuing processing element that is being addressed. Whenever a
switch processing element that does not have as associated device ID receives a
maintenance packet it examines the hop_count field. If the received hop_count is
zero, the access is for that switch. If the hop_count is not zero, it is decremented and
the packet is sent out of the switch according to the destinationID field. A switch
processing element shall decrement the hop count when it forwards a maintenance
packet. This method allows easy access to any intervening switches in the path
between two addressable processing elements. However, since maintenance
response packets are always targeted at an end point, the hop_count field shall
always be assigned a value of 0xFF by the source of the packets to prevent them
from being inadvertently accepted by an intervening device. Figure 2-4 shows the
transport layer fields added to a maintenance logical packet. Maintenance logical
packets can be found in the RapidIO Part 1: Input/Output Logical Specification.

Figure 2-4. Maintenance Packet Transport Bit Stream

Logical transaction, dsize/status, TID fields

16

sourceIDtt

2 4 8, 16 or 32

ftype=0b1000 destinationID

8, 16 or 32

hop_count

8

Remainder of logical packet

n

20 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

Blank page

RapidIO.org 21

RapidIO Part 3: Common Transport Specification 3.2

Chapter 3 Common Transport Registers

3.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this transport layer definition. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

3.2 Register Summary
Table 3-1 shows the register address map for this RapidIO specification. These
capability registers (CARs) and command and status registers (CSRs) can be
accessed using RapidIO Part 1: Input/Output Logical Specification maintenance
operations. Any register offsets not defined are considered reserved for this
specification unless otherwise stated. Other registers required for a processing
element are defined in other applicable RapidIO specifications and by the
requirements of the specific device and are beyond the scope of this specification.
Read and write accesses to reserved register offsets shall terminate normally and not
cause an error condition in the target device. Writes to CAR (read-only) space shall
terminate normally and not cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 3-1. Common Transport Register Map

Configuration
Space Byte

Offset
Register Name

0x0-C Reserved

0x10 Processing Element Features CAR

0x14–30 Reserved

0x34 Switch Route Table Destination ID Limit CAR

0x38-5C Reserved

22 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.3 Reserved Register, Bit and Bit Field Value Behavior
Table 3-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x60 Base Device ID CSR

0x64 Dev32 Base Device ID CSR

0x68 Host Base Device ID Lock CSR

0x6C Component Tag CSR

0x70 Standard Route Configuration Destination ID Select CSR

0x74 Standard Route Configuration Port Select CSR

0x78 Standard Route Default Port CSR

0x7C–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 3-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

Table 3-1. Common Transport Register Map (Continued)

Configuration
Space Byte

Offset
Register Name

RapidIO.org 23

RapidIO Part 3: Common Transport Specification 3.2

When a writable bit field is set to a reserved value, device behavior is
implementation specific.

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 3-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior

24 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 3-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

3.4.1 Processing Element Features CAR
(Configuration Space Offset 0x10)

The processing element features CAR identifies the major functionality provided by
the processing element. The bit settings are shown in Table 3-3.

Table 3-3. Bit Settings for Processing Element Features CAR

Bits Name Description

0–18 — Reserved

19 Dev32 Support 0b0 - PE does not support Common Transport Dev32
0b1 - PE supports Common Transport Dev32

20-21 — Reserved

22 Extended route table
configuration support

0b0 - Switch PE does not support the extended route table configuration mechanism
0b1 - Switch PE supports the extended route table configuration mechanism (can
only be set if bit 23 is set and bit 19 is clear)

23 Standard route table
configuration support

0b0 - Switch PE does not support the standard route table configuration mechanism
0b1 - Switch PE supports the standard route table configuration mechanism

24–26 — Reserved

27 Dev16 support 0b0 - PE does not support Dev16
0b1 - PE supports Dev16

28–31 — Reserved

RapidIO.org 25

RapidIO Part 3: Common Transport Specification 3.2

3.4.2 Switch Route Table Destination ID Limit CAR
(Configuration Space Offset 0x34)

The Switch Route Table Destination ID Limit CAR specifies the maximum
destination ID value that can be programmed with the standard route table
configuration mechanism, and thereby indirectly defining the size of the route table.
A route table access or extended route table access attempt to destination IDs greater
than that specified in this register will have undefined results. This register shall be
implemented if bit 23 of the Processing Element Features CAR is set. The bit
settings are shown in Table 3-4.

Table 3-4. Bit Settings for Switch Route Table Destination ID Limit CAR

Bits Name Description

0–15 — Reserved

16–31 Max_destID Maximum configurable destination ID
0x0000 - 1 destination ID
0x0001 - 2 destination IDs
0x0002 - 3 destination IDs
...
0xFFFF - 65536 destination IDs

26 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.5 Command and Status Registers (CSRs)
A processing element shall contain a set of registers that allows an external
processing element to control and determine status of its internal hardware. All
registers are 32 bits wide and are organized and accessed in the same way as the
CARs. Refer to Table 3-2 for the required behavior for accesses to reserved registers
and register bits.

3.5.1 Base Device ID CSR
(Configuration Space Offset 0x60)

The base device ID CSR contains the Dev8 and Dev16 base device ID values for the
processing element. A device can have multiple device ID values but these are not
defined in a standard CSR. The bit settings are shown in Table 3-5.

Table 3-5. Bit Settings for Base Device ID CSR

Bits Name
Reset
Value

Description

0-7 — Reserved

8-15 Dev8_Base_deviceID see
footnote1

1The Dev8_Base_deviceID reset value is implementation dependent

This is the Dev8 device ID of the device (endpoint devices only)

16–31 Dev16_base_deviceID see
footnote2

2The Dev16_base_deviceID reset value is implementation dependent

This is the Dev16 device ID of the device (must be valid for endpoint
devices when bit 27 of the Processing Element Features CAR is set)

RapidIO.org 27

RapidIO Part 3: Common Transport Specification 3.2

3.5.2 Dev32 Base Device ID CSR
(Configuration Space Offset 0x64)

The Dev32 base device ID CSR contains the Dev32 base device ID value for the
processing element. A device can have multiple device ID values but these are not
defined in a standard CSR. The bit settings are shown in Table 3-6.

Table 3-6. Bit Settings for Base Device ID CSR

Bits Name
Reset
Value

Description

0-31 Dev32_Base_DeviceID see
footnote1

1The Dev32_Base_DeviceID reset value is implementation dependent

This is the Dev32 device ID of the device (must be valid for endpoint
devices when bit 19 of the Processing Element Features CAR is set)

28 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.5.3 Host Base Device ID Lock CSR
(Configuration Space Offset 0x68)

The Host Base Device ID Lock CSR contains the base device ID value for the
processing element in the system that is responsible for initializing this processing
element. The Host Base Device ID Lock CSR is a write-once/reset-able register
which provides a lock function. Once the Host Base Device ID Lock CSR is written,
all subsequent writes to the register are ignored, except in the case that the value
written matches the value contained in the register. In this case, the register is
re-initialized to 0x0000_FFFF. After writing the Host Base Device ID Lock CSR a
processing element must then read the Host Base Device ID Lock CSR to verify that
it owns the lock before attempting to initialize this processing element. The bit
settings are shown in Table 3-7.

Table 3-7. Bit Settings for Host Base Device ID Lock CSR

Bits Name
Reset
Value

Description

0-15 Host_base_Dev32ID 0x0000 If the Processing Element Features CAR Dev32 Support bit is 0, then this
field is Reserved and shall have a constant value of 0.

If the Processing Element Features CAR Dev32 Support bit is 1, this field
contains the most significant 16 bits of the Dev32 base device ID for the PE
that is initializing this PE.

16–31 Host_base_deviceID 0xFFFF This is the base device ID for the PE that is initializing this PE.

RapidIO.org 29

RapidIO Part 3: Common Transport Specification 3.2

3.5.4 Component Tag CSR
(Configuration Space Offset 0x6C)

The component tag CSR contains a component tag value for the processing element
and can be assigned by software when the device is initialized. It is especially useful
for labeling and identifying devices that are not end points and do not have device
ID registers. The bit settings are shown in Table 3-8.

Table 3-8. Bit Settings for Component ID CSR

Bits Name
Reset
Value

Description

0–31 component_tag All 0s This is a component tag for the PE.

30 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.5.5 Standard Route Cfg Destination ID Select CSR
(Configuration Space Offset 0x70)

The Standard Route Configuration Destination ID Select CSR specifies the
destination ID entry in the switch routing table to access when the Standard Route
Configuration Port Select CSR is read or written.

The Ext_config_en bit controls whether the extended route table configuration
mechanism is enabled. If the extended route table configuration mechanism is
enabled, the specified destination ID and the next three sequential destination IDs
are written or read when the Standard Route Configuration Port Select CSR is
accessed. Extended accesses that increment past the maximum specifiable
destination ID (for example, starting an extended access at device ID 0xFF in a Dev8
transport system) have undefined results.

This register is required if bit 23 of the Processing Element Features CAR is set. The
bit settings are shown in Table 3-9.

Table 3-9. Bit Settings for Standard Route Configuration Destination ID Select CSR

Bits Name
Reset
Value

Description

0 Ext_config_en 0b0 Extended Configuration Enable
0b0 - Extended configuration support is disabled
0b1 - Extended configuration support is enabled (only valid if bit 22 of the
Processing Element Features CAR is set)

1-15 — Reserved

16-23 Config_destID_msb 0x00 Configuration destination ID most significant byte (only valid if bit 27 of the
Processing Element Features CAR is set and the processing element is
configured to operate in Dev16 transport mode)

24-31 Config_destID 0x00 Configuration destination ID

RapidIO.org 31

RapidIO Part 3: Common Transport Specification 3.2

3.5.6 Standard Route Cfg Port Select CSR
(Configuration Space Offset 0x74)

When written, the Standard Route Configuration Port Select CSR updates the switch
output port configuration for packets with the destination ID selected by the
Standard Route Configuration Destination ID Select CSR. When read, the Standard
Route Configuration Port Select CSR returns the switch output port configuration
for packets with the destination ID selected by the Standard Route Configuration
Destination ID Select CSR.

If the extended route table configuration mechanism is enabled, when the Standard
Route Configuration Port Select register is written the following route table
configurations are carried out:

• destination ID Config_destID is routed to output port Config_output_port

• destination ID Config_destID+1 is routed to output port Config_output_port1

• destination ID Config_destID+2 is routed to output port Config_output_port2

• destination ID Config_destID+3 is routed to output port Config_output_port3

For reads of the Standard Route Configuration Port Select CSR, the configuration
information is returned in the corresponding fashion.

After complete system initialization the switch output port route configuration
information read may not be consistent with previously read values due to the
capabilities and features of the particular switch. This register shall be implemented
if bit 23 of the Processing Element Features CAR is set. The bit settings are shown
in Table 3-10.

32 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

Table 3-10. Bit Settings for Standard Route Configuration Port Select CSR

Bits Name
Reset
Value

Description

0-3 Cop3_msb_or_imp_spec 0x00 Cop3_msb_or_imp_spec: This field shall be reserved if extended route table
mechanism is not enabled and bit 19 of the Processing Element Features
CAR is clear.

When bit 19 of the Processing Element Features CAR is clear, and the
extended route table mechanism is enabled, this field contains the most
significant 4 bits of the configuration output port3 value.

When bit 19 of the Processing Element Features CAR is set, this field
optionally controls implementation-specific routing functionality:

• Bits in this field that do not control implementation specific routing
functionality shall be read only, with a fixed value of 0.

• Implementation-specific routing functionality may be active if any bit in
this field is set.

• Implementation-specific routing functionality shall not be active if all
bits in this field are clear.

4-7 Config_output_port3_lsb 0x00 Configuration output port3 - This field shall be reserved if the extended
route table mechanism is not enabled.

If the extended route table mechanism is enabled, this field contains the least
significant 4 bits of the config output port3 value.

8-15 Config_output_port2 0x00 Configuration output port2 - This field shall be reserved if extended route
table mechanism is not enabled

16-21 Config_output_port1_msb 0x00 Most significant 6 bits of the output port 1 value if the extended route table
mechanism is enabled.

This field shall be reserved if extended route table mechanism is not
enabled.

22-23 Config_output_port1_lsb 0b00 Least significant 2 bits of the output port 1 value if the extended route table
mechanism is enabled.

Most significant 2 bits of the route value if bit 19 of the Processing Element
Features CAR is set.

This field shall be reserved if extended route table mechanism is not enabled
and bit 19 of the Processing Element Features CAR is clear.

24-31 Config_output_port see
footnote1

1The Config_output_port reset value is implementation dependent

Configuration output port.

If bit 19 of the Processing Element Features CAR is set, the routing table
value read and written is found in the Config_output_port1_lsb and
Config_output_port fields.

RapidIO.org 33

RapidIO Part 3: Common Transport Specification 3.2

3.5.7 Standard Route Default Port CSR
(Configuration Space Offset 0x78)

The Standard Route Default Port CSR specifies the port to which packets with
destinations IDs that are greater than that specified in the Switch Route Table
Destination ID Limit CAR are routed. This register is required if bit 23 of the
Processing Element Features CAR is set. The bit settings are shown in Table 3-11.

Table 3-11. Bit Settings for Standard Route Default Port CSR

Bits Name
Reset
Value

Description

0–3 Implementation Specific 0x0 These bits optionally control implementation-specific routing functionality.
This field is allowed when bit 19 of the Processing Element Features CAR is
set. If bit 19 of the Processing Element Features CAR is clear, this field is
reserved.
Bits in this field that do not control implementation specific routing
functionality shall be read only, with a fixed value of 0.
Implementation-specific routing functionality may be active if any bit in this
field is set.
Implementation-specific routing functionality shall not be active if all bits in
this field are clear.

4–21 — Reserved

22-23 Route Type 0b11 Extended value for packet routing.
This field is required when bit 19 of the Processing Element Features CAR
is set.
If bit 19 of the Processing Element Features CAR is clear, this field is
reserved.

24–31 Default_output_port 0x00 Default output port
When bit 19 of the Processing Element Features CAR is set, Route Type
concatenated with default_output_port shall be encoded as follows:
0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF
0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF
0x200 to 0x2FF - Reserved.
0x300 - Drop Packet
0x301 to 0x3FF - Reserved.
Selection of an Egress Port Number which is not supported by the device, or
a Multicast Mask Number which is not supported by the device, shall result
in implementation specific routing behavior.

34 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.6 Switch Routing Table Register Block
A switch device which has bit 19 set in the Processing Element Features CAR shall
implement this register block.

3.6.1 Register Map

The register map for the routing table registers shall be as specified by Table 3-12.
This register map is currently only defined for devices with up to 16 RapidIO ports,
but can be extended or shortened if more or less port definitions are required for a
device. For example, a device with four RapidIO ports is only required to use
register map space corresponding to offsets [EF_PTR+0x00] through
[EF_PTR+0xBC]. Register map offset [EF_PTR+0x140] can be used for another
Extended Features block.

Table 3-12. Switch Routing Table Register Map

Block Byte
Offset

Register Name

G
en

er
al 0x0 Routing Table Register Block Header

0x4-0x1C Reserved

B
ro

ad
ca

st

0x20 Broadcast Routing Table Control CSR

0x24-
0x2C

Reserved

0x30 Broadcast Level 0 Info CSR

0x34 Broadcast Level 1 Info CSR

0x38 Broadcast Level 2 Info CSR

0x3C Reserved

P
or

t 0

0x40 Port 0 Routing Table Control CSR

0x44-
0x4C

Reserved

0x50 Port 0 Level 0 Info CSR

0x54 Port 0 Level 1 Info CSR

0x58 Port 0 Level 2 Info CSR

0x5C Reserved

P
or

t 1

0x60 Port 1 Routing Table Control CSR

0x64-
0x6C

Reserved

0x70 Port 1 Level 0 Info CSR

0x74 Port 1 Level 1 Info CSR

0x78 Port 1 Level 2 Info CSR

0x7C Reserved

RapidIO.org 35

RapidIO Part 3: Common Transport Specification 3.2

P
or

ts
 2

-1
4

0x80–21C Assigned to Port 2-14 CSRs

P
or

t 1
5

0x220 Port 15 Routing Table Control CSR

0x224-
0x22C

Reserved

0x230 Port 15 Level 0 Info CSR

0x234 Port 15 Level 1 Info CSR

0x238 Port 15 Level 2 Info CSR

0x23C Reserved

Table 3-12. Switch Routing Table Register Map

Block Byte
Offset

Register Name

36 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.6.2 Switch Routing Table Register Block Header
(Block Offset 0x0)

The switch routing table register block header register contains the EF_PTR to the
next EF_BLK and the EF_ID that identifies this as the switch routing table registers
block header. The use and meaning of the bits and bit fields of this register shall be
as specified in Table 3-13. The register shall be read-only.

Table 3-13. Bit Settings for Switch Routing Table Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR see
footnote1

1The EF_PTR reset value is implementation dependent

Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x000E Hard wired Extended Features ID

RapidIO.org 37

RapidIO Part 3: Common Transport Specification 3.2

3.6.3 Broadcast Routing Table Control CSR
(Block Offset 0x20)

Writes to this register are broadcast to all Port n Routing Table Control CSRs. The
use and meaning of the bits and bit fields of this register shall be as specified in Table
3-14. Unless otherwise specified, the bits and bit fields in this register are write only.

Table 3-14. Bit Settings for Port n Routing Table Control CSR

Bit Name
Reset
Value

Description

0 Three Levels 0b1 0 - Routing table entries support a contiguous range of device IDs, starting
with device ID 0x00/0x0000/0x00000000.
1 - Routing table entries support a hierarchical routing scheme

1 Dev32 Route Control 0b0 0 - Dev32 Device IDs are routed using Byte 0 for Level 0, Byte 1 for Level 1,
and Byte 2 for Level 2
1 - Dev32 Device IDs are routed using Byte 1 for Level 0, Byte 2 for Level 1,
and Byte 3 for level 2
Reserved if Three Levels is clear.

2-31 ___ Reserved

38 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.6.4 Broadcast Level 0 Info CSR
(Block Offset 0x30)

This register shall communicate the location of the Broadcast Level 0 routing table
group. Writes to the Broadcast Level 0 routing table group affect all Port n Level 0
routing groups. The use and meaning of the bits and bit fields of this register shall
be as specified in Table 3-15. This register shall be read only.

Table 3-15. Bit Settings for Broadcast Level 0 Info CSR

Bit Name
Reset
Value

Description

0-7 Num_L0_Groups see
footnote1

1The Num_L0_Groups reset value is implementation dependent

Communicates the number of 256 entry routing table groups for Level 0.
When Three Levels is 0, Num_L0_Groups shall communicate the number of
groups available for routing.
When Three Levels is 1, Num_L0_Groups shall be 1.
Num_L0_Groups is encoded as follows:
0x00 - 256 Groups
0x01 - 1 Group
0x02 - 2 Groups
0x03 - 3 Groups
...
0xFF - 255 Groups

8-21 L0_Group_Ptr see
footnote2

2The L0_Group_Ptr reset value is implementation dependent

The L0_Group_Ptr value shall be the maintenance offset of the first entry in
the first routing table group for level 0, divided by 1024. The maintenance
offset of the first entry in the first routing group for level 0 shall be a 1024
byte aligned address. The L0_Group_Ptr value shall indicate an address in
Implementation Defined register space.
Writes to the broadcast routing table group entries pointed to by this register
shall cause the corresponding routing table group entries for all ports to
assume the value written.
Implementation specific behavior shall occur for writes to routing table group
entries if the contents of the Port n Routing Table Control CSRs are not the
same for all ports .

22-31 ___ All 0’s Reserved

RapidIO.org 39

RapidIO Part 3: Common Transport Specification 3.2

3.6.5 Broadcast Level 1 Info CSR
(Block Offset 0x34)

This register shall communicate the location of the Broadcast Level 1 routing table
group. When Three Levels is 0, this register is reserved. The use and meaning of the
bits and bit fields of this register shall be as specified in Table 3-16. This register
shall be read only.

Table 3-16. Bit Settings for Broadcast Level 1 Info CSR

Bit Name
Reset
Value

Description

0-7 Num_L1_Groups see
footnote1

1The Num_L1_Groups reset value is implementation dependent

Communicates the number of 256 entry routing table groups for Level 1.
Num_L1_Groups shall be encoded as follows:
0x00 - 256 Groups
0x01 - 1 Group
0x02 - 2 Groups
0x03 - 3 Groups
...
0xFF - 255 Groups

8-21 L1_Group_Ptr see
footnote2

2The L1_Group_Ptr reset value is implementation dependent

The L1_Group_Ptr value shall be the maintenance offset of the first entry in
the first routing table group for level 1, divided by 1024. The maintenance
offset of the first entry in the first routing group for level 1 shall be a 1024
byte aligned address. The L1_Group_Ptr value shall indicate an address in
Implementation Defined register space.
Writes to the broadcast routing table group entries pointed to by this register
shall cause the corresponding routing table group entries for all ports to
assume the value written.
Implementation specific behavior shall occur for writes to routing table group
entries if the contents of the Port n Routing Table Control CSRs are not the
same for all ports .

22-31 ___ All 0’s Reserved

40 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.6.6 Broadcast Level 2 Info CSR
(Block Offset 0x38)

This register shall communicate the location of the Level 2 routing table group for
Port n. When Three Levels is 0, this register is reserved. The use and meaning of the
bits and bit fields of this register shall be as specified in Table 3-17. This register
shall be read only.

Table 3-17. Bit Settings for Broadcast Level 2 Info CSR

Bit Name
Reset
Value

Description

0-7 Num_L2_Groups see
footnote1

1The Num_L2_Groups reset value is implementation dependent

Communicates the number of 256 entry routing table groups for Level 2.
Num_L2_Groups shall be encoded as follows:
0x00 - 256 Groups
0x01 - 1 Group
0x02 - 2 Groups
0x03 - 3 Groups
...
0xFF - 255 Groups

8-21 L2_Group_Ptr see
footnote2

2The L2_Group_Ptr reset value is implementation dependent

The L2_Group_Ptr value shall be the maintenance offset of the first entry in
the first broadcast routing table group for level 2, divided by 1024. The
maintenance offset of the first entry in the first broadcast routing group for
level 2 shall be a 1024 byte aligned address. The L2_Group_Ptr value shall
indicate an address in Implementation Defined register space.
Writes to the broadcast routing table group entries pointed to by this register
shall cause the corresponding routing table group entries for all ports to
assume the value written.
Implementation specific behavior shall occur for writes to broadcast routing
table group entries if the contents of the Port n Routing Table Control CSRs
are not the same for all ports .

22-31 ___ All 0’s Reserved

RapidIO.org 41

RapidIO Part 3: Common Transport Specification 3.2

3.6.7 Port n Routing Table Control CSRs
(Block Offset 0x40 + (0x20 * n))

These registers shall control the routing mode for all ports whose Port n Level 0 Info
CSR L0_Group_Ptr field value is the same. The use and meaning of the bits and bit
fields of these registers shall be as specified in Table 3-18. Unless otherwise
specified, the bits and bit fields in these registers are read/write.

Table 3-18. Bit Settings for Port n Routing Table Control CSRs

Bit Name
Reset
Value

Description

0 Three Levels 0b1 0 - Routing table entries support a contiguous range of device IDs, starting
with device ID 0x00/0x0000/0x00000000.
1 - Routing table entries support a hierarchical routing scheme

1 Dev32 Route Control 0b0 0 - Dev32 Device IDs are routed using Byte 0 for Level 0, Byte 1 for Level 1,
and Byte 2 for Level 2
1 - Dev32 Device IDs are routed using Byte 1 for Level 0, Byte 2 for Level 1,
and Byte 3 for level 2
Reserved if Three Levels is clear.

2-31 ___ Reserved

42 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.6.8 Port n Level 0 Info CSRs
(Block Offset 0x50 + (0x20 * n))

These registers shall communicate the location of the Level 0 routing table group for
Port n. The use and meaning of the bits and bit fields of these registers shall be as
specified in Table 3-19. These registers shall be read only.

Table 3-19. Bit Settings for Port n Level 0 Info CSRs

Bit Name
Reset
Value

Description

0-7 Num_L0_Groups see
footnote1

1The Num_L0_Groups reset value is implementation dependent

Communicates the number of 256 entry routing table groups for Level 0.
When Three Levels is 0, Num_L0_Groups shall communicate the number of
groups available for routing.
When Three Levels is 1, Num_L0_Groups shall be 1.
Num_L0_Groups is encoded as follows:
0x00 - 256 Groups
0x01 - 1 Group
0x02 - 2 Groups
0x03 - 3 Groups
...
0xFF - 255 Groups

8-21 L0_Group_Ptr see
footnote2

2The L0_Group_Ptr reset value is implementation dependent

The L0_Group_Ptr value shall be the maintenance offset of the first entry in
the first routing table group for level 0, divided by 1024. The maintenance
offset of the first entry in the first routing group for level 0 shall be a 1024
byte aligned address. The L0_Group_Ptr value shall indicate an address in
Implementation Defined register space.
All ports with identical L0_Group_Ptr values shall have identical Level 0
routing behavior.

22-31 ___ All 0’s Reserved

RapidIO.org 43

RapidIO Part 3: Common Transport Specification 3.2

3.6.9 Port n Level 1 Info CSRs
(Block Offset 0x54 + (0x20 * n))

These registers shall communicate the location of the Level 1 routing table group for
Port n. When the Three Levels of the Port n Routing Table Control CSRs is 0, these
registers shall be reserved. The use and meaning of the bits and bit fields of these
registers shall be as specified in Table 3-20. These registers shall be read only.

Table 3-20. Bit Settings for Port n Level 1 Info CSRs

Bit Name
Reset
Value

Description

0-7 Num_L1_Groups see
footnote1

1The Num_L1_Groups reset value is implementation dependent

Communicates the number of 256 entry routing table groups for Level 1.
Num_L1_Groups shall be encoded as follows:
0x00 - 256 Groups
0x01 - 1 Group
0x02 - 2 Groups
0x03 - 3 Groups
...
0xFF - 255 Groups

8-21 L1_Group_Ptr see
footnote2

2The L1_Group_Ptr reset value is implementation dependent

The L0_Group_Ptr value shall be the maintenance offset of the first entry in
the first routing table group for level 0, divided by 1024. The maintenance
offset of the first entry in the first routing group for level 0 shall be a 1024
byte aligned address. The L1_Group_Ptr value shall indicate an address in
Implementation Defined register space.
All ports with identical L1_Group_Ptr values shall have identical Level 1
packet routing behavior.

22-31 ___ All 0’s Reserved

44 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.6.10 Port n Level 2 Info CSRs
(Block Offset 0x58 + (0x20 * n))

These registers shall communicate the location of the Level 2 routing table group for
Port n. When the Three Levels of the Port n Routing Table Control CSRs is 0, these
registers shall be reserved. The use and meaning of the bits and bit fields of these
registers shall be as specified in Table 3-21. These registers shall be read only.

Table 3-21. Bit Settings for Port n Level 2 Info CSRs

Bit Name
Reset
Value

Description

0-7 Num_L2_Groups see
footnote1

1The Num_L2_Groups reset value is implementation dependent

Communicates the number of 256 entry routing table groups for Level 2.
Num_L2_Groups shall be encoded as follows:
0x00 - 256 Groups
0x01 - 1 Group
0x02 - 2 Groups
0x03 - 3 Groups
...
0xFF - 255 Groups

8-21 L2_Group_Ptr see
footnote2

2The L2_Group_Ptr reset value is implementation dependent

The L2_Group_Ptr value shall be the maintenance offset of the first entry in
the first routing table group for level 2, divided by 1024. The maintenance
offset of the first entry in the first routing group for level 2 shall be a 1024
byte aligned address. The L1_Group_Ptr value shall indicate an address in
Implementation Defined register space.
All ports with identical L2_Group_Ptr values shall have identical Level 2
routing behavior.

22-31 ___ All 0’s Reserved

RapidIO.org 45

RapidIO Part 3: Common Transport Specification 3.2

3.7 Routing Table Group Register Format
A group of routing table entries consists of 256 consecutive registers. The
L0_Group_Ptr, L1_Group_Ptr, and L2_Group_Ptr point to the first entry of the first
group of a number of contiguous groups of register entries.

The address of registers in a routing table group is computed using three values,
denoted as Group_Ptr, X, and Y, where:

• Group_Ptr is the value of the "Lz_Group_Ptr" field found in the Port n Level z
Info CSRs

• X is the group number

• Y is the entry number within the group

As shown in the following register format definitions, the register address is
computed as:

(Group_Ptr * 0x400) + (X * 0x400) + (Y * 4).

For example, assume that the Port n Level z CSR value is 0x03048C00 and it is
necessary to address entry number 127 in group number 3. The address computation
is:

(0x123 * 0x400) + (3 * 0x400) + (127 * 4) = 0x499FC

46 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.7.1 Broadcast Level 0 Group x Entry y Routing Table Entry
CSR
(Offset = (L0_Group_Ptr*0x400) + (x * 0x400) + (y*4))

Writes to the Broadcast Level 0 Group x Entry y Routing Table Entry CSRs shall
cause the corresponding Port n Level 0 Group x Entry y Routing Table Entry CSRs
for all ports to assume the value written. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-22. The bits and bit fields in this
register are write only.

Table 3-22. Bit Settings for Broadcast Level 0 Group x Entry y Routing Table Entry CSR

Bit Name
Reset
Value

Description

0-3 Implementation-defined Impl. Spec These bits control implementation specific behavior. When these bits are
written to 0x0, no implementation specific function shall be invoked.

4-21 ___ Reserved

22-31 Routing Value 0x300 Routing table entry
0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF
0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF. Refer to Part 11.
0x200 to 0x2FF - Level 1 Group number 0x00 to 0xFF
0x300 - Drop Packet
0x301 - Use value found in Standard Port Default Route CSR
0x302 to 0x3FF - Reserved.
Selection of an Egress Port Number, Multicast Mask or Level 1 Group
Number which does not exist in the device shall result in implementation
specific behavior.
When the Three Levels field of the Port n Routing Table Control CSR is
clear, the values 0x200 through 0x2FF shall result in implementation specific
routing behavior.

RapidIO.org 47

RapidIO Part 3: Common Transport Specification 3.2

3.7.2 Broadcast Level 1 Group x Entry y Routing Table Entry
CSR
(Offset = (L1_Group_Ptr*0x400) + (x * 0x400) + (y*4))

Writes to the Broadcast Level 1 Group x Entry y Routing Table Entry CSRs shall
cause the corresponding Port n Level 1 Group x Entry y Routing Table Entry CSRs
for all ports to assume the value written. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-23. The bits and bit fields in this
register are write only.

Table 3-23. Level 1 Group x Entry y Routing Table Entry CSR

Bit Name
Reset
Value

Description

0-3 Implementation-defined Impl.
Spec

These bits control implementation specific behavior. When these bits are
written to 0x0, no implementation specific function shall be invoked.

4-21 ___ Reserved

22-31 Routing Value 0x300 Routing table entry
0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF
0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF. Refer to Part 11.
0x200 to 0x2FF - Level 2 Group number 0x00 to 0xFF
0x300 - Drop Packet
0x301 - Use value found in Standard Port Default Route CSR
0x302 to 0x3FF - Reserved.
Selection of an Egress Port Number, Multicast Mask or Level 2 Group
Number which does not exist in the device shall result in implementation
specific behavior.

48 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.7.3 Broadcast Level 2 Group x Entry y Routing Table Entry
CSR
(Offset = (L2_Group_Ptr*0x400) + (x * 0x400) + (y*4))

Writes to the Broadcast Level 2 Group x Entry y Routing Table Entry CSRs shall
cause the corresponding Port n Level 2 Group x Entry y Routing Table Entry CSRs
for all ports to assume the value written. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-24. The bits and bit fields in this
register are write only.

Table 3-24. Bit Settings for Broadcast Level 2 Group x Entry y Routing Table Entry CSR

Bit Name
Reset
Value

Description

0-3 Implementation-defined Impl.
Spec

These bits control implementation specific behavior. When these bits are
written to 0x0, no implementation specific function shall be invoked.

4-21 ___ Reserved

22-31 Routing Value 0x300 Routing table entry
0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF
0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF. Refer to Part 11.
0x200 to 0x2FF - Reserved.
0x300 - Drop Packet
0x301 - Route packet using the Standard Port Default Route CSR
0x302 to 0x3FF - Reserved.
Selection of an Egress Port Number or Multicast Mask Number which does
not exist in the device shall result in implementation specific behavior.

RapidIO.org 49

RapidIO Part 3: Common Transport Specification 3.2

3.7.4 Level 0 Group x Entry y Routing Table Entry CSR
(Offset = (L0_Group_Ptr*0x400) + (x * 0x400) + (y*4))

This register shall control the routing mode for all ports whose Port n Level 0 Info
CSR L0_Group_Ptr field value is the same. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-25. Unless otherwise specified,
the bits and bit fields in this register are read/write.

Table 3-25. Bit Settings for Level 0 Group x Entry y Routing Table Entry CSR

Bit Name
Reset
Value

Description

0-3 Implementation-defined Impl.
Spec

These bits control implementation specific behavior. When these bits are
written to 0x0, no implementation specific function shall be invoked.

4-21 ___ Reserved

22-31 Routing Value 0x300 Routing table entry

0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF

0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF. Refer to Part 11.

0x200 to 0x2FF - Level 1 Group number 0x00 to 0xFF

0x300 - Drop Packet

0x301 - Use value found in Standard Port Default Route CSR

0x302 to 0x3FF - Reserved.

Selection of an Egress Port Number, Multicast Mask or Level 1 Group
Number which does not exist in the device shall result in implementation
specific behavior.

When the Three Levels field of the Port n Routing Table Control CSR is
clear, the values 0x200 through 0x2FF shall result in implementation specific
routing behavior.

50 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

3.7.5 Level 1 Group x Entry y Routing Table Entry CSR
(Offset = (L1_Group_Ptr*0x400) + (x * 0x400) + (y*4))

This register shall control the routing mode for all ports whose Port n Level 1 Info
CSR L1_Group_Ptr field value is the same. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-26. Unless otherwise specified,
the bits and bit fields in this register are read/write.

Table 3-26. Bit Settings for Level 1 Group x Entry y Routing Table Entry CSR

Bit Name
Reset
Value

Description

0-3 Implementation-defined Impl.
Spec

These bits control implementation specific behavior. When these bits are
written to 0x0, no implementation specific function shall be invoked.

4-21 ___ Reserved

22-31 Routing Value 0x300 Routing table entry
0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF
0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF. Refer to Part 11.
0x200 to 0x2FF - Level 2 Group number 0x00 to 0xFF
0x300 - Drop Packet
0x301 - Use value found in Standard Port Default Route CSR
0x302 to 0x3FF - Reserved.
Selection of an Egress Port Number, Multicast Mask or Level 2 Group
Number which does not exist in the device shall result in implementation
specific behavior.

RapidIO.org 51

RapidIO Part 3: Common Transport Specification 3.2

3.7.6 Level 2 Group x Entry y Routing Table Entry CSR
(Offset = (L2_Group_Ptr*0x400) + (x * 0x400) + (y*4))

This register shall control the routing mode for all ports whose Port n Level 2 Info
CSR L2_Group_Ptr field value is the same. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-27. Unless otherwise specified,
the bits and bit fields in this register are read/write.

Table 3-27. Bit Settings for Level 2 Group x Entry y Routing Table Entry CSR

Bit Name
Reset
Value

Description

0-3 Implementation-defined Impl.
Spec

These bits control implementation specific behavior. When these bits are
written to 0x0, no implementation specific function shall be invoked.

4-21 ___ Reserved

22-31 Routing Value 0x300 Routing table entry
0x000 to 0x0FF - Egress Port Number 0x00 to 0xFF
0x100 to 0x1FF - Multicast Mask Number 0x00 to 0xFF. Refer to Part 11.
0x200 to 0x2FF - Reserved.
0x300 - Drop Packet
0x301 - Route packet using the Standard Port Default Route CSR
0x302 to 0x3FF - Reserved.
Selection of an Egress Port Number or Multicast Mask Number which does
not exist in the device shall result in implementation specific behavior.

52 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

Blank page

RapidIO.org 53

RapidIO Part 3: Common Transport Specification 3.2

Annex A Dev32 Hierarchical Programming
Model (Informative)

A.1 Dev32 Configuration Examples
This chapter provides several examples of how to use the Dev32 routing table programming
interface. The given examples build upon each other while proceeding through the sections.
References to the order of operations within the examples run from the top of a list to the bottom
unless otherwise stated.

Initially assume a switch with 16 ports which supports Dev32 device IDs. Assume that the switch
must support the following routing hierarchy, where “**” means “All Values”:

• Device ID 0x00_11_20_** must be routed to port 14.

• Device IDs 0x00_11_0X_** must be routed to port X, where X is 0 to 13.

• Device IDs 0x00_ZZ_**_** must be routed to port 15 when ZZ is 0 to 0x10.

• All other packets must be dropped.

Further assume that Port 7 must be programmed to support the above hierarchy, and has initial
register values as follows:

A.1.1 Example 1: Routing 0x00_11_20_** to Port 14

To route the Dev32 destination IDs 0x00_11_20_** to Port 14, make use of routing table group 0
for Level 0, and routing table group 1 for Level 1 and Level 2. Specific entries for each level must

Table A-1. Example Port 7 Routing Table Register Block Registers

Register Name Register Address Register Value

Switch Routing Table Register Block Header 0x8000 N/A

Port 7 Routing Table Control CSR 0x8120 0x8000_0000

Port 7 Level 0 Info CSR 0x8130 0x0107_0000

Port 7 Level 1 Info CSR 0x8134 0x0307_0400

Port 7 Level 2 Info CSR 0x8138 0x0407_1000

54 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

be programmed.

A.1.2 Example 2: Routing 0x00_11_0X_** to Port X

This example builds upon the configuration put in place by Example 1. Routing configuration is
therefore complete for Level 0 and Level 1, so what remains is to complete the Level 2
programming.

Table A-2. Example 1 Accesses

Register Name
Register
Address

Register
Value

Description

Port 7 Level 0 Group 0 Entry 0
Routing Table Entry CSR

0x0007_0000 0x0000_0201 Map Level 0 Group 0 index 0x00 to Level 1
Group 1

Port 7 Level 1 Group 1 Entry
0x11 Routing Table Entry CSR

0x0007_0844 0x0000_0201 Map Level 1 Group 1 index 0x11 to Level 2
Group 1

Port 7 Level 2 Group 1 Entry
0x20 Routing Table Entry CSR

0x0007_1480 0x0000_000E Map Level 2 Group 1 index 0x20 to Port 14.

Table A-3. Example 2 Accesses

Register Name
Register
Address

Register
Value

Description

Port 7 Level 2 Group 1 Entry
0x00 Routing Table Entry CSR

0x0007_1400 0x0000_0000 Map Level 2 Group 1 index 0x00 to Port 0.

Port 7 Level 2 Group 1 Entry
0x01 Routing Table Entry CSR

0x0007_1404 0x0000_0001 Map Level 2 Group 1 index 0x01 to Port 1.

Port 7 Level 2 Group 1 Entry
0x02 Routing Table Entry CSR

0x0007_1408 0x0000_0002 Map Level 2 Group 1 index 0x02 to Port 2.

Port 7 Level 2 Group 1 Entry
0x03 Routing Table Entry CSR

0x0007_140C 0x0000_0003 Map Level 2 Group 1 index 0x03 to Port 3.

Port 7 Level 2 Group 1 Entry
0x04 Routing Table Entry CSR

0x0007_1410 0x0000_0004 Map Level 2 Group 1 index 0x04 to Port 4.

Port 7 Level 2 Group 1 Entry
0x05 Routing Table Entry CSR

0x0007_1414 0x0000_0005 Map Level 2 Group 1 index 0x05 to Port 5.

Port 7 Level 2 Group 1 Entry
0x06 Routing Table Entry CSR

0x0007_1418 0x0000_0006 Map Level 2 Group 1 index 0x06 to Port 6.

Port 7 Level 2 Group 1 Entry
0x07 Routing Table Entry CSR

0x0007_141C 0x0000_0007 Map Level 2 Group 1 index 0x07 to Port 7.

Port 7 Level 2 Group 1 Entry
0x08 Routing Table Entry CSR

0x0007_1420 0x0000_0008 Map Level 2 Group 1 index 0x08 to Port 8.

Port 7 Level 2 Group 1 Entry
0x09 Routing Table Entry CSR

0x0007_1424 0x0000_0009 Map Level 2 Group 1 index 0x09 to Port 9.

Port 7 Level 2 Group 1 Entry
0x0A Routing Table Entry CSR

0x0007_1428 0x0000_000A Map Level 2 Group 1 index 0x0A to Port A.

Port 7 Level 2 Group 1 Entry
0x0B Routing Table Entry CSR

0x0007_142C 0x0000_000B Map Level 2 Group 1 index 0x0B to Port B.

RapidIO.org 55

RapidIO Part 3: Common Transport Specification 3.2

A.1.3 Example 3: Routing 0x00_ZZ_**_** to Port 15,
ZZ=[0,0x10]

This example builds upon the configuration put in place by Example 1. Routing configuration is
therefore complete for Level 0, so what remains is to program the Level 1 registers.

Port 7 Level 2 Group 1 Entry
0x0C Routing Table Entry CSR

0x0007_1430 0x0000_000C Map Level 2 Group 1 index 0x0C to Port C.

Port 7 Level 2 Group 1 Entry
0x0D Routing Table Entry CSR

0x0007_1434 0x0000_000D Map Level 2 Group 1 index 0x0D to Port D.

Table A-4. Example 3 Accesses

Register Name
Register
Address

Register
Value

Description

Port 7 Level 1 Group 1 Entry
0x00 Routing Table Entry CSR

0x0007_0800 0x0000_000F Map Level 1 Group 1 index 0x00 to Port 15.

Port 7 Level 1 Group 1 Entry
0x01 Routing Table Entry CSR

0x0007_0804 0x0000_000F Map Level 1 Group 1 index 0x01 to Port 15.

Port 7 Level 1 Group 1 Entry
0x02 Routing Table Entry CSR

0x0007_0808 0x0000_000F Map Level 1 Group 1 index 0x02 to Port 15.

Port 7 Level 1 Group 1 Entry
0x03 Routing Table Entry CSR

0x0007_080C 0x0000_000F Map Level 1 Group 1 index 0x03 to Port 15.

Port 7 Level 1 Group 1 Entry
0x04 Routing Table Entry CSR

0x0007_0810 0x0000_000F Map Level 1 Group 1 index 0x04 to Port 15.

Port 7 Level 1 Group 1 Entry
0x05 Routing Table Entry CSR

0x0007_0814 0x0000_000F Map Level 1 Group 1 index 0x05 to Port 15.

Port 7 Level 1 Group 1 Entry
0x06 Routing Table Entry CSR

0x0007_0818 0x0000_000F Map Level 1 Group 1 index 0x06 to Port 15.

Port 7 Level 1 Group 1 Entry
0x07 Routing Table Entry CSR

0x0007_081C 0x0000_000F Map Level 1 Group 1 index 0x07 to Port 15.

Port 7 Level 1 Group 1 Entry
0x08 Routing Table Entry CSR

0x0007_0820 0x0000_000F Map Level 1 Group 1 index 0x08 to Port 15.

Port 7 Level 1 Group 1 Entry
0x09 Routing Table Entry CSR

0x0007_0824 0x0000_000F Map Level 1 Group 1 index 0x09 to Port 15.

Port 7 Level 1 Group 1 Entry
0x0A Routing Table Entry CSR

0x0007_0828 0x0000_000F Map Level 1 Group 1 index 0x0A to Port 15.

Port 7 Level 1 Group 1 Entry
0x0B Routing Table Entry CSR

0x0007_082C 0x0000_000F Map Level 1 Group 1 index 0x0B to Port 15.

Port 7 Level 1 Group 1 Entry
0x0C Routing Table Entry CSR

0x0007_0830 0x0000_000F Map Level 1 Group 1 index 0x0C to Port 15.

Port 7 Level 1 Group 1 Entry
0x0D Routing Table Entry CSR

0x0007_0834 0x0000_000F Map Level 1 Group 1 index 0x0D to Port 15.

Port 7 Level 1 Group 1 Entry
0x0E Routing Table Entry CSR

0x0007_0838 0x0000_000F Map Level 1 Group 1 index 0x0E to Port 15.

Table A-3. Example 2 Accesses

Register Name
Register
Address

Register
Value

Description

56 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

A.1.4 Example 4: All Other Packets Must Be Dropped

This example builds upon the configuration put in place by Example 3. Routing for Dev32 device
IDs has been configured. Dev16 and Dev8 deviceIDs are routed using Group 0 of Level 1 and
Level 2, respectively. The default values for all entries is to drop packets. Nothing more needs to
be programmed to drop all Dev16 and Dev8 deviceIDs.

A.1.5 Example 5: Flat Routing Table Operation

This example illustrates the “flat” programming model, in which device IDs are supported
sequentially by the routing tables. Dev16 device IDs of the form 0x00** are treated as Dev8 device
IDs.

Initially assume a switch with 16 ports which supports Dev32 device IDs. Assume that the switch
must support the following routing hierarchy, where “**” means “All Values”:

• Device ID 0x01_20 must be routed to port 14.

• Device IDs 0x00_0X must be routed to port X, where X is 0 to 13.

• Device IDs 0x02_00 and 0x03_00 must be routed to port 15.

• All other packets must be dropped.

Further assume that Port 7 must be programmed to support the above hierarchy, and has initial
register values as follows:

Port 7 Level 1 Group 1 Entry
0x0F Routing Table Entry CSR

0x0007_083C 0x0000_000F Map Level 1 Group 1 index 0x0F to Port 15.

Port 7 Level 1 Group 1 Entry
0x10 Routing Table Entry CSR

0x0007_0840 0x0000_000F Map Level 1 Group 1 index 0x10 to Port 15.

Table A-5. Example 5 Port 7 Routing Table Register Block Registers

Register Name Register Address Register Value

Switch Routing Table Register Block Header 0x8000 N/A

Port 7 Routing Table Control CSR 0x8120 0x8000_0000

Port 7 Level 0 Info CSR 0x8130 0x0107_0000

Port 7 Level 1 Info CSR 0x8134 0x0307_0400

Port 7 Level 2 Info CSR 0x8138 0x0407_1000

Table A-4. Example 3 Accesses

Register Name
Register
Address

Register
Value

Description

RapidIO.org 57

RapidIO Part 3: Common Transport Specification 3.2

The following register accesses must be performed:
Table A-6. Example 5 Accesses

Register Name
Register
Address

Register
Value

Description

Port 7 Routing Table Control
CSR

0x0000_8120 0x0000_0000 Change to Flat Routing Table Model

Port 7 Level 0 Info CSR 0x0000_8130 0x0407_0000 Read Level 0 Info to determine how many
DeviceIDs are supported. Four groups are
supported, or destIDs 0x0000 through
0x03FF.

Port 7 Level 1 Info CSR 0x0000_8134 0x0000_0000 Read Level 1 Info, confirm register is reserved

Port 7 Level 2 Info CSR 0x0000_8138 0x0000_0000 Read Level 2 Info, confirm register is reserved

Port 7 Level 0 Group 1 Entry
0x20

0x0007_0480 0x0000_000E Route DestID 0x0120 to port 14.

Port 7 Level 0 Group 0 Entry
0x00

0x0007_0000 0x0000_0000 Route DestID 0x0000 to port 0.

Port 7 Level 0 Group 0 Entry
0x01

0x0007_0004 0x0000_0001 Route DestID 0x0001 to port 1.

Port 7 Level 0 Group 0 Entry
0x02

0x0007_0008 0x0000_0002 Route DestID 0x0002 to port 2.

Port 7 Level 0 Group 0 Entry
0x03

0x0007_000C 0x0000_0003 Route DestID 0x0003 to port 3.

Port 7 Level 0 Group 0 Entry
0x04

0x0007_0010 0x0000_0004 Route DestID 0x0004 to port 4.

Port 7 Level 0 Group 0 Entry
0x05

0x0007_0014 0x0000_0005 Route DestID 0x0005 to port 5.

Port 7 Level 0 Group 0 Entry
0x06

0x0007_0018 0x0000_0006 Route DestID 0x0006 to port 6.

Port 7 Level 0 Group 0 Entry
0x07

0x0007_001C 0x0000_0007 Route DestID 0x0007 to port 7.

Port 7 Level 0 Group 0 Entry
0x08

0x0007_0020 0x0000_0008 Route DestID 0x0008 to port 8.

Port 7 Level 0 Group 0 Entry
0x09

0x0007_0024 0x0000_0009 Route DestID 0x0009 to port 9.

Port 7 Level 0 Group 0 Entry
0x0A

0x0007_0028 0x0000_000A Route DestID 0x000A to port 10.

Port 7 Level 0 Group 0 Entry
0x0B

0x0007_002C 0x0000_000B Route DestID 0x000B to port 11.

Port 7 Level 0 Group 0 Entry
0x0C

0x0007_0030 0x0000_000C Route DestID 0x000C to port 12.

Port 7 Level 0 Group 0 Entry
0x0D

0x0007_0034 0x0000_000D Route DestID 0x000D to port 13.

Port 7 Level 0 Group 2 Entry
0x00

0x0007_0800 0x0000_000F Route DestID 0x0200 to port 15.

Port 7 Level 0 Group 3 Entry
0x00

0x0007_0C00 0x0000_000F Route DestID 0x0300 to port 15.

58 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

RapidIO.org 59

RapidIO Part 3: Common Transport Specification 3.2

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Broadcast. The concept of sending a packet to all processing elements in a
system.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the
RapidIO interconnect.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

External processing element. A processing element other than the
processing element in question.

B

C

D

E

60 RapidIO.org

RapidIO Part 3: Common Transport Specification 3.2

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

MSB. Most significant byte.

Multicast. The concept of sending a packet to more than one processing
elements in a system.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

F

H

I

M

O

P

S

T

3.0, 10/2013

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 4: Physical Layer 8/16

LP-LVDS Specification
RapidIO.org

Revision History

Revision Description Date

1.1 First public release 03/08/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3, showing 02-02-00009 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
03-07-00000.002, 03-12-00000.002, 03-12-00002.004
and the following new features showings:
02-06-00001.004, 02-03-00003.004, 04-08-00013.002, 04-09-00022.002
Convert to ISO-friendly templates; re-formatted

02/23/2005

2.0 Technical changes: errata showing 06-04-00000.003
new features showing 05-04-00001.005

06/14/2007

2.1 No technical changes 07/09/2009

2.2 Technical changes: errata showing 10-08-00001.005,
Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information. No technical changes. This part of the specification
is now deprecated.

10/11/2013
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.
RapidIO.org

RapidIO.org

Table of Contents

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 1 Overview

1.1 Introduction... 13
1.2 Overview... 13
1.3 Features of the Input/Output Specification... 13
1.3.1 Functional features.. 13
1.3.2 Physical Features .. 14
1.3.3 Performance Features ... 14
1.4 Contents .. 14
1.5 Terminology.. 15
1.6 Conventions .. 15

Chapter 2 Physical Layer Protocol

2.1 Introduction... 17
2.2 Packet Exchange Protocol .. 17
2.2.1 Packet and Control Alignment.. 18
2.2.2 Acknowledge Identification.. 19
2.3 Field Placement and Definition .. 19
2.3.1 Flow Control Fields Format.. 19
2.3.2 Packet Priority and Transaction Request Flows ... 21
2.3.3 Transaction and Packet Delivery .. 22
2.3.3.1 Transaction and Packet Delivery Ordering Rules .. 23
2.3.3.2 Deadlock Avoidance... 24
2.3.4 Resource Allocation.. 26
2.3.4.1 Receiver-Controlled Flow Control ... 26
2.3.4.2 Transmitter-Controlled Flow Control... 28
2.3.4.3 Receive Buffer Management .. 29
2.3.4.4 Effective Number of Free Receive Buffers .. 30
2.3.4.5 Speculative Packet Transmission ... 31
2.3.5 Flow Control Mode Negotiation... 31
2.4 Error Detection and Recovery .. 32
2.4.1 Control Symbol Protection ... 32
2.4.2 Packet Protection .. 33
2.4.3 Lost Packet Detection ... 34
2.4.4 Implementation Note: Transactional Boundaries ... 35
2.4.5 Link Behavior Under Error... 35
2.4.5.1 Recoverable Errors ... 35
2.4.5.1.1 Packet Errors... 36
2.4.5.1.2 Control Symbol Errors.. 36
2.4.5.1.3 Indeterminate errors.. 37
2.4.5.1.4 Timeout Error ... 37
RapidIO.org 5

Table of Contents

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.4.6 CRC Operation ... 37
2.4.7 CRC Code ... 40
2.5 Maximum Packet Size .. 42
2.6 Link Maintenance Protocol... 42
2.6.1 Command Descriptions... 43
2.6.1.1 Reset and Safety Lockouts.. 43
2.6.1.2 Input-status ... 44
2.6.1.3 Send-training... 44
2.6.2 Status Descriptions ... 44

Chapter 3 Packet and Control Symbol Transmission

3.1 Introduction... 47
3.2 Packet Start and Control Symbol Delineation .. 47
3.3 Packet Termination ... 49
3.4 Packet Pacing.. 50
3.5 Embedded Control Symbols ... 52
3.6 Packet to Port Alignment .. 52
3.7 System Maintenance ... 56
3.7.1 Port and Link Initialization ... 56
3.7.1.1 Sampling Window Alignment .. 56
3.7.1.1.1 Port Width Mode Selection .. 56
3.7.1.1.2 Input Sampling Window Alignment... 57
3.7.1.1.3 Training Pattern .. 57
3.7.1.1.4 Training Pattern Transmission.. 58
3.7.1.1.5 Ports Not Requiring Port Initialization... 58
3.7.1.1.6 Ports Requiring Port Initialization.. 59
3.7.1.1.7 Port Initialization Process... 59
3.7.1.2 Link Initialization ... 60
3.7.1.3 Maintenance Training... 60
3.7.1.4 Unexpected Training Pattern Reception... 61
3.7.2 Multicast-Event... 61
3.8 Power Management .. 62

Chapter 4 Control Symbol Formats

4.1 Introduction... 63
4.2 Acknowledgment Control Symbol Formats ... 63
4.2.1 Packet-Accepted Control Symbol... 64
4.2.2 Packet-Retry Control Symbol... 64
4.2.3 Packet-Not-Accepted Control Symbol ... 64
4.2.4 Canceling Packets ... 65
4.3 Packet Control Symbol Formats ... 66
4.4 Link Maintenance Control Symbol Formats .. 67
4.5 Reserved Symbol Formats .. 70
4.6 Implementation-defined Symbol Formats .. 70
6 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0

Table of Contents
4.7 Control Symbol to Port Alignment ... 70

Chapter 5 8/16 LP-LVDS Registers

5.1 Introduction... 73
5.2 Register Map... 73
5.3 Reserved Register, Bit and Bit Field Value Behavior .. 74
5.4 Capability Registers (CARs) .. 76
5.4.1 Processing Element Features CAR... 76
5.5 Generic End Point Devices ... 77
5.5.1 Register Map... 77
5.5.2 Command and Status Registers (CSRs) ... 78
5.5.2.1 8/16 LP-LVDS Register Block Header .. 78
5.5.2.2 Port Link Timeout Control CSR... 78
5.5.2.3 Port Response Timeout Control CSR... 79
5.5.2.4 Port General Control CSR .. 79
5.5.2.5 Port n Error and Status CSRs.. 80
5.5.2.6 Port n Control CSR... 81
5.6 Generic End Point Devices, software assisted error recovery option................... 83
5.6.1 Register Map... 83
5.6.2 Command and Status Registers (CSRs) ... 85
5.6.2.1 8/16 LP-LVDS Register Block Header .. 85
5.6.2.2 Port Link Timeout Control CSR... 85
5.6.2.3 Port Response Timeout Control CSR... 86
5.6.2.4 Port General Control CSR .. 86
5.6.2.5 Port n Link Maintenance Request CSRs .. 87
5.6.2.6 Port n Link Maintenance Response CSRs .. 87
5.6.2.7 Port n Local ackID Status CSRs... 88
5.6.2.8 Port n Error and Status CSRs.. 89
5.6.2.9 Port n Control CSR... 90
5.7 Generic End Point Free Devices ... 92
5.7.1 Register Map... 92
5.7.2 Command and Status Registers (CSRs) ... 93
5.7.2.1 8/16 LP-LVDS Register Block Header .. 93
5.7.2.2 Port Link Timeout Control CSR... 93
5.7.2.3 Port General Control CSR .. 94
5.7.2.4 Port n Error and Status CSRs.. 95
5.7.2.5 Port n Control CSR... 96
5.8 Generic End Point Free Devices, software assisted error recovery option........... 98
5.8.1 Register Map... 98
5.8.2 Command and Status Registers (CSRs) ... 100
5.8.2.1 8/16 LP-LVDS Register Block Header .. 100
5.8.2.2 Port Link Timeout Control CSR... 100
5.8.2.3 Port General Control CSR .. 101
5.8.2.4 Port n Link Maintenance Request CSRs .. 101
5.8.2.5 Port n Link Maintenance Response CSRs .. 102
RapidIO.org 7

Table of Contents

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8.2.6 Port n Local ackID Status CSRs... 102
5.8.2.7 Port n Error and Status CSRs.. 103
5.8.2.8 Port n Control CSR... 104

Chapter 6 System Clocking Considerations

6.1 Introduction... 107
6.2 Example Clock Distribution ... 107
6.3 Elasticity Mechanism.. 108

Chapter 7 Board Routing Guidelines

7.1 Introduction... 111
7.2 Impedance ... 111
7.3 Skew.. 111
7.4 PCB Stackup ... 112
7.5 Termination... 113
7.6 Additional Considerations .. 113
7.6.1 Single Board Environments .. 113
7.6.2 Single Connector Environments ... 113
7.6.3 Backplane Environments .. 114
7.7 Recommended pin escape ordering .. 114

Chapter 8 Signal Descriptions

8.1 Introduction... 117
8.2 Signal Definitions ... 117
8.3 RapidIO Interface Diagrams... 119

Chapter 9 Electrical Specifications

9.1 Introduction... 121
9.2 Overview... 121
9.3 DC Specifications ... 122
9.4 AC Specifications ... 124
9.4.1 Concepts and Definitions.. 124
9.4.2 Driver Specifications .. 127
9.4.3 Receiver Specifications... 133

Annex A Interface Management (Informative)

A.1 Introduction... 141
A.2 Link Initialization and Maintenance Mechanism ... 141
A.2.1 Input port training state machine .. 141
A.2.2 Output port training state machine.. 144
8 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0

Table of Contents
A.3 Packet Retry Mechanism .. 147
A.3.1 Input port retry recovery state machine .. 147
A.3.2 Output port retry recovery state machine ... 148
A.4 Error Recovery.. 151
A.4.1 Input port error recovery state machine.. 151
A.4.2 Output port error recovery state machine ... 152
RapidIO.org 9

Table of Contents

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Blank page
10 RapidIO.org

List of Figures

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2-1 Example Transaction with Acknowledge ...18
2-2 Packet Physical Layer Fields Format..20
2-3 Control Symbol Physical Layer Fields Format...20
2-4 Flow Control Fields Bit Stream ..21
2-5 Receiver-Controlled Flow Control ...28
2-6 Transmitter-Controlled Flow Control ...29
2-7 Error Coverage of First 16 Bits of Packet Header ..33
2-8 Naturally Aligned Packet Bit Stream..33
2-9 Naturally Aligned Packet Bit Stream Example 1 ...39
2-10 Naturally Aligned Packet Bit Stream Example 2 ...39
2-11 Padded Aligned Packet Bit Stream Example 1...39
2-12 Padded Aligned Packet Bit Stream Example 2...40
2-13 CRC Generation Pipeline..41
3-1 Framing Signal Maximum Toggle Rate for 8-bit Port ...48
3-2 Framing Signal Maximum Toggle Rate for 16-bit Port ...48
3-3 Control Symbol Delineation Example for 8-bit Port ..48
3-4 Control Symbol Delineation Example for 16-bit Port ..49
3-5 Header Marked End of Packet (8-bit Port) ...50
3-6 End-Of-Packet Control Symbol Marked End of Packet (16-bit Port)50
3-7 Pacing Idle Insertion in Packet (8-bit Port) ..51
3-8 Embedded Control Symbols for 8-bit Port ...52
3-9 Embedded Control Symbols for 16-bit Port ...52
3-10 Request Packet Transmission Example 1 ...53
3-11 Request Packet Transmission Example 2 ...53
3-12 Request Packet Transmission Example 3 ...54
3-13 Request Packet Transmission Example 4 ...54
3-14 Response Packet Transmission Example 1...55
3-15 Response Packet Transmission Example 2...55
4-1 Type 0 Packet-Accepted Control Symbol Format ..64
4-2 Type 1 Packet-Retry Control Symbol Format ..64
4-3 Type 2 Packet-Not-Accepted Control Symbol Format...65
4-4 Type 4 Packet Control Symbol Format ..66
4-5 Type 5 Link-Request Control Symbol Format ...68
4-6 Type 6 Link-Response Control Symbol Format...68
4-7 Control Symbol Transmission Example 1 ..70
4-8 Control Symbol Transmission Example 2 ..71
6-1 Clock Distribution in a Small System...107
6-2 Clock Distribution in a Larger System ...108
6-3 Clock Distribution Through the Interconnect ...108
7-1 Routing for Equalized Skew for Several Placements ...112
7-2 Potential PCB Stackups ..112
RapidIO.org 9

List of Figures

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
7-3 Recommended device pin escape, input port, top view of device114
7-4 Recommended device pin escape, output port, top view of device114
7-5 Opposed orientation, same side of board..115
7-6 Opposed orientation, opposite sides of board ...115
7-7 Recommended device pin escape, output port reversed, top view of device116
7-8 Opposed orientation, output port reversed, opposite sides of board.............................116
8-1 RapidIO 8-bit Device to 8-bit Device Interface Diagram...119
8-2 RapidIO 8-bit Device to 16-bit Device Interface Diagram...119
8-3 RapidIO 16-bit Device to 16-bit Device Interface Diagram...120
9-1 DC driver signal levels ...123
9-2 Differential Peak-Peak Voltage of Transmitter or Receiver...124
9-3 Example Compliance Mask ..126
9-4 RapidIO Transmit Mask ...131
9-5 Example Driver Output Eye Pattern ...132
9-6 RapidIO Receive Mask ...135
9-7 Example Receiver Input Eye Pattern ..137
9-8 Data to Clock Skew ..138
9-9 Clock to Clock Skew ..139
9-10 Static Skew Diagram ..140
A-1 Input port training state machine ..142
A-2 Output port training state machine..144
A-3 Input port retry recovery state machine ..147
A-4 Output port retry recovery state machine ...149
A-5 Input port error recovery state machine ..151
A-6 Output port error recovery state machine ...153
10 RapidIO.org

List of Tables

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2-1 Fields that Control Packet Flow..19
2-2 buf_status Field Definition ...20
2-3 Transaction Request Flow to Priority Mapping ...21
2-4 Transaction Request Flow to Priority and Critical Request Flow Mapping...................22
2-5 Parallel CRC Intermediate Value Equations ..40
2-6 Maximum Packet Size ..42
2-7 Secondary Link Maintenance Command Summary ...43
2-8 Link Status Indicators ...44
4-1 Field Definitions for Acknowledgment Control Symbols ..63
4-2 cause Field Definition ...65
4-3 sub_type and contents Field Definitions...66
4-4 Throttle Control Symbol contents Field Definition ..67
4-5 cmd Field Definition ...68
4-6 ackID_status Field Definition ...69
4-7 link_status Field Definition ..69
5-1 8/16 LP-LVDS Register Map ...74
5-2 Configuration Space Reserved Access Behavior..74
5-3 Bit Settings for Processing Element Features CAR..76
5-4 8/16 LP-LVDS Register Map - Generic End Point Devices ..77
5-5 Bit Settings for 8/16 LP-LVDS Register Block Header ...78
5-6 Bit Settings for Port Link Timeout Control CSR ...78
5-7 Bit Settings for Port Response Timeout Control CSR..79
5-8 Bit Settings for Port General Control CSRs ...79
5-9 Bit Settings for Port n Error and Status CSRs ..80
5-10 Bit Settings for Port n Control CSRs ..81
5-11 8/16 LP-LVDS Register Map - Generic End Point Devices (SW assisted)83
5-12 Bit Settings for 8/16 LP-LVDS Register Block Header ...85
5-13 Bit Settings for Port Link Timeout Control CSR ...85
5-14 Bit Settings for Port Response Timeout Control CSR..86
5-15 Bit Settings for Port General Control CSRs ...86
5-16 Bit Settings for Port n Link Maintenance Request CSRs ...87
5-17 Bit Settings for Port n Link Maintenance Response CSRs...87
5-18 Bit Settings for Port n Local ackID Status CSRs..88
5-19 Bit Settings for Port n Error and Status CSRs ..89
5-20 Bit Settings for Port n Control CSRs ..90
5-21 8/16 LP-LVDS Register Map - Generic End Point Free Devices92
5-22 Bit Settings for 8/16 LP-LVDS Register Block Header ...93
5-23 Bit Settings for Port Link Timeout Control CSR ...93
5-24 Bit Settings for Port General Control CSRs ...94
5-25 Bit Settings for Port n Error and Status CSRs ..95
5-26 Bit Settings for Port n Control CSRs ..96
5-27 8/16 LP-LVDS Register Map - Generic End Point-free Devices (SW assisted)............98
RapidIO.org 11

List of Tables

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5-28 Bit Settings for 8/16 LP-LVDS Register Block Header ...100
5-29 Bit Settings for Port Link Timeout Control CSR ...100
5-30 Bit Settings for Port General Control CSRs ...101
5-31 Bit Settings for Port n Link Maintenance Request CSRs ...101
5-32 Bit Settings for Port n Link Maintenance Response CSRs...102
5-33 Bit Settings for Port n Local ackID Status CSRs..102
5-34 Bit Settings for Port n Error and Status CSRs ..103
5-35 Bit Settings for Port n Control CSRs ..104
8-1 8/16 LP-LVDS Signal Descriptions ...117
9-1 RapidIO 8/16 LP-LVDS Driver Specifications (DC)...122
9-2 RapidIO 8/16 LP-LVDS Receiver Specifications (DC) ...122
9-3 Driver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate127
9-4 Driver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate128
9-5 Driver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate128
9-6 Driver AC Timing Specifications - 1500Mbps Data Rate/750MHz Clock Rate129
9-7 Driver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate130
9-8 Receiver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate........133
9-9 Receiver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate........133
9-10 Receiver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate......134
9-11 Receiver AC Timing Specifications - 1500Mbps Data Rate/750MHz Clock Rate......134
9-12 Receiver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate....135
A-1 Input port training state machine transition table ...142
A-2 Output port training state machine transition table...145
A-3 Input port retry recovery state machine transition table ...148
A-4 Output port retry recovery state machine transition table...149
A-5 Input port error recovery state machine transition table ...152
A-6 Output port error recovery state machine transition table ..153
12 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 4: 8/16 LP-LVDS Physical
Layer Specification, including a description of the relationship between this
specification and the other specifications of the RapidIO interconnect.

1.2 Overview
The RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification is one of the
RapidIO physical layer specifications that define the device to device
communications protocol and packet formats. Other RapidIO physical layer
specifications include the RapidIO Part 6: 1x/4x LP-Serial Physical Layer
Specification.

The physical layer defines the signal definitions, flow control and error management
for RapidIO. An 8-bit and 16-bit parallel (8/16 LP-LVDS), point-to-point interface
is defined in this specification. An 8/16 LP-LVDS device interface contains a
dedicated 8- or 16-bit input port with clock and frame signals, and a 8- or 16-bit
output port with clock and frame signals. A source-synchronous-clock signal clocks
packet data on the rising and falling edges. A frame signal provides a control
reference. Differential signaling is used to reduce interface complexity, provide
robust signal quality, and promote good frequency scalability across printed circuit
boards and connectors.

1.3 Features of the Input/Output Specification
The following are features of the RapidIO I/O specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional features
• RapidIO provides a flow control mechanism between devices that

communicate on the RapidIO interconnect fabric, because infinite data
buffering is not available in a device.
RapidIO.org 13

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
1.3.2 Physical Features
• Connections are point-to-point unidirectional, one in and one out, with 8-bit or

16-bit ports

• Physical layer protocols and packet formats are to some degree independent of
the topology of the physical interconnect; however; the physical structure is
assumed to be link-based.

• There is no dependency in RapidIO on the bandwidth or latency of the physical
fabric.

• Physical layer protocols handle out-of-order and in-order packet transmission
and reception.

• Physical layer protocols are tolerant of transient errors caused by high
frequency operation of the interface or excessive noise in the system
environment.

1.3.3 Performance Features
• Physical protocols and packet formats allow for the smallest to the largest data

payload sizes

• Packet headers are as small as possible to minimize the control overhead and
are organized for fast, efficient assembly and disassembly.

• Multiple transactions are allowed concurrently in the system, preventing much
potential system input from being wasted.

• The electrical specification allows for the fastest possible speed of operation for
future devices.

1.4 Contents
RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification contains nine chapters
and an appendix:

• Chapter 1, “Overview” (this chapter) provides an overview of the specification

• Chapter 2, “Physical Layer Protocol,” describes the physical layer protocol for
packet delivery to the RapidIO fabric, including packet transmission, flow
control, error management, and link maintenance protocols.

• Chapter 3, “Packet and Control Symbol Transmission,” defines packet and
control symbol delineation and alignment on the physical port and
mechanisms to control the pacing of a packet.

• Chapter 4, “Control Symbol Formats,” explains the physical layer control
formats that manage the packet delivery protocols mentioned in Chapter 2.

• Chapter 5, “8/16 LP-LVDS Registers,” describes the register set that allows an
external processing element to determine the physical capabilities and status
of an 8/16 LP-LVDS RapidIO implementation.
14 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
• Chapter 6, “System Clocking Considerations,” discusses the RapidIO
synchronous clock and how it is distributed in a typical switch configuration.

• Chapter 7, “Board Routing Guidelines,” explains board layout guidelines and
application environment considerations for the RapidIO architecture.

• Chapter 8, “Signal Descriptions,” contains the signal pin descriptions for a
RapidIO end point device.

• Chapter 9, “Electrical Specifications,” describes the low voltage differential
signaling (LVDS) electrical specifications of the RapidIO 8/16 LP-LVDS
device.

• Annex A, “Interface Management (Informative),” contains information
pertinent to interface management in a RapidIO system, including SECDED
error tables, error recovery, link initialization, and packet retry state
machines.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits

ACTIVE_HIGH Names of active high signals are shown in uppercase text with
no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in
uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
RapidIO.org 15

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
16 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 2 Physical Layer Protocol

2.1 Introduction
This chapter describes the RapidIO Part 4: 8/16 LP-LVDS Physical Layer
Specification physical layer protocol for packet delivery to the interconnect fabric
including packet transmission, flow control, error management, and other system
functions. See the user’s manual or implementation specification for specific
implementation details of a device.

2.2 Packet Exchange Protocol
The RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification defines an
exchange of packet and acknowledgment control symbols in which a destination or
intermediate processing element (such as a switch) acknowledges receipt of a
request or response packet from a source.

If a packet cannot be accepted for any reason, an acknowledgment control symbol
indicates that the original packet and any already transmitted subsequent packets
should be resent. This behavior provides a flow control and transaction ordering
mechanism between processing elements. Figure 2-1 shows an example of
transporting a request and response packet pair across an interconnect fabric with
acknowledgments between the link transmitter/receiver pairs along the way. This
allows flow control and error handling to be managed between each electrically
connected device pair rather than between the original source and final target of the
transaction. An end point device shall transmit an acknowledge control symbol for
a request before the response transaction corresponding to that request.
RapidIO.org 17

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.2.1 Packet and Control Alignment

All packets defined by the combination of this specification and the appropriate
logical and transport specifications are aligned to 16-bit boundaries, however, all
packets and control symbols sent over the 8-bit and 16-bit ports are aligned to 32-bit
boundaries. This alignment allows devices to work on packets using a larger internal
width thus requiring lower core operating frequencies. Packets that are not naturally
aligned to a 32-bit boundary are padded. See Figure 2-11 and Figure 2-12 for
examples of padded packets. Control symbols are nominally 16-bit quantities, but
are defined as a 16-bit control symbol followed by a bit-wise inverted copy of itself
to align it to the 32-bit boundary. This, in turn, adds error detection capability to the
interface. These 32-bit quantities are referred to as aligned control symbols.

The 16-bit wide port is compatible with an 8-bit wide port. If an 8-bit wide port is
properly connected to a 16-bit wide port, the port will function as an 8-bit interface
between the devices. Port width connections are described in Chapter 8, “Signal
Descriptions”.

Figure 2-1. Example Transaction with Acknowledge

Acknowledge
Control Symbol

Initiator (Source)

Operation
Issued By

Master

Request
Packet Issued

Data
Returned

Fabric

Acknowledge
Control Symbol

Request
Packet Forwarded

Operation
Completed for

Master

Acknowledge
Control Symbol

Acknowledge
Control Symbol

Target
Completes
Operation

Response
Packet Issued

Target Destination

Response
Packet Forwarded
18 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.2.2 Acknowledge Identification

A packet requires an identifier to uniquely identify its acknowledgment. This
identifier, known as the acknowledge ID (or ackID), is three bits, allowing for a
range of one to eight outstanding unacknowledged request or response packets
between adjacent processing elements, however only up to seven outstanding
unacknowledged packets are allowed at any one time. The ackIDs are assigned
sequentially (in increasing order, wrapping back to 0 on overflow) to indicate the
order of the packet transmission. The acknowledgments themselves are a number of
aligned control symbols defined in Chapter 4, “Control Symbol Formats.”

2.3 Field Placement and Definition
This section contains the 8/16 LP-LVDS specification for the additional physical
layer bit fields and control symbols required to implement the flow control, error
management, and other specified system functions.

2.3.1 Flow Control Fields Format

The fields used to control packet flow in the system are described in Table 2-1.
Table 2-1. Fields that Control Packet Flow

Field Description

S 0b0 - RapidIO request or response packet
0b1 - Physical layer control symbol

S Inverse of S-bit for redundancy (odd parity bit)

ackID Acknowledge ID is the packet identifier for acknowledgments back to the packet sender—see
Section 2.2.2

CRF Critical Request Flow is an optional bit that differentiates between flows of equal priority
If Critical Request Flow is not supported, this bit is reserved
See Section 2.3.2 for an explanation of prioritizing packets

prio Sets packet priority:
0b00 - lowest priority
0b01 - medium priority
0b10 - high priority
0b11 - highest priority
See Section 2.3.2 for an explanation of prioritizing packets

buf_status Specifies the number of available packet buffers in the receiving device. See Section 2.3.4 and
Table 2-2.

stype Control symbol type—see Chapter 4, “Control Symbol Formats” for definition.

rsrv Reserved
RapidIO.org 19

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 2-2 shows the format for the physical layer fields for packets. In order to pad
packets to the 16-bit boundary there are two reserved bits in a packet’s physical layer
fields. These bits are assigned to logic 0 when generated and ignored when received.

Figure 2-2. Packet Physical Layer Fields Format

Figure 2-3 shows the basic format for the physical layer fields for control symbols.
In order to pad the control symbol to the 16-bit boundary there are four reserved bits
in the control symbol. These bits are assigned to logic 0 when generated and ignored
when received. The field formats for all control symbols are defined in Chapter 4,
“Control Symbol Formats.”

Figure 2-4 shows how the physical layer fields are prefixed to the combined

Table 2-2. buf_status Field Definition

buf_status
Encoding

Value
Description

0b0000

Specifies the number of maximum length packets that the port can accept without
issuing a retry due to a lack of resources. The value of buf_status in a control symbol
is the number of maximum packets that can be accepted, inclusive of the effect of the
packet being accepted or retried.

Value 0-13: The encoding value specifies the number of new maximum sized
packets the receiving device can receive. The value 0, for example, signifies that
the downstream device has no available packet buffers (thus is not able to hold
any new packets).

Value 14: The value 14 signifies that the downstream device can receive 14 or more
new maximum sized packets.

Value 15: The downstream device can receive an undefined number of maximum
sized packets, and relies on the retry protocol for flow control.

0b0001

0b0010

0b0011

0b0100

0b0101

0b0110

0b0111

0b1000

0b1001

0b1010

0b1011

0b1100

0b1101

0b1110

0b1111

Figure 2-3. Control Symbol Physical Layer Fields Format

ackID

1

prio

23

S=0 S=1rsrv=0

1 1 1 1

CRFrsrv=0

ackID

1

buf_status

43

S=1

1

S=0 stype

3

rsrv=0

1 3

rsrv=000
20 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
transport and logical layer packet.

The unshaded fields are the physical layer fields defined by this physical
specification. The shaded fields are the bits associated with the combined transport
and logical transaction definitions. The first transport and logical field shown is the
two bit tt field specified in the RapidIO Part 3: Common Transport Specification.
The second field is the four bit format type (ftype) defined in the logical
specifications. The third combined field is the remainder of the transport and logical
packet of a size determined by those specifications.

2.3.2 Packet Priority and Transaction Request Flows

Each packet has a priority, and optionally a critical request flow, that is assigned by
the end point processing element that is the source of (initiates) the packet. The
priority is carried in the prio field of the packet and has four possible values, 0, 1, 2
or 3. Packet priority increases with the priority value with 0 being the lowest priority
and 3 being the highest. Packet priority is used in RapidIO for several purposes
which include transaction ordering and deadlock prevention. The critical request
flow is carried in the CRF bit. It allows a flow to be designated as a critical or
preferred flow with respect to other flows of the same priority. Support for critical
request flows is strongly encouraged.

When a transaction is encapsulated in a packet for transmission, the transaction
request flow indicator (flowID) of the transaction is mapped into the prio field (and
optionally the CRF bit) of the packet. If the CRF bit is not supported, transaction
request flows A and B are mapped to priorities 0 and 1 respectively and transaction
request flows C and above are mapped to priority 2 as specified in Table 2-3.

Table 2-3. Transaction Request Flow to Priority Mapping

If the CRF bit is supported, the transaction request flows are mapped similarily as
specified in Table 2-4. Devices that do not support the CRF bit treat it as reserved,
setting it to logic 0 on transmit and ignoring it on receive.

Figure 2-4. Flow Control Fields Bit Stream

Flow System Priority
Request

Packet Priority
Response

Packet Priority

C or higher Highest 2 3

B Next 1 2 or 3

A Lowest 0 1, 2, or 3

ackID

1 23

S=0

1

S=1 ftype

n

tt

2 4

Remainder of transport & logical fieldsrsrv=0

1 1

rsrv=0 prio

1

CRF
RapidIO.org 21

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Table 2-4. Transaction Request Flow to Priority and Critical Request Flow Mapping

The mapping of transaction request flows allows a RapidIO transport fabric to
maintain transaction request flow ordering without the fabric having any knowledge
of transaction types or their interdependencies. This allows a RapidIO fabric to be
forward compatible as the types and functions of transactions evolve. A fabric can
maintain transaction request flow ordering by simply maintaining the order of
packets with the same priority and critical request flow for each path through the
fabric and can maintain transaction request flow priority by never allowing a lower
priority packet to pass a higher priority packet taking the same path through the
fabric. In the case of congestion or some other restriction, a set CRF bit indicates that
a flow of a priority can pass a flow of the same priority without the CRF bit set.

2.3.3 Transaction and Packet Delivery

Certain physical layer fields and a number of control symbols are used for handling
flow control. One physical layer field contains the ackID field (Table 2-1), which is
assigned by the sending processing element, and expected by the receiving
processing element, in a sequential fashion.

Packets shall be accepted by the receiving processing element only when ackID
values of successive packets occur in the specified sequence. The receiving
processing element signals the acceptance of a packet by returning a
packet-accepted control symbol to the sender. This order allows a device to detect
when a packet has been lost and also provides a mechanism to maintain ordering.

A device that retries a packet (by returning a packet-retry control symbol to the
sender) due to some temporary internal condition shall silently discard all new
incoming packets until it receives a restart-from-retry control symbol from the
sender. The sender then retransmits all packets starting from the retried ackID,
reestablishing the proper ordering between the devices. The packet sent with the
retried ackID may be the original retried packet or a higher priority packet, if one is
available, allowing higher priority packets to bypass lower priority packets across
the link. This behavior is shown in an example state machine in Section A.3, “Packet
Retry Mechanism.”

Similarly, if a receiving processing element encounters an error condition, it shall

Flow System Priority CRF Bit Setting
Request

Packet Priority
Response

Packet Priority

F or higher Highest 1 2 3

E Higher than A, B, C, D 0 2 3

D Higher than A, B, C 1 1 2 or 3

C Higher than A, B 0 1 2 or 3

B Higher than A 1 0 1, 2, or 3

A Lowest 0 0 1, 2, or 3
22 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
return a packet-not-accepted control symbol, indicating an error condition, to the
sender. It shall also silently discard all new incoming packets. If the error condition
is due to a transmission error the sender may able to recover from the effects of the
error condition. The error recovery mechanism is described in Section 2.4.5.

A retried transaction shall eventually be retransmitted by the sending device.

2.3.3.1 Transaction and Packet Delivery Ordering Rules

The rules specified in this section are required for the physical layer to support the
transaction ordering rules specified in the logical layer specifications.

Transaction Delivery Ordering Rules:

1. The physical layer of an end point processing element port shall
encapsulate in packets and forwarded to the RapidIO fabric
transactions comprising a given transaction request flow in the same
order that the transactions were received from the transport layer of the
processing element.

2. The physical layer of an end point processing element port shall ensure
that a higher priority request transaction that it receives from the
transport layer of the processing element before a lower priority request
transaction with the same sourceID and the same destinationID is
forwarded to the fabric before the lower priority transaction.

3. The physical layer of an end point processing element port shall deliver
transactions to the transport layer of the processing element in the same
order that the packetized transactions were received by the port.

Packet Delivery Ordering Rules:

1. A packet initiated by a processing element shall not be considered
committed to the RapidIO fabric and does not participate in the packet
delivery ordering rules until the packet has been accepted by the device
at the other end of the link. (RapidIO does not have the concept of
delayed or deferred transactions. Once a packet is accepted into the
fabric, it is committed.)

2. A switch shall not alter the priority or critical request flow of a packet.

3. Packet forwarding decisions made by a switch processing element shall
provide a consistent output port selection which is based solely on the
value of the destinationID field carried in the packet.

4. A switch processing element shall not change the order of packets
comprising a transaction request flow (packets with the same sourceID,
the same destinationID, the same priority, the same critical request flow,
and ftype != 8) as the packets pass through the switch.
RapidIO.org 23

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5. A switch processing element shall not allow lower priority
non-maintenance packets (ftype != 8) to pass higher priority
non-maintenance packets with the same sourceID and destinationID as
the packets pass through the switch.

6. A switch processing element shall not allow a priority N maintenance
packet (ftype = 8) to pass another maintenance packet of priority N or
greater that takes the same path through the switch (same switch input
port and same switch output port).

2.3.3.2 Deadlock Avoidance

To allow a RapidIO protocol to evolve without changing the switching fabric, switch
processing elements are not required, with the sole exception of ftype 8 maintenance
transactions, to discern between packet types, their functions or their
interdependencies. Switches, for instance, are not required to discern between
packets carrying request transactions and packets carrying response transactions. As
a result, it is possible for two end points, A and B to each fill all of their output
buffers, the fabric connecting them and the other end point’s input buffers with read
requests. This would result in an input to output dependency loop in each end point
in which there would be no buffer space to hold the responses necessary to complete
any of the outstanding read requests.

To break input to output dependencies, end point processing elements must have the
ability to issue outbound response packets even if outbound request packets
awaiting transmission are congestion blocked by the connected device. Two
techniques are provided to break input to output dependencies. First, a response
packet (a packet carry a response transaction) is always assigned an initial priority
one priority level greater than the priority of the associated request packet (the
packet carrying the associated request transaction). The CRF bit setting is assigned
the same value as was received in the associated request packet if the CRF bit is
supported by the receiving end point.

This requirement is specified in Table 1-3 and Table 2-4. It breaks the dependency
cycle at the request flow level. Second, the end point processing element that is the
source of the response packet may additionally raise the priority of the response
packet to a priority higher than the minimum required by Table 1-3 and Table 2-4 if
necessary for the packet to be accepted by the connected device. This additional
increase in response packet priority above the minimum required by Table 1-3 and
Table 2-4 is called promotion. An end point processing element may promote a
response packet only to the degree necessary for the packet to be accepted by the
connected device.

The following rules define the deadlock prevention mechanism:

Deadlock Prevention Rules:

1. A RapidIO fabric shall be dependency cycle free for all operations that do
not require a response. (This rule is necessary as there are no mechanisms
provided in the fabric to break dependency cycles for operations not requiring
responses.)
24 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2. A packet carrying a request transaction that requires a response shall not
be issued at the highest priority. (This rule ensures that an end point processing
element can issue a response packet at a priority higher then the priority of the
associated request. This rule in combination with rule 3 are basis for the priority
assignments in Table 1-3 and Table 2-4.)

3. A packet carrying a response shall have a priority at least one priority level
higher than the priority of the associated request. (This rule in combination
with rule 2 are basis for the priority assignments in Table 1-3 and Table 2-4.)

4. A switch processing element port shall accept an error-free packet of
priority N if there is no packet of priority greater than or equal to N that
was previously received by the port and is still waiting in the switch to be
forwarded. (This rule has multiple implications which include but are not
limited to the following. First, a switch processing element port must have at
least as many maximum length packet input buffers as there are priority levels.
Second, a minimum of one maximum length packet input buffer must be
reserved for each priority level. A input buffer reserved for priority N might be
restricted to only priority N packets or might be allowed to hold packets of
priority greater than or equal to N, either approach complies with the rule.)

5. A switch processing element port that transmits a priority N packet that is
forced to retry by the connected device shall select a packet of priority
greater than N, if one is available, for transmission. (This guarantees that
packets of a given priority will not block higher priority packets.)

6. An end point processing element port shall accept an error-free packet of
priority N if the port has enough space for the packet in the input buffer
space of the port allocated for packets of priority N. (Lack of input buffer
space is the only reason an end point may retry a packet.)

7. The decision of an end point processing element to accept or retry an
error-free packet of priority N shall not be dependent on the ability of the
end point to issue request packets of priority less than or equal to N from
any of its ports. (This rule works in conjunction with rule 6. It prohibits a
device’s inability to issue packets of priority less than or equal to N, due to
congestion in the connected device, from resulting in a lack of buffers to receive
inbound packets of priority greater than or equal to N which in turn would result
in packets of priority greater than or equal to N being forced to retry. The
implications and some ways of complying with this rule are presented in the
following paragraphs.)

One implication of Rule 7 is that a port may not fill all of its buffers that can be used
to hold packets awaiting transmission with packets carrying request transactions. If
this situation was allowed to occur and the output was blocked due to congestion in
the connected device, read transactions could not be processed (no place to put the
response packet), input buffer space would become filled and all subsequent
inbound request packets would be forced to retry violating Rule 7.

Another implication is that a port must have a way of preventing output blockage at
priority less than or equal to N, due to congestion in the connected device, from
resulting in a lack of input buffer space for inbound packets of priority greater than
or equal to N. There are multiple ways of doing this.

One way is to provide a port with input buffer space for at least four maximum
RapidIO.org 25

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
length packets and reserve input buffer space for higher priority packets in a manner
similar to that required by Rule 4 for switches. In this case, output port blockage at
priority less than or equal to N will not result in blocking inbound packets of priority
greater than or equal to N as any responses packets they generate will be of priority
greater than N which is not congestion blocked. The port must however have the
ability to select packets of priority greater than N for transmission from the packets
awaiting transmission. This approach does not require the use of response packet
priority promotion.

Alternatively, a port that does not have enough input buffer space for at least four
maximum length packets or that does not reserve space for higher priority packets
can use the promotion mechanism to increase the priority of response packets until
they are accepted by the connected device. This allows output buffer space
containing response packets to be freed even though all request packets awaiting
transmission are congestion blocked.

As an example, suppose an end point processing element has a blocked input port
because all available resources are being used for a response packet that the
processing element is trying to send. If the response packet is retried by the
downstream processing element, raising the priority of the response packet until it
is accepted allows the processing element’s input port to unblock so the system can
make forward progress.

2.3.4 Resource Allocation
This section defines RapidIO LP-LVDS link level flow control. The flow control
operates between each pair of ports connected by an LP-LVDS link. The purpose of
link level flow control is to prevent the loss of packets due to a lack of buffer space
in a link receiver.

The LP-LVDS protocol defines two methods or modes of flow control. These are
named receiver-controlled flow control and transmitter-controlled flow control.
Every RapidIO LP-LVDS port shall support receiver-controlled flow control.
LP-LVDS ports may optionally support transmitter-controlled flow control.

2.3.4.1 Receiver-Controlled Flow Control
Receiver-controlled flow control is the simplest and most basic method of flow
control. In this method, the input side of a port controls the flow of packets from its
link partner by accepting or rejecting (retrying) packets on a packet by packet basis.
The receiving port provides no information to its link partner about the amount of
buffer space it has available for packet reception.

As a result, its link partner transmits packets with no a priori expectation as to
whether a given packet will be accepted or rejected. A port signals its link partner
that it is operating in receiver-controlled flow control mode by setting the buf_status
field to all 1s in every control symbol containing the field that the port transmits.
This method is named receiver-controlled flow control because the receiver makes
all of the decisions about how buffers in the receiver are allocated for packet
reception.
26 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
A port operating in receiver-controlled flow control mode accepts or rejects each
inbound packet based on whether the receiving port has enough buffer space
available at the priority level of the packet. If there is enough buffer space available,
the port accepts the packet and transmits a packet-accepted control symbol to its link
partner that contains the ackID of the accepted packet in its packet_ackID field. This
informs the port’s link partner that the packet has been received without detected
errors and that it has been accepted by the port. On receiving the packet-accepted
control symbol, the link partner discards its copy of the accepted packet freeing
buffer space in the partner.

If buffer space is not available, the port rejects the packet. When a port rejects
(retries) a packet, it behaves as described in Section 2.3.3, “Transaction and Packet
Delivery”. As part of the recovery process, the port sends a packet-retry control
symbol to its link partner indicating that the packet whose ackID is in the
packet_ackID field of the control symbol and all packets subsequently transmitted
by the port have been discarded by the link partner and must all be retransmitted.
The control symbol also indicates that the link partner is temporarily out of buffers
for packets of priority less than or equal to the priority of the retried packet.

A port that receives a packet-retry control symbol also behaves as described in
Section 2.3.3. As part of the recovery process, the port receiving the packet-retry
control symbol sends a restart-from-retry control symbol which causes its link
partner to resume packet reception. The ackID assigned to that first packet
transmitted after the restart-from-retry control symbol is the ackID of the packet that
was retried.

Figure 2-5 shows an example of receiver-controlled flow control operation. In this
example the transmitter is capable of sending packets faster than the receiver is able
to absorb them. Once the transmitter has received a retry for a packet, the transmitter
may elect to cancel any packet that is presently being transmitted since it will be
discarded anyway. This makes bandwidth available for any higher priority packets
that may be pending transmission.
RapidIO.org 27

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 2-5. Receiver-Controlled Flow Control

2.3.4.2 Transmitter-Controlled Flow Control
In transmitter-controlled flow control, the receiving port provides information to its
link partner about the amount of buffer space it has available for packet reception.
With this information, the sending port can allocate the use of the receiving port’s
receive buffers according to the number and priority of packets that the sending port
has waiting for transmission without concern that one or more of the packets shall
be forced to retry.

A port signals its link partner that it is operating in transmitter-controlled flow
control mode by setting the buf_status field to a value different from all 1s in every
control symbol containing the field that the port transmits. This method is named
transmitter-controlled flow control because the transmitter makes almost all of the
decisions about how the buffers in the receiver are allocated for packet reception.

The number of free buffers that a port has available for packet reception is conveyed
to its link partner by the value of the buf_status field in control symbols that the port
transmits. The value conveyed by the buf_status field is the number of maximum
length packet buffers currently available for packet reception up to the limit that can
be reported in the field. If a port has more buffers available than the maximum value
that can be reported in the buf_status field, the port sets the field to that maximum
value. A port may report a smaller number of buffers than it actually has available,
but it shall not report a greater number.

A port informs its link partner when the number of free buffers available for packet
reception changes. The new value of buf_status is conveyed in the buf_status field
in every control symbol containing the field that the port transmits. Each change in

Time Write 0

Write 1 Ack 0

Write 2
Ack 1

Rtry 2

Write 3

Write 4

Write 5

Write 2
Ack 2Write 3

Write 4

Write 5 Ack 3

Ack 4

Ack 5

Transmitter Receiver
28 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
the number of free buffers a port has available for packet reception need not be
conveyed to the link partner.

A port whose link partner is operating in transmitter-control flow control mode
should never receive a packet-retry control symbol from its link partner unless the
port has transmitted more packets than its link partner has receive buffers, violated
the rules that all input buffer may not be filled with low priority packets or there is
some fault condition. If a port whose link partner is operating in transmitter-control
flow control mode receives a packet-retry control symbol, the output side of the port
behaves as described in Section 2.3.3.

A simple example of transmitter-controlled flow control is shown in Figure 2-6.

Figure 2-6. Transmitter-Controlled Flow Control

2.3.4.3 Receive Buffer Management

In transmitter-controlled flow control, the transmitter manages the packet receive
buffers in the receiver. This may be done in a number of ways, but the selected
method shall not violate the rules in Section 2.3.2, “Packet Priority and Transaction
Request Flows” concerning the acceptance of packets by ports.

One possible implementation to organize the buffers is establish watermarks and use
them to progressively limit the packet priorities that can be transmitted as the
effective number of free buffers in the receiver decreases. For example, RapidIO
LP-LVDS has four priority levels. Three non-zero watermarks are needed to
progressively limit the packet priorities that may be transmitted as the effective
number of free buffers decreases. Designate the three watermarks as WM0, WM1,
and WM2 where WM0 > WM1 > WM2 > 0 and employ the following rules.

If free_buffer_count >= WM0, all priority packets may be transmitted.

Time Write 0

Write 1
Ack 0, 2 buffers avail

Write 2

Ack 1, 1 buffer avail

Write 3

Write 4

Write 5

Ack 2, 0 buffers avail

Ack 3, 3 buffers avail

Ack 4, 2 buffers avail

Ack 5, 1 buffers avail

Transmitter Receiver

Idle, 0 buffers avail

Idle, 0 buffers avail

Idle, 2 buffers avail
RapidIO.org 29

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
If WM0 > free_buffer_count >= WM1, only priority 1, 2, and 3
packets may be transmitted.

If WM1 > free_buffer_count >= WM2, only priority 2 and 3 packets
may be transmitted.

If WM2 > free_buffer_count, only priority 3 packets may be
transmitted.

If this method is implemented, the initial values of the watermarks may be set by the
hardware at reset as follows.

WM0 = 4

WM1 = 3

WM2 = 2

These initial values may be modified by hardware or software. The modified
watermark values shall be based on the number of free buffers reported in the
buf_status field of idle control symbols received by the port following link
initialization and before the start of packet transmission.

The three watermark values and the number of free buffers reported in the buf_status
field of idle control symbols received by the port following link initialization and
before the start of packet transmission may be stored in a CSR. Since the maximum
value of each of these four items is 14, each will fit in an 8-bit field and all four will
fit in a single 32-bit CSR. If the watermarks are software setable, the three
watermark fields in the CSR should be writable. For the greatest flexibility, a
watermark register should be provided for each port on a device.

2.3.4.4 Effective Number of Free Receive Buffers
The number of buffers available in a port’s link partner for packet reception is
typically less than the value of the buf_status field most recently received from the
link partner. The value in the buf_status field does not account for packets that have
been transmitted by the port but not acknowledged by its link partner. The variable
free_buffer_count is defined to be the effective number of free buffers available in
the link partner for packet reception. The value of free_buffer_count shall be
determined according to the following rules.

The port shall maintain a count of the packets that it has transmitted
but that have not been acknowledged by its link partner. This count is
named the outstanding_packet_count.

After link initialization and before the start of packet transmission,

If (received_buf_status < 15) {
flow_control_mode = transmitter;
free_buffer_count = received_buf_status;
outstanding_packet_count = 0;
30 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
}
else

flow_control_mode = receiver;

When a packet is transmitted by the port,

outstanding_packet_count =
outstanding_packet_count + 1;

When a control symbol containing a buf_status field is received by the
port,

free_buffer_count = received_buf_status -
outstanding_packet_count;

When a packet-accepted control symbol is received by the port
indicating that a packet has been accepted by the link partner,

Outstanding_packet_count =
Outstanding_packet_count - 1;

free_buffer_count = received_buf_status -
outstanding_packet_count;

When a packet-retry control symbol is received by the port indicating
that a packet has been forced by the link partner to retry,

Outstanding_packet_count = 0;
free_buffer_count = received_buf_status;

When a packet-not-accepted control symbol is received by the port
indicating that a packet has been rejected by the link partner because
of one or more detected errors,

Outstanding_packet_count = 0;
free_buffer_count = received_buf_status;

2.3.4.5 Speculative Packet Transmission
A port whose link partner is operating in transmitter-controlled flow control mode
may send more packets than the number of free buffers indicated by the link partner.
Packets transmitted in excess of the free_buffer_count are transmitted on a
speculative basis and are subject to retry by the link partner. The link partner accepts
or rejects these packets on a packet by packet basis in exactly the same way it would
if operating in receiver-controlled flow control mode. A port may use such
speculative transmission in an attempt to maximize the utilization of the link.
However, speculative transmission that results in a significant number of retries and
discarded packets can reduce the effective bandwidth of the link.

2.3.5 Flow Control Mode Negotiation
Immediately following the initialization of a link, each port begins sending idle
control symbols to its link partner. The value of the buf_status field in these control
RapidIO.org 31

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
symbols indicates to the link partner the flow control mode supported by the sending
port.

The flow control mode negotiation rule is as follows:

If the port and its link partner both support transmitter-controlled flow
control, then both ports shall use transmitter-controlled flow control.
Otherwise, both ports shall use receiver-controlled flow control.

2.4 Error Detection and Recovery
Error detection and recovery is becoming a more important issue for many systems
as operational frequencies increase and system electrical margins are reduced. The
8/16 LP-LVDS specification provides extensive error detection and recovery by
combining retry protocols, cyclic redundancy codes, and single and multiple error
detect capabilities, thereby tolerating all single-bit errors and many multiple bit
errors. One goal of the error protection strategy is to keep the interconnect fabric
from having to regenerate a CRC value as the packet moves through the fabric. All
RapidIO ports require error checking.

2.4.1 Control Symbol Protection

The control symbols defined in this specification are protected in two ways:

• The S bit, distinguishing a control symbol from a packet header, has an odd
parity bit to protect a control symbol from being interpreted as a packet.

• The entire aligned control symbol is protected by the bit-wise inversion of the
control symbol used to align it to the 32-bit boundary described in Section
2.2.1. This allows extensive error detection.

A transmission error in the buf_status field, regardless of the control symbol type,
may optionally not be treated as an error condition because it is always a reserved or
an information only field that is not critical for proper system behavior. For example,
if a corrupt value of buf_status is used, a low value may temporarily prevent a packet
from being issued, or a high value may result in a packet being issued when it should
not have been, causing a retry. In either case the problems are temporary and will
properly resolve themselves through the existing protocol.
32 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.4.2 Packet Protection

The packets specified in the RapidIO Common Transport Specification and the
RapidIO Logical Specification are protected with a CRC code that also covers the
two bit priority field of this specification. The S bit is duplicated as in the control
symbols to protect the packet from being interpreted as a control symbol, and the
packet is also protected by protocol as described below.

Figure 2-7 shows the error coverage for the first 16 bits of a packet header. CRC
protects the prio, tt, and ftype fields and one of the reserved bits as well as the
remainder of the transport and logical fields. Since a new packet has an expected
value for the ackID field at the receiver, bit errors on this field are easily detected
and the packet is not accepted due to the unexpected value. An error on the S bit is
detected with the redundant inverted S parity bit.

This structure does not require that a packet’s CRC value be regenerated when the
uncovered physical fields are assigned in the fabric.

NOTE:

All packets defined in the combination of this specification and the
RapidIO interconnect logical and common transport specifications are
now evenly divisible by 16 bits, or the complete packets are now
naturally 16-bit aligned. This is illustrated in Figure 2-8. The leading
16 bits of the packet are referred to as the first symbol of the packet.
The first symbol of a packet shall always land on the most significant
half of the 32-bit boundary. Other aligned 16-bit packet quantities are
also referred to as symbols.

Figure 2-7. Error Coverage of First 16 Bits of Packet Header

Figure 2-8. Naturally Aligned Packet Bit Stream

Protected by CRC

Protected by protocol

ackID

1 43

S=0

1

0

11

S=1

2

tt

2
Protected by parity

0 ftypeprio

1

CRF

n*16

16-bit boundary32-bit boundary

16 bits

Remainder of transport & logical fieldsackID

1

ftype

43

S=0

1

0 0

11

S=1 prio

2

tt

2

CRF

1

RapidIO.org 33

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.4.3 Lost Packet Detection

Some types of errors, such as a lost request or response packet or a lost
acknowledgment, result in a system with hung resources. To detect this type of error
there shall be timeout counters that expire when sufficient time has elapsed without
receiving the expected response from the system. Because the expiration of one of
these timers should indicate to the system that there is a problem, this time interval
should be set long enough so that a false timeout is not signaled. The response to this
error condition is implementation dependent.

The RapidIO specifications assume an implementation has timeout counters for the
physical layer, the port link timeout counters, and counters for the logical layer, the
port response timeout counters. The logical layer timers are discussed here in the
physical layer specification because the packet delivery mechanism is an artifact of
the physical layer. The values for these counters are specified in the physical layer
registers in Chapter 5, “8/16 LP-LVDS Registers,” on page 73. The interpretation
of the values is implementation dependent, based on a number of factors including
link clock rate, the internal clock rate of the device, and the desired system behavior.

The physical layer timeout occurs between the transmission of a packet and the
receipt of an acknowledgment control symbol. This timeout interval is likely to be
comparatively short because the packet and acknowledgment pair must only
traverse a single link. For the purpose of error recovery, a port link timeout should
be treated as a packet acknowledge error.

The logical layer timeout occurs between the issuance of a request packet that
requires a response packet and the receipt of that response packet. This timeout is
counted from the time that the logical layer issues the packet to the physical layer to
the time that the associated response packet is delivered from the physical layer to
the logical layer. Should the physical layer fail to complete the delivery of the
packet, the logical layer timeout will occur. This timeout interval is likely to be
comparatively long because the packet and response pair have to traverse the fabric
at least twice and be processed by the target. Error handling for a response timeout
is implementation dependent.

Certain GSM operations may require two response transactions, and both must be
received for the operation to be considered complete. In the case of a device
implementation with multiple links, one response packet may be returned on the
same link where the operation was initiated and the other response packet may be
returned on a different link. If this is behavior is supported by the issuing processing
element, the port response timeout implementation must look for both responses,
regardless of which links they are returned on.
34 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.4.4 Implementation Note: Transactional Boundaries

A system address map usually contains memory boundaries that separate one type
of memory space from another. Memory spaces are typically allocated with a preset
minimum granularity. These spaces are often called page boundaries. Page
boundaries allow the operating system to manage the entire address space through a
standard mechanism. These boundaries are often used to mark the start and end of
read-only space, peripheral register space, data space, and so forth.

RapidIO allows DMA streaming of data between two processing elements.
Typically, in system interfaces that allow streaming, the targeted device of the
transaction has a way to disconnect from the master once a transactional boundary
has been crossed. The RapidIO specifications do not define a page boundary, nor a
mechanism by which a target can disconnect part way through a transaction.
Therefore, it is up to the system software and/or hardware implementation to
guarantee that a transaction can complete gracefully to the address space requested.

As an example, a RapidIO write transaction does not necessarily have a size
associated with it. Given a bus error condition whereby a packet delimiting control
symbol is missed, the target hardware could continue writing data beyond the
intended address space, thus possibly corrupting memory. Hardware
implementations should set up page boundaries so this condition does not occur. In
such an implementation, should a transaction cross the boundary, an error should be
indicated and the transaction discarded.

2.4.5 Link Behavior Under Error

Transmission error detection is done at the input port, and all transmission error
recovery is also initiated at the input port. Error detection can be done in a number
of ways and at differing levels of complexity depending upon the requirements and
implementation of a device.

2.4.5.1 Recoverable Errors

Four basic types of errors are detected by a port: an error on a packet, an error on a
control symbol, an indeterminate error (an S bit parity failure), and a timeout waiting
for a control symbol. A detailed state machine description of the behavior described
in the sections below is included in Section A.2, "Error Recovery". The error
recovery mechanism requires that a copy of each transmitted data packet be retained
by the sending port so that the packet can be retransmitted if it is not accepted by the
receiving port. The copy is retained until the sending port either receives a
packet-accepted control symbol for the packet or determines that the packet has
encountered an unrecoverable error condition.

When a sending port detects that the receiving port has not accepted a packet
because one or more of the errors listed above has occurred (or the port has received
a retry control symbol), the sending port resets the link timeout counters for the
RapidIO.org 35

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
affected packet and all subsequently transmitted data packets. This prevents the
generation of spurious timeout errors.

Any awaiting higher priority data packets are transmitted and all unaccepted data
packets are retransmitted by the sending port. The number of times a data packet is
retransmitted due to a recoverable error before the sending port declares an
unrecoverable error condition exists is implementation dependent.

2.4.5.1.1 Packet Errors

Three types of packet errors exist: a packet with an unexpected ackID value, a
corrupted packet indicated by a bad CRC value, and a packet that overruns some
defined boundary such as the maximum data payload or a transactional boundary as
described in Section 2.4.4. A processing element that detects a packet error
immediately transitions into an “Input Error-stopped” state and silently discards all
new packets until it receives a restart-from-error control symbol from the sender.
The device also sends a packet-not-accepted control symbol with an undefined
ackID value back to the sender. The sender then initiates recovery as described in
Section 2.4.5.1.2 for a packet acknowledge error.

2.4.5.1.2 Control Symbol Errors

There are three types of detectable control symbol errors: a packet acknowledge
error, a corrupt control symbol error, and an uncorrupted protocol violating control
symbol.

A packet acknowledge error is a packet-accepted or packet-retry control symbol
which has an unexpected ackID value or an unexpected packet-not-accepted control
symbol. This error shall cause the receiving device to enter an “Output
Error-stopped” state, immediately stop transmitting new packets, and issue a
restart-from-error control symbol. The restart-from-error control symbol receives a
response containing receiver internal state, including the expected ackID. This
expected ackID indicates to the sender where to begin re-transmission because the
interface may have gotten out of sequence. The sender shall then back up to the
appropriate unaccepted packet and begin re-transmission.

The following is an example of a packet acknowledge error and recovery from that
error. The sender transmits packets labeled ackID 2, 3, 4, and 5. It receives
acknowledgments for packets 2, 4 and 5, indicating a probable error associated with
ackID 3. The sender then stops transmitting new packets and sends a
restart-from-error control symbol to the receiver. The receiver then returns a
response control symbol indicating which packets it has received properly. These are
the possible responses and the sender’s resulting behavior:

• expecting ackID = 3 - sender must re-transmit packets 3, 4, and 5

• expecting ackID = 4 - sender must re-transmit packets 4 and 5

• expecting ackID = 5 - sender must re-transmit packet 5

• expecting ackID = 6 - receiver got all packets, resume operation
36 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
• expecting ackID = anything else - fatal (non-recoverable) error

A corrupt control symbol is detected as a mismatch between the true and
complement 16-bit halves of the aligned control symbol. A corrupt control symbol
shall cause the receiver to enter the “Input Error-stopped” state and send a
packet-not-accepted control symbol. This informs the sending device that a
transmission error has occurred and the sender shall enter the recovery process
described above, sending a restart-from-error control symbol.

An uncorrupted protocol violating control symbol is a control symbol that is
received unexpectedly. Some examples of this type of error are:

• an unsolicited packet-accepted or packet-retry control symbol

• a restart-from-retry control symbol received while in the Input OK state,

• a 2nd link-request received before returning a link-response, or

• a packet-accepted received before packet transmission has completed

Such errors are an indication of either an otherwise undetectable multi-bit error on
the link or a blatant protocol violation by the sender. Such errors may cause
unpredictable behavior and the link may not be recoverable. Upon detecting such an
error, the receiver shall enter Input Error-stopped state and/or Output Error-stopped
state if attempting to recover from these types of errors.

2.4.5.1.3 Indeterminate errors

An indeterminate error is an S bit parity error in which it is unclear whether the
information being received is for a packet or a control symbol. These errors shall be
handled as a corrupt control symbols.

2.4.5.1.4 Timeout Error

A link timeout on an acknowledge control symbol for a packet is treated like an
acknowledge control symbol with an unexpected ackID value.

2.4.6 CRC Operation

A 16-bit CRC is selected as the method of error detection for the 8/16 LP-LVDS
physical layer. This CRC is generated over all of a packet header, and all of the data
payload except the first 6 bits of the added physical layer fields as shown in
Figure 2-7. This checksum is appended to a packet in one of two ways. For a packet
that has up to 80 bytes of header (including all logical, transport, and 8/16 LP-LVDS
fields) and logical data payload, a single CRC value is appended to the packet. For
packets with greater than 80 bytes of header and logical data payload, a CRC value
is inserted after the first 80 bytes, aligning it to the first half of the 32-bit alignment
boundary, and a second CRC value is appended at the end of the packet. The second
CRC value is a continuation of the first and included in the running calculation,
meaning that the running CRC value is not re-initialized after it is inserted after the
first 80 bytes of the packet. This allows intervening devices to regard the embedded
RapidIO.org 37

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
CRC value as 2 bytes of packet payload for CRC checking purposes.

NOTE:

The embedded CRC value is itself used in the running CRC. As a
result, from the CRC generator’s point of view the running CRC value
is guaranteed to be all logic 0s because the running CRC is XORed
with itself. This fact may be useful in an implementation.

The early CRC value can be used by the receiving processing element to validate the
header of a large packet and start processing the data before the entire packet has
been received, freeing up resources earlier and reducing transaction completion
latency. If the final appended CRC value does not cause the total packet to align to
the 32-bit boundary, a 2 byte pad of all logic 0s is postpended to the packet. The pad
of logic 0s allows the CRC check to always be done at the 32-bit boundary. A corrupt
pad may or may not cause a CRC error to be detected, depending upon the
implementation.

NOTE:

While the embedded CRC value can be used by a processing element
to start processing the data within a packet before receiving the entire
packet, it is possible that upon reception of the end of the packet the
final CRC value for the packet is incorrect. This would result in a
processing element that has processed data that may have been
corrupted. Outside of the error recovery mechanism described in
Section 1.3.5, the RapidIO Interconnect Specification does not
address the occurrence of such situations nor does it suggest a means
by which a processing element would handle such situations. Instead,
the mechanism for handling this situation is left to be addressed by the
device manufacturers for devices that implement the functionality of
early processing of packet data.

Switch devices shall maintain the packet error coverage internally in order to
preserve the integrity of the packets though the fabric. This will prevent undetected
device internal errors such as SRAM bit errors from silently corrupting the system.
The simplest method for preserving error coverage is to pass the CRC values
through the switch as part of the packet. This works well for all non-maintenance
packets whose CRC does not change as the packets are transported from source to
destination thought the fabric. Maintaining error detection coverage is more
complicated for maintenance packets as their hop_count and CRC change every
time they pass through a switch.

Figure 2-9 is an example of a naturally 32-bit aligned packet of less than or equal to
80 bytes.
38 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 2-10 is an example of a naturally 32-bit aligned packet of greater than 80
bytes.

Figure 2-11 is an example of a padded 32-bit aligned packet of less than or equal to
80 bytes.

Figure 2-12 is an example of a padded 32-bit aligned packet of greater than 80 bytes.

Figure 2-9. Naturally Aligned Packet Bit Stream Example 1

Figure 2-10. Naturally Aligned Packet Bit Stream Example 2

Figure 2-11. Padded Aligned Packet Bit Stream Example 1

Even # of 16-bit multiples 16
32-bit boundary

CRCFirst symbol Remainder of packet

32-bit boundary

Odd # of 16-bit multiples
32-bit boundary

First symbol Remainder of packet header

16 (bytes 81 and 82)

Logical data CRC

16

Remainder of logical data CRC

Even # of 16-bit multiples

Even # of 16-bit multiples

32-bit boundary

32-bit boundary

16 (bytes 1 and 2)

16

CRC value Logic 0 pad

16

Odd # of 16-bit multiples
32-bit boundary

First symbol Remainder of packet

32-bit boundary
RapidIO.org 39

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.4.7 CRC Code

The CCITT polynomial X16+X12+X5+1 is a popular CRC code. The initial value of
the CRC is 0xFFFF (all logic 1s). For the CRC calculation, the uncovered 6 bits are
treated as logic 0s. As an example, a 16-bit wide parallel calculation is described in
the equations in Table 2-5. Equivalent implementations of other widths can be
employed.

Figure 2-12. Padded Aligned Packet Bit Stream Example 2

Table 2-5. Parallel CRC Intermediate Value Equations

Check Bit
e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
5

e
0
6

e
0
7

e
0
8

e
0
9

e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
5

C00 x x x x

C01 x x x x

C02 x x x x

C03 x x x x x

C04 x x x x x

C05 x x x x x

C06 x x x x x x

C07 x x x x x x x

C08 x x x x x x x x

C09 x x x x x x x x

C10 x x x x x x x x

C11 x x x x

C12 x x x x x

C13 x x x x x

Even # of 16-bit multiples
32-bit boundary

First symbol Remainder of packet header

16 (bytes 81 and 82)

Logical data CRC

16

Remainder of logical data CRC

Odd # of 16-bit multiples

Odd # of 16-bit multiples

Logic 0 pad

16

32-bit boundary

32-bit boundary

16 (bytes 1 and 2)
40 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
where:

C00–C15 contents of the new check symbol

e00–e15 contents of the intermediate value symbol
e00 = d00 XOR c00
e01 = d01 XOR c01
 through
e15 = d15 XOR c15

d00–d15 contents of the next 16 bits of the packet

c00–c15 contents of the previous check symbol

assuming the pipeline described in Figure 2-13

C14 x x x x x

C15 x x x x x

Figure 2-13. CRC Generation Pipeline

Table 2-5. Parallel CRC Intermediate Value Equations (Continued)

Check Bit
e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
5

e
0
6

e
0
7

e
0
8

e
0
9

e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
5

c XOR d

XOR

d00–d15

e00–e15

C00–C15

c00–c15

equations network
RapidIO.org 41

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.5 Maximum Packet Size
The maximum packet size permitted by the 8/16 LP-LVDS specification is 276
bytes. This includes all packet logical, transport, and physical layer header
information, data payload, and required CRC bytes.

The maximum packet size of 276 bytes is achieved as shown below:

2.6 Link Maintenance Protocol
To initialize, explore, and recover from errors it is necessary to have a secondary
mechanism to communicate between connected system devices. This mechanism is
used to establish communications between connected devices (described in
Section 3.7.1, “Port and Link Initialization”), attempt automatic error recovery as
described above in Section 2.4.5, “Link Behavior Under Error,” and allows
software-managed link maintenance operations.

This protocol involves a request and response pair between electrically connected
(linked) devices in the system. For software management, the request is generated
through ports in the configuration space of the sending device. An external
processing element write of a command to the link-request register with a RapidIO
Part 1: Input/Output Logical Specification maintenance write transaction causes an
aligned link-request control symbol to be issued onto the output port of the device,
but only one link-request can be outstanding on a link at a time. The device that is

Table 2-6. Maximum Packet Size

Field
Size

(bytes)
Layer Notes

Header 2 Physical,
Transport,
Logical

Source ID 2 Transport

Destination ID 2 Transport

Trans/wrsize 1 Logical

srcTID 1 Logical

Address 8 Logical Includes
Extended_address,
Address, Wdptr, and
Xambs

Payload 256 Logical

CRC 4 Physical Extra two CRC bytes for
packets greater than 80
bytes

Total 276
42 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
linked to the sending device shall respond with an aligned link-response control
symbol if the link-request command required it to do so. The external processing
element retrieves the link-response by polling the link-response register with I/O
logical maintenance read transactions. A device with multiple RapidIO interfaces
has a link-request and a link-response register pair for each corresponding RapidIO
interface.

The automatic recovery mechanism relies on the hardware generating link-request
control symbols under the transmission error conditions described in Section 2.4.5.1
and using the corresponding link-response information to attempt recovery.

Automatic link initialization also depends upon hardware generation of the
appropriate link-requests and link-responses.

2.6.1 Command Descriptions

Table 2-7 contains a summary of the link maintenance commands that use the link
maintenance protocol described above. Three link request commands are defined
currently. The input-status command generates a paired link-response control
symbol; the reset and send-training commands do not.

2.6.1.1 Reset and Safety Lockouts

The reset command causes the receiving device to go through its hard reset or power
up sequence. All state machines and the configuration registers reset to the original
power on states. The reset command does not generate a link-response control
symbol.

Due to the undefined reliability of system designs it is necessary to put a safety
lockout on the reset function of the link request control symbol. A device receiving
a reset command in a link-request control symbol shall not perform the reset
function unless it has received four reset commands in a row without any other
intervening packets or control symbols, except idle control symbols. This will
prevent spurious reset commands inadvertently resetting a device.

When issuing a reset with four consecutive reset commands, care must be taken to
account for all effects associated with the reset event. Consult RapidIO Part 8: Error
Management Extensions Specification for more information.

Table 2-7. Secondary Link Maintenance Command Summary

Command Description

Reset Resets the device

Input-status Returns input port status; functions as a restart-from-error control symbol under error
conditions.
Generates a paired link-response control symbol.

Send-training Stops normal operation and transmits 256 training pattern iterations
RapidIO.org 43

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
2.6.1.2 Input-status

The input-status command requests the receiving device to return the ackID value it
expects to next receive from the sender on its input port and the current input port
operational status for informational purposes. This command causes the receiver to
flush its output port of all control symbols generated by packets received before the
input-status command. The receiver then responds with a link-response control
symbol.

The input-status command is the command used by the hardware to recover from
transmission errors. If the input port had stopped due to a transmission error that
generated a packet-not-accepted control symbol back to the sender, this input-status
command acts as a restart-from-error control symbol, and the receiver is re-enabled
to receive new packets after generating the link-response control symbol. This
restart-from-error control symbol may also be used to restart the receiving device if
it is waiting for a restart-from-retry control symbol after retrying a packet. This
situation can occur if transmission errors are encountered while trying to
re-synchronize the sending and receiving devices after the retry.

2.6.1.3 Send-training

The send-training command causes the recipient device to suspend normal operation
and begin transmitting a special training pattern. The receiving device transmits a
total of 256 iterations of the training pattern followed by at least one idle control
symbol and then resumes operation. The usage of this command is described in
Section 3.7.1.1, “Sampling Window Alignment.” The send-training command does
not generate a link-response control symbol.

2.6.2 Status Descriptions

The input-status request generates two pieces of information that are returned in the
link-response:

• link status

• ackID usage

The first type of data is the current operational status of the interface. These status
indicators are described in Table 2-8.

Table 2-8. Link Status Indicators

Status Indicator Description

OK The port is working properly.

Error The port has encountered an unrecoverable error and has shut down.

Retry-stopped1

1Valid only with the Stopped indicator

The port has been stopped due to a retry.

Error-stopped1 The port has been stopped due to a transmission error.
44 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The retry-stopped state indicates that the port has retried a packet and is waiting to
be restarted. This state is cleared when a restart-from-retry (or a
link-request/input-status) control symbol is received. The error-stopped state
indicates that the port has encountered a transmission error and is waiting to be
restarted. This state is cleared when a link-request/input-status control symbol is
received.

The second field returned in the link-response control symbol is state information
about the acknowledge identifier usage. The input port returns a value indicating the
next ackID expected to be received by the port. The automatic error recovery
mechanism uses this information to determine where to begin packet
re-transmission after a transmission error condition has been encountered.
RapidIO.org 45

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Blank page
46 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 3 Packet and Control Symbol
Transmission

3.1 Introduction
This RapidIO chapter defines the RapidIO Part 4: 8/16 LP-LVDS Physical Layer
Specification packet and control symbol delineation and alignment on the physical
port and mechanisms to control the pacing of a packet. Each input and output port is
either one or two bytes wide. All 8/16 LP-LVDS defined protocols are used
identically for both the 8- and 16-bit wide versions of the physical interface. The
only difference is the number of pins used to transmit the packets and aligned control
symbols.

3.2 Packet Start and Control Symbol Delineation
The control framing signal used to delineate the start of a packet or a control symbol
on the physical port is a no-return-to-zero, or NRZ signal. This frame signal is
toggled for the first symbol (see the Note in Section 2.4.2, “Packet Protection”) of
each packet and for the first control symbol of each aligned control symbol.
Therefore, if a 16-bit symbol contains a RapidIO logical packet format type (the
ftype field in the RapidIO logical specifications) or a control symbol (stype) field,
the frame signal shall toggle. In order for the receiving processing element to sample
the data and frame signals, a data reference signal is supplied that toggles on all
possible transitions of the interface pins. This type of data reference signal is also
known as a double-data-rate clock. These received clocks on devices with multiple
RapidIO ports have no required frequency or phase relationship.

The framing signal is not toggled for other symbols such as those containing
remaining packet header and data bytes. However, it is toggled for all idle control
symbols between packets. This means that the maximum toggle rate of the control
framing signal is every 4 bytes, and the framing signal is only allowed to toggle on
every fourth byte. Therefore, the framing signal is aligned to a 32-bit boundary as
are all of the packets and aligned control symbols. Additionally, the data reference
signal shall transition from low to high on this same boundary. Examples of these
constraints are shown in Figure 3-1 and Figure 3-3 for an 8-bit port and Figure 3-2
and Figure 3-4 for a 16-bit port.
RapidIO.org 47

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 3-1. Framing Signal Maximum Toggle Rate for 8-bit Port

Figure 3-2. Framing Signal Maximum Toggle Rate for 16-bit Port

Figure 3-3. Control Symbol Delineation Example for 8-bit Port

Control
byte 0

byte byte Control
byte 1

Control
byte 0

Control
byte 1

Packet
byte

Packet
byte

Packet
byte

Packet
byte

Byte stream through time

Framing
signal

Framing
signal

toggles toggles

Data reference signal rises
aligned to framing signal transition

32-bit boundary

and 32-bit boundary

Packet
byte

Control
symbol

symbol symbol Control
symbol

Packet
symbol

Packet
symbol

Symbol stream through time

Framing
signal

Framing signal

toggles

toggles

Data reference signal rises
aligned to framing signal transition

32-bit boundary

and 32-bit boundary

Packet
symbol

Packet
symbol

Packet
symbol

Packet
symbol

Packet
symbol

Control
byte 0

byte Control
byte 1

Control
byte 1

Idle
byte 0

Control
byte 0

Control
byte 1

Idle
byte 0

Idle
byte 1

Byte stream through time

Framing signal

Idle
byte 1

Control
byte 0

Data reference signal

32-bit boundary
48 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Errors on the framing and data reference signals can be detected either directly by
verifying that the signals transition only when they are allowed and expected to
transition, or indirectly by depending upon detection of packet header or CRC or
control symbol corruption, etc. if these signals behave improperly. Either method of
error detection on the framing and data reference signals allows error recovery by
following the mechanisms described in Section 2.4.5.1, “Recoverable Errors” and
Section A.4, “Error Recovery.”

For simplicity, the data reference signal will not be included in any additional figures
in this document. It is always rising on the 32-bit boundary when it is legal for the
frame signal to toggle as shown in Figure 3-1 through Figure 3-4.

3.3 Packet Termination
A packet is terminated in one of two ways:

• The beginning of a new packet marks the end of a previous packet.

• The end of a packet may be marked with one of the following: an aligned
end-of-packet (eop), restart-from-retry, link-request, or stomp control
symbol.

The stomp control symbol is used if a transmitting processing element detects a
problem with the transmission of a packet. It may choose to cancel the packet by
sending the stomp control symbol instead of terminating it in a different, possibly
system fatal, fashion like corrupting the CRC value.

The restart-from-retry control symbol can cancel the current packet as well as be
transmitted on an idle link. This control symbol is used to enable the receiver to start
accepting packets after the receiver has retried a packet.

The link-request control symbol can cancel the current packet as well as be
transmitted on an idle link and has several applications. It can be used by software
for system observation and maintenance, and it can be used by software or hardware
to enable the receiver to start accepting packets after the receiver has refused a
packet due to a transmission error as described in Section 2.4, “Error Detection and

Figure 3-4. Control Symbol Delineation Example for 16-bit Port

Control
symbol

symbol Control
symbol

Control
symbol

Idle
symbol

symbol symbolControl
symbol

Control
symbol

Symbol stream through time

Framing signal

Idle
symbol

Control
symbol

Data reference signal

32-bit boundary
RapidIO.org 49

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Recovery.”

A port receiving a canceled packet shall drop the packet. The cancelation of a packet
shall not result in the generation of any errors. If the packet was canceled because
the sender received a packet-not-accepted control symbol, the error that caused the
packet-not-accepted to be sent shall be reported in the normal manner.

If a port receiving a canceled packet has not previously acknowledged the packet
and is not in an “Input Stopped” stopped state (Retry-Stopped or Error-Stopped), the
port shall immediately enter the Input Retry-stopped state and follow the Packet
Retry mechanism specified in Section 2.3.3, “Transaction and Packet Delivery”, if
the packet was canceled with a control symbol other than a restart-from-retry or a
link-request/input-status control symbol. As part of the Packet Retry mechanism, the
port sends a packet-retry control symbol to the sending port indicating that the
canceled packet was not accepted.

Figure 3-5 is an example of a new packet marking the end of a packet.

Figure 3-6 is an example of an aligned end-of-packet control symbol marking the
end of a packet. The stomp, link-request, and restart-from-retry control symbol cases
look similar.

3.4 Packet Pacing
If a device cannot transmit a packet as a contiguous stream of control symbols, it
may force wait states by inserting idle control symbols called pacing idles. As with
the other control symbols, the pacing idle control symbols are always followed by a
bit-wise inverted copy and are then called aligned pacing idle control symbols. Any
number of aligned pacing idle control symbols can be inserted, up to some

Figure 3-5. Header Marked End of Packet (8-bit Port)

Figure 3-6. End-Of-Packet Control Symbol Marked End of Packet (16-bit Port)

byte byte Header
byte 0

byte 3

Byte stream through time

32-bit boundaryByte stream for a packet

Start header for
new packet

byte byte byte byte byte 1 byte 2byte

Last byte for packet

symbol symbol Idle
symbol

Symbol stream through time

Symbol stream

Start end-of-packet
symbol

symbol symbol symbol

Last symbol

Eop
symbol

Eop
symbol

Idle
symbol

Idle
symbol

Idle
symbol

for a packet for packet 32-bit boundary
50 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
implementation defined limit, at which point the sender should instead send a stomp
control symbol and cancel the packet in order to attempt to transmit a different
packet. Figure 3-7 shows an example of packet pacing. These idle control symbols
are ignored by the receiving device, and more data is sent when it becomes available.
Pacing idle control symbols can be embedded anywhere in a packet where they can
be legally delineated.

The receiver of a packet may request that the sender insert pacing idle control
symbols on its behalf by sending a throttle control symbol specifying the number of
aligned pacing idle control symbols to delay. The packet sender then inserts that
number of aligned pacing idles into the packet stream. If additional delay is needed,
the receiver can send another throttle control symbol.

If the receiver requests too many aligned pacing idles indicating an excessive delay,
determined by some implementation defined limit, it should terminate the packet
transmission by issuing a packet-retry acknowledge control symbol. Alternatively,
the sender may issue a stomp control symbol to cancel the packet if too many aligned
pacing idle control symbols are requested by the receiver. The throttle control
symbol shall be honored because it is used to force insertion of idle control symbols
for clock re-synchronization in the receiver as described in Chapter 6, “System
Clocking Considerations.”

The maximum allowed response time from the receipt of the last byte of an aligned
throttle control symbol at the input pins to the appearance of the first byte of an
aligned pacing idle control symbol on the output pins is 40 interface clocks (80 data
ticks).

Note that for CRC values for a packet, the aligned pacing idle control symbols are
not included in the calculation.

Figure 3-7. Pacing Idle Insertion in Packet (8-bit Port)

Idle
byte 1

byte 5

Byte stream through time

Start of
packet header

byte 1 byte 4

Inserted pacing

Idle
byte 0

Idle
byte 1

Idle
byte 1

Header
byte 0

byte 2 byte 3

32-bit boundary

Idle
byte 0

More
bytes for
the packet

idle symbol
RapidIO.org 51

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
3.5 Embedded Control Symbols
Control symbols can be embedded anywhere in a packet in the same fashion as
pacing idle control symbols, as long as all delineation and alignment rules are
followed.

As with the pacing idle control symbols, the embedded aligned control symbols are
not included in the CRC value calculation for the packet.

A special error case exists when a corrupt embedded control symbol is detected. In
this case a packet-not-accepted control symbol shall be generated and the
embedding packet is discarded.

3.6 Packet to Port Alignment
This section shows examples of packet transmission over the 8-bit and 16-bit
interfaces. The corresponding control symbol alignment is shown in Section 4.7,
“Control Symbol to Port Alignment.”

Figure 3-10 shows the byte transmission ordering on a port through time using a
small transport format ftype 2 packet from the RapidIO Part 1: Input/Output Logical
Specification and RapidIO Part 3: Common Transport Specification. Note that for
this example the two bytes following the CRC would indicate some form of packet
termination such as a new packet or an eop.

Figure 3-8. Embedded Control Symbols for 8-bit Port

Figure 3-9. Embedded Control Symbols for 16-bit Port

byte byte Control
byte 1

byte

Byte stream through time

Bytes for a packet

Embedded
control symbol

byte byte byte byte

Packet continues

Control
byte 0

Control
byte 1

Control
byte 0

32-bit boundary

symbol symbol symbol symbol

Symbol stream through time

Symbols for a packet

Embedded
control symbol

symbol symbol symbol symbol

Packet continues

Control
symbol

Control
symbol symbol

32-bit boundary
52 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 3-11 shows the same packet transmitted over a 16-bit port.

Figure 3-10. Request Packet Transmission Example 1

Figure 3-11. Request Packet Transmission Example 2

32-bit boundary,

0 1 2 3 4 5 6 7

0

0 0 1 0tt prio

destinationID

transaction rdsize

srcTID

CRC[8–15]

Time

32-bit boundary,

Following byte

ackID

Port bit numbers

CRC[0–7]

address[24–28] xamsbswdptr

Preceding byte

sourceID

address[0–7]

address[8–15]

address[16–23]

0framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7

1 0 0

32-bit boundary,

0 1 2 3 4 5 6 7

0 tt prio

destinationID

transaction srcTID

32-bit boundary,
Following symbol

ackID

Port bit numbers

CRC[0–15]

xamsbswdptr

Preceding symbol

sourceID

address[0–15]

address[16–28]

rdsize

8 9 10 11 12 13 14 15

framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 00 1 0 0
RapidIO.org 53

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 3-12 shows the same example again but with the large transport format over
the 8-bit port. Note that for this example the two bytes following the CRC of the
packet are all logic 0 pads.

Figure 3-13 is the same packet as for Figure 3-12 but over the 16-bit port.

Figure 3-12. Request Packet Transmission Example 3

Figure 3-13. Request Packet Transmission Example 4

32-bit boundary,

0 1 2 3 4 5 6 7

0

0 0 1 0ttprio

transaction rdsize

Time

32-bit boundary,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ackID

Port bit numbers

xamsbs

CRC[8–15]

CRC[0–7]

sourceID[0–7]

destinationID[8–15]

destinationID[0–7]

wdptraddress[24–28]

srcTID

Preceding byte

sourceID[8–15]

address[0–7]

Following byte

address[8–15]

address[16–23]

framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7

0 1 0 0

32-bit boundary,

0 1 2 3 4 5 6 7

0 ttprio

destinationID

transaction srcTID

32-bit boundary,
Following symbol

ackID

Port bit numbers

CRC[0–15]

xamsbswdptr

Preceding symbol

sourceID

address[0–15]

address[16–28]

rdsize

8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 00 1 0 0
54 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 3-14 and Figure 3-15 show the ftype 13 response packet for request
example—the small transport format packet. Note that the two bytes following the
packet CRC may be logic 0 pads depending on the size of the packet.

Figure 3-14. Response Packet Transmission Example 1

Figure 3-15. Response Packet Transmission Example 2

32-bit boundary,

0 1 2 3 4 5 6 7

0

1 1 0 1ttprio

destinationID

transaction status

targetTID

byte n

Time

32-bit boundary,

CRC[0–7]

CRC[8–15]

Following byte

ackID

Port bit numbers

byte 0

Preceding byte

sourceID

byte 1

•
•
•

framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7

0 1 0 0

32-bit boundary,

0 1 2 3 4 5 6 7

0 ttprio

destinationID

transaction targetTID

32-bit boundary, Following symbol

ackID

Port bit numbers

CRC[0–15]

Preceding symbol

sourceID

byte 0

status

8 9 10 11 12 13 14 15

byte 1

•
•
•

byte n-1 byte n

framing signal toggles

framing signal toggles
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 10 1 0 0
RapidIO.org 55

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
3.7 System Maintenance
A necessary part of any system are methods for initializing, configuring, and
maintaining the system during operation.

3.7.1 Port and Link Initialization

Before an LP-LVDS port can exchange packets with the port to which it is
connected, the port may require initialization and the link connecting the two ports
must be initialized.

Many ports, especially those operating at higher data rates, must adjust the timing of
when they sample input data from the link in order to achieve an acceptable or
optimal received bit error rate. This process is called training and is executed while
the port is receiving a special training pattern. In addition, each 16-bit wide port
must decide whether to operate in 8-bit or 16-bit unless it has been statically
configured for 8-bit or 16-mode.

Link initialization requires that each port must receive at least one idle control
symbol from the connected port before beginning normal operation.

The state of a port is indicated by bits 30 (Port OK) and 31 (Port Uninitialized) of
the associated Port n Error and Status Register. Bit 31 is set when the port is in the
Uninitialized state and cleared when the port initialization process is completed and
the port is initialized. Bit 30 is set when the port has received an idle control symbol
from the connected port and the port is in the normal operation mode and is cleared
if the port or the connected port is uninitialized or if there is no connected port (the
port is not receiving valid input signals).

3.7.1.1 Sampling Window Alignment

Any port whose link receiver input sample timing is not fixed and any 16-bit port
whose width mode is not statically configured require port initialization.

3.7.1.1.1 Port Width Mode Selection

All 16-bit LP-LVDS ports shall be capable of operating in both 8-bit and 16-bit
modes.The width mode in which a 16-bit port operates may be either statically or
dynamically configured. If the width mode of a port is statically configured, the port
will operate correctly only if connected to a port operating in the same width mode.
If the width mode of a 16-bit port is not statically configured, the width mode is
determined as part of the port initialization process.

When operating in 8-bit mode, only the signal pairs CLK0/CLK0, FRAME/FRAME
and D[0-7]/D[0-7] shall be used. The 16-bit mode output signal pairs
TCLK1/TCLK1, and TD[8-15]/TD[8-15] may be driven as outputs, but the input
signal pairs RCLK1/RCLK1 and RD[8-15]/RD[8-16] shall be ignored as inputs.

Dynamic port width selection shall be based on the presence of valid signals at the
56 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
inputs of the CLK0, CLK1, FRAME D[0-7] and D[8-15] receivers. If valid signals
are present at the inputs of the CLK0, CLK1, FRAME D[0-7] and D[8-15] receivers,
the port shall operate in 16-bit mode. If valid signals are present at the inputs of the
CLK0, FRAME and D[0-7] receivers, but not at the inputs of the CLK1 and D[8-15]
receivers, the port shall operate in 8-bit mode. If valid signals are not present at the
inputs of the CLK0, FRAME and D[0-7] receivers, the width mode is undefined and
the port shall not exit Uninitialized state.

3.7.1.1.2 Input Sampling Window Alignment

Input sampling window alignment is the process in which a port adjusts the timing
of when input data is sample by the link receiver. The timing is adjusted to achieve
an acceptable or optimal received bit error rate. The process is also called “training”.
When the process is successfully completed, the port is said to be “aligned” or
“trained”. The process or algorithm used by a port to align the input sampling
window is not specified.

Sampling window alignment is done while the port is receiving a special data pattern
called the training pattern. A special data pattern is required to ensure that enough
transition timing information is available to the receiver to correctly adjust the input
sample timing and to ensure that bytes transmitted by a port operating in 8-bit or that
half-words transmitted by a port operating in 16-bit are correctly recovered by the
link receiver.

There are two types of training, initialization training and maintenance training.
Initialization training is used when a device powers up or is reset or when a port
loses input sampling window alignment due to events such as excessive system
noise or power fluctuations. Maintenance training is used when a port is nominally
input sampling window aligned, but in need of some “fine-tuning” of the input
sampling window timing to maintain an acceptable or optimum received bit error
rate.

3.7.1.1.3 Training Pattern

The training pattern shall be the bit sequence 0b11110000. The training pattern shall
be transmitted left to right with the left most bit transmitted first and the right most
bit transmitted last.

When transmitted, the training pattern shall be transmitted simultaneously on all of
the data signals, D[0-7] for an 8-bit port or a 16-bit port statically configured to
operate in 8-bit mode, D[0-15] for a 16-port not statically configured to operate in
8-bit mode, and the training pattern or is complement shall be transmitted on the
FRAME signal. The training pattern or its complement is selected for transmission
on the FRAME signal such that the FRAME signal shall toggle at the beginning of
training pattern transmission. The training pattern shall never be transmitted on a
CLK signal. The training pattern shall never be transmitted on signals D[8-15] of a
16-bit port if the port is statically configured to operate in 8-bit mode.

The result of these rules is that during training pattern transmission, FRAME and
RapidIO.org 57

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
data signals transmitted by the port have the following properties.

• The FRAME signal toggles at the beginning of training pattern transmission.
(Individual data bits may or may not toggle at the beginning of training
pattern transmission depending on their value during the bit time
immediately preceding the training pattern.)

• After the first bit of the training pattern, FRAME and all data bits all toggle at
the same nominal time.

• Each byte transmitted by a port transmitting in 8-bit mode is either all ones,
0xFF, or all zeros, 0x00.

• Each half-word transmitted by a port transmitting in 16-bit mode is either all
ones, 0xFFFF, or all zeros, 0x0000.

The reception of the training pattern by an initialized port is readily identified by
looking at RD[0-7] when FRAME toggles. If the received value of RD[0-7] is either
all ones, 0xFF, or all zeros, 0x00, the training pattern is being received.

3.7.1.1.4 Training Pattern Transmission

When transmitted, the training pattern shall be transmitted in bursts. Each burst shall
contain 256 repetitions of the training pattern. Each burst shall be followed by either
a link-request/send-training or an idle control symbol.

The training pattern shall be transmitted by an initialized port only at request of the
connected port. The link-request/send-training control symbol is used to request that
the connected port transmit the training pattern. A port that is not initialized and
therefore unable to reliably receive control symbols assumes that the connected port
is sending link-request/send-training control symbols and therefore continuously
transmits training sequence bursts with each burst followed by a
link-request/send-training control symbol as specified by the Port Initialization
Process.

The training pattern shall neither be embedded in a packet nor used to terminate a
packet.

3.7.1.1.5 Ports Not Requiring Port Initialization

Similarly, a 16-bit port with fixed input sampling window timing and whose width
mode is statically configured does not require port initialization. On device
power-up and on device reset, such ports shall enter and remain in the Initialized
state and shall never be in the Uninitialized state. Such ports shall transmit idle
control symbols until an idle control symbol is received from the connected port.
Upon the reception of an idle control symbol from the connected port, the port shall
transmit an idle control symbol, set the “port OK” bit in its Port n Control and Status
Register, enter the normal operation state and may then begin the transmission of
packets and non-idle control symbols.

If while waiting to receive an idle control symbol from the connected port, the
58 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
reception by the port of a link-request/send-training control symbol from the
connected port immediately followed by the training pattern indicates that the
connected port in not initialized. When this occurs, the port shall stop sending idle
control symbols and repeatedly send training pattern bursts, each burst followed by
an idle control symbol, until an idle control symbol is received from the connected
port indicating that the connected port is now initialized. Upon receiving an idle
control symbol from the connected port, the port shall complete transmission of the
current training pattern burst, transmit an idle control symbol, set the “port OK” bit
in its Port n Control and Status Register and enter the normal operation state. The
port may then transmit packets and non-idle control symbols.

3.7.1.1.6 Ports Requiring Port Initialization

Ports that do not have fixed input sampling window timing and 16-bit ports whose
width mode is not statically configured require port initialization. Such ports shall
enter the Uninitialized state on device power-up and device reset. Such a port shall
also enter the Uninitialized state if the port loses correct input sampling window
timing due to events such as excessive system noise or power fluctuations. The
algorithm used to determine when a port has lost input sample window alignment is
not specified. A port in the Uninitialized state shall execute the Port Initialization
Process to exit the Uninitialized state.

The output signals of a LP-LVDS port may be erratic when the device containing the
port is powering up or being reset. For example, the output drivers may be
temporarily disabled, the signals may have erratic HIGH or LOW times and/or the
clock signals may stop toggling. A LP-LVDS port must be tolerant of such behavior
and shall properly initialize after the signals from the connected port return to
normal and comply with the LP-LVDS electrical specifications.

3.7.1.1.7 Port Initialization Process

Upon entering the Uninitialized state, a port shall execute the following Port
Initialization Process.

• The port sets the “Port Uninitialized” bit and clears the “Port OK” bit in its Port
n Control and Status Register.

• The port transmits a link-request/send-training control symbol followed by one
or more bursts of the training sequence. The port continuously transmits
training pattern bursts, each followed by a link-request/send-training or idle
control symbol, until the port has achieved input sample timing alignment
and has received an idle control symbol from the connected port.

• The port attempts to detect a valid clock signal on its CLK0 input and, if
present, on its CLK1 input and to detect the training pattern on its FRAME
and D[0-7] inputs and, if present, on its D[8-15] inputs.

• Once valid input signals are detected, a 16-bit ports whose width mode is not
statically configured determines the width of the connected port and selects
the matching width mode.
RapidIO.org 59

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
• Once the width mode of the port is established, either statically or dynamically,
the port attempts to achieve input sampling window timing alignment. While
attempting to achieve input sampling window timing alignment, the port
shall transmit a link-request/send-training control symbol after each training
pattern burst.

• When the port achieves input sampling window timing alignment, it clears the
“Port Uninitialized” bit in the Port n Control and Status Register and
transmits an idle control symbol after each training pattern burst instead of a
link-request/send-training control symbol. This indicates to the connected
port that the port has completed input sampling window alignment.

• Upon receiving an idle control symbol from the connected port, indicating that
the connected port has completed input sampling window alignment, the port
completes transmitting the current training pattern burst, sends an idle control
symbol, sets the “Port OK” bit in the Port n Control and Status Register and
enters normal operation.

3.7.1.2 Link Initialization

After a port is in the Initialized state, the port shall not begin transmission of packets
and control symbols other than the idle control until it has received an idle control
symbol from the connected port. The reception of an idle control symbol indicates
that the connected port is in the Initialized state and is ready to receive packets and
non-idle control symbols. When both ports connected by a link have received an idle
control symbol from the connected port, the link is initialized.

3.7.1.3 Maintenance Training

Depending upon their implementation, some ports may require occasional
adjustment of their input sampling window timing while in the Initialized state to
maintain an optimal received bit error rate. Such adjustment is called maintenance
training. A port requiring maintenance training shall do the following.

• The port shall transmit a single link-request/send-training control symbol and
then resume normal transmit operation.

• If the port is not able to complete maintenance training with one burst of the
training pattern, the port may transmit additional link-request/send-training
control symbols and shall resume normal transmit operation after
transmitting each link-request/send-training control symbol.

A port requiring maintenance training shall not transmit the training pattern after
transmitting a link-request/send-training control symbol. (The transmission by a
port of a link-request/send-training control symbol followed by the training pattern
indicates that the port has become uninitialized.)

A port receiving a link-request/send-training control symbol that is not followed by
the training pattern shall end the transmission of packets and control symbols as
quickly as possible without violating the link protocol, transmit one burst of the
60 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
training pattern followed by an idle control symbol and then resume normal
operation.

3.7.1.4 Unexpected Training Pattern Reception

At any time, the reception by an initialized port of unsolicited training pattern,
whether or not preceded by a link-request/sent-training control symbol, indicates
that the connected port is in the Uninitialized state. When this occurs, the port
receiving the unsolicited training pattern shall repeatedly transmit training pattern
bursts, each burst followed by an idle control symbol, until an idle control symbol is
received from the connected port indicating that the connected port is now
initialized. Upon receiving an idle control symbol from the connected port, the port
shall complete transmission of the current training pattern burst, transmit an idle
control symbol, set the “port OK” bit in its Port n Control and Status Register and
enter the normal operation state. The port may then transmit packets and non-idle
control symbols.

Once a link has been initialized, the reception of unsolicited training pattern is a
protocol violation. It indicates that the sending port has lost input sampling window
alignment and has most likely not received some previously sent packets and control
symbols. Once the link has been initialized, a port receiving an unsolicited training
pattern shall enter the output Error-stopped state. The port shall execute the Output
Error-stopped recovery process specified in Section 2.4.5.1.2, “Control Symbol
Errors” once communication with the connected port has been re-established.

3.7.2 Multicast-Event
The Multicast-Event control symbol provides a mechanism through which notice
that some system defined event has occurred, can be selectively multicast
throughout the system. Refer to Section 4.3 for the format of the multicast-event
control symbol.

When a switch processing element receives a Multicast-Event control symbol, the
switch shall forward the Multicast-Event by issuing a Multicast-Event control
symbol from each port that is designated in the port's CSR as a Multicast-Event
output port. A switch port shall never forward a Multicast-Event control symbol
back to the device from which it received a Multicast-Event control symbol
regardless of whether the port is designated a Multicast-Event output or not.

It is intended that at any given time, Multicast-Event control symbols will be
sourced by a single device. However, the source device can change (in case of
failover, for example). In the event that two or more Multicast-Event control
symbols are received by a switch processing element close enough in time that more
than one is present in the switch at the same time, at least one of the Multicast-Event
control symbols shall be forwarded. The others may be forwarded or discarded
(device dependent).

The system defined event whose occurrence Multicast-Event gives notice of has no
RapidIO.org 61

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
required temporal characteristics. It may occur randomly, periodically, or anything
in between. For instance, Multicast-Event may be used for a heartbeat function or
for a clock synchronization function in a multiprocessor system.

In an application such as clock synchronization in a multiprocessor system, both the
propagation time of the notification through the system and the variation in
propagation time from Multicast-Event to Multicast-Event are of concern. For these
reasons and the need to multicast, control symbols are used to convey
Multicast-Events as control symbols have the highest priority for transmission on a
link and can be embedded in packets.

While this specification places no limits on Multicast-Event forwarding delay or
forwarding delay variation, switch functions should be designed to minimize these
characteristics. In addition, switch functions shall include in their specifications the
maximum value of Multicast-Event forwarding delay (the maximum value of
Multicast-Event forwarding delay through the switch) and the maximum value of
Multicast-Event forwarding delay variation (the maximum value of Multicast-Event
forwarding delay through the switch minus the minimum value of Multicast-Event
forwarding delay through the switch).

3.8 Power Management
Power management is currently beyond the scope of this specification and is
implementation dependent. A device that supports power management features can
make these features accessible to the rest of the system in the device’s local
configuration registers.
62 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 4 Control Symbol Formats

4.1 Introduction
This chapter defines the RapidIO Part 4: 8/16 LP-LVDS Physical Layer
Specification control symbols described in Chapter 2, “Physical Layer Protocol.”
Note that the S bit defined in Section 2.3.1 is always set to logic 1 and the S bit (also
defined in Section 2.3.1) is always set to logic 0 for the physical layer control
symbols. All control symbols are aligned to 32 bits with the last 16 bits as a bit-wise
inverse of the first 16. For forward compatibility, control symbols received by a port
with a reserved field encoding shall be ignored and not cause an error to be reported.

4.2 Acknowledgment Control Symbol Formats
An acknowledgment control symbol is a transmission status indicator issued by a
processing element when it has received a packet from another processing element
to which it is electrically connected. Acknowledgment control symbols are used for
flow control and resource de-allocation between adjacent devices. The following are
the different acknowledgment control symbols that can be transmitted back to
sending elements from receiving elements:

• Packet-accepted

• Packet-retry

• Packet-not-accepted

Because receipt of an acknowledgment control symbol does not imply the end of a
packet, a control symbol can be embedded in a packet, as well as sent when the
interconnect is idle. Embedded control symbols are discussed in Section 3.5,
“Embedded Control Symbols.”

Field definitions for the acknowledgment control symbols are shown in Table 4-1.

Table 4-1. Field Definitions for Acknowledgment Control Symbols

Field Definition

packet_ackID Acknowledgment ID is the packet identifier for acknowledgments back to the request or
response packet sender.

buf_status buf_status field indicates the number of maximally sized packets that can be received,
described in Section 2.3.1

cause cause field indicates the type of error encountered by an input port, defined in Table 4-2
RapidIO.org 63

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
4.2.1 Packet-Accepted Control Symbol

The packet-accepted acknowledgment control symbol indicates that the adjacent
device in the interconnect fabric has taken responsibility for sending the packet to
its final destination and that resources allocated by the sending device can be
released. This control symbol shall be generated only after the entire packet has been
received and found to be free of detectable errors. This control symbol format is
displayed in Figure 4-1.

Figure 4-1. Type 0 Packet-Accepted Control Symbol Format

4.2.2 Packet-Retry Control Symbol

A packet-retry acknowledgment control symbol indicates that the adjacent device in
the interconnect fabric was not able to accept the packet due to some temporary
resource conflict such as insufficient buffering and the source should retransmit the
packet. This control symbol can be generated at any time after the start of a packet,
which allows the sender to cancel the packet and try sending a packet with a different
priority or destination. This will avoid wasting bandwidth by transmitting all of the
rejected packet. This control symbol format is displayed in Figure 4-2.

Figure 4-2. Type 1 Packet-Retry Control Symbol Format

4.2.3 Packet-Not-Accepted Control Symbol

A packet-not-accepted acknowledgment control symbol means that the receiving
device could not accept the packet due to an error condition, and that the source
should retransmit the packet. This control symbol can be generated at any time after
the start of a packet, which allows the sender to cancel the packet and try sending a

0 0 0packet_ackID1Preceding bits 0

11 3 4 3

buf_status

Following bits1 1 1packet_ackID0

1 3 4 3

buf_status

32-bit boundary,

32-bit boundary,

framing signal toggles

framing signal toggles

0 0 0 0

1 3

1

1

1 1 1 1

1 3

0 0 1packet_ackID1

1 3 4 3

0 0 0 0

1 1 0packet_ackID0

1 3 4 3

1 1 1 1

32-bit boundary,

32-bit boundary,
framing signal toggles

framing signal toggles

31 1

0 0 0 0 0

1 1 1 1 1

1 1 3

Preceding bits

Following bits
64 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
packet with a different priority or destination. Generating this control symbol at any
point in packet transmission avoids wasting bandwidth by transmitting all of the
rejected packet. The packet-not-accepted control symbol contains a field describing
the cause of the error condition, shown in Table 4-2. If the receiving device is not
able to specify the cause for some reason, or the cause is not one of defined options,
the general error encoding shall be used. This control symbol format is displayed in
Figure 4-3.

Figure 4-3. Type 2 Packet-Not-Accepted Control Symbol Format

The cause field shall be used to display informational fields useful for debug.
Table 4-2 displays the reasons a packet may not be accepted, indicated by the cause
field.

4.2.4 Canceling Packets

A packet-retry or packet-not-accepted acknowledgment control symbol that is
received for a packet that is still being transmitted may result with the sender
canceling the packet.

The sending device can use the stomp (see Chapter 3, “Packet and Control Symbol
Transmission”), restart-from-retry (in response to a packet-retry control symbol), or
link-request (in response to a packet-not-accepted control symbol) control symbol
to cancel the packet. Because the receiver has already rejected the packet, it will not
detect any induced error. Alternatively, the sending device can choose to complete
transmission of the packet normally.

Table 4-2. cause Field Definition

Encoding Definition

0b000 Encountered internal error

0b001 Received unexpected ackID on packet

0b010 Received error on control symbol

0b011 Non-maintenance packet reception is stopped

0b100 Received bad CRC on packet

0b101 Received S bit parity error on packet/control symbol

0b110 Reserved

0b111 General error

0 1 0packet_ackID1

1 3 3

cause

1 0 1packet_ackID0

1 3 3

1 3

cause0

1 3

32-bit boundary,

32-bit boundary,

framing signal toggles

framing signal toggles

1 1 3

0 0 0 0 0 1

11 3

1 1 111

Preceding bits

Following bits
RapidIO.org 65

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
4.3 Packet Control Symbol Formats
Packet control symbols are used for packet delineation, transmission, pacing, and
other link interface control functions as described in Chapter 3, “Packet and Control
Symbol Transmission.”

The packet control symbols are the throttle, stomp, restart-from-retry control
symbols, idle, end-of-packet (eop), and multicast-event control symbols, which are
specified in the sub_type field of the type 4 control symbol format. The packet
control symbols also have a contents field, which has a different meaning depending
upon the particular control symbol. Of these control symbols, all control symbols
that are not defined as terminating a packet may be embedded within a packet.

This control symbol format is displayed in Figure 4-4.

Figure 4-4. Type 4 Packet Control Symbol Format

Table 4-3 shows how sub_type values function with values of the contents field. For
the idle, eop, and multicast-event control symbols the contents field is used as the
buf_status field described in Section 2.3.1, whose encodings are specified in
Table 2-2. For a throttle control symbol, the contents field specifies the number of
aligned pacing idle control symbols that the sender should insert in the packet. One
of the specified encodings indicates to the sender that it can immediately begin to
resume packet transmission, as can be seen in Table 4-4. For the stomp and
restart-from-retry control symbols, the contents field is unused and shall be tied to
all logic 0s and ignored by the receiving device.

Table 4-3. sub_type and contents Field Definitions

sub_type Field
Definition

sub_type
Encoding

contents Field Definition

idle 0b000 Used as a buf_status field that indicates the number of maximum-sized packets
that can be received. Described in Section 2.3.1, encodings are defined in
Table 2-2.

stomp 0b001 Unused, contents=0b0000

eop 0b010 Used as a buf_status field that indicates the number of maximum-sized packets
that can be received. Described in Section 2.3.1, encodings are defined in
Table 2-2.

restart-from-retry 0b011 Unused, contents=0b0000

contents 1 0 0sub_type1

1 3 4 3

0 1 1sub_type0

1 3 4 3

contents

32-bit boundary,
framing signal toggles

0 0 0

31 1

0 0

1 1 1

3

1 1

1 1

Preceding bits

Following bits

32-bit boundary,
framing signal toggles
66 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The pacing idle count content field for a throttle control symbol is defined in
Table 4-4.

4.4 Link Maintenance Control Symbol Formats
Maintenance of a link is controlled by link-request/link-response control symbol
pairs as described in the link maintenance protocol of Section 2.6. Each of the
control symbols is described below:

• A link-request control symbol issues a command to or requests status from the
device that is electrically connected, or linked, to the issuing device. The
link-request control symbol is followed by a complemented version of itself
as with the other control symbols. A link-request control symbol always
cancels a packet whose transmission is in progress and can also be sent

throttle 0b100 Specifies the number of aligned pacing idles that the sender inserts in a packet.
The encodings are defined in Table 4-4.

Multicast-event 0b101 Used as a buf_status field that indicates the number of maximally sized packets
that can be received. Described in Section 2.3.1, encodings are defined in
Table 2-2.

Reserved 0b110-111

Table 4-4. Throttle Control Symbol contents Field Definition

Encoding Definition

0b0000 1 aligned pacing idle control symbol

0b0001 2 aligned pacing idle control symbols

0b0010 4 aligned pacing idle control symbols

0b0011 8 aligned pacing idle control symbols

0b0100 16 aligned pacing idle control symbols

0b0101 32 aligned pacing idle control symbols

0b0110 64 aligned pacing idle control symbols

0b0111 128 aligned pacing idle control symbols

0b1000 256 aligned pacing idle control symbols

0b1001 512 aligned pacing idle control symbols

0b1010 1024 aligned pacing idle control symbols

0b1011-
1101

Reserved

0b1110 1 aligned pacing idle control symbol for oscillator drift
compensation

0b1111 Stop transmitting pacing idles, can immediately resume
packet transmission

Table 4-3. sub_type and contents Field Definitions (Continued)

sub_type Field
Definition

sub_type
Encoding

contents Field Definition
RapidIO.org 67

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
between packets. Under error conditions a link-request/input-status control
symbol acts as a restart-from-error control symbol as described in
Section 2.4.5.1, “Recoverable Errors.” This control symbol format is
displayed in Figure 4-5.

Figure 4-5. Type 5 Link-Request Control Symbol Format

The cmd, or command, field of the link-request control symbol format is defined in
Table 4-5.

• The link-response control symbol is used by a device to respond to a
link-request control symbol as described in the link maintenance protocol
described in Section 2.6. The link-response control symbol is the same as all
other control symbols in that the second 16 bits are a bit-wise inversion of the
first 16 bits. A link-response control symbol can be embedded in a packet.
This control symbol format is displayed in Figure 4-6.

Figure 4-6. Type 6 Link-Response Control Symbol Format

Table 4-5. cmd Field Definition

cmd
Encoding

Command Name Description

0b000 Send-training Send 256 iterations of the training pattern

0b001-010 Reserved

0b011 Reset Reset the receiving device

0b100 Input-status Return input port status; functions as a restart-from-error
control symbol under error conditions

0b101-111 Reserved

1 0 1cmd1

1 3 3

buf_status

0 1 0cmd0

1 3 4 3

buf_status

32-bit boundary,
framing signal toggles

0 0 00 0

1 1 4 3

1 1 111

11 3

Preceding bits

Following bits

32-bit boundary,
framing signal toggles

1 1 0ackID_status1

1 3 3

0 0 1ackID_status0

1 3 3

link_status

4

link_status

4

32-bit boundary,
framing signal toggles

0

1

0

1

0 0 0

3

1

1

1

1

1 1 1

3

Preceding bits

Following bits

32-bit boundary,
framing signal toggles
68 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The ackID_status field of the link-response format is defined in Table 4-6.

The link_status field is defined in Table 4-7. Note that the ackID information is included in
both fields for additional error coverage if the receiver is working properly (encodings
8-15).

Table 4-6. ackID_status Field Definition

Encoding Description

0b000 Expecting ackID 0

0b001 Expecting ackID 1

0b010 Expecting ackID 2

0b011 Expecting ackID 3

0b100 Expecting ackID 4

0b101 Expecting ackID 5

0b110 Expecting ackID 6

0b111 Expecting ackID 7

Table 4-7. link_status Field Definition

link_status
Encoding

Port Status Description

0b0000 -
0b0001

Reserved

0b0010 Error Unrecoverable error encountered.

0b0011 Reserved

0b0100 Retry-stopped The port has been stopped due to a retry.

0b0101 Error-stopped The port has been stopped due to a transmission error; this
state is cleared after the link-request/input-status
command is completed.

0b0110 -
0b0111

Reserved

0b1000 OK, ackID0 Working properly, expecting ackID 0.

0b1001 OK, ackID1 Working properly, expecting ackID 1.

0b1010 OK, ackID2 Working properly, expecting ackID 2.

0b1011 OK, ackID3 Working properly, expecting ackID 3.

0b1100 OK, ackID4 Working properly, expecting ackID 4.

0b1101 OK, ackID5 Working properly, expecting ackID 5.

0b1110 OK, ackID6 Working properly, expecting ackID 6.

0b1111 OK, ackID7 Working properly, expecting ackID 7.
RapidIO.org 69

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
4.5 Reserved Symbol Formats
The control symbol corresponding to stype 0b011 is reserved.

4.6 Implementation-defined Symbol Formats
The control symbol corresponding to stype 0b111 is implementation defined. In
general, implementation-defined control symbols will result in inter-operability
problems with devices that are not designed to handle them. Inter-operability
problems can include undefined and/or inconsistant behavior, data corruption, or
system failure.

4.7 Control Symbol to Port Alignment
This section shows examples of control symbol transmission over the 8-bit and
16-bit interfaces. The corresponding packet transmission alignment is shown in
Section 3.6, “Packet to Port Alignment.”

Figure 4-7 shows the byte transmission ordering on an 8-bit port through time using
an aligned packet-accepted control symbol as an example.

Figure 4-7. Control Symbol Transmission Example 1

Figure 4-8 shows the same control symbol over the 16-bit interface.

32-bit boundary,

0 1 2 3 4 5 6 7

1

Time

32-bit boundary, buf_status

Following byte

packet_ackID

Port bit numbers

Preceding byte

buf_status 0 0 0

0 packet_ackID

framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7

1 1 1

0 0

0

0 0

1

1 1 1 1
70 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 4-8. Control Symbol Transmission Example 2

32-bit boundary,

0 1 2 3 4 5 6 7

1

32-bit boundary,

packet_ackID

Port bit numbers

Preceding symbol

buf_status

8 9 10 11 12 13 14 15

0 packet_ackID buf_status

Following symbol

framing signal toggles

framing signal toggles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0

1 1 1

0 0 0 0 0

1 1 1 1 1
RapidIO.org 71

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Blank page
72 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 5 8/16 LP-LVDS Registers

5.1 Introduction
This chapter describes the RapidIO Part 4: 8/16 LP-LVDS Physical Layer
Specification visible register set that allows an external processing element to
determine the capabilities, configuration, and status of a processing element using
this physical layer specification. This chapter only describes registers or register bits
defined by this specification. Refer to the other RapidIO logical, transport, and
physical specifications of interest to determine a complete list of registers and bit
definitions. All registers are 32-bits and aligned to a 32-bit boundary.

There are four types of 8/16 LP-LVDS devices, an end point device, an end point
device with additional software recovery registers, an end point free (or switch)
device, and an end point free device with additional software recovery registers.
Each has a different set of CSRs, specified in Section 5.5, Section 5.6, Section 5.7,
and Section 5.8, respectively. All four device types have the same CARs, specified
in Section 5.4.

5.2 Register Map
These registers utilize the Extended Features blocks and can be accessed using
RapidIO Part 1: Input/Output Logical Specification maintenance operations. Any
register offsets not defined are considered reserved for this specification unless
otherwise stated. Other registers required for a processing element are defined in
other applicable RapidIO specifications and by the requirements of the specific
device and are beyond the scope of this specification. Read and write accesses to
reserved register offsets shall terminate normally and not cause an error condition in
the target device.

The Extended Features pointer (EF_PTR) defined in the RapidIO logical
specifications contains the offset of the first Extended Features block in the
Extended Features data structure for a device. The 8/16 LP-LVDS physical features
block shall exist in any position in the Extended Features data structure and shall
exist in any portion of the Extended Features Space in the register address map for
the device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.
RapidIO.org 73

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.3 Reserved Register, Bit and Bit Field Value Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

Table 5-1. 8/16 LP-LVDS Register Map

Configuration
Space Byte

Offset
Register Name

0x0-C Reserved

0x10 Processing Element Features CAR

0x14–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored
74 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
When a writable bit field is set to a reserved value, device behavior is
implementation specific.

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO.org 75

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Processing Element Features CAR
(Configuration Space Offset 0x10)

The processing element features CAR identifies the major functionality provided by
the processing element. The bit settings are shown in Table 5-3.

Table 5-3. Bit Settings for Processing Element Features CAR

Bits Name Description

0–24 — Reserved

25 Implementation-defined Implementation-defined

26 CRF Support PE supports the Critical Request Flow (CRF) indicator
0b0 - Critical Request Flow is not supported
0b1 - Critical Request Flow is supported

27–31 — Reserved
76 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.5 Generic End Point Devices
This section describes the 8/16 LP-LVDS registers for a general end point device.
This Extended Features register block is assigned Extended Features block
ID=0x0001.

5.5.1 Register Map

Table 5-4 shows the register map for generic RapidIO 8/16 LP-LVDS end point
devices. The Block Offset is the offset based on the Extended Features pointer
(EF_PTR) to this block. This register map is currently only defined for devices with
up to 16 RapidIO ports, but can be extended or shortened if more or less port
definitions are required for a device. For example, a device with four RapidIO ports
is only required to use register map space corresponding to offsets [EF_PTR + 0x00]
through [EF_PTR + 0xBC]. Register map offset [EF_PTR + 0xC0] can be used for
another Extended Features block.

Table 5-4. 8/16 LP-LVDS Register Map - Generic End Point Devices

Block Byte
Offset

Register Name

G
en

er
al

0x0 8/16 LP-LVDS Register Block Header

0x4–1C Reserved

0x20 Port Link Timeout Control CSR

0x24 Port Response Timeout Control CSR

0x28-38 Reserved

0x3C Port General Control CSR

P
or

t 0

0x40-54 Reserved

0x58 Port 0 Error and Status CSR

0x5C Port 0 Control CSR

P
or

t 1

0x60-74 Reserved

0x78 Port 1 Error and Status CSR

0x7C Port 1 Control CSR

P
or

ts
 2

-1
4

0x80–218 Assigned to Port 2-14 CSRs

P
or

t 1
5 0x220-234 Reserved

0x238 Port 15 Error and Status CSR

0x23C Port 15 Control CSR
RapidIO.org 77

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.5.2 Command and Status Registers (CSRs)

Refer to Table 5-2 for the required behavior for accesses to reserved registers and
register bits.

5.5.2.1 8/16 LP-LVDS Register Block Header
(Block Offset 0x0)

The 8/16 LP-LVDS register block header register contains the EF_PTR to the next
EF_BLK and the EF_ID that identifies this as the generic end point 8/16 LP-LVDS
register block header.

5.5.2.2 Port Link Timeout Control CSR
(Block Offset 0x20)

The port link timeout control register contains the timeout timer value for all ports
on a device. This timeout is for link events such as sending a packet to receiving the
corresponding acknowledge, and sending a link-request to receiving the
corresponding link-response. The reset value is the maximum timeout interval, and
represents between 3 and 5 seconds.

Table 5-5. Bit Settings for 8/16 LP-LVDS Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0001 Hard wired Extended Features ID

Table 5-6. Bit Settings for Port Link Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout_value All 1s timeout interval value

24-31 — Reserved
78 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.5.2.3 Port Response Timeout Control CSR
(Block Offset 0x24)

The port response timeout control register contains the timeout timer count for all
ports on a device. This timeout is for sending a request packet to receiving the
corresponding response packet.The reset value is the maximum timeout interval,
and represents between 3 and 5 seconds.

5.5.2.4 Port General Control CSR
(Block Offset 0x3C)

The bits accessible through the Port General Control CSR are bits that apply to all
ports on a device. There is a single copy of each such bit per device. These bits are
also accessible through the Port General Control CSR of any other physical layers
implemented on a device.

Table 5-7. Bit Settings for Port Response Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout_value All 1s timeout interval value

24-31 — Reserved

Table 5-8. Bit Settings for Port General Control CSRs

Bit Name
Reset
Value

Description

0 Host see
footnote1

1The Host reset value is implementation dependent

A Host device is a device that is responsible for system exploration,
initialization, and maintenance. Agent or slave devices are typically
initialized by Host devices.
0b0 - agent or slave device
0b1 - host device

1 Master Enable see
footnote2

2The Master Enable reset value is implementation dependent

The Master Enable bit controls whether or not a device is allowed to issue
requests into the system. If the Master Enable is not set, the device may
only respond to requests.
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests

2 Discovered see
footnote3

3The Discovered reset value is implementation dependent

This device has been located by the processing element responsible for
system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing element

3-31 — Reserved
RapidIO.org 79

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.5.2.5 Port n Error and Status CSRs
(Block Offsets 0x58, 78, ..., 238)

These registers are accessed when a local processor or an external device wishes to
examine the port error and status information.

Table 5-9. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description

0-10 — Reserved

11 Output
Retry-encountered

0b0 Output port has encountered a retry condition. This bit is set when bit 13 is
set. Once set remains set until written with a logic 1 to clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not make
forward progress. This bit is set when bit 13 is set and is cleared when a
packet-accepted or a packet-not-accepted control symbol is received
(read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the
“output retry-stopped” state (read-only).

14 Output
Error-encountered

0b0 Output port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 15 is set. Once set remains set until written
with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-encountered 0b0 Input port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 23 is set. Once set remains set until written
with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only).

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a
Maintenance Port-write operation.This bit is only valid if the device is
capable of issuing a maintenance port-write transaction. Once set remains
set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port.

29 Port Error 0b0 Input or output port has encountered an error from which hardware was
unable to recover. Once set remains set until written with a logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the
adjacent device. This bit and bit 31 are mutually exclusive (read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. This bit
and bit 30 are mutually exclusive (read-only).
80 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.5.2.6 Port n Control CSR
(Block Offsets 0x5C, 7C, ..., 23C)

The port n control registers contain control register bits for individual ports on a
processing element.

Table 5-10. Bit Settings for Port n Control CSRs

Bit Name
Reset
Value

Description

0 Output Port Width see
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see
footnote2

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to route
or respond to I/O logical MAINTENANCE packets. Control symbols are
not affected and are sent normally. This is the recommended state after
device reset.
0b1 - port is enabled to issue any packets

2 Output Port Driver
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

4 Input Port Width see
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

5 Input Port Enable see
footnote4

Input port receive enable:
0b0 - port is stopped and only enabled to route or respond I/O logical
MAINTENANCE packets. Other packets generate packet-not-accepted
control symbols to force an error condition to be signaled by the sending
device. Control symbols are not affected and are received and handled
normally. This is the recommended state after device reset.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to any
packets or control symbols

7 — Reserved

8 Error Checking Disable 0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and an error
condition occurs is undefined

9 Multicast-event
Participant

see
footnote5

Send incoming multicast-event control symbols to this port (multiple port
devices only)

10-13 — Reserved

14 Enumeration Boundary see
footnote6

An enumeration boundary aware system enumeration algorithm shall
honor this flag. The algorithm, on either the ingress or the egress port, shall
not enumerate past a port with this bit set. This provides for software
enforced enumeration domains within the RapidIO fabric.

15-19 — Reserved
RapidIO.org 81

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
20-27 Implementation-defined Implementation-defined

28-30 — Reserved

31 Port Type This indicates the port type (read only)
0b0 - Parallel port
0b1 - Reserved

1The output port width reset value is implementation dependent
2The output port enable reset value is implementation dependent
3The input port width reset value is implementation dependent
4The Input port enable reset value is implementation dependent
5The multicast-event participant reset value is implementation dependent
6The enumeration boundary reset value is implementation dependent. Provision shall be made to allow the

reset value of this bit to be configurable on a per system basis if this feature is supported.

Table 5-10. Bit Settings for Port n Control CSRs (Continued)

Bit Name
Reset
Value

Description
82 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6 Generic End Point Devices, software assisted error
recovery option

This section describes the 8/16 LP-LVDS registers for a general end point device
that supports software assisted error recovery. This is most useful for devices that
for whatever reason do not want to implement error recovery in hardware and to
allow software to generate link request control symbols and see the results of the
responses. This Extended Features register block is assigned Extended Features
block ID=0x0002.

5.6.1 Register Map

Table 5-11 shows the register map for generic RapidIO 8/16 LP-LVDS end point
devices with software assisted error recovery. The Block Offset is the offset based
on the Extended Features pointer (EF_PTR) to this block. This register map is
currently only defined for devices with up to 16 RapidIO ports, but can be extended
or shortened if more or less port definitions are required for a device. For example,
a device with four RapidIO ports is only required to use register map space
corresponding to offsets [EF_PTR + 0x00] through [EF_PTR + 0xBC]. Register
map offset [EF_PTR + 0xC0] can be used for another Extended Features block.

Table 5-11. 8/16 LP-LVDS Register Map - Generic End Point Devices (SW assisted)

Block Byte
Offset

Register Name

G
en

er
al

0x0 8/16 LP-LVDS Register Block Header

0x4–1C Reserved

0x20 Port Link Timeout Control CSR

0x24 Port Response Timeout Control CSR

0x28-38 Reserved

0x3C Port General Control CSR

P
or

t 0

0x40 Port 0 Link Maintenance Request CSR

0x44 Port 0 Link Maintenance Response CSR

0x48 Port 0 Local ackID Status CSR

0x4C-54 Reserved

0x58 Port 0 Error and Status CSR

0x5C Port 0 Control CSR

P
or

t 1

0x60 Port 1 Link Maintenance Request CSR

0x64 Port 1 Link Maintenance Response CSR

0x68 Port 1 Local ackID Status CSR

0x6C-74 Reserved

0x78 Port 1 Error and Status CSR

0x7C Port 1 Control CSR
RapidIO.org 83

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
P
or

ts
 2

-1
4

0x80–218 Assigned to Port 2-14 CSRs

P
or

t 1
5

0x220 Port 15 Link Maintenance Request CSR

0x224 Port 15 Link Maintenance Response CSR

0x228 Port 15 Local ackID Status CSR

0x22C-234 Reserved

0x238 Port 15 Error and Status CSR

0x23C Port 15 Control CSR

Table 5-11. 8/16 LP-LVDS Register Map - Generic End Point Devices (SW assisted)

Block Byte
Offset

Register Name
84 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6.2 Command and Status Registers (CSRs)

Refer to Table 5-2 for the required behavior for accesses to reserved registers and
register bits.

5.6.2.1 8/16 LP-LVDS Register Block Header
(Block Offset 0x0)

The 8/16 LP-LVDS register block header register contains the EF_PTR to the next
EF_BLK and the EF_ID that identifies this as the generic end point 8/16 LP-LVDS
register block header.

5.6.2.2 Port Link Timeout Control CSR
(Block Offset 0x20)

The port link timeout control register contains the timeout timer value for all ports
on a device. This timeout is for link events such as sending a packet to receiving the
corresponding acknowledge and sending a link-request to receiving the
corresponding link-response. The reset value is the maximum timeout interval, and
represents between 3 and 5 seconds.

Table 5-12. Bit Settings for 8/16 LP-LVDS Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0002 Hard wired Extended Features ID

Table 5-13. Bit Settings for Port Link Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout_value All 1s timeout interval value

24-31 — Reserved
RapidIO.org 85

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6.2.3 Port Response Timeout Control CSR
(Block Offset 0x24)

The port response timeout control register contains the timeout timer count for all
ports on a device. This timeout is for sending a request packet to receiving the
corresponding response packet.The reset value is the maximum timeout interval,
and represents between 3 and 5 seconds.

5.6.2.4 Port General Control CSR
(Block Offset 0x3C)

The bits accessible through the Port General Control CSR are bits that apply to all
ports on a device. There is a single copy of each such bit per device. These bits are
also accessible through the Port General Control CSR of any other physical layers
implemented on a device.

Table 5-14. Bit Settings for Port Response Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout_value All 1s timeout interval value

24-31 — Reserved

Table 5-15. Bit Settings for Port General Control CSRs

Bit Name
Reset
Value

Description

0 Host see
footnote1

1The Host reset value is implementation dependent

A Host device is a device that is responsible for system exploration,
initialization, and maintenance. Agent or slave devices are initialized by
Host devices.
0b0 - agent or slave device
0b1 - host device

1 Master Enable see
footnote2

2The Master Enable reset value is implementation dependent

The Master Enable bit controls whether or not a device is allowed to issue
requests into the system. If the Master Enable is not set, the device may
only respond to requests.
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests

2 Discovered see
footnote3

3The Discovered reset value is implementation dependent

This device has been located by the processing element responsible for
system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing element

3-31 — Reserved
86 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6.2.5 Port n Link Maintenance Request CSRs
(Block Offsets 0x40, 60, ..., 220)

The port link maintenance request registers are accessible both by a local processor
and an external device. A write to one of these registers generates a link-request
control symbol on the corresponding RapidIO port interface.

5.6.2.6 Port n Link Maintenance Response CSRs
(Block Offsets 0x44, 64, ..., 224)

The port link maintenance response registers are accessible both by a local processor
and an external device. A read to this register returns the status received in a
link-response control symbol. The link_status and ackID_status fields are defined in
Section 4.4, “Link Maintenance Control Symbol Formats.” This register is
read-only.

Table 5-16. Bit Settings for Port n Link Maintenance Request CSRs

Bit Name
Reset
Value

Description

0–28 — Reserved

29-31 Command 0b000 Command to be sent in the link-request control symbol. If read, this field
returns the last written value.

Table 5-17. Bit Settings for Port n Link Maintenance Response CSRs

Bit Name
Reset
Value

Description

0 response_valid 0b0 If the link-request causes a link-response, this bit indicates that the
link-response has been received and the status fields are valid.
If the link-request does not cause a link-response, this bit indicates that the
link-request has been transmitted.
This bit automatically clears on read.

1-24 — Reserved

25-27 ackID_status 0b000 ackID status field from the link-response control symbol

28-31 link_status 0b0000 link status field from the link-response control symbol
RapidIO.org 87

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6.2.7 Port n Local ackID Status CSRs
(Block Offsets 0x48, 68, ..., 228)

The port link local ackID status registers are accessible both by a local processor and
an external device. A read to this register returns the local ackID status for both the
out and input ports of the device.

Table 5-18. Bit Settings for Port n Local ackID Status CSRs

Bit Name
Reset
Value

Description

0 Clr_outstanding_ackIDs 0b0 Writing 0b1 to this bit causes all outstanding unacknowledged packets to be
discarded. This bit should only be written when trying to recover a failed
link. This bit is always logic 0 when read.

1-4 — Reserved

5-7 Inbound_ackID 0b000 Input port next expected ackID value

8-15 — Reserved

16-23 Outstanding_ackID 0x00 Output port unacknowledged ackID status. A set bit indicates that the
corresponding ackID value has been used to send a packet to an attached
device but a corresponding acknowledge control symbol has not been
received. 0b1xxx_xxxx indicates ackID 0, 0bx1xx_xxxx indicates ackID 1,
0bxx1x_xxxx indicates ackID 2, etc.

24-28 — Reserved

29-31 Outbound_ackID 0b000 Output port next transmitted ackID value. Software writing this value can
force re-transmission of outstanding unacknowledged packets in order to
manually implement error recovery.
88 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6.2.8 Port n Error and Status CSRs
(Block Offsets 0x58, 78, ..., 238)

These registers are accessed when a local processor or an external device wishes to
examine the port error and status information.

Table 5-19. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description

0-10 — Reserved

11 Output
Retry-encountered

0b0 Output port has encountered a retry condition. This bit is set when bit 13 is
set. Once set remains set until written with a logic 1 to clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not make
forward progress. This bit is set when bit 13 is set and is cleared when a
packet-accepted or a packet-not-accepted control symbol is received
(read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the
“output retry-stopped” state (read-only).

14 Output
Error-encountered

0b0 Output port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 15 is set. Once set remains set until written
with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-encountered 0b0 Input port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 23 is set. Once set remains set until written
with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only).

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a
Maintenance Port-write operation.This bit is only valid if the device is
capable of issuing a maintenance port-write transaction. Once set remains
set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port.

29 Port Error 0b0 Input or output port has encountered an error from which hardware was
unable to recover. Once set remains set until written with a logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the
adjacent device. This bit and bit 31 are mutually exclusive (read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. This bit
and bit 30 are mutually exclusive (read-only).
RapidIO.org 89

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.6.2.9 Port n Control CSR
(Block Offsets 0x5C, 7C, ..., 23C)

The port n control registers contain control register bits for individual ports on a
processing element.

Table 5-20. Bit Settings for Port n Control CSRs

Bit Name
Reset
Value

Description

0 Output Port Width see
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see
footnote2

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to route
or respond to I/O logical MAINTENANCE packets. Control symbols are
not affected and are sent normally. This is the recommended state after
device reset.
0b1 - port is enabled to issue any packets

2 Output Port Driver
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

4 Input Port Width see
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

5 Input Port Enable see
footnote4

Input port receive enable:
0b0 - port is stopped and only enabled to route or respond I/O logical
MAINTENANCE packets. Other packets generate packet-not-accepted
control symbols to force an error condition to be signaled by the sending
device. Control symbols are not affected and are received and handled
normally. This is the recommended state after device reset.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to any
packets or control symbols

7 — Reserved

8 Error Checking Disable 0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and an error
condition occurs is undefined

9 Multicast-event
Participant

see
footnote5

Send incoming multicast-event control symbols to this port (multiple port
devices only)

10-13 — Reserved

14 Enumeration Boundary see
footnote6

An enumeration boundary aware system enumeration algorithm shall
honor this flag. The algorithm, on either the ingress or the egress port, shall
not enumerate past a port with this bit set. This provides for software
enforced enumeration domains within the RapidIO fabric.

15-19 — Reserved
90 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
20-27 Implementation-defined Implementation-defined

28-30 — Reserved

31 Port Type This indicates the port type (read only)
0b0 - Parallel port
0b1 - Reserved

1The output port width reset value is implementation dependent
2The output port enable reset value is implementation dependent
3The input port width reset value is implementation dependent
4The Input port enable reset value is implementation dependent
5The multicast-event participant reset value is implementation dependent
6The enumeration boundary reset value is implementation dependent. Provision shall be made to allow the

reset value of this bit to be configurable on a per system basis if this feature is supported.

Table 5-20. Bit Settings for Port n Control CSRs (Continued)

Bit Name
Reset
Value

Description
RapidIO.org 91

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.7 Generic End Point Free Devices
This section describes the 8/16 LP-LVDS registers for a general devices that do not
contain end point functionality. Typically these devices are switches. This Extended
Features register block uses extended features block ID=0x0003.

5.7.1 Register Map

Table 5-21 shows the register map for generic RapidIO 8/16 LP-LVDS end
point-free devices. The Block Offset is the offset based on the Extended Features
pointer (EF_PTR) to this block. This register map is currently only defined for
devices with up to 16 RapidIO ports, but can be extended or shortened if more or
less port definitions are required for a device. For example, a device with four
RapidIO ports is only required to use register map space corresponding to offsets
[EF_PTR + 0x00] through [EF_PTR + 0xBC]. Register map offset [EF_PTR +
0xC0] can be used for another Extended Features block.

Table 5-21. 8/16 LP-LVDS Register Map - Generic End Point Free Devices

Block Byte
Offset

Register Name

G
en

er
al

0x0 8/16 LP-LVDS Register Block Header

0x4–1C Reserved

0x20 Port Link Timeout Control CSR

0x24-38 Reserved

0x3C Port General Control CSR

P
or

t 0

0x40-54 Reserved

0x58 Port 0 Error and Status CSR

0x5C Port 0 Control CSR

P
or

t 1

0x60-74 Reserved

0x78 Port 1 Error and Status CSR

0x7C Port 1 Control CSR

P
or

ts
 2

-1
4

0x80–218 Assigned to Port 2-14 CSRs

P
or

t 1
5 0x220-234 Reserved

0x238 Port 15 Error and Status CSR

0x23C Port 15 Control CSR
92 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.7.2 Command and Status Registers (CSRs)

Refer to Table 5-2 for the required behavior for accesses to reserved registers and
register bits.

5.7.2.1 8/16 LP-LVDS Register Block Header
(Block Offset 0x0)

The 8/16 LP-LVDS register block header register contains the EF_PTR to the next
EF_BLK and the EF_ID that identifies this as the generic end point 8/16 LP-LVDS
register block header.

5.7.2.2 Port Link Timeout Control CSR
(Block Offset 0x20)

The port link timeout control register contains the timeout timer value for all ports
on a device. This timeout is for link events such as sending a packet to receiving the
corresponding acknowledge and sending a link-request to receiving the
corresponding link-response. The reset value is the maximum timeout interval, and
represents between 3 and 5 seconds.

Table 5-22. Bit Settings for 8/16 LP-LVDS Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0003 Hard wired Extended Features ID

Table 5-23. Bit Settings for Port Link Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout_value All 1s timeout interval value

24-31 — Reserved
RapidIO.org 93

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.7.2.3 Port General Control CSR
(Block Offset 0x3C)

The bits accessible through the Port General Control CSR are bits that apply to all
ports on a device. There is a single copy of each such bit per device. These bits are
also accessible through the Port General Control CSR of any other physical layers
implemented on a device.

Table 5-24. Bit Settings for Port General Control CSRs

Bit Name
Reset
Value

Description

0-1 — Reserved

2 Discovered 0b0 This device has been located by the processing element responsible for
system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing element

3-31 — Reserved
94 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.7.2.4 Port n Error and Status CSRs
(Block Offsets 0x58, 78, ..., 238)

These registers are accessed when a local processor or an external device wishes to
examine the port error and status information.

Table 5-25. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description

0-10 — Reserved

11 Output
Retry-encountered

0b0 Output port has encountered a retry condition. This bit is set when bit 13 is
set. Once set remains set until written with a logic 1 to clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not make
forward progress. This bit is set when bit 13 is set and is cleared when a
packet-accepted or a packet-not-accepted control symbol is received
(read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the
“output retry-stopped” state (read-only).

14 Output
Error-encountered

0b0 Output port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 15 is set. Once set remains set until written
with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-encountered 0b0 Input port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 23 is set. Once set remains set until written
with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only).

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a
Maintenance Port-write operation.This bit is only valid if the device is
capable of issuing a maintenance port-write transaction. Once set remains
set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port.

29 Port Error 0b0 Input or output port has encountered an error from which hardware was
unable to recover. Once set remains set until written with a logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the
adjacent device. This bit and bit 31 are mutually exclusive (read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. This bit
and bit 30 are mutually exclusive (read-only).
RapidIO.org 95

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.7.2.5 Port n Control CSR
(Block Offsets 0x5C, 7C, ..., 23C)

The port n control registers contain control register bits for individual ports on a
processing element.

Table 5-26. Bit Settings for Port n Control CSRs

Bit Name
Reset
Value

Description

0 Output Port Width see
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see
footnote2

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to route
or respond to I/O logical MAINTENANCE packets. Control symbols are
not affected and are sent normally. This is the recommended state after
device reset.
0b1 - port is enabled to issue any packets

2 Output Port Driver
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

4 Input Port Width see
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

5 Input Port Enable see
footnote4

Input port receive enable:
0b0 - port is stopped and only enabled to route or respond I/O logical
MAINTENANCE packets. Other packets generate packet-not-accepted
control symbols to force an error condition to be signaled by the sending
device. Control symbols are not affected and are received and handled
normally. This is the recommended state after device reset.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to any
packets or control symbols

7 — Reserved

8 Error Checking Disable 0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and an error
condition occurs is undefined

9 Multicast-event
Participant

see
footnote5

Send incoming multicast-event control symbols to this output port
(multiple port devices only)

10-13 — Reserved

14 Enumeration Boundary see
footnote6

An enumeration boundary aware system enumeration algorithm shall
honor this flag. The algorithm, on either the ingress or the egress port, shall
not enumerate past a port with this bit set. This provides for software
enforced enumeration domains within the RapidIO fabric.

15-19 — Reserved
96 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
20-27 Implementation-defined Implementation-defined

28-30 — Reserved

31 Port Type This indicates the port type (read only)
0b0 - Parallel port
0b1 - Reserved

1The output port width reset value is implementation dependent
2The output port enable reset value is implementation dependent
3The input port width reset value is implementation dependent
4The Input port enable reset value is implementation dependent
5The multicast-event participant reset value is implementation dependent
6The enumeration boundary reset value is implementation dependent. Provision shall be made to allow the

reset value of this bit to be configurable on a per system basis if this feature is supported.

Table 5-26. Bit Settings for Port n Control CSRs (Continued)

Bit Name
Reset
Value

Description
RapidIO.org 97

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8 Generic End Point Free Devices, software assisted
error recovery option

This section describes the 8/16 LP-LVDS registers for a general device that does not
contain end point device functionality that supports software assisted error recovery.
Typically these devices are switches. This is most useful for devices that for
whatever reason do not want to implement error recovery in hardware and to allow
software to generate link request control symbols and see the results of the
responses. This Extended Features register block is assigned Extended Features
block ID=0x0009.

5.8.1 Register Map

Table 5-11 shows the register map for generic RapidIO 8/16 LP-LVDS end
point-free devices with software assisted error recovery. The Block Offset is the
offset based on the Extended Features pointer (EF_PTR) to this block. This register
map is currently only defined for devices with up to 16 RapidIO ports, but can be
extended or shortened if more or less port definitions are required for a device. For
example, a device with four RapidIO ports is only required to use register map space
corresponding to offsets [EF_PTR + 0x00] through [EF_PTR + 0xBC]. Register
map offset [EF_PTR + 0xC0] can be used for another Extended Features block.

Table 5-27. 8/16 LP-LVDS Register Map - Generic End Point-free Devices (SW assisted)

Block Byte
Offset

Register Name

G
en

er
al

0x0 8/16 LP-LVDS Register Block Header

0x4–1C Reserved

0x20 Port Link Timeout Control CSR

0x24-38 Reserved

0x3C Port General Control CSR

P
or

t 0

0x40 Port 0 Link Maintenance Request CSR

0x44 Port 0 Link Maintenance Response CSR

0x48 Port 0 Local ackID Status CSR

0x4C-54 Reserved

0x58 Port 0 Error and Status CSR

0x5C Port 0 Control CSR

P
or

t 1

0x60 Port 1 Link Maintenance Request CSR

0x64 Port 1 Link Maintenance Response CSR

0x68 Port 1 Local ackID Status CSR

0x6C-74 Reserved

0x78 Port 1 Error and Status CSR

0x7C Port 1 Control CSR
98 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
P
or

ts
 2

-1
4

0x80–218 Assigned to Port 2-14 CSRs

P
or

t 1
5

0x220 Port 15 Link Maintenance Request CSR

0x224 Port 15 Link Maintenance Response CSR

0x228 Port 15 Local ackID Status CSR

0x22C-234 Reserved

0x238 Port 15 Error and Status CSR

0x23C Port 15 Control CSR

Table 5-27. 8/16 LP-LVDS Register Map - Generic End Point-free Devices (SW assisted)

Block Byte
Offset

Register Name
RapidIO.org 99

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8.2 Command and Status Registers (CSRs)

Refer to Table 5-2 for the required behavior for accesses to reserved registers and
register bits.

5.8.2.1 8/16 LP-LVDS Register Block Header
(Block Offset 0x0)

The 8/16 LP-LVDS register block header register contains the EF_PTR to the next
EF_BLK and the EF_ID that identifies this as the generic end point 8/16 LP-LVDS
register block header.

5.8.2.2 Port Link Timeout Control CSR
(Block Offset 0x20)

The port link timeout control register contains the timeout timer value for all ports
on a device. This timeout is for link events such as sending a packet to receiving the
corresponding acknowledge and sending a link-request to receiving the
corresponding link-response. The reset value is the maximum timeout interval, and
represents between 3 and 5 seconds.

Table 5-28. Bit Settings for 8/16 LP-LVDS Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard-wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0009 Hard-wired Extended Features ID

Table 5-29. Bit Settings for Port Link Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout_value All 1s timeout interval value

24-31 — Reserved
100 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8.2.3 Port General Control CSR
(Block Offset 0x3C)

The bits accessible through the Port General Control CSR are bits that apply to all
ports on a device. There is a single copy of each such bit per device. These bits are
also accessible through the Port General Control CSR of any other physical layers
implemented on a device.

5.8.2.4 Port n Link Maintenance Request CSRs
(Block Offsets 0x40, 60, ..., 220)

The port link maintenance request registers are accessible both by a local processor
and an external device. A write to one of these registers generates a link-request
control symbol on the corresponding RapidIO port interface.

Table 5-30. Bit Settings for Port General Control CSRs

Bit Name
Reset
Value

Description

0-1 — Reserved

2 Discovered 0b0 This device has been located by the processing element responsible for
system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing element

3-31 — Reserved

Table 5-31. Bit Settings for Port n Link Maintenance Request CSRs

Bit Name
Reset
Value

Description

0–28 — Reserved

29-31 Command 0b000 Command to be sent in the link-request control symbol. If read, this field
returns the last written value.
RapidIO.org 101

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8.2.5 Port n Link Maintenance Response CSRs
(Block Offsets 0x44, 64, ..., 224)

The port link maintenance response registers are accessible both by a local processor
and an external device. A read to this register returns the status received in a
link-response control symbol. The link_status and ackID_status fields are defined in
Section 4.4, “Link Maintenance Control Symbol Formats.” This register is
read-only.

5.8.2.6 Port n Local ackID Status CSRs
(Block Offsets 0x48, 68, ..., 228)

The port link local ackID status registers are accessible both by a local processor and
an external device. A read to this register returns the local ackID status for both the
out and input ports of the device.

Table 5-32. Bit Settings for Port n Link Maintenance Response CSRs

Bit Name
Reset
Value

Description

0 response_valid 0b0 If the link-request causes a link-response, this bit indicates that the
link-response has been received and the status fields are valid.
If the link-request does not cause a link-response, this bit indicates that the
link-request has been transmitted.
This bit automatically clears on read.

1-24 — Reserved

25-27 ackID_status 0b000 ackID status field from the link-response control symbol

28-31 link_status 0b0000 link status field from the link-response control symbol

Table 5-33. Bit Settings for Port n Local ackID Status CSRs

Bit Name
Reset
Value

Description

0 Clr_outstanding_ackIDs 0b0 Writing 0b1 to this bit causes all outstanding unacknowledged packets to be
discarded. This bit should only be written when trying to recover a failed
link. This bit is always logic 0 when read.

1-4 — Reserved

5-7 Inbound_ackID 0b000 Input port next expected ackID value

8-15 — Reserved

16-23 Outstanding_ackID 0x00 Output port unacknowledged ackID status. A set bit indicates that the
corresponding ackID value has been used to send a packet to an attached
device but a corresponding acknowledge control symbol has not been
received. 0b1xxx_xxxx indicates ackID 0, 0bx1xx_xxxx indicates ackID 1,
0bxx1x_xxxx indicates ackID 2, etc.

24-28 — Reserved

29-31 Outbound_ackID 0b000 Output port next transmitted ackID value. Software writing this value can
force re-transmission of outstanding unacknowledged packets in order to
manually implement error recovery.
102 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8.2.7 Port n Error and Status CSRs
(Block Offsets 0x58, 78, ..., 238)

These registers are accessed when a local processor or an external device wishes to
examine the port error and status information.

Table 5-34. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description

0-10 — Reserved

11 Output
Retry-encountered

0b0 Output port has encountered a retry condition. This bit is set when bit 13 is
set. Once set remains set until written with a logic 1 to clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not make
forward progress. This bit is set when bit 13 is set and is cleared when a
packet-accepted or a packet-not-accepted control symbol is received
(read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the
“output retry-stopped” state (read-only).

14 Output
Error-encountered

0b0 Output port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 15 is set. Once set remains set until written
with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-encountered 0b0 Input port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 23 is set. Once set remains set until written
with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only).

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a
Maintenance Port-write operation.This bit is only valid if the device is
capable of issuing a maintenance port-write transaction. Once set remains
set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port.

29 Port Error 0b0 Input or output port has encountered an error from which hardware was
unable to recover. Once set remains set until written with a logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the
adjacent device. This bit and bit 31 are mutually exclusive (read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. This bit
and bit 30 are mutually exclusive (read-only).
RapidIO.org 103

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
5.8.2.8 Port n Control CSR
(Block Offsets 0x5C, 7C, ..., 23C)

The port n control registers contain control register bits for individual ports on a
processing element.

Table 5-35. Bit Settings for Port n Control CSRs

Bit Name
Reset
Value

Description

0 Output Port Width see
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see
footnote2

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to route
or respond to I/O logical MAINTENANCE packets. Control symbols are
not affected and are sent normally. This is the recommended state after
device reset.
0b1 - port is enabled to issue any packets

2 Output Port Driver
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

4 Input Port Width see
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

5 Input Port Enable see
footnote4

Input port receive enable:
0b0 - port is stopped and only enabled to route or respond I/O logical
MAINTENANCE packets. Other packets generate packet-not-accepted
control symbols to force an error condition to be signaled by the sending
device. Control symbols are not affected and are received and handled
normally. This is the recommended state after device reset.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to any
packets or control symbols

7 — Reserved

8 Error Checking Disable 0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and an error
condition occurs is undefined

9 Multicast-event
Participant

see
footnote5

Send incoming multicast-event control symbols to this port (multiple port
devices only)

10-13 — Reserved

14 Enumeration Boundary see
footnote6

An enumeration boundary aware system enumeration algorithm shall
honor this flag. The algorithm, on either the ingress or the egress port, shall
not enumerate past a port with this bit set. This provides for software
enforced enumeration domains within the RapidIO fabric.

15-19 — Reserved
104 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
20-27 Implementation-defined Implementation-defined

28-30 — Reserved

31 Port Type This indicates the port type (read only)
0b0 - Parallel port
0b1 - Reserved

1The output port width reset value is implementation dependent
2The output port enable reset value is implementation dependent
3The input port width reset value is implementation dependent
4The Input port enable reset value is implementation dependent
5The multicast-event participant reset value is implementation dependent
6The enumeration boundary reset value is implementation dependent. Provision shall be made to allow the

reset value of this bit to be configurable on a per system basis if this feature is supported.

Table 5-35. Bit Settings for Port n Control CSRs (Continued)

Bit Name
Reset
Value

Description
RapidIO.org 105

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
106 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 6 System Clocking Considerations

6.1 Introduction
The RapidIO parallel physical interface can be deployed in a variety of system
configurations. A fundamental aspect to the successful deployment of RapidIO is
clock distribution. This section is provided to point out the issues of distributing
clocks in a system.

6.2 Example Clock Distribution
Clock distribution in a small system is straightforward. It is assumed that clocking
is provided from a single clock source (Figure 6-1).

In this case the timing budget must account for any skew and jitter component
between each point. Skew and jitter are introduced owing to the end point clock
regeneration circuitry (PLL or DLL) and to transmission line effects.

Distributing a clock from a central source may not be practical in larger or more
robust systems. In these cases it may be desirable to have multiple clock sources or
to distribute the clock through the interconnect. Figure 6-2 displays the clock
distribution in a larger system.

Figure 6-1. Clock Distribution in a Small System

Switch
Fabric

End
Point

Clock
Source

End
Point

End
Point
RapidIO.org 107

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
In such a system the clock sources may be of the same relative frequency; however,
they are not guaranteed to be always at exact frequency. Clock sources will drift in
phase relationship with each other over time. This adds an additional component
because it is possible that one device may be slightly faster than its companion
device. This requires a packet elasticity mechanism.

If the clock is transported through the interconnect as shown in Figure 6-3, then
additive clock jitter must be taken into account.

Assuming that each device gets a clock that was regenerated by its predecessor, and
each device adds a certain jitter component to the clock, the resulting clock at the
end point may be greatly unstable. This factor must be added to the timing budget.

6.3 Elasticity Mechanism
In systems with multiple clock sources, clocks may be of the same relative
frequency but not exact. Their phase will drift over time. An elasticity mechanism
is therefore required to keep devices from missing data beats. For example, if the
received clock is faster than the internal clock, then it may be necessary to delete an
inbound symbol. If the received clock is slower than the internal clock, then it may
be necessary to insert an inbound symbol.

Figure 6-2. Clock Distribution in a Larger System

Figure 6-3. Clock Distribution Through the Interconnect

Switch
Fabric

Clock
Source 0

End
Point

Switch
Fabric

End
Point

Clock
Source 1

To Other End PointsTo Other End Points

Switch
Fabric

Clock
Source 0

End
Point

End
Point

To Other End PointsTo Other End Points

PLL

Switch
Fabric

PLL
108 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
This RapidIO 8/16 LP-LVDS interface is source synchronous; therefore, it is
guaranteed that a data element will have an associated clock strobe with which to
synchronize. A clock boundary is crossed in the receive logic of the end point as the
inbound data is synchronized to the internal clock. It must be guaranteed in the end
point that a drift between the two clock sources does not cause a setup hold violation
resulting in metastability in capturing the data.

To ensure that data is not missed, an end point implements an elasticity buffer.
RapidIO uses idle control symbols as the elasticity mechanism. If a receiver needs
to skip a symbol during receipt of a large packet, it can issue a throttle control
symbol to cause the sender to insert an aligned pacing idle control symbol in the byte
stream.

A data beat is clocked into the elasticity buffer with the external clock. The data beat
is pulled out of the elasticity buffer using the internal clock delayed by a number of
clocks behind the external clock event. This allows the data to become stable before
it is synchronized to the internal clock. If the two clock events drift too close
together then it is necessary for the synchronization logic to reset the tap and
essentially skip a symbol. By guaranteeing a periodic idle control symbol, it is
possible for the receive logic to skip a data beat and not miss a critical symbol
element.
RapidIO.org 109

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Blank page
110 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 7 Board Routing Guidelines

7.1 Introduction
This chapter contains board design guidelines for RapidIO based systems. The
information here is presented as a guide for implementing a RapidIO board design.
It is noted that the board designer may have constraints such as standard design
practices, vendor selection criteria, and design methodology that must be followed.
Therefore appropriate diligence must be applied by the designer.

RapidIO is a source-synchronous differential point-to-point interconnect, so routing
considerations are minimal. The very high clock rate places a premium on
minimizing skew and discontinuities, such as vias and bends. Generally, layouts
should be as straight and free of vias as possible using controlled impedance
differential pairs.

7.2 Impedance
Interconnect design should follow standard practice for differential pairs. To
minimize reflections from the receiver’s 100 Ohm termination, each side of the
coupled pair should have a characteristic impedence of 50 Ohms (i..e. 100 Ohms
differential impedence). The two signals forming the differential pair should be
tightly coupled. The differential pairs should be widely spaced, consistent with skew
control and quality routing, so that the crosstalk noise is common mode.

7.3 Skew
To minimize the skew on a RapidIO channel the total electrical length for each trace
within each unidirectional channel should be equal. Several layouts are suggested in
RapidIO.org 111

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 7-1.

Because the RapidIO model is source synchronous, the total length is not critical.
Best signal integrity is achieved using a clean layout between opposed parts due to
routing on a single layer.

The side-by-side layout requires two routing layers and has reduced signal integrity
due to the vias between layers. To keep the total electrical length equal, both layers
must have the same phase velocity.

Finally, right angle routing requires meandering to equalize delay, and meandered
sections reduce signal integrity while increasing radiation. It may be necessary to
place meandered sections on a second routing layer to keep the routing clean.

All skew calculations should be taken to the edge of the package. The package
layout and PCB breakout are co-designed to minimize skew, and a recommended
PCB breakout is provided.

7.4 PCB Stackup
PCB stackup has a significant effect on EMI generated by the high frequency of
operation of a RapidIO channel, so EMI control must be planned from the start.
Several stackups are shown in Figure 7-2.

Figure 7-1. Routing for Equalized Skew for Several Placements

Figure 7-2. Potential PCB Stackups

Side-by-Side Right Angle Opposed

S1

GND

PWR

S2

GND

S1

S2

PWR

GND

S1

PWR

S2

GND

S3

St
ri

pl
in

e
St

ri
pl

in
e

Traditional
four layer

EMI-control
four layer

EMI-control
high signal integrity
six layer
112 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The traditional four-layer stackup provides equal phase velocities on the two routing
layers, but the placement of routing on the outside layers allows for easier radiation.
This stackup is suitable for very short interconnects or for applications using an
add-on shield.

The four-layer stackup can be rearranged to help with EMI control by placing the
power and ground layers on the outside. Each routing layer still has equal phase
velocities, but orthogonal routing can degrade signal integrity at very high speeds.
The power distribution inductance is approximately tripled due to the larger spacing
between the power and ground planes, so applications using this stackup should plan
on using more and higher quality bypass capacitance.

The six-layer stackup shows one of many possible stackups. High-speed routing is
on S1 and S2 in stripline, so signal quality is excellent with EMI control. S3 is for
low-speed signals. Both S1 and S2 have equal phase velocities, good impedance
control, and excellent isolation. Power distribution inductance is comparable to the
four-layer stackup since the extra GND plane makes up for the extra (2X) spacing
between PWR and GND. This example stackup is not balanced with respect to metal
loading.

7.5 Termination
Depending upon the individual device characteristics and the requirements of the
particular application, the board route may be required to encompass external
devices such as terminating resistors or networks. The effect of such devices on the
board route must be carefully analyzed and controlled.

7.6 Additional Considerations
The application environment for a RapidIO channel may place additional constraints
on the PCB design.

7.6.1 Single Board Environments

A RapidIO channel completely constructed onto a single board offers the highest
performance in terms of clock rate and signal integrity. The primary issues are clean
routing with minimal skew. Higher clock rates put greater emphasis on the use of
quality sockets (in terms of electrical performance) or on eliminating sockets
altogether.

7.6.2 Single Connector Environments

The high clock rate of the 8/16 LP-LVDS physical layer requires the use of an
impedance-controlled edge connector. The number of pins dedicated to power
should equal the number dedicated to ground, and the distribution of power and
ground pins should be comparable. If ground pins greatly outnumber power pins,
RapidIO.org 113

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
then bypass capacitors along the length of each side of the connector should be
provided. Place the connector as close to one end of the RapidIO interconnect as
possible.

7.6.3 Backplane Environments

With two connectors, the design considerations from the single connector
environment apply but with greater urgency. The two connectors should either be
located as close together or as far apart as possible.

7.7 Recommended pin escape ordering
Given the source-synchronous nature of the 8/16 LP-LVDS physical layer and the
clock to data pin skew concern for maximum operating frequency, the recommended
bit escape ordering (assuming the device and port orientation shown in Figure 7-1)
is shown graphically in Figure 7-3 and Figure 7-4. The figures assume that the
device is being viewed from the top. For BGA-style packaged devices the
recommended bit escape wire route should be supplied to the board designer. The
signal names are defined in Chapter 8, “Signal Descriptions”.

Figure 7-3. Recommended device pin escape, input port, top view of device

Figure 7-4. Recommended device pin escape, output port, top view of device

These pin escapes allow clean board routes that provide maximum performance
connections between two devices as can be seen in the example in Figure 7-5 below.

R
D
0

R
D
0

R
D
1

R
D
1

R
D
2

R
D
2

R
D
3

R
D
3

R
C
L

R
C
L
KK

R
D
4

R
D
4

R
D
5

R
D
5

R
D
6

R
D
6

R
D
7

R
D
7

R
F
R

R
F
R
AA

M
E

M
E

R
D
8

R
D
8

R
D
9

R
D
9

R
D
1

R
D
1

R
D
1

R
D
1

R
C
L

R
C
L
KK

R
D
1

R
D
1

R
D
1

R
D
1

R
D
1

R
D
1

R
D
1

R
D
1

1 1
22 3 3 4 4 5 50 0 1 1

0 0

T
D
0

T
D
0

T
D
1

T
D
1

T
D
2

T
D
2

T
D
3

T
D
3

T
C
L

T
C
L
K K

T
D
4

T
D
4

T
D
5

T
D
5

T
D
6

T
D
6

T
D
7

T
D
7

T
F
R

T
F
R
A A

M
E

M
E

T
D
_

T
D
8

T
D
9

T
D
9

T
D
1

T
D
1

T
D
1

T
D
1

T
C
L

T
C
L
K K

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1 8

001122334455
0011
114 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 7-5. Opposed orientation, same side of board

If the attached devices are mounted with certain device orientations the bit wires
become crossed. An example of this situation is shown in Figure 7-6. It is
permissible for a device to also allow a bit-reversing option on the output (or input)
port to support these orientations, as shown in Figure 7-6 and Figure 7-7.

Figure 7-6. Opposed orientation, opposite sides of board

R
D
0

R
D
0

R
D
1

R
D
1

R
D
2

R
D
2

R
D
3

R
D
3

R
C
L

R
C
L
KK

R
D
4

R
D
4

R
D
5

R
D
5

R
D
6

R
D
6

R
D
7

R
D
7

R
F
R

R
F
R
AA

M
E

M
E

T
D
0

T
D
0

T
D
1

T
D
1

T
D
2

T
D
2

T
D
3

T
D
3

T
C
L

T
C
L
KK

T
D
4

T
D
4

T
D
5

T
D
5

T
D
6

T
D
6

T
D
7

T
D
7

T
F
R

T
F
R
AA

M
E

M
E0 0

0 0

R
D
0

R
D
0

R
D
1

R
D
1

R
D
2

R
D
2

R
D
3

R
D
3

R
C
L

R
C
L
KK

R
D
4

R
D
4

R
D
5

R
D
5

R
D
6

R
D
6

R
D
7

R
D
7

R
F
R

R
F
R
AA

M
E

M
E

T
D
0

T
D
0

T
D
1

T
D
1

T
D
2

T
D
2

T
D
3

T
D
3

T
C
L

T
C
L
K K

T
D
4

T
D
4

T
D
5

T
D
5

T
D
6

T
D
6

T
D
7

T
D
7

T
F
R

T
F
R
A A

M
E

M
E

Device on top of board

Device on bottom of board

0 0

00
RapidIO.org 115

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 7-7. Recommended device pin escape, output port reversed, top view of device

Figure 7-8. Opposed orientation, output port reversed, opposite sides of board

T
D
0

T
D
0

T
D
1

T
D
1

T
D
2

T
D
2

T
D
3

T
D
3

T
C
L

T
C
L
KK

T
D
4

T
D
4

T
D
5

T
D
5

T
D
6

T
D
6

T
D
7

T
D
7

T
F
R

T
F
R
AA

M
E

M
E

T
D
8

T
D
8

T
D
9

T
D
9

T
D
1

T
D
1

T
D
1

T
D
1

T
C
L

T
C
L
KK

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

T
D
1

1 10 0
2 2 3 3 4 4 5 50 0 1 1

R
D
0

R
D
0

R
D
1

R
D
1

R
D
2

R
D
2

R
D
3

R
D
3

R
C
L

R
C
L
KK

R
D
4

R
D
4

R
D
5

R
D
5

R
D
6

R
D
6

R
D
7

R
D
7

R
F
R

R
F
R
AA

M
E

M
E

Device on top of board

Device on bottom of board,
output port reversed

0 0

T
D
0

T
D
0

T
D
1

T
D
1

T
D
2

T
D
2

T
D
3

T
D
3

T
C
L

T
C
L
KK

T
D
4

T
D
4

T
D
5

T
D
5

T
D
6

T
D
6

T
D
7

T
D
7

T
F
R

T
F
R
AA

M
E

M
E

0 0
116 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 8 Signal Descriptions

8.1 Introduction
This chapter contains the signal pin descriptions for a RapidIO 8/16 LP-LVDS port.
The interface is defined as a parallel 10 bit full duplex point-to-point interface using
differential LVDS signaling. The LVDS electrical details are described in Chapter 9,
“Electrical Specifications.”

8.2 Signal Definitions
Table 8-1 provides a summary of the RapidIO signal pins as well as a short
description of their functionality.

Table 8-1. 8/16 LP-LVDS Signal Descriptions

Signal Name I/O Signal Meaning Timing Comments

TCLK0 O Transmit Clock—Free-running clock for the
8-bit port and the most significant half of the
16-bit port. TCLK0 connects to RCLK0 of the
receiving device.

TCLK0 O Transmit Clock complement—This signal is the
differential pair of the TCLK0 signal.

TD[0-7] O Transmit Data—The transmit data is a
unidirectional point to point bus designed to
transmit the packet information along with the
associated TCLK0 and TFRAME. The TD bus
of one device is connected to the RD bus of the
receiving device.

Assertion of TD[0-7] is always done
with a fixed relationship to TCLK0 as
defined in the AC section

TD[0-7] O Transmit Data complement—This vector is the
differential pair of TD[0-7].

Same as TD

TFRAME O Transmit framing signal—When issued as active
this signal indicates a packet control event.
TFRAME is connected to RFRAME of the
receiving device.

Assertion of TFRAME is always done
with a fixed relationship to TCLK0 as
defined in the AC section

TFRAME O Transmit frame complement—This signal is the
differential pair of the TFRAME signal.

Same as TFRAME

TCLK1 O Transmit Clock—Free-running clock for the
least significant half of the 16-bit port
(TD[8-15]). TCLK1 connects to RCLK1 of the
receiving device. This signal is not used when
connected to an 8-bit device.

TCLK1 O Transmit Clock complement—This signal is the
differential pair of the TCLK1 signal.
RapidIO.org 117

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
TD[8-15] O Transmit Data—least significant half of the
16-bit port. These signals are not used when
connected to an 8-bit device.

Assertion of TD[8-15] is always done
with a fixed relationship to TCLK0 and
TCLK1 as defined in the AC section

TD[8-15] O Transmit Data complement—This vector is the
differential pair of TD[8-15]

Same as TD[8-15]

RCLK0 I Receive Clock—Free-running input clock for the
8-bit port and the most significant half of the
16-bit port. RCLK0 connects to TCLK0 of the
transmitting device.

RCLK0 I Receive Clock complement—This signal is the
differential pair of the RCLK signal. RCLK0
connects to TCLK0 of the transmitting device.

RD[0-7] I Receive Data—The Receive data is a
unidirectional packet data input bus. It is
connected to the TD bus of the transmitting
device.

RD[0-7] I Receive Data complement—This vector is the
differential pair of the RD vector.

RFRAME I Receive Frame—This control signal indicates a
special packet framing event on the RD pins.

RFRAME is sampled with respect to
RCLK0

RFRAME I Receive Frame complement—This signal is the
differential pair of the RFRAME signal.

Same as RFRAME

RCLK1 I Receive Clock—Free-running input clock for the
least significant half of the 16-bit port
(RD[8-15]). RCLK1 connects to TCLK1 of the
transmitting device. This signal is not used when
connected to an 8-bit device.

RCLK1 I Receive Clock complement—This signal is the
differential pair of the RCLK1 signal.

RD[8-15] I Receive Data—Least significant half of the
16-bit port. These signals are not used when
connected to an 8-bit device.

RD[8-15] I Receive Data complement—This vector is the
differential pair of the RD[8-15] vector.

Table 8-1. 8/16 LP-LVDS Signal Descriptions (Continued)

Signal Name I/O Signal Meaning Timing Comments
118 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
8.3 RapidIO Interface Diagrams
Figure 8-1 shows the signal interface diagram connecting two 8-bit devices together
with the RapidIO 8/16 LP-LVDS interconnect.

Figure 8-2 shows the connections between an 8-bit wide 8/16 LP-LVDS device and
a 16-bit wide device.

Figure 8-1. RapidIO 8-bit Device to 8-bit Device Interface Diagram

Figure 8-2. RapidIO 8-bit Device to 16-bit Device Interface Diagram

TCLK0
TCLK0

TFRAME
TFRAME

TD[0–7]
TD[0–7]

RCLK0
RCLK0

RFRAME
RFRAME

RD[0–7]
RD[0–7]

DEVICE A

RCLK0
RCLK0
RFRAME
RFRAME
RD[0–7]
RD[0–7]

TCLK0
TCLK0
TFRAME
TFRAME
TD[0–7]
TD[0–7]

DEVICE B

TCLK0
TCLK0

TFRAME
TFRAME

TD[0–7]
TD[0–7]

RCLK0
RCLK0

RFRAME
RFRAME

RD[0–7]
RD[0–7]

DEVICE A

RCLK0
RCLK0
RFRAME
RFRAME
RD[0–7]
RD[0–7]

TCLK0
TCLK0
TFRAME
TFRAME
TD[0–7]
TD[0–7]

DEVICE B

TCLK1
TCLK1

TD[8-15]
TD[8-15]

RCLK1
RCLK1

RD[8-15]
RD[8-15]

N.C.

N.C.
RapidIO.org 119

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 8-3 shows the connections between two 16-bit wide 8/16 LP-LVDS devices.

Figure 8-3. RapidIO 16-bit Device to 16-bit Device Interface Diagram

TCLK0
TCLK0

TFRAME
TFRAME

TD[0–7]
TD[0–7]

RCLK0
RCLK0

RFRAME
RFRAME

RD[0–7]
RD[0–7]

DEVICE A

RCLK0
RCLK0
RFRAME
RFRAME
RD[0–7]
RD[0–7]

TCLK0
TCLK0
TFRAME
TFRAME
TD[0–7]
TD[0–7]

DEVICE B

TCLK1
TCLK1

TD[8-15]
TD[8-15]

RCLK1
RCLK1

RD[8-15]
RD[8-15]

RCLK1
RCLK1
RD[8-15]
RD[8-15]

TCLK1
TCLK1
TD[8-15]
TD[8-15]
120 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Chapter 9 Electrical Specifications

9.1 Introduction
This chapter contains the driver and receiver AC and DC electrical specifications for
a RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification compliant device.
The interface defined is a parallel differential low-power high-speed signal
interface.

9.2 Overview
To allow more general compatibility with a variety of silicon solutions, the RapidIO
parallel interface builds on the low voltage differential signaling (LVDS) standard.
For reference refer to ANSI/TIA/EIA-644-A, Electrical Characteristics of Low
Voltage Differential Signaling (LVDS) Interface Circuits. The goal of the interface
is to allow two devices to communicate with each other within a monolithic system,
and key factors in choosing an interface are electrical performance, power
consumption (both at the end point and in the switch fabric), signal robustness,
circuit complexity, pin count, future scalability, and industry acceptance. LVDS
satisfies these requirements.

Although differential signaling requires twice as many signals as single-ended
signaling, the total pin count including power and ground pins for high-speed
differential and single-ended interfaces are more comparable. Single-ended
interfaces require large numbers of power and ground pins to provide a
low-impedance AC return path. Since LVDS uses constant-current drivers, a
low-impedance AC return path is not needed, allowing for a dramatic reduction in
the number of power and ground pins dedicated to the interface. The
constant-current drivers also generate very small switching transients leading to
lower noise and lower EMI. Differential signaling is also not as susceptible to
imperfections in transmission lines and connectors.

LVDS provides for a low-voltage swing (less than 1 Volt), process independent,
point-to-point differential interface. The intent of this signaling specification is for
device-to-device and board-to-board applications, but it may not be suitable for
cable applications owing to the stringent signal-to-signal skew requirements.

LVDS is an end point self-terminated interface. It is assumed that each receiver
provides its own termination resistors. LVDS can tolerate ground potential
differences between transmitter and receiver of +/- 1V.
RapidIO.org 121

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
9.3 DC Specifications
RapidIO driver and receiver DC specifications are displayed in Table 9-1 and
Table 9-2. Power variation is +/- 5%. Resistor tolerances are +/- 1%.

Table 9-1. RapidIO 8/16 LP-LVDS Driver Specifications (DC)

Characteristic Symbol Min Max Unit Notes

Differential output high voltage VOHD 247 454 mV Bridged 100Ω load
See Figure 9-1

Differential output low voltage VOLD -454 -247 mV Bridged 100Ω load
See Figure 9-1

Differential offset voltage ΔVOD 50 mV Bridged 100Ω load
|VOHD+VOLD|. See
Figure 9-1

Output high common mode voltage VOSH 1.125 1.375 V Bridged 100Ω load

Output low common mode voltage VOSL 1.125 1.375 V Bridged 100Ω load

Common mode offset voltage ΔVOS 50 mV Bridged 100Ω load
|VOSH-VOSL|. See

Figure 9-1

Short circuit current
(either output)

|ISS| 24 mA Outputs shorted to VDD

or VSS

Bridged short circuit current |ISB| 12 mA Outputs shorted together

Table 9-2. RapidIO 8/16 LP-LVDS Receiver Specifications (DC)

Characteristic Symbol Min Max Unit Notes

Voltage at either input VI 0 2.4 V

Differential input high voltage VIHD 100 600 mV Over the common mode
range

Differential input low voltage VILD -600 -100 mV Over the common mode
range

Common mode input range
(referenced to receiver ground)

VIS 0.050 2.350 V Limited by VI

Input differential resistance RIN 80 120 Ω For on-chip termina-

tion.1

1Off-chip termination value and tolerance is vendor defined consistant with the return loss specification.
Receiver input impedance shall exhibit a differential return loss better than 10 dB from DC to (1.6 * AC
Clock Frequency). The differential return loss must measured at and include effects due to the receiver
itself, associated circuitry such as ESD structures, chip packaging, and any external termination
structures related to the receiver. The reference impedance for measurement is 100 ohms.
122 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
DC driver signal levels are displayed in Figure 9-1.

Figure 9-1. DC driver signal levels

Vod = Voa - Vob

100Ω V Vod = Voa - Vob

Voa

Vob

247mV

454mV

-247mV

-454mV

Vos = (Voa + Vob)/2

VOSH

VOSL
1.125V

1.375V

or

ΔVOS

0

(a)

RTERM

(nom)

(b)

VOHD

VOLD

Differential Specification Common-mode Specifications

(c)

v

-v
-v-ΔVod

-v+ΔVod
RapidIO.org 123

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
9.4 AC Specifications
This section contains the AC electrical specifications for a RapidIO 8/16 LP-LVDS
interface. The interface defined is a parallel differential low-power high-speed
signal interface. RapidIO specifies operation at specific nominal frequencies only.
Correct operation at other frequencies is not implied, even if the frequency is lower
than the specified frequency.

9.4.1 Concepts and Definitions

This section specifies signals using differential voltages. Figure 9-2 shows how the
signals are defined. The figure shows waveforms for either a transmitter output (TD
and TD) or a receiver input (RD and RD). Each signal swings between A volts and
B volts where A > B. Using these waveforms, the definitions are as follows:

1. The transmitter output and receiver input signals TD, TD, RD and RD each
have a peak-to-peak swing of A-B Volts.

2. The differential output signal of the transmitter, VOD, is defined as VTD-VTD.

3. The differential input signal of the receiver, VID, is defined as VRD-VRD.

4. The differential output signal of the transmitter, or input signal of the receiver,
ranges from A - B Volts to -(A - B) Volts.

5. The peak differential signal of the transmitter output, or receiver input, is A -
B Volts.

6. The peak to peak differential signal of the transmitter output, or receiver input,
is 2*(A - B) Volts.

Figure 9-2. Differential Peak-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a
LVDS transmitter has a common mode voltage of 1.2V and each signal has a swing
that goes between 1.4V and 1.0V. Using these values, the peak-to-peak voltage
swing of the signals TD, TD, RD and RD is 400 mV. The differential signal ranges
between 400mV and -400mV. The peak differential signal is 400mV, and the peak
to peak differential signal is 800mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing
parameter on a parallel bus is synchronously measured on two signals relative to
each other in the same cycle, such as data to data, data to clock, or clock to clock. A
skew timing parameter may be relative to the edge of a signal or to the middle of two

A Volts TD or RD

TD or RDB Volts
124 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
sequential edges.

Static skew represents the timing difference between signals that does not vary over
time regardless of system activity or data pattern. Path length differences are a
primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is
dependent on the activity of other signals and varies over time. Crosstalk between
signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver
and receiver performance. This technique is used in several serial bus specifications.
An example compliance mask is shown in Figure 9-3. The key difference in the
application of this technique for a parallel bus is that the data is source synchronous
to its bus clock while serial data is referenced to its embedded clock. Eye diagrams
reveal the quality (“cleanness”, “openness”, “goodness”) of a driver output or
receiver input. An advantage of using an eye diagram and a compliance mask is that
it allows specifying the quality of a signal without requiring separate specifications
for effects such as rise time, duty cycle distortion, data dependent dynamic skew,
random dynamic skew, etc. This allows the individual semiconductor manufacturer
maximum flexibility to trade off various performance criteria while keeping the
system performance constant.

In using the eye pattern and compliance mask approach, the quality of the signal is
specified by the compliance mask. The mask specifies the maximum permissible
magnitude of the signal and the minimum permissible eye opening. The eye diagram
for the signal under test is generated according to the specification. Compliance is
determined by whether the compliance mask can be positioned over the eye diagram
such that the eye pattern falls entirely within the unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical
layer defined by RapidIO is a source synchronous parallel port so additional
specifications to include effects that are not found in serial links are required.
Specifications for the effect of bit to bit timing differences caused by static skew
have been added and the eye diagrams specified are measured relative to the
associated clock in order to include clock to data effects. With the transmit output
(or receiver input) eye diagram, the user can determine if the transmitter output (or
receiver input) is compliant with an oscilloscope with the appropriate software.
RapidIO.org 125

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 9-3. Example Compliance Mask

Y = Minimum data valid amplitude

Z = Maximum amplitude

1 UI = 1 Unit Interval = 1/Baud rate

X1 = End of zero crossing region

X2 = Beginning of Data Valid window

DV = Data Valid window = 1 - 2*X2

The waveform of the signal under test must fall within the unshaded area of the mask
to be compliant. Different masks are used for the driver output and the receiver input
allowing each to be separately specified.

V
olts D

ifferential

0

Y

Z

-Y

-Z

0 X1 X2

DV

1-X2 1-X1 1
Time in UI
126 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
9.4.2 Driver Specifications

Driver AC timing specifications are given in Table 9-3 through Table 9-7 below. A
driver shall comply with the specifications for each data rate/frequency for which
operation of the driver is specified. Unless otherwise specified, these specifications
are subject to the following conditions.

The specifications apply over the supply voltage and ambient temperature ranges
specified by the device vendor.

The specifications apply for any combination of data patterns on the data signals.

The output of a driver shall be connected to a 100 Ohm, +/- 1%, differential
(bridged) resistive load.

Clock specifications apply only to clock signals (CLK0 and, if present, CLK1).

Data specifications apply only to data signals (FRAME, D[0-7], and, if present,
D[8-15]).

FRAME and D[0-7] are the data signals associated with CLK0, D[8-5] are the data
signals associated with CLK1.

Driver DC termination is not specified (in accordance with TIA/EIA-644-A), but is
recommended for devices targeting higher data rates. This termination is intended to
reduce data reflections in the matched data interconnect. The value and location of
this termination and the methods of test and measurement are left to the individual
vendor.

Table 9-3. Driver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 9-4

Differential output low voltage VOLD -540 -200 mV See Figure 9-4

Unit interval UI 2000 2000 ps Requires +/-100ppm long
term frequency stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80%of the peak to
peak differential signal swing

tRISE .1 UI

Data Valid DV .63 UI Measured using the
RapidIO Transmit Mask
shown in Figure 9-4

Allowable static skew between any two
data outputs within a 8 bit/9 bit group

tDPAIR .09 UI See Figure 9-10
RapidIO.org 127

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Allowable static skew of data outputs to
associated clock

tSKEW,PAIR -.09 .09 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .09 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .2 UI See Figure 9-9

Table 9-4. Driver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 9-4

Differential output low voltage VOLD -540 -200 mV See Figure 9-4

Unit interval 1333 1333 ps Requires +/-100ppm long
term frequency stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80%of the peak to
peak differential signal swing

tRISE .1 UI

Data Valid DV .6 UI Measured using the
RapidIO Transmit Mask
shown in Figure 9-4

Allowable static skew between any two
data outputs within a 8 bit/9 bit group

tDPAIR .1 UI See Figure 9-10

Allowable static skew of data outputs to
associated clock

tSKEW,PAIR -.1 .1 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .15 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .2 UI See Figure 9-9

Table 9-5. Driver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 9-4

Differential output low voltage VOLD -540 -200 mV See Figure 9-4

Unit interval 1000 1000 ps Requires +/-100ppm long
term frequency stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to
peak differential signal swing

tFALL .1 UI

Table 9-3. Driver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max
128 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
VOD rise time, 20-80%of the peak to
peak differential signal swing

tRISE .1 UI

Data Valid DV .575 UI Measured using the
RapidIO Transmit Mask
shown in Figure 9-4

Allowable static skew between any two
data outputs within a 8 bit/9 bit group

tDPAIR .1 UI See Figure 9-10

Allowable static skew of data outputs to
associated clock

tSKEW,PAIR -.1 .1 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .15 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .2 UI See Figure 9-9

Table 9-6. Driver AC Timing Specifications - 1500Mbps Data Rate/750MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 9-4

Differential output low voltage VOLD -540 -200 mV See Figure 9-4

Unit interval 667 667 ps Requires +/-100ppm long
term frequency stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80% of the peak to
peak differential signal swing

tRISE .1 UI

Data Valid DV .525 UI Measured using the
RapidIO Transmit Mask
shown in Figure 9-4

Allowable static skew between any two
data outputs within a 8 bit/9 bit group

tDPAIR .2 UI See Figure 9-10

Allowable static skew of data outputs to
associated clock

tSKEW,PAIR -.2 .2 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .15 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .2 UI See Figure 9-9

Table 9-5. Driver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max
RapidIO.org 129

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The compliance of driver output signals TD[0-15] and TFRAME with their
minimum Data Valid window (DV) specification shall be determined by generating
an eye pattern for each of the data signals and comparing the eye pattern of each data
signal with the RapidIO Transmit Mask shown in Figure 9-4. The value of X2 used
to construct the mask shall be (1 - DVmin)/2. A signal is compliant with the Data
Valid window specification if and only if the Transmit Mask can be positioned on
the signal’s eye pattern such that the eye pattern falls entirely within the unshaded
portion of the mask.

Table 9-7. Driver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 9-4

Differential output low voltage VOLD -540 -200 mV See Figure 9-4

Unit interval 500 500 ps Requires +/-100ppm long
term frequency stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80% of the peak to
peak differential signal swing

tRISE .1 UI

Data Valid DV .5 UI Measured using the
RapidIO Transmit Mask
shown in Figure 9-4

Allowable static skew between any two
data outputs within a 8 bit/9 bit group

tDPAIR .2 UI See Figure 9-10

Allowable static skew of data outputs to
associated clock

tSKEW,PAIR -.2 .2 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .2 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .2 UI See Figure 9-9
130 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 9-4. RapidIO Transmit Mask

The eye pattern for a data signal is generated by making a large number of
recordings of the signal and then overlaying the recordings. The number of
recordings used to generate the eye shall be large enough that further increasing the
number of recordings used does not cause the resulting eye pattern to change from
one that complies with the RapidIO Transmit Mask to one that does not. Each data
signal in the interface shall be carrying random or pseudo-random data when the
recordings are made. If pseudo-random data is used, the length of the
pseudo-random sequence (repeat length) shall be long enough that increasing the
length of the sequence does not cause the resulting eye pattern to change from one
that complies with the RapidIO Transmit Mask to one that does not comply with the
mask. The data carried by any given data signal in the interface may not be
correlated with the data carried by any other data signal in the interface. The
zero-crossings of the clock associated with a data signal shall be used as the timing
reference for aligning the multiple recordings of the data signal when the recordings
are overlaid.

While the method used to make the recordings and overlay them to form the eye
pattern is not specified, the method used shall be demonstrably equivalent to the
following method. The signal under test is repeatedly recorded with a digital
oscilloscope in infinite persistence mode. Each recording is triggered by a
zero-crossing of the clock associated with the data signal under test. Roughly half of
the recordings are triggered by positive-going clock zero-crossings and roughly half
are triggered by negative-going clock zero-crossings. Each recording is at least 1.9
UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI

0

VOHDmin

VOHDmax

VOLDmax

VOLDmin

V
O

D
 in m

V

0

DV

X2 1-X2 1Time in UI
RapidIO.org 131

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
before the trigger point (0.5 UI before the associated clock zero-crossing).
Depending on the length of the individual recordings used to generate the eye
pattern, one or more complete eyes will be formed. Regardless of the number of
eyes, the eye whose center is immediately to the right of the trigger point is the eye
used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3
UI in length is shown in Figure 9-5. In this example, there is no skew between the
signal under test and the associated clock used to trigger the recordings. If skew was
present, the eye pattern would be shifted to the left or right relative to the
oscilloscope trigger point.

.

Figure 9-5. Example Driver Output Eye Pattern

1 UI 1 UI0.5 UI

Eye used for

0

+

-

Eye patterm

VOD

compliance
testing

Oscilloscope
(recording)
trigger point
132 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
9.4.3 Receiver Specifications

Receiver AC timing specifications are given in Table 9-8 through Table 9-12 below.
A receiver shall comply with the specifications for each data rate/frequency for
which operation of the receiver is specified. Unless otherwise specified, these
specifications are subject to the following conditions.

The specifications apply over the supply voltage and ambient temperature ranges
specified by the device vendor.

The specifications apply for any combination of data patterns on the data signals.

The specifications apply over the receiver common mode and differential input
voltage ranges.

Clock specifications apply only to clock signals (CLK0 and, if present, CLK1).

Data specifications apply only to data signals (FRAME, D[0-7], and, if present,
D[8-15]).

FRAME and D[0-7] are the data signals associated with CLK0, D[8-5] are the data
signals associated with CLK1.

Table 9-8. Receiver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V

Data Valid DV .54 UI Measured using the
RapidIO Receive Mask
shown in Figure 9-6

Allowable static skew between any two
data inputs within a 8 bit/9 bit group

tDPAIR .19 UI See Figure 9-10

Allowable static skew of data inputs to
associated clock

tSKEW,PAIR -.15 .15 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .14 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .3 UI See Figure 9-9

Table 9-9. Receiver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V

Data Valid DV .45 UI Measured using the
RapidIO Receive Mask
shown in Figure 9-6
RapidIO.org 133

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Allowable static skew between any two
data inputs within a 8 bit/9 bit group

tDPAIR .3 UI See Figure 9-10

Allowable static skew of data inputs to
associated clock

tSKEW,PAIR -.2 .2 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .2 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .3 UI See Figure 9-9

Table 9-10. Receiver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V

Data Valid DV .425 UI Measured using the
RapidIO Receive Mask
shown in Figure 9-6

Allowable static skew between any two
data inputs within a 8 bit/9 bit group

tDPAIR .3 UI See Figure 9-10

Allowable static skew of data inputs to
associated clock

tSKEW,PAIR -.2 .2 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .2 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .3 UI See Figure 9-9

Table 9-11. Receiver AC Timing Specifications - 1500Mbps Data Rate/750MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V

Data Valid DV .375 UI Measured using the
RapidIO Receive Mask
shown in Figure 9-6

Allowable static skew between any two
data inputs within a 8 bit/9 bit group

tDPAIR .4 UI See Figure 9-10

Allowable static skew of data inputs to
associated clock

tSKEW,PAIR -.25 .25 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .3 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .3 UI See Figure 9-9

Table 9-9. Receiver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max
134 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The compliance of receiver input signals RD[0-15] and RFRAME with their
minimum Data Valid window (DV) specification shall be determined by generating
an eye pattern for each of the data signals and comparing the eye pattern of each data
signal with the RapidIO Receive Mask shown in Figure 9-6. The value of X2 used
to construct the mask shall be (1 - DVmin)/2. The +/- 100mV minimum data valid
and +/- 600mV maximum input voltage values are from the DC specification. A
signal is compliant with the Data Valid window specification if and only if the
Receive Mask can be positioned on the signal’s eye pattern such that the eye pattern
falls entirely within the unshaded portion of the mask.

Figure 9-6. RapidIO Receive Mask

Table 9-12. Receiver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V

Data Valid DV .35 UI Measured using the
RapidIO Receive Mask
shown in Figure 9-6

Allowable static skew between any two
data inputs within a 8 bit/9 bit group

tDPAIR .4 UI See Figure 9-10

Allowable static skew of data inputs to
associated clock

tSKEW,PAIR -.25 .25 UI See Figure 9-8,
Figure 9-10

Clock to clock static skew tCSKEW, PAIR .3 UI See Figure 9-9

Clock to clock dynamic skew tCSKEW, PAIRD .3 UI See Figure 9-9

Time in UI

600

100

-100

0

V
ID

 in m
V

-600

0 X2 1-X2 1

DV
RapidIO.org 135

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
The eye pattern for a data signal is generated by making a large number of
recordings of the signal and then overlaying the recordings. The number of
recordings used to generate the eye shall be large enough that further increasing the
number of recordings used does not cause the resulting eye pattern to change from
one that complies with the RapidIO Receive Mask to one that does not. Each data
signal in the interface shall be carrying random or pseudo-random data when the
recordings are made. If pseudo-random data is used, the length of the
pseudo-random sequence (repeat length) shall be long enough that increasing the
length of the sequence does not cause the resulting eye pattern to change from one
that complies with the RapidIO Receive Mask to one that does not comply with the
mask. The data carried by any given data signal in the interface may not be
correlated with the data carried by any other data signal in the interface. The
zero-crossings of the clock associated with a data signal shall be used as the timing
reference for aligning the multiple recordings of the data signal when the recordings
are overlaid.

While the method used to make the recordings and overlay them to form the eye
pattern is not specified, the method used shall be demonstrably equivalent to the
following method. The signal under test is repeatedly recorded with a digital
oscilloscope in infinite persistence mode. Each recording is triggered by a
zero-crossing of the clock associated with the data signal under test. Roughly half of
the recordings are triggered by positive-going clock zero-crossings and roughly half
are triggered by negative-going clock zero-crossings. Each recording is at least 1.9
UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI
before the trigger point (0.5 UI before the associated clock zero-crossing).
Depending on the length of the individual recordings used to generate the eye
pattern, one or more complete eyes will be formed. Regardless of the number of
eyes, the eye whose center is immediately to the right of the trigger point is the eye
used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3
UI in length is shown in Figure 9-7. In this example, there is no skew between the
signal under test and the associated clock used to trigger the recordings. If skew was
present, the eye pattern would be shifted to the left or right relative to the
oscilloscope trigger point.
136 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
.

Figure 9-7. Example Receiver Input Eye Pattern

1 UI 1 UI0.5 UI

Oscilloscope

0

+

-

Eye used for
Eye pattern

VID

compliance
testing

(recording)
trigger point
RapidIO.org 137

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 9-8 shows the definitions of the data to clock static skew parameter
tSKEW,PAIR and the Data Valid window parameter DV. The data and frame bits are
those that are associated with the clock. The figure applies for all zero-crossings of
the clock. All of the signals are differential signals. VD represents VOD for the
transmitter and VID for the receiver. The center of the eye is defined as the midpoint
of the region in which the magnitude of the signal voltage is greater than or equal to
the minimum DV voltage.

Figure 9-8. Data to Clock Skew

tSKEW,PAIR

1 UI nominal

0.5 UI

eye opening

0.5 DV 0.5 DV

DV

VD clock x

D[0-7]/D[8-15], FRAME

VD clock x VD = 0V

VD = 0V

VHDmin

VLDmax
138 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 9-9 shows the definitions of the clock to clock static skew parameter tCSKEW,

PAIR and the clock to clock dynamic skew parameter tCSKEW, PAIRD . All of the
signals shown are differential signals. VD represents VOD for the transmitter and
VID for the receiver. These two parameters, tCSKEW, PAIR and tCSKEW, PAIRD, only
apply to 16 bit interfaces.

Figure 9-9. Clock to Clock Skew

VD clock x VD = 0V

VD clock y VD = 0V

tCSKEW, PAIR

VD clock x VD = 0V

VD clock y VD = 0V

tCSKEW, PAIR

1 UI nominal

0.5 tCSKEW, PAIRD

tCSKEW, PAIRD

0.5 tCSKEW, PAIRD

tCSKEW, PAIRD
RapidIO.org 139

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure 9-10 shows the definition of the data to data static skew parameter tDPAIR and
how the skew parameters are applied.

Figure 9-10. Static Skew Diagram

tDPAIR

CLK0(CLK1)

1 UI nominal

tDPAIR

0.5 UI

tSKEW,PAIR

tSKEW,PAIR

center point of the data valid window of the
earliest allowed data bit for data grouped

center point for clock

FRAME, D[0-7](D[8-15])

FRAME, D[0-7]([D8-15])

late with respect to clock

center point of the data valid window of the
latest allowed data bit for data grouped
late with respect to clock

center point of the data valid window of the
latest allowed data bit for data grouped
early with respect to clock

center point of the data valid window of the
earliest allowed data bit for data grouped
early with respect to clock
140 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Annex A Interface Management (Informative)

A.1 Introduction
This appendix contains state machine descriptions that illustrate a number of
behaviors that are described in the RapidIO Part 4: 8/16 LP-LVDS Physical Layer
Specification. They are included as examples and are believed to be correct,
however, actual implementations should not use the examples directly.

A.2 Link Initialization and Maintenance Mechanism
This section contains the link training and initialization state machine referred to in
Section 3.7.1.1, “Sampling Window Alignment.” Training takes place in two
circumstances; when coming out of reset and after the loss of reliable input port
sampling during system operation.

Link initialization and maintenance actually requires two inter-dependent state
machines in order to operate, one associated with the input port and the other with
the output port. The two state machines work together to complete the link training.
The state machines are intended for a device with an 8-bit port or a device with a
16-bit port. The port can only transition from the “Port Uninitialized” status to the
“Port OK” status in the Port n Error and Status CSR when both halves of the state
machine are in their OK state.

A.2.1 Input port training state machine

Figure A-1 illustrates the input port training state machine. Error conditions are only
detectable while in the “OK” states (OK and OK_maint_trn). The optional
OK_maint_trn state, shaded in Figure A-1, is used to adjust the device input port
sampling circuitry during system operation.
RapidIO.org 141

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Figure A-1. Input port training state machine

Table A-1 describes the state transition arcs for Figure A-1.

Table A-1. Input port training state machine transition table

Arc Current State Next state cause Comments

1 reset reset Start training condition not met. Remain in the reset state until the
start training condition is met.
Typically, this is after reset has been
applied to the device and all other
necessary initialization activity has
completed.

2 reset wait_good_pttn Start training condition met. This state is entered after all
initialization activity has completed
for the device.

3 wait_good_pttn wait_good_pttn Wait for the sampling circuitry to
indicate that it is calibrated.

Remain in this state until the
sampling circuitry is calibrated.

4 wait_good_pttn wait_for_idle Sampling circuitry is calibrated and
the defined training pattern has been
received.

Upon recognizing the defined
training pattern, a 16-bit port can
decide whether it’s output port needs
to be downgraded to drive in 8-bit
mode. Request the output port to start
sending idle control symbols.

5 wait_for_idle wait_for_idle Remain in this state until an exit
condition occurs.

In this state, only training patterns
and link-request/send-training control
symbols are legal.

wait_good_pttn

wait_for_idle

OK

OK_maint_trn

reset

1

2
3

5

6

8

912

11

10

13

47

14
142 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
6 wait_for_idle OK Idle control symbol has been received This transition indicates that the input
port is ready to start receiving packets
and other control symbols. Due to
input/link delays the input port may
see an extra idle/training pattern
sequence when finishing the
alignment sequence.

7 wait_for_idle wait_good_pttn The input port receives something
besides a training pattern, idle, or
link-request/send-training control
symbol, or the sampling circuitry is
no longer calibrated.

Receiving something unexpected or
when the sampling circuitry is no
longer able to reliably sample the
device pins causes both the input port
and output port to start restart the
training sequence.

8 OK OK Sampling circuitry remains calibrated
and is not drifting.

This is a functional state in which
packets and control symbols can be
accepted. Errors are also reported in
this state.

9 OK ready_maint_trn Sampling circuitry drift. This transition takes place when the
sampling circuitry can still reliably
sample the device pins, but
adjustment is required to prevent
eventual loss of calibration.

10 OK wait_good_pttn Sampling circuitry is no longer
calibrated.

Both the input port and output port
restart the training sequence when the
sampling circuitry is no longer able to
reliably sample the device pins. This
error invokes the error recovery
algorithm when the OK state is
re-entered to attempt to recover
possible lost data.

11 OK_maint_trn OK_maint_trn Training patterns have not been
received, and the sampling circuitry
is still calibrated.

This is a functional state in which
packets and control symbols can be
accepted. Errors are also reported in
this state. In this state, the device
adjusts the sampling circuitry when
the training patterns are received.

12 OK_maint_trn OK The complete sequence of 256
training patterns followed by an idle
has been received and the sampling
circuitry is still calibrated.

Sampling circuitry has been adjusted.

13 OK_maint_trn wait_good_pttn Sampling circuitry is no longer
calibrated.

Both the input port and output port
restart the alignment sequence when
the sampling circuitry is no longer
able to reliably sample the device
pins. This error invokes the error
recovery algorithm when the ready
state is re-entered to attempt to
recover possible lost data.

14 OK wait_for_idle The input port receives a
link-request/send-training control
symbol immediately followed by a
training pattern

The attached device is no longer
calibrated and has re-started the
alignment sequence.

Table A-1. Input port training state machine transition table (Continued)

Arc Current State Next state cause Comments
RapidIO.org 143

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
A.2.2 Output port training state machine

Figure A-2 illustrates the output port training state machine. Packets can only be
transmitted when both the input port and output port are in their “OK” states (OK
and OK_maint_trn for the input port, and OK, OK_send_trn_req and
OK_send_trn_pttn for the output port). The optional OK_send_trn state, lightly
shaded in Figure A-2, is used to adjust the device input port sampling circuitry
during system operation, and is associated with the OK_maint_trn state in the input
port state machine.

Figure A-2. Output port training state machine

Table A-2 describes the state transition arcs for Figure A-2.

17 15

send_trn_req

reset

send_trn_pttn

send_idle

OK

1

2

3
4

5

69

8

7
10

16

11
OK_send_trn_pttn

18

12
OK_send_trn_req

13
14
144 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Table A-2. Output port training state machine transition table

Arc Current State Next state cause Comments

1 reset reset Start training condition not met. Remain in the reset state until the
start training condition is met.
Typically, this is after reset has been
applied to the device and all other
necessary initialization activity has
completed.

2 reset send_trn_req Start training condition met. This state is entered after all
initialization activity has completed
for the device. The output port will
send a link-request/send-training
control symbol

3 send_trn_req send_trn_pttn Unconditional transition. The output port will send 256
iterations of the training pattern

4 send_trn_pttn send_trn_pttn The 256 iterations of the training
pattern is not completed.

The input port is waiting to calibrate
and receive the defined training
pattern. The output port is sending
training patterns.

5 send_trn_pttn send_idles The 256 iterations of the training
pattern is completed and the input
port has requested to send idle control
symbols.

The input port sampling circuitry is
calibrated. In the send_idle state, one
idle control symbol is sent out on the
output port.

6 send_trn_pttn send_trn_req The 256 iterations of the training
pattern are completed but the input
port has not requested to send idle
control symbols.

Remain in the send_trn_req -
send_trn_pttn loop until the input port
sampling circuitry is calibrated and
the input port recognizes the defined
training pattern and then requests to
send idle control symbols. A
link-request/send-training control
symbol is sent out in state
send_trn_req.

7 send_idle OK The input port is in state OK Ready to start sending packets and
any control symbol.

8 send_idle send_trn_pttn The input port is not in OK or
wait_good_pttn state

The output port will send 256
iterations of the of the training pattern

9 send_idle send_trn_req The input port is in state
wait_good_pttn

Transition to send_trn_req and start
over.

10 OK OK A link-request/send-training is not
received on the input port and the
input port does not ask for a reset to
the beginning of the training
sequence.

This is a functional state in which
packets and control symbols are
transmitted. Errors are detected and
reported in this state.

11 OK OK_send_trn_pttn link-request/send-training followed
by a packet or control symbol is
received on the input port.

This transition occurs when in the OK
state and a maintenance training
request is received from the attached
device.

12 OK OK_send_trn_req The input port wants the attached
device to send 256 iterations of the
training pattern.

This transition occurs when in the OK
state and input port sampling circuitry
needs to be adjusted, and is
associated with the optional input
port OK_maint_trn state.
RapidIO.org 145

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
13 OK send_trn_req The input port asks for a reset to the
beginning of the training sequence.

Transition to send_trn_req and start
over. This occurs when the sampling
circuitry is no longer able to reliably
sample the device pins.

14 OK send_trn_pttn A link-request/send-training followed
by the training pattern is received on
the input port.

The attached device has lost
synchronization.

15 OK_send_trn_pttn OK_send_trn_pttn The 256 iterations of the training
pattern is not completed.

The output port is sending training
patterns. Errors are detected and
reported in this state. Must send at
least one idle control symbol after the
256 iterations.

16 OK_send_trn_pttn OK The 256 iterations of the training
pattern are completed and followed
by at least one idle control symbol.

This is a normal operating case where
the attached device requested that we
send training patterns yet it
maintained alignment.

17 OK_send_trn_req OK_send_trn_req Waiting to send the
link-request/send-training

Might have to wait for the end of the
current packet because link-request
control symbols can not be
embedded. Errors are detected and
reported in this state.

18 OK_send_trn_req OK link-request/send-training sent out on
the output port as requested by the
input port.

Input port is requesting training
patterns from the other end to adjust
its sampling circuitry.

Table A-2. Output port training state machine transition table (Continued)

Arc Current State Next state cause Comments
146 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
A.3 Packet Retry Mechanism
This section contains the example packet retry mechanism state machine referred to
in Section 2.3.3, “Transaction and Packet Delivery”.

Packet retry recovery actually requires two inter-dependent state machines in order
to operate, one associated with the input port and the other with the output port on
the two connected devices. The two state machines work together to attempt
recovery from a retry condition.

A.3.1 Input port retry recovery state machine

If a packet cannot be accepted by a receiver for reasons other than error conditions,
such as a full input buffer, the receiver follows the state sequence shown in
Figure A-3.

Table A-3 describes the state transition arcs for Figure A-3. The states referenced in
the comments in quotes are the RapidIO 8/16 LP-LVDS defined status states, not
states in this state machine.

Figure A-3. Input port retry recovery state machine

stop_input

retry_stopped

7

4

9

wait_for_retry

3

recovery_disabled

1

2 5

6

8

reset
RapidIO.org 147

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
A.3.2 Output port retry recovery state machine

On receipt of an error-free packet-retry acknowledge control symbol, the attached
output port follows the behavior shown in Figure A-4. The states referenced in the
comments in quotes are the RapidIO 8/16 LP-LVDS defined status states, not states

Table A-3. Input port retry recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the input
port is enabled to receive packets.

This is the initial state after reset. The
input port can’t be enabled before the
training sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_retry Input port is enabled.

3 wait_for_retry wait_for_retry Remain in this state until a packet
retry situation has been detected.

4 wait_for_retry stop_input A packet retry situation has been
detected.

Usually this is due to an internal
resource problem such as not having
packet buffers available for low
priority packets.

5 wait_for_retry recovery_disabled Input port is disabled.

6 stop_input stop_input Remain in this state until described
input port stop activity is completed.

Send a packet-retry control symbol
with the expected ackID, discard the
packet, and don’t change the expected
ackID. This will force the attached
device to initiate recovery starting at
the expected ackID. Clear the “Port
ready” state and set the “Input
Retry-stopped” state.

7 stop_input retry_stopped Input port stop activity is complete.

8 retry_stopped retry_stopped Remain in this state until a
restart-from-retry or
restart-from-error control symbol is
received or an input port error is
encountered.

The “Input Retry-stopped” state
causes the input port to silently
discard all incoming packets and not
change the expected ackID value.

9 retry_stopped wait_for_retry Received a restart-from-retry or a
restart-from-error control symbol or
an input port error is encountered.

The restart-from-error control symbol
is a link-request/input-status control
symbol. Clear the “Input
Retry-stopped” state and set the “Port
ready” state. An input port error shall
cause a clean transition between the
retry recovery state machine and the
error recovery state machine.
148 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
in this state machine.

Table A-4 describes the state transition arcs for Figure A-4.

Figure A-4. Output port retry recovery state machine

Table A-4. Output port retry recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the output
port is enabled to receive packets.

This is the initial state after reset. The
output port can’t be enabled before
the training sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_retry Output port is enabled.

3 wait_for_retry wait_for_retry Remain in this state until a
packet-retry control symbol is
received.

The packet-retry control symbol shall
be error free.

4 wait_for_retry stop_output A packet-retry control symbol has
been received.

 Start the output port stop procedure.

5 wait_for_retry recovery_disabled Output port is disabled.

6 stop_output stop_output Remain in this state until the output
port stop procedure is completed.

Clear the “Port ready” state, set the
“Output Retry-stopped” state, and
stop transmitting new packets.

7 stop_output recover Output port stop procedure is
complete.

stop_output

4

recover

7
9

6

wait_for_retry

3

recovery_disabled

1

2 5

8

reset
RapidIO.org 149

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
8 recover recover Remain in this state until the internal
recovery procedure is completed.

The packet sent with the ackID value
returned in the packet-retry control
symbol and all subsequent packets
shall be re-transmitted. Output port
state machines and the outstanding
ackID scoreboard shall be updated
with this information, then clear the
“Output Retry-stopped” state and set
the “Port ready” state to restart the
output port.
Receipt of a packet-not-accepted
control symbol or other output port
error during this procedure shall
cause a clean transition between the
retry recovery state machine and the
error recovery state machine.

9 recover wait_for_retry Internal recovery procedure is
complete.

Re-transmission has started, so return
to the wait_for_retry state to wait for
the next packet-retry control symbol.

Table A-4. Output port retry recovery state machine transition table (Continued)

Arc Current State Next state cause Comments
150 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
A.4 Error Recovery
This section contains the error recovery state machine referred to in Section 2.4.5,
“Link Behavior Under Error.”

Error recovery actually requires two inter-dependent state machines in order to
operate, one associated with the input port and the other with the output port on the
two connected devices. The two state machines work together to attempt recovery.

A.4.1 Input port error recovery state machine

There are a variety of recoverable error types described in detail in Section 2.4.5,
“Link Behavior Under Error”. The first group of errors are associated with the input
port, and consists mostly of corrupt packet and control symbols. An example of a
corrupt packet is a packet with an incorrect CRC. An example of a corrupt control
symbol is a control symbol where the second 16 bits are not an inversion of the first
16 bits. The recovery state machine for the input port of a RapidIO link is shown in
Figure A-5.

Table A-5 describes the state transition arcs for Figure A-5. The states referenced in
the comments in quotes are the RapidIO 8/16 LP-LVDS defined status states, not
states in this state machine.

Figure A-5. Input port error recovery state machine

stop_input

error_stopped

7

4

9

recovery_disabled

1

2

wait_for_error

3

5

8

6

reset
RapidIO.org 151

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
A.4.2 Output port error recovery state machine

The second recoverable group of errors described in Section 2.4.5, “Link Behavior
Under Error” is associated with the output port, and is comprised of control symbols
that are error-free and indicate that the attached input port has detected a
transmission error or some other unusual situation has occurred. An example of this
situation is indicated by the receipt of a packet-not-accepted control symbol.
Another example is the receipt of a link-request/send-training control symbol, which
should cause the error recovery procedure to be followed after responding to the

Table A-5. Input port error recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error
recovery is enabled.

This is the initial state after reset.
Error recovery can’t be enabled
before the training sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a
recoverable error is detected.

Detected errors and the level of
coverage is implementation
dependent.

4 wait_for_error stop_input A recoverable error has been
detected.

An output port associated error will
not cause this transition, only an input
port associated error.

5 wait_for_error recovery_disabled Error recovery is disabled.

6 stop_input stop_input Remain in this state until described
input port stop activity is completed.

Send a packet-not-accepted control
symbol and, if the error was on a
packet, discard the packet and don’t
change the expected ackID value.
This will force the attached device to
initiate recovery. Clear the “Port
ready” state and set the “Input
Error-stopped” state.

7 stop_input error_stopped Input port stop activity is complete.

8 error_stopped error_stopped Remain in this state until a
restart-from-error control symbol is
received.

The “Input Error-stopped” state
causes the input port to silently
discard all subsequent incoming
packets and ignore all subsequent
input port errors.

9 error_stopped wait_for_error Received a restart-from-error control
symbol.

The restart-from-error control symbol
is a link-request/input-status control
symbol. Clear the “Input
Error-stopped” state and set the “Port
ready” state, which will put the input
port back in normal operation.
152 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
request. The state machine for the output port is shown in Figure A-6.

Table A-6 describes the state transition arcs for Figure A-6. The states referenced in
the comments in quotes are the RapidIO 8/16 LP-LVDS defined status states, not
states in this state machine.

Figure A-6. Output port error recovery state machine

Table A-6. Output port error recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error
recovery is enabled.

This is the initial state after reset.
Error recovery can’t be enabled
before the training sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a
recoverable error is detected.

Detected errors and the level of
coverage is implementation
dependent.

4 wait_for_error stop_output A recoverable error has been
detected.

An input port associated error will not
cause this transition, only an output
port associated error.

5 wait_for_error recovery_disabled Error recovery is disabled.

stop_output

fatal_error

8

4

12

recover

7
10

6

wait_for_error

3

recovery_disabled

1

2 5

9 11

reset
RapidIO.org 153

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
6 stop_output stop_output Remain in this state until an exit
condition occurs.

Clear the “Port ready” state, set the
“Output Error-stopped” state, stop
transmitting new packets, and send a
link-request/input-status control
symbol. Ignore all subsequent output
port errors.
The input on the attached device is in
the “Input Error-stopped” state and is
waiting for a link-request/input-status
in order to be re-enabled to receive
packets.
An implementation may wish to
timeout several times before
regarding a timeout as fatal using a
threshold counter or some other
mechanism.

7 stop_output recover The link-response is received and
returned an outstanding ackID value

An outstanding ackID is a value sent
out on a packet that has not been
acknowledged yet. In the case where
no ackIDs are outstanding the
returned ackID value shall match the
next expected/next assigned ackID
value, indicating that the devices are
synchronized.
Recovery is possible, so follow
recovery procedure.

8 stop_output fatal_error The link-response is received and
returned an ackID value that is not
outstanding, or timed out waiting for
the link-response.

Recovery is not possible, so start
error shutdown procedure.

9 recover recover Remain in this state until the internal
recovery procedure is completed.

The packet sent with the ackID value
returned in the link-response and all
subsequent packets shall be
re-transmitted. All packets
transmitted with ackID values
preceding the returned value were
received by the attached device, so
they are treated as if packet-accepted
control symbols have been received
for them. Output port state machines
and the outstanding ackID scoreboard
shall be updated with this
information, then clear the “Output
Error-stopped” state and set the ‘Port
ready” state to restart the output port.

10 recover wait_for_error The internal recovery procedure is
complete.

Re-transmission (if any was
necessary) has started, so return to the
wait_for_error state to wait for the
next error.

Table A-6. Output port error recovery state machine transition table (Continued)

Arc Current State Next state cause Comments
154 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
11 fatal_error fatal_error Remain in this state until error
shutdown procedure is completed.

Clear the “Output Error-stopped”
state, set the “Port Error” state, and
signal a system error.

12 fatal_error wait_for_error Error shutdown procedure is
complete.

Return to the wait_for_error state
even though the output port is shut
off.

Table A-6. Output port error recovery state machine transition table (Continued)

Arc Current State Next state cause Comments
RapidIO.org 155

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Blank page
156 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Agent. A processing element that provides services to a processor.

ANSI. American National Standards Institute.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

CCITT. Consultive Communication for International Telegraph and
Telephone.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Control symbol. A quantum of information transmitted between two linked
devices to manage packet flow between the devices.

CRC. Cyclic redundancy code

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Deferred or delayed transaction. The process of the target of a transaction
capturing the transaction and completing it after responding to the
source with a retry.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

A

B

C

D

RapidIO.org 157

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the
RapidIO interconnect.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

DLL. Delay lock loop.

Doorbell. A port on a device that is capable of generating an interrupt to a
processor.

Double-data-rate clock. A data reference signal that indicates new valid data
on both low-to-high and high-to-low transitions of the clock.

EMI. Electromagnetic Interference.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

End point free device. A processing element which does not contain end
point functionality.

EOP. End of packet.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

First symbol. The leading 16 bits of a packet.

Full-duplex. Data can be transmitted in both directions between connected
processing elements at the same time.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

E

F

G

H

158 RapidIO.org

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

LVDS. Low voltage differential signaling.

Multicast. The concept of sending a packet to more than one processing
elements in a system.

NRZ signal. No return to zero signal.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PCB. Printed circuit board.

PLL. Phase lock loop.

Port-write. An address-less maintenance write operation.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

SECDED. Single error correction, double error detection.

Sender. The RapidIO interface output port on a processing element.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

SRAM. Static random access memory.

I

L

M

N

O

P

R

S

RapidIO.org 159

RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 3.0
Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Symbol. A 16-bit quantity.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

T

160 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 5: Globally Shared Memory

Logical Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

1.1 Incorporated comment review changes. 03/08/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable
Converted to ISO-friendly templates

02/23/2005

2.0 No technical changes. 06/14/2007

2.1 No technical changes. 07/09/2009

2.2 Technical changes: errata showing: 10-08-00001.005,
Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information. No technical changes 10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.2.1 Memory System.. 12
1.3 Features of the Globally Shared Memory Specification....................................... 13
1.3.1 Functional Features... 13
1.3.2 Physical Features .. 14
1.3.3 Performance Features ... 14
1.4 Contents .. 14
1.5 Terminology.. 15
1.6 Conventions .. 15

Chapter 2 System Models

2.1 Introduction... 17
2.2 Processing Element Models.. 17
2.2.1 Processor-Memory Processing Element Model.. 18
2.2.2 Integrated Processor-Memory Processing Element Model 19
2.2.3 Memory-Only Processing Element Model ... 19
2.2.4 Processor-Only Processing Element... 20
2.2.5 I/O Processing Element .. 20
2.2.6 Switch Processing Element... 20
2.3 Programming Models ... 21
2.3.1 Globally Shared Memory System Model ... 21
2.3.1.1 Software-Managed Cache Coherence Programming Model 23
2.4 System Issues .. 23
2.4.1 Operation Ordering ... 23
2.4.2 Transaction Delivery... 23
2.4.3 Deadlock Considerations .. 24

Chapter 3 Operation Descriptions

3.1 Introduction... 25
3.2 GSM Operations Cross Reference .. 26
3.3 GSM Operations ... 27
3.3.1 Read Operations.. 28
3.3.2 Instruction Read Operations ... 29
3.3.3 Read-for-Ownership Operations... 31
3.3.4 Data Cache Invalidate Operations .. 33
3.3.5 Castout Operations.. 34
3.3.6 TLB Invalidate-Entry Operations ... 35
RapidIO.org 3

Table of Contents

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3.7 TLB Invalidate-Entry Synchronization Operations.. 35
3.3.8 Instruction Cache Invalidate Operations... 35
3.3.9 Data Cache Flush Operations ... 36
3.3.10 I/O Read Operations ... 38
3.4 Endian, Byte Ordering, and Alignment .. 40

Chapter 4 Packet Format Descriptions

4.1 Introduction... 43
4.2 Request Packet Formats.. 43
4.2.1 Addressing and Alignment ... 44
4.2.2 Data Payloads ... 44
4.2.3 Field Definitions for All Request Packet Formats.. 47
4.2.4 Type 0 Packet Format (Implementation-Defined).. 49
4.2.5 Type 1 Packet Format (Intervention-Request Class).. 50
4.2.6 Type 2 Packet Format (Request Class)... 51
4.2.7 Type 3–4 Packet Formats (Reserved)... 52
4.2.8 Type 5 Packet Format (Write Class)... 52
4.2.9 Type 6–11 Packet Formats (Reserved)... 53
4.3 Response Packet Formats ... 53
4.3.1 Field Definitions for All Response Packet Formats ... 53
4.3.2 Type 12 Packet Format (Reserved) .. 54
4.3.3 Type 13 Packet Format (Response Class) .. 54
4.3.4 Type 14 Packet Format (Reserved) .. 54
4.3.5 Type 15 Packet Format (Implementation-Defined).. 55

Chapter 5 Globally Shared Memory Registers

5.1 Introduction... 57
5.2 Register Summary... 57
5.3 Reserved Register, Bit and Bit Field Value Behavior .. 58
5.4 Capability Registers (CARs) .. 60
5.4.1 Source Operations CAR.. 60
5.4.2 Destination Operations CAR .. 61
5.5 Command and Status Registers (CSRs).. 62

Chapter 6 Communication Protocols

6.1 Introduction... 63
6.2 Definitions .. 63
6.2.1 General Definitions... 64
6.2.2 Request and Response Definitions ... 66
6.2.2.1 System Request... 66
6.2.2.2 Local Request ... 66
6.2.2.3 System Response .. 67
4 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2

Table of Contents
6.2.2.4 Local Response... 67
6.3 Operation to Protocol Cross Reference .. 67
6.4 Read Operations.. 68
6.4.1 Internal Request State Machine .. 68
6.4.2 Response State Machine ... 68
6.4.3 External Request State Machine ... 70
6.5 Instruction Read Operations ... 72
6.5.1 Internal Request State Machine .. 72
6.5.2 Response State Machine ... 72
6.5.3 External Request State Machine ... 73
6.6 Read for Ownership Operations ... 75
6.6.1 Internal Request State Machine .. 75
6.6.2 Response State Machine ... 75
6.6.3 External Request State Machine ... 78
6.7 Data Cache and Instruction Cache Invalidate Operations 79
6.7.1 Internal Request State Machine .. 79
6.7.2 Response State Machine ... 79
6.7.3 External Request State Machine ... 80
6.8 Castout Operations.. 82
6.8.1 Internal Request State Machine .. 82
6.8.2 Response State Machine ... 82
6.8.3 External Request State Machine ... 82
6.9 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations 83
6.9.1 Internal Request State Machine .. 83
6.9.2 Response State Machine ... 83
6.9.3 External Request State Machine ... 83
6.10 Data Cache Flush Operations ... 84
6.10.1 Internal Request State Machine .. 84
6.10.2 Response State Machine ... 84
6.10.3 External Request State Machine ... 86
6.11 I/O Read Operations ... 88
6.11.1 Internal Request State Machine .. 88
6.11.2 Response State Machine ... 88
6.11.3 External Request State Machine ... 89

Chapter 7 Address Collision Resolution Tables

7.1 Introduction... 91
7.2 Resolving an Outstanding READ_HOME Transaction 92
7.3 Resolving an Outstanding IREAD_HOME Transaction 93
7.4 Resolving an Outstanding READ_OWNER Transaction 94
7.5 Resolving an Outstanding READ_TO_OWN_HOME Transaction 95
7.6 Resolving an Outstanding READ_TO_OWN_OWNER Transaction.................. 97
7.7 Resolving an Outstanding DKILL_HOME Transaction 98
7.8 Resolving an Outstanding DKILL_SHARER Transaction 100
7.9 Resolving an Outstanding IKILL_HOME Transaction...................................... 101
RapidIO.org 5

Table of Contents

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.10 Resolving an Outstanding IKILL_SHARER Transaction.................................. 102
7.11 Resolving an Outstanding CASTOUT Transaction.. 103
7.12 Resolving an Outstanding TLBIE or TLBSYNC Transaction 104
7.13 Resolving an Outstanding FLUSH Transaction ... 105
7.14 Resolving an Outstanding IO_READ_HOME Transaction 107
7.15 Resolving an Outstanding IO_READ_OWNER Transaction 109
6 RapidIO.org

List of Figures

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
1-1 A Snoopy Bus-Based System ...12
1-2 A Distributed Memory System ...13
2-1 A Possible RapidIO-Based Computing System..17
2-2 Processor-Memory Processing Element Example ..18
2-3 Integrated Processor-Memory Processing Element Example...19
2-4 Memory-Only Processing Element Example ...19
2-5 Processor-Only Processing Element Example..20
2-6 Switch Processing Element Example ...21
3-1 Read Operation to Remote Shared Coherence Granule..28
3-2 Read Operation to Remote Modified Coherence Granule..28
3-3 Read Operation to Local Modified Coherence Granule ...29
3-4 Instruction Read Operation to Remote Shared Coherence Granule30
3-5 Instruction Read Operation to Remote Modified Coherence Granule30
3-6 Instruction Read Operation to Local Modified Coherence Granule...............................30
3-7 Instruction Read Operation Paradox Case ..31
3-8 Read-for-Ownership Operation to Remote Shared Coherence Granule.........................31
3-9 Read-for-Ownership Operation to Remote Modified Coherence Granule32
3-10 Read-for-Ownership Operation to Local Shared Coherence Granule32
3-11 Read-for-Ownership Operation to Local Modified Coherence Granule32
3-12 Data Cache Invalidate Operation to Remote Shared Coherence Granule33
3-13 Data Cache Invalidate Operation to Local Shared Coherence Granule..........................34
3-14 Castout Operation on Remote Modified Coherence Granule ...34
3-15 TLB Invalidate-Entry Operation...35
3-16 TLB Invalidate-Entry Synchronization Operation ...35
3-17 Instruction Cache Invalidate Operation to Remote Sharable Coherence Granule..........36
3-18 Instruction Cache Invalidate Operation to Local Sharable Coherence Granule36
3-19 Flush Operation to Remote Shared Coherence Granule ...37
3-20 Flush Operation to Remote Modified Coherence Granule ...38
3-21 Flush Operation to Local Shared Coherence Granule ..38
3-22 Flush Operation to Local Modified Coherence Granule ..38
3-23 I/O Read Operation to Remote Shared Coherence Granule ...39
3-24 I/O Read Operation to Remote Modified Coherence Granule39
3-25 I/O Read Operation to Local Modified Coherence Granule...39
3-26 Byte Alignment Example..40
3-27 Half-Word Alignment Example..40
3-28 Word Alignment Example ..40
3-29 Data Alignment Example..41
4-1 Type 1 Packet Bit Stream Format...50
4-2 Type 2 Packet Bit Stream Format...52
4-3 Type 5 Packet Bit Stream Format...52
4-4 Type 13 Packet Bit Stream Format...54
RapidIO.org 7

List of Figures

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Blank page
8 RapidIO.org

List of Tables

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
2-1 RapidIO Memory Directory Definition ..22
3-1 GSM Operations Cross Reference ..26
4-1 Request Packet Type to Transaction Type Cross Reference ..43
4-2 Coherent 32-Byte Read Data Return Ordering...45
4-3 Coherent 64-Byte Read Data Return Ordering...45
4-4 Coherent 32-Byte Write Data Payload ...46
4-5 Coherent 64-Byte Write Data Payloads..46
4-6 General Field Definitions for All Request Packets...47
4-7 Read Size (rdsize) Definitions ..48
4-8 Write Size (wrsize) Definitions ..49
4-9 Specific Field Definitions and Encodings for Type 1 Packets50
4-10 Transaction Field Encodings for Type 2 Packets ...51
4-11 Transaction Field Encodings for Type 5 Packets ...52
4-12 Request Packet Type to Transaction Type Cross Reference ..53
4-13 Field Definitions and Encodings for All Response Packets ...53
5-1 GSM Register Map ...57
5-2 Configuration Space Reserved Access Behavior..58
5-3 Bit Settings for Source Operations CAR ..60
5-4 Bit Settings for Destination Operations CAR...61
6-1 Operation to Protocol Cross Reference ..67
7-1 Address Collision Resolution for READ_HOME ..92
7-2 Address Collision Resolution for IREAD_HOME...93
7-3 Address Collision Resolution for READ_OWNER ...94
7-4 Address Collision Resolution for READ_TO_OWN_HOME95
7-5 Address Collision Resolution for READ_TO_OWN_OWNER97
7-6 Address Collision Resolution for DKILL_HOME...98
7-7 Address Collision Resolution for DKILL_SHARER...100
7-8 Address Collision Resolution for IKILL_HOME ..101
7-9 Address Collision Resolution for IKILL_SHARER ..102
7-10 Address Collision Resolution for CASTOUT ..103
7-11 Address Collision Resolution for Software Coherence Operations..............................104
7-12 Address Collision Resolution for Participant FLUSH..105
7-13 Address Collision Resolution for Non-participant FLUSH..106
7-14 Address Collision Resolution for Participant IO_READ_HOME107
7-15 Address Collision Resolution for Non-participant IO_READ_HOME108
7-16 Address Collision Resolution for Participant IO_READ_OWNER.............................109
7-17 Address Collision Resolution for Non-participant IO_READ_OWNER.....................110
RapidIO.org 9

List of Tables

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Blank page
10 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 5: Globally Shared Memory
Logical Specification, including a description of the relationship between this
specification and the other specifications of the RapidIO interconnect.

1.2 Overview
Although RapidIO is targeted toward the message passing programming model, it
supports a globally shared distributed memory (GSM) model as defined by this
specification. The globally shared memory programming model is the preferred
programming model for modern general-purpose multiprocessing computer
systems, which requires cache coherency support in hardware. This addition of
GSM enables both distributed I/O processing and general purpose multiprocessing
to co-exist under the same protocol.

The RapidIO Part 5: Globally Shared Memory Logical Specification is one of the
RapidIO logical layer specifications that define the interconnect’s overall protocol
and packet formats. This layer contains the information necessary for end points to
process a transaction. Other RapidIO logical layer specifications include RapidIO
Part 1: Input/Output Logical Specification and RapidIO Part 2: Message Passing
Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encodings for the transport and physical layers lower in the specification
hierarchy.

RapidIO is a definition of a system interconnect. System concepts such as processor
programming models, memory coherency models and caching are beyond the scope
of the RapidIO architecture. The support of memory coherency models, through
caches, memory directories (or equivalent, to hold state and speed up remote
memory access) is the responsibility of the end points (processors, memory, and
possibly I/O devices), using RapidIO operations. RapidIO provides the operations
to construct a wide variety of systems, based on programming models that range
from strong consistency through total store ordering to weak ordering.
Inter-operability between end points supporting different
coherency/caching/directory models is not guaranteed. However, groups of
RapidIO.org 11

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
end-points with conforming models can be linked to others conforming to different
models on the same RapidIO fabric. These different groups can communicate
through RapidIO messaging or I/O operations. Any reference to these areas within
the RapidIO architecture specification are for illustration only.

The RapidIO Interconnect Globally Shared Memory Logical Specification assumes
that the reader is familiar with the concepts and terminology of cache coherent
systems in general and with CC-NUMA systems in specific. Further information on
shared memory concepts can be found in:

Daniel E. Lenoski and Wolf-Dietrich Weber, “Scalable Shared-Memory
Multiprocessing”, Morgan Kaufmann, 1995.

and

David Culler, Jaswinder Pal Singh, and Anoop Gupta: “Parallel Computer
Architecture: A Hardware/Software Approach”, Morgan Kaufmann, 1998

1.2.1 Memory System

Under the globally shared distributed memory programming model, memory may
be physically located in different places in the machine yet may be shared amongst
different processing elements. Typically, mainstream system architectures have
addressed shared memory using transaction broadcasts sometimes known as
bus-based snoopy protocols. These are usually implemented through a centralized
memory controller for which all devices have equal or uniform access. Figure 1-1
shows a typical bus-based shared memory system.

Super computers, massively parallel, and clustered machines that have distributed
memory systems must use a different technique from broadcasting for maintaining
memory coherency. Because a broadcast snoopy protocol in these machines is not
efficient given the number of devices that must participate and the latency and
transaction overhead involved, coherency mechanisms such as memory directories

Figure 1-1. A Snoopy Bus-Based System

Processor
A

Processor
B

Processor
C

Processor
D

Bridge

XBUS

MPIC

PCI

Memory

Snoopy-bus
12 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
or distributed linked lists are required to keep track of where the most current copy
of data resides. These schemes are often referred to as cache coherent non-uniform
memory access (CC-NUMA) protocols. A typical distributed memory system
architecture is shown in Figure 1-2.

For RapidIO, a relatively simple directory-based coherency scheme is chosen. For
this method each memory controller is responsible for tracking where the most
current copy of each data element resides in the system. RapidIO furnishes a variety
of ISA specific cache control and operating system support operations such as block
flushes and TLB synchronization mechanisms.

To reduce the directory overhead required, the architecture is optimized around
small clusters of 16 processors known as coherency domains. With the concept of
domains, it is possible for multiple coherence groupings to coexist in the
interconnect as tightly coupled processing clusters.

1.3 Features of the Globally Shared Memory Specification
The following are features of the RapidIO GSM specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features
• A cache coherent non-uniform memory access (CC-NUMA) system

architecture is supported to provide a globally shared memory model because
physics is forcing component interfaces in many high-speed designs to be
point-to-point instead of traditional bus-based.

• The size of processor memory requests are either in the cache coherence
granularity, or smaller. The coherence granule size may be different for
different processor families or implementations.

Figure 1-2. A Distributed Memory System

Processor
A

Processor
B

Bridge

PCI

Memory

Snoopy-bus

Processor
A

Processor
B

Bridge

PCI

Memory

Snoopy-bus

Interconnect
Fabric
RapidIO.org 13

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
• Instruction sets in RapidIO support a variety of cache control and other
operations such as block flushes. These functions are supported to run legacy
applications and operating systems.

1.3.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface

to other devices on the interconnect fabric.

• The protocols and packet formats are independent of the physical interconnect
topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.

• The protocols handle out-of-order packet transmission and reception.

• Certain devices have bandwidth and latency requirements for proper operation.
RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead

and be organized for fast, efficient assembly and disassembly.

• 48- and 64-bit addresses are required in the future, and must be supported
initially.

• An interventionist (non-memory owner, direct-to-requestor data transfer,
analogous to a cache-to-cache transfer) protocol saves a large amount of
latency for memory accesses that cause another processing element to
provide the requested data.

• Multiple transactions must be allowed concurrently in the system, otherwise a
majority of the potential system throughput is wasted.

1.4 Contents
Following are the contents of the RapidIO Interconnect Globally Shared Memory
Logical Specification:

• Chapter 1, “Overview,” describes the set of operations and transactions
supported by the RapidIO globally shared memory protocols.

• Chapter 2, “System Models,” introduces some possible devices that could
participate in a RapidIO GSM system environment. The chapter explains the
memory directory-based mechanism that tracks memory accesses and
maintains cache coherence. Transaction ordering and deadlock prevention
are also covered.
14 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO globally-shared memory (GSM)
protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the GSM specification. The two basic types, request and
response packets, with their sub-types and fields are defined. The chapter
explains how memory read latency is handled by RapidIO.

• Chapter 5, “Globally Shared Memory Registers,” describes the visible register
set that allows an external processing element to determine the globally
shared memory capabilities, configuration, and status of a processing
element using this logical specification. Only registers or register bits
specific to the GSM logical specification are explained. Refer to the other
RapidIO logical, transport, and physical specifications of interest to
determine a complete list of registers and bit definitions.

• Chapter 6, “Communication Protocols,” contains the communications protocol
definitions for this GSM specification.

• Chapter 7, “Address Collision Resolution Tables,” explains the actions
necessary under the RapidIO GSM model to resolve address collisions.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits

ACTIVE_HIGH Names of active high signals are shown in uppercase text with
no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in
uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.
RapidIO.org 15

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
16 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 2 System Models

2.1 Introduction
This overview introduces some possible devices in a RapidIO system.

2.2 Processing Element Models
Figure 2-1 describes a possible RapidIO-based computing system. The processing
element is a computer device such as a processor attached to a local memory and
also attached to a RapidIO system interconnect. The bridge part of the system
provides I/O subsystem services such as high-speed PCI interfaces and gigabit
ethernet ports, interrupt control, and other system support functions. Multiple
processing elements require cache coherence support in the RapidIO protocol to
preserve the traditional globally shared memory programming model (discussed in
Section 2.3.1, “Globally Shared Memory System Model”).

A processing element containing a processor typically has associated with it a
caching hierarchy to improve system performance. The RapidIO protocol supports
a set of operations sufficient to fulfill the requirements of a processor with a caching
hierarchy and associated support logic such as a processing element.

Figure 2-1. A Possible RapidIO-Based Computing System

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

USB
RapidIO.org 17

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
RapidIO is defined so that many types of devices can be designed for specific
applications and connected to the system interconnect. These devices may
participate in the cache coherency protocol, act as a DMA device, utilize the
message passing facilities to communicate with other devices on the interconnect,
and so forth. A bridge could be designed, for example, to use the message passing
facility to pass ATM packets to and from a processing element for route processing.
The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element Model

Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to a local memory that has much
lower latency than memory that is local to another processing element (remote
memory accesses). It also provides an interface to the RapidIO interconnect to
service those remote memory accesses.

In support of the remote accesses, the agent maintains a cache of remote accesses
that includes all remote data currently residing in and owned by the local processor.
This cache may be either external or internal to the agent device.

Agent caching is necessary due to the construction of the RapidIO cache coherence
protocol combined with the cache hierarchy behavior in modern processors. Many
modern processors have multiple level non-inclusive caching structures that are
maintained independently. This implies that when a coherence granule is cast out of
the processor, it may or may not be returning ownership of the granule to the
memory system. The RapidIO protocol requires that ownership of a coherence
granule be guaranteed to be returned to the system on demand and without
ambiguous cache state changes as with the castout behavior. The remote cache can
guarantee that a coherence granule requested by the system is owned locally and can
be returned to the home memory (the physical memory containing the coherence

Figure 2-2. Processor-Memory Processing Element Example

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect

Remote
Cache
18 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
granule) on demand. A processing element that is fully integrated would also need
to support this behavior.

2.2.2 Integrated Processor-Memory Processing Element Model

Another form of a processor-memory processing element is a fully integrated
component that is designed specifically to connect to a RapidIO interconnect system
as shown in Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package. Because such a device is designed specifically for RapidIO, a remote cache
is not required because the proper support can be designed into the processor and its
associated logic rather than requiring an agent to compensate for a stand alone
processor’s behavior.

2.2.3 Memory-Only Processing Element Model

A different processing element may not contain a processor at all, but may be a
memory-only device as in Figure 2-4. This type of device is much simpler than a
processor as it is only responsible for responding to requests from the external
system, not from local requests as in the processor-based model. As such, its
memory is remote for all processors in the system.

Figure 2-3. Integrated Processor-Memory Processing Element Example

Figure 2-4. Memory-Only Processing Element Example

Processor

Memory

RapidIO-based
System Interconnect

Memory

Memory

RapidIO-based
System Interconnect

Control
RapidIO.org 19

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
2.2.4 Processor-Only Processing Element

Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing element is shown in Figure 2-5.

2.2.5 I/O Processing Element

This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory. An I/O device only
needs to move data into and out of local or remote memory in a cache coherent
fashion. This means that if the I/O device needs to read from memory, it only needs
to obtain a known good copy of the data to write to the external device (such as a
disk drive or video display). If the I/O device needs to write to memory, it only needs
to get ownership of the coherence granule returned to the home memory and not take
ownership for itself. Both of these operations have special support in the RapidIO
protocol.

2.2.6 Switch Processing Element

A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidIO compliant processing elements. A possible switch is shown in
Figure 2-6.

Figure 2-5. Processor-Only Processing Element Example

Agent

Processor

Local Interconnect

RapidIO-based
System Interconnect

Remote
Cache
20 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
2.3 Programming Models
RapidIO supports applications developed under globally shared memory and
software-managed cache coherence programming models.

2.3.1 Globally Shared Memory System Model

The preferred programming model for modern computer systems provides memory
that is accessible from all processors in a cache coherent fashion. This model is also
known as GSM, or globally shared memory. For traditional bus-based computer
systems this is not a difficult technical problem to solve because all participants in
the cache coherence mechanism see all memory activity simultaneously, meaning
that communication between processors is very fast and handled without explicit
software control. However, in a non-uniform memory access system, this
simultaneous memory access visibility is not the case.

With a distributed memory system, cache coherence needs to be maintained through
some tracking mechanism that keeps records of memory access activity and
explicitly notifies specific cache coherence participant processing elements when a
cache coherence hazard is detected. For example, if a processing element wishes to
write to a memory address, all participant processing elements that have accessed
that coherence granule are notified to invalidate that address in their caches. Only
when all of the participant processing elements have completed the invalidate
operation and replied back to the tracking mechanism is the write allowed to
proceed.

The tracking mechanism preferred for the RapidIO protocol is the memory directory
based system model. This system model allows efficient, moderate scalability with
a reasonable amount of information storage required for the tracking mechanism.

Cache coherence is defined around the concept of domains. The RapidIO protocol
assumes a memory directory based cache coherence mechanism. Because the
storage requirements for the directory can be high, the protocol was optimized
assuming a 16-participant domain size as a reasonable coherence scalability limit.
With this limit in mind, a moderately scalable system of 16 participants can be

Figure 2-6. Switch Processing Element Example

Switch
RapidIO.org 21

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
designed, possibly using a multicast mechanism in the transport layer for better
efficiency. This size does not limit a system designer from defining a larger or a
smaller coherent system such as the four processing element system in Figure 2-1
on page 17 since the number of domains and the number of participants is flexible.
The total number of coherence domains and the scalability limit are determined by
the number of transport bits allowed by the appropriate transport layer specification.

Table 2-1 describes an example of the directory states assumed for the RapidIO
protocol for a small four-processing element cache coherent system (the table
assumes that processor 0 is the local processor). Every coherence granule that is
accessible by a remote processing element has this 4-bit field associated with it, so
some state storage is required for each globally shared granule. The least significant
bit (the right most, bit 3) indicates that a processing element has taken ownership of
a coherence granule. The remaining three bits indicate that processing elements have
accessed that coherence granule, or the current owner if the granule has been
modified, with bit 0 corresponding to processor 3, bit 1 corresponding to processor
2, and bit 2 corresponding to processor 1. These bits are also known as the sharing
mask or sharing list.

Owing to the encoding of the bits, the local processing element is always assumed
to have accessed the granule even if it has not. This definition allows us to know
exactly which processing elements have participated in the cache coherency
protocol for each shared coherence granule at all times. Other state definitions can
be implemented as long as they encompass the MSL (modified, shared, local) state
functionality described here.

Table 2-1. RapidIO Memory Directory Definition

State Description

0000 Processor 0 (local) shared

0001 Processor 0 (local) modified

0010 Processor 1, 0 shared

0011 Processor 1 modified

0100 Processor 2, 0 shared

0101 Processor 2 modified

0110 Processor 2, 1, 0 shared

0111 Illegal

1000 Processor 3, 0 shared

1001 Processor 3 modified

1010 Processor 3, 1, 0 shared

1011 Illegal

1100 Processor 3, 2, 0 shared

1101 Illegal
22 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
When a coherence granule is referenced, the corresponding 4-bit coherence state is
examined by the memory controller to determine if the access can be handled in
memory, or if data must be obtained from the current owner (a shared granule is
owned by the home memory). Coherence activity in the system is started using the
cache coherence protocol, if it is necessary to do so, to complete the memory
operation.

2.3.1.1 Software-Managed Cache Coherence Programming Model

The software-managed cache coherence programming model depends upon the
application programmer to guarantee that the same coherence granule is not resident
in more than one cache in the system simultaneously if it is possible for that
coherence granule to be written by one of the processors. The application software
allows sharing of written data by using cache manipulation instructions to flush
these coherence granules to memory before they are read by another processor. This
programming model is useful in transaction and distributed processing types of
systems.

2.4 System Issues

The following sections describe transaction ordering and system deadlock
considerations in a RapidIO GSM system.

2.4.1 Operation Ordering

Operation completion ordering in a globally shared memory system is managed by
the completion units of the processing elements participating in the coherence
protocol and by the coherence protocol itself.

2.4.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO
processing elements: unordered and ordered. The RapidIO logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logical protocols do not rely on transaction
interdependencies for operation. RapidIO also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware. The specific mechanisms and definitions of how RapidIO
enforces transaction ordering are discussed in the appropriate physical layer
specification.

1110 Processor 3, 2, 1, 0 shared

1111 Illegal

Table 2-1. RapidIO Memory Directory Definition (Continued)
RapidIO.org 23

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
2.4.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidIO is
designed to be a reliable fabric for use in real time tightly coupled systems,
therefore, discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency loops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes, physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing), then topology related
dependency loops are avoided in these structures.

In addition, a processing element design shall not form dependency links between
its input and output port. A dependency link between input and output ports occurs
if a processing element is unable to accept an input packet until a waiting packet can
be issued from the output port.

RapidIO supports operations, such as coherent read-for-ownership operations, that
require responses to complete. These operations can lead to a dependency link
between an processing element’s input port and output port.

As an example of an input to output port dependency, consider a processing element
where the output port queue is full. The processing element can not accept a new
request at its input port since there is no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

A further consideration is that of the read-for-ownership operation colliding with a
castout of the requested memory address by another processing element. In order for
the read-for-ownership operation to complete the underlying castout operation must
complete. Therefore the castout must be given higher preference in the system in
order to move ahead of other operations in order to break up the dependency.

The method by which a RapidIO system maintains a deadlock free environment is
described in the appropriate Physical Layer specification.
24 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the set of operations and transactions supported by the
RapidIO globally-shared memory (GSM) protocols. The opcodes and packet
formats are described in Chapter 4, “Packet Format Descriptions.” The complete
protocols are described in Chapter 6, “Communication Protocols.”

The RapidIO operation protocols use request/response transaction pairs through the
interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been
completed or if an error condition is encountered. Each transaction is sent as a packet
through the interconnect fabric. For example, a processing element that requires data
from home memory in another processing element sends a READ_HOME
transaction in a request packet. The receiving element then reads its local memory
at the requested address and returns the data in a DONE transaction via a response
packet. Note that not all requests require responses; some requests assume that the
desired activity will complete properly.

A number of possible response transactions can be received by a requesting
processing element:

• A DONE response indicates to the requestor that the desired transaction has
completed and also returns data for read-type transactions as described
above.

• The INTERVENTION, DONE_INTERVENTION, and DATA_ONLY
responses are generated as part of the processing element-to-processing
element (as opposed to processing element-to-home memory) data transfer
mechanism defined by the cache coherence protocol. The INTERVENTION
and DONE_INTERVENTION responses are abbreviated as INTERV and
DONE_INTERV in this chapter.

• The NOT_OWNER and RETRY responses are received when there are address
conflicts within the system that need resolution.

• An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such
RapidIO.org 25

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
as a device number. These requirements are described in the appropriate RapidIO
transport layer specification and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
RapidIO physical layer specification and are beyond the scope of this document.

Each request transaction sent into the system is marked with a transaction ID that is
unique for each requestor and responder processing element pair. This transaction
ID allows a response to be easily matched to the original request when it is returned
to the requestor. An end point cannot reuse a transaction ID value to the same
destination until the response from the original transaction has been received by the
requestor. The number of outstanding transactions that may be supported is
implementation dependent.

The transaction behaviors are also described as state machine behavior in Chapter 6,
“Communication Protocols”.

3.2 GSM Operations Cross Reference
Table 3-1 contains a cross reference of the GSM operations defined in this RapidIO
specification and their system usage.

Table 3-1. GSM Operations Cross Reference

Operation
Transactions

Used
Possible System Usage Description Packet Format Protocol

Read READ_HOME,
READ_OWNER,
RESPONSE

CC-NUMA operation Section 3.3.1
page 28

Types 1 and 2:
Section 4.2.5
page 50 and
Section 4.2.6
page 51

Section 6.4
page 68

Instruction read IREAD_HOME,
READ_OWNER,
RESPONSE

Combination of CC-NUMA
and software-maintained
coherence of instruction
caches

Section 3.3.2
page 29

Type 2
Section 4.2.6
page 51

Section 6.4
page 68

Read-for-
ownership

READ_TO_OWN_
HOME,
READ_TO_OWN_
OWNER,
DKILL_SHARER
RESPONSE

CC-NUMA operation Section 3.3.3
page 31

Types 1 and 2:
Section 4.2.5
page 50 and
Section 4.2.6
page 51

Section 6.6
page 75

Data cache
invalidate

DKILL_HOME,
DKILL_SHARER,
RESPONSE

CC-NUMA operation;
software-maintained
coherence operation

Section 3.3.4
page 33

Type 2
Section 4.2.6
page 51

Section 6.7
page 79

Castout CASTOUT,
RESPONSE

CC-NUMA operation Section 3.3.5
page 34

Type 5
Section 4.2.8
page 52

Section 6.8
page 82
26 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3 GSM Operations
A set of transactions are used to support GSM (cache coherence) operations to
cacheable memory space. The following descriptions assume that all requests are to
system memory rather than to some other type of device.

GSM operations occur based on the size of the coherence granule. Changes in the
coherence granule for a system do not change any of the operation protocols, only
the data payload size. The only exceptions to this are flush and I/O read operations,
which may request (in the case of an I/O read), or have (in the case of a flush) a
sub-coherence granule to support coherent I/O and write-through caches. Flush
operations may also have no data payload in order to support cache manipulation
instructions.

Some transactions are sent to multiple recipients in the process of completing an
operation. These transactions can be sent either as a number of directed transactions
or as a single transaction if the transport layer has multicast capability. Multicast
capability and operation is defined in the appropriate RapidIO transport layer
specification.

TLB
invalidate-entry

TLBIE, RESPONSE Software-maintained
coherence of page table
entries

Section 3.3.6 Type 2
Section 4.2.6

Section 6.9

TLB
invalidate-entry
synchronize

TLBSYNC,
RESPONSE

Software-maintained
coherence of page table
entries

Section 3.3.7 Type 2
Section 4.2.6

Section 6.9

Instruction
cache invalidate

IKILL_HOME,
IKILL_SHARER,
RESPONSE,

Software-maintained
coherence of instruction
caches

Section 3.3.8 Type 2
Section 4.2.6

Section 6.7

Data cache flush FLUSH,
DKILL_SHARER,
READ_TO_OWN_
OWNER,
RESPONSE

CC-NUMA flush
instructions;
CC-NUMA write-through
cache support;
CC-NUMA DMA I/O device
support;
software-maintained
coherence operation.

Section 3.3.9 Types 2 and 5:
Section 4.2.6
and
Section 4.2.8

Section 6.10

I/O read IO_READ_HOME,
IO_READ_
OWNER, INTERV,
RESPONSE

CC-NUMA DMA, I/O DMA
device support

Section 3.3.10 Types 1 and 2:
Section 4.2.5
and
Section 4.2.6

Section 6.11

Table 3-1. GSM Operations Cross Reference (Continued)

Operation
Transactions

Used
Possible System Usage Description Packet Format Protocol
RapidIO.org 27

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3.1 Read Operations

The READ_HOME, READ_OWNER, and RESPONSE transactions are used
during a read operation by a processing element that needs a shared copy of
cache-coherent data from the memory system. A read operation always returns one
coherence granule-sized data payload.

The READ_HOME transaction is used by a processing element that needs to read a
shared copy of a coherence granule from a remote home memory on another
processing element.

The READ_OWNER transaction is used by a home memory processing element
that needs to read a shared copy of a coherence granule that is owned by a remote
processing element.

The following types of read operations are possible:

• If the requested data exists in the memory directory as shared, the data can be
returned immediately from memory with a DONE RESPONSE transaction
and the requesting processing element’s device ID is added to the sharing
mask as shown in Figure 3-1.

• If the requested data exists in the memory directory as modified, the up-to-date
(current) data must be obtained from the owner. The home memory then
sends a READ_OWNER request to the processing element that owns the
coherence granule. The owner passes a copy of the data to the original
requestor and to memory, memory is updated, and the directory state is
changed from modified and owner to shared by the previous owner and the
requesting processing element’s device ID as shown in Figure 3-2.

Figure 3-1. Read Operation to Remote Shared Coherence Granule

Figure 3-2. Read Operation to Remote Modified Coherence Granule

Requestor
Home

Memory

DONE, data2

READ_HOME1

Requestor
Home

Memory

DONE_INTERV

Owner

5

READ_HOME1 READ_OWNER2

INTERV, data4

DATA_ONLY, data3
28 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
• If the processing element requesting a modified coherence granule happens to
be the home for the memory, some of the transactions can be eliminated as
shown in Figure 3-3.

3.3.2 Instruction Read Operations

Some processors have instruction caches that do not participate in the system cache
coherence mechanism. Additionally, the instruction cache load may also load a
shared instruction and data cache lower in the cache hierarchy. This can lead to a
situation where the instruction cache issues a shared read operation to the system for
a coherence granule that is owned by that processor’s data cache, resulting in a cache
coherence paradox to the home memory directory.

Due to this situation, an instruction read operation must behave like a coherent
shared read relative to the memory directory and as a non-coherent operation
relative to the requestor. Therefore, the behavior of the instruction read operation is
nearly identical to a data read operation with the only difference being the way that
the apparent coherence paradox is managed.

The IREAD_HOME and RESPONSE transactions are used during an instruction
read operation by a processing element that needs a copy of sharable instructions
from the memory system. An instruction read operation always returns one
coherence granule-sized data payload. Use of the IREAD_HOME transaction rather
than the READ_HOME transaction allows the memory directory to properly handle
the paradox case without sacrificing coherence error detection in the system. The
IREAD_HOME transaction participates in address collision detection at the home
memory but does not participate in address collision detection at the requestor.

The following types of instruction read operations are possible:

• If the requested instructions exists in the memory directory as shared, the
instructions can be returned immediately from memory and the requesting
processing element’s device ID is added to the sharing mask as shown in
Figure 3-4.

Figure 3-3. Read Operation to Local Modified Coherence Granule

Requestor,

INTERV, data2

READ_OWNER1

OwnerHome
Memory
RapidIO.org 29

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
• If the requested data exists in the memory directory as modified, the up-to-date
(current) data must be obtained from the owner. The home memory then
sends a READ_OWNER request to the processing element that owns the
coherence granule. The owner passes a copy of the data to the original
requestor and to memory, memory is updated, and the directory state is
changed from modified and owner to shared by the previous owner and the
requesting processing element’s device ID as shown in Figure 3-5.

• If the processing element requesting a modified coherence granule happens to
be the home for the memory the READ_OWNER transaction is used to
obtain the coherence granule as shown in Figure 3-6.

• The apparent paradox case is if the requesting processing element is the owner
of the coherence granule as shown in Figure 3-7. The home memory sends a
READ_OWNER transaction back to the requesting processing element with
the source and secondary ID set to the home memory ID, which indicates that
the response behavior should be an INTERVENTION transaction rather than
an INTERVENTION and a DATA_ONLY transaction as shown in
Figure 3-5.

Figure 3-4. Instruction Read Operation to Remote Shared Coherence Granule

Figure 3-5. Instruction Read Operation to Remote Modified Coherence Granule

Figure 3-6. Instruction Read Operation to Local Modified Coherence Granule

Requestor
Home

Memory

DONE, data2

IREAD_HOME1

Requestor
Home

Memory

DONE_INTERV

Owner

5

IREAD_HOME1 READ_OWNER2

INTERV, data4

DATA_ONLY, data3

Requestor,

INTERV, data2

READ_OWNER1

OwnerHome
Memory
30 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3.3 Read-for-Ownership Operations

The READ_TO_OWN_HOME, READ_TO_OWN_OWNER, DKILL_SHARER,
and RESPONSE transactions are used during read-for-ownership operations by a
processing element that needs to write to a coherence granule that does not exist in
its caching hierarchy. A read-for-ownership operation always returns one coherence
granule-sized data payload. These transactions are used as follows:

• The READ_TO_OWN_HOME transaction is used by a processing element
that needs to read a writable copy of a coherence granule from a remote home
memory on another processing element. This transaction causes a copy of the
data to be returned to the requestor, from memory if the data is shared, or
from the owner if it is modified.

• The READ_TO_OWN_OWNER transaction is used by a home memory
processing element that needs to read a writable copy of a coherence granule
that is owned by a remote processing element.

• The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the coherence granule in remote
processing elements.

Following are descriptions of the read-for-ownership operations:

• If the coherence granule is shared, DKILL_SHARER transactions are sent to
the participants indicated in the sharing mask, which results in a cache
invalidate operation for the recipients as shown in Figure 3-8.

Figure 3-7. Instruction Read Operation Paradox Case

Figure 3-8. Read-for-Ownership Operation to Remote Shared Coherence Granule

Home
Memory

Requestor

READ_OWNER2

IREAD_HOME1

and
Owner

INTERV, data3

DONE, data4

Requestor
Home

Memory

DONE, data

Sharers

4

READ_TO_OWN_HOME1 DKILL_SHARER2

DONEs3
RapidIO.org 31

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
• If the coherence granule is modified, a READ_TO_OWN_OWNER
transaction is sent to the owner, who sends a copy of the data to the requestor
(intervention) and marks the address as invalid as shown in Figure 3-9. The
final memory directory state shows that the coherence granule is modified
and owned by the requestor’s device ID.

Because the coherence granule in the memory directory was marked as modified, home
memory does not necessarily need to be updated. However, the RapidIO protocol requires
that a processing element return the modified data and update the memory, allowing some
attempt for data recovery if a coherence problem occurs.

• If the requestor is on the same processing element as the home memory and the
coherence granule is shared, a DKILL_SHARER transaction is sent to all
sharing processing elements (see Figure 3-10). The final directory state is
marked as modified and owned by the local requestor.

• If the requestor is on the same processing element as the home memory and the
coherence granule is owned by a remote processing element, a
READ_TO_OWN_OWNER transaction is sent to the owner (see
Figure 3-11). The final directory state is marked as modified and owned by
the local requestor.

Figure 3-9. Read-for-Ownership Operation to Remote Modified Coherence Granule

Figure 3-10. Read-for-Ownership Operation to Local Shared Coherence Granule

Figure 3-11. Read-for-Ownership Operation to Local Modified Coherence Granule

Requestor
Home

Memory

DONE_INTERV

Owner

5

READ_TO_OWN_HOME1 READ_TO_OWN_OWNER2

INTERV, data4

DATA_ONLY, data3

Requestor,

DONEs2

DKILL_SHARER1

SharersHome
Memory

Requestor,

INTERV, data2

READ_TO_OWN_OWNER1

OwnerHome
Memory
32 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3.4 Data Cache Invalidate Operations

The DKILL_HOME, DKILL_SHARER, and RESPONSE transactions are requests
to invalidate a coherence granule in all of the participants in the coherence domain
as follows:

• The DKILL_HOME transaction is used by a processing element to invalidate
a data coherence granule that has home memory in a remote processing
element.

• The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the data coherence granule in remote
processing elements.

Data cache invalidate operations are also useful for systems that implement
software-maintained cache coherence. In this case, a requestor may send
DKILL_HOME and DKILL_SHARER transactions directly to other processing
elements without going through home memory as in a CC-NUMA system. The
transactions used for the data cache invalidate operation depend on whether the
requestor is on the same processing element as the home memory of the coherence
granule as follows:

• If the requestor is not on the same processing element as the home memory of
the coherence granule, a DKILL_HOME transaction is sent to the remote
home memory processing element. This causes the home memory for the
shared coherence granule to send a DKILL_SHARER to all processing
elements marked as sharing the granule in the memory directory state except
for the requestor (see Figure 3-12). The final memory state shows that the
coherence granule is modified and owned by the requesting processing
element’s device ID.

• If the requestor is on the same processing element as the home memory of the
coherence granule, the home memory sends a DKILL_SHARER transaction
to all processing elements marked as sharing the coherence granule in the
memory directory. The final memory state shows the coherence granule
modified and owned by the local processor (see Figure 3-13).

Figure 3-12. Data Cache Invalidate Operation to Remote Shared Coherence Granule

Requestor
Home

Memory

DONE

Sharers

4

DKILL_HOME1 DKILL_SHARER2

DONEs3
RapidIO.org 33

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3.5 Castout Operations

The CASTOUT and RESPONSE transactions are used in a castout operation by a
processing element to relinquish its ownership of a coherence granule and return it
to the home memory. The CASTOUT can be treated as a low-priority transaction
unless there is an address collision with an incoming request, at which time it must
become a high-priority transaction. The CASTOUT causes the home memory to be
updated with the most recent data and changes the directory state to owned by home
memory and shared (or owned, depending upon the default directory state) by the
local processing element (see Figure 3-14).

A CASTOUT transaction does not participate in address collision detection at the
home memory to prevent deadlocks or cache paradoxes caused by packet-to-packet
timing in the interconnect fabric. For example, consider a case where processing
element A is performing a CASTOUT that collides with an incoming
READ_OWNER transaction. If the CASTOUT is not allowed to complete at the
home memory, the system will deadlock. If the read operation that caused the
READ_OWNER completes (through intervention) before the CASTOUT
transaction is received at the home memory, the CASTOUT will appear to be illegal
because the directory state will have changed.

Figure 3-13. Data Cache Invalidate Operation to Local Shared Coherence Granule

Figure 3-14. Castout Operation on Remote Modified Coherence Granule

Requestor,

DONEs2

DKILL_SHARER1

SharersHome
Memory

DONE2

CASTOUT, data1

Requestor Home
Memory
34 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.3.6 TLB Invalidate-Entry Operations

The TLBIE and RESPONSE transactions are used for TLB invalidate-entry
operations. If the processor TLBs do not participate in the cache coherence protocol,
the TLB invalidate-entry operation is used when page table translation entries need
to be modified. The TLBIE transaction is sent to all participants in the coherence
domain except for the original requestor. A TLBIE transaction has no effect on the
memory directory state for the specified address and does not participate in address
collisions (see Figure 3-15).

3.3.7 TLB Invalidate-Entry Synchronization Operations

The TLBSYNC and RESPONSE transactions are used for TLB invalidate-entry
synchronization operations. It is used to force the completion of outstanding TLBIE
transactions at the participants. The DONE response for a TLBSYNC transaction is
only sent when all preceding TLBIE transactions have completed. This operation is
necessary due to possible indeterminate completion of individual TLBIE
transactions when multiple TLBIE transactions are being executed simultaneously.
The TLBSYNC transaction is sent to all participants in the coherence domain except
for the original requestor. The transaction has no effect on the memory directory
state for the specified address and does not participate in address collisions (see
Figure 3-16).

3.3.8 Instruction Cache Invalidate Operations

The IKILL_HOME, IKILL_SHARER, and RESPONSE transactions are used
during instruction cache invalidate operations to invalidate shared copies of an
instruction coherence granule in remote processing elements. Instruction cache
invalidate operations are needed if the processor instruction caches do not
participate in the cache coherence protocol, requiring instruction cache coherence to

Figure 3-15. TLB Invalidate-Entry Operation

Figure 3-16. TLB Invalidate-Entry Synchronization Operation

Requestor

DONEs

All

2

TLBIE1

Participants

Requestor

DONEs

All

2

TLBSYNC1

Participants
RapidIO.org 35

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
be maintained by software.

An instruction cache invalidate operation has no effect on the memory directory
state for the specified address and does not participate in address collisions.
Following are descriptions of the instruction cache invalidate operations:

• If the requestor is not on the same processing element as the home memory of
the coherence granule, an IKILL_HOME transaction is sent to the remote
home memory processing element. This causes the home memory for the
shared coherence granule to send an IKILL_SHARER to all processing
element participants in the coherence domain because the memory directory
state only properly tracks data, not instruction, accesses. (See Figure 3-17.)

• If the requestor is on the same processing element as the home memory of the
coherence granule, the home memory sends an IKILL_SHARER transaction
to all processing element participants in the coherence domain as shown in
Figure 3-18.

3.3.9 Data Cache Flush Operations

The FLUSH, DKILL_SHARER, READ_TO_OWN_OWNER, and RESPONSE
transactions are used for data cache flush operations, which return ownership of a
coherence granule back to the home memory if it is modified and invalidate all
copies if the granule is shared. A flush operation with associated data can be used to
implement an I/O system write operation and to implement processor write-through
and cache manipulation operations. These transactions are used as follows:

• The FLUSH transaction is used by a processing element to return the
ownership and current data of a coherence granule to home memory. The data
payload for the FLUSH transaction is typically the size of the coherence
granule for the system but may be multiple double-words or one double-word
or less. FLUSH transactions without a data payload are used to support cache

Figure 3-17. Instruction Cache Invalidate Operation to Remote Sharable Coherence Granule

Figure 3-18. Instruction Cache Invalidate Operation to Local Sharable Coherence Granule

Requestor
Home

Memory

DONE

Participants

4

IKILL_HOME1 IKILL_SHARER2

DONEs3

Requestor,

DONEs2

IKILL_SHARER1

ParticipantsHome
Memory
36 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
manipulation operations. The memory directory state is changed to owned by
home memory and shared (or modified, depending upon the processing
element’s normal default state) by the local processing element.

• The DKILL_SHARER transaction is used by the home memory processing
element to invalidate shared copies of the data coherence granule in remote
processing elements.

• The READ_TO_OWN_OWNER transaction is used by a home memory
processing element that needs to retrieve ownership of a coherence granule
that is owned by a remote processing element.

The FLUSH transaction is able to specify multiple double-word and
sub-double-word data payloads; however, they must be aligned to byte, half-word,
word, or double-word boundaries. Multiple double-word FLUSH transactions
cannot exceed the number of double-words in the coherence granule. The write size
and alignment for the FLUSH transaction are specified in Table 4-8. Unaligned and
non-contiguous operations are not supported and must be broken into multiple
FLUSH transactions by the sending processing element.

A flush operation internal to a processing element that would cause a FLUSH
transaction for a remote coherence granule owned by that processing element (for
example, attempting a cache write-through operation to a locally owned remote
coherence granule) must generate a CASTOUT rather than a FLUSH transaction to
properly implement the RapidIO protocol. Issuing a FLUSH under these
circumstances generates a memory directory state paradox error in the home
memory processing element.

Following are descriptions of the flush operations:

• If a flush operation is to a remote shared coherence granule, the FLUSH
transaction is sent to the home memory, which sends a DKILL_SHARER
transaction to all of the processing elements marked in the sharing list except
for the requesting processing element. The processing elements that receive
the DKILL_SHARER transaction invalidate the specified address if it is
found shared in their caching hierarchy (see Figure 3-19).

Figure 3-19. Flush Operation to Remote Shared Coherence Granule

Requestor
Home

Memory

DONE

Sharers

4

FLUSH, data (opt.)1 DKILL_SHARER2

DONEs3
RapidIO.org 37

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
• If the coherence granule is owned by a remote processing element, the home
memory sends a READ_TO_OWN_OWNER transaction to it with the
secondary (intervention) ID set to the home memory ID instead of the
requestor ID. The owner then invalidates the coherence granule in its caching
hierarchy and returns the coherence granule data (see Figure 3-20).

• If the requestor and the home memory for the coherence granule are in the same
processing element, DKILL_SHARER transactions are sent to all
participants marked in the sharing list (see Figure 3-21).

• If the requestor and the home memory for the coherence granule are in the same
processing element but the coherence granule is owned by a remote
processing element, a READ_TO_OWN_OWNER transaction is sent to the
owner (see Figure 3-22).

3.3.10 I/O Read Operations

The IO_READ_HOME, IO_READ_OWNER, and RESPONSE transactions are
used during I/O read operations by a processing element that needs a current copy
of cache-coherent data from the memory system, but does not need to be added to
the sharing list in the memory directory state. The I/O read operation is most useful
for DMA I/O devices. An I/O read operation always returns the requested size data
payload. The requested data payload size can not exceed the size of the coherence

Figure 3-20. Flush Operation to Remote Modified Coherence Granule

Figure 3-21. Flush Operation to Local Shared Coherence Granule

Figure 3-22. Flush Operation to Local Modified Coherence Granule

Requestor
Home

Memory

DONE

Owner

4

FLUSH, data (opt.)1 READ_TO_OWN_OWNER2

INTERV, data3

Requestor,

DONEs2

DKILL_SHARER1

SharersHome
Memory

Requestor,

INTERV, data2

READ_TO_OWN_OWNER1

OwnerHome
Memory
38 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
granule. These transactions are used as follows:

• The IO_READ_HOME transaction is used by a requestor that is not in the same
processing element as the home memory for the coherence granule.

• The IO_READ_OWNER transaction is used by a home memory processing
element that needs to read a copy of a coherence granule owned by a remote
processing element.

Following are descriptions of the I/O operations:

• If the requested data exists in the memory directory as shared, the data can be
returned immediately from memory and the sharing mask is not modified
(see Figure 3-24).

• If the requested data exists in the memory directory as modified, the home
memory sends an IO_READ_OWNER transaction to the processing element
that owns the coherence granule. The owner passes a copy of the data to the
requesting processing element (intervention) but retains ownership of and
responsibility for the coherence granule (see Figure 3-24 and Figure 3-25).

Figure 3-23. I/O Read Operation to Remote Shared Coherence Granule

Figure 3-24. I/O Read Operation to Remote Modified Coherence Granule

Figure 3-25. I/O Read Operation to Local Modified Coherence Granule

Requestor
Home

Memory

DONE, data2

IO_READ_HOME1

Requestor
Home

Memory

DONE_INTERV

Owner

5

IO_READ_HOME1 IO_READ_OWNER2

INTERV4

DATA_ONLY, data3

Requestor,

INTERV, data2

IO_READ_OWNER1

OwnerHome
Memory
RapidIO.org 39

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
3.4 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means
that the RapidIO interface to devices that are little-endian shall perform the proper
endian transformation to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-26 through Figure 3-28.

For write operations, a processing element shall properly align data transfers to a
double-word boundary for transmission to the destination. This alignment may
require breaking up a data stream into multiple transactions if the data is not
naturally aligned. A number of data payload sizes and double-word alignments are
defined to minimize this burden. Figure 3-29 shows a 48-byte data stream that a
processing element wishes to write to another processing element through the
interconnect fabric. The data displayed in the figure is big-endian and double-word
aligned with the bytes to be written shaded in grey. Because the start of the stream
and the end of the stream are not aligned to a double-word boundary, the sending
processing element shall break the stream into three transactions as shown in the
figure.

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and
indicates a byte lane 5, 6, and 7 three-byte write. The second transaction sends all of
the remaining data except for the final sub-double-word. The third transaction sends
the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte

Figure 3-26. Byte Alignment Example

Figure 3-27. Half-Word Alignment Example

Figure 3-28. Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
40 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
lanes 0, 1, 2, 3, and 4.

Figure 3-29. Data Alignment Example

First transaction sends these three bytes
with this double-word alignment

Byte
Lane

0

Byte
Lane

1

Byte
Lane

2

Byte
Lane

3

Byte
Lane

4

Byte
Lane

5

Byte
Lane

6

Byte
Lane

7

MSB

LSB

Second transaction sends these five
double-words

Third transaction sends these five bytes
with this double-word alignment

Double-Word Boundary
RapidIO.org 41

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Blank page
42 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 4 Packet Format Descriptions

4.1 Introduction
This chapter contains the packet format definitions for the RapidIO Interconnect
Globally Shared Memory Logical Specification. There are four types of globally
shared memory packet formats:

• Request

• Response

• Implementation-defined

• Reserved

The packet formats are intended to be interconnect fabric independent, so the system
interconnect can be anything required for a particular application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.2 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such as a memory read operation.
The request packet format types and their transactions for the RapidIO Interconnect
Globally Shared Memory Logical Specification are shown in Table 4-1.

Table 4-1. Request Packet Type to Transaction Type Cross Reference

Request
Packet

Format Type
Transaction Type Definition

Document
Section No.

Type 0 Implementation-defined Defined by the device implementation Section 4.2.4

Type 1

READ_OWNER Read shared copy of remotely owned coherence granule

Section 4.2.5READ_TO_OWN_OWNER Read for store of remotely owned coherence granule

IO_READ_OWNER Read for I/O of remotely owned coherence granule
RapidIO.org 43

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.2.1 Addressing and Alignment

The size of the address is defined as a system-wide parameter; thus the packet
formats do not support mixed local physical address fields simultaneously. The least
three significant bits of all addresses are not specified and are assumed to be logic 0.

The coherence-granule-sized cache-coherent write requests and read responses are
aligned to a double-word boundary within the coherence granule, with the specified
data payload size matching that of the coherence granule. Sub-double-word data
payloads must be padded and properly aligned within the 8-byte boundary.
Non-contiguous or unaligned transactions that would ordinarily require a byte mask
are not supported. A sending device that requires this behavior must break the
operation into multiple request transactions. An example of this is shown in
Section 3.4, “Endian, Byte Ordering, and Alignment.”

4.2.2 Data Payloads

Cache coherent systems are very sensitive to memory read latency. One way of
reducing the latency is by returning the requested, or critical, double-word first upon
a read request. Subsequent double-words are then returned in a sequential fashion.
Table 4-2 and Table 4-3 show the return ordering for 32- and 64-byte coherence

Type 2

READ_TO_OWN_HOME Read for store of home memory for coherence granule

Section 4.2.6

READ_HOME Read shared copy of home memory for coherence
granule

IO_READ_HOME Read for I/O of home memory for coherence granule

DKILL_HOME Invalidate to home memory of coherence granule

IKILL_HOME Invalidate to home memory of coherence granule

TLBIE Invalidate TLB entry

TLBSYNC Synchronize TLB invalidates

IREAD_HOME Read shared copy of home memory for instruction cache

FLUSH Force return of ownership of coherence granule to home
memory, no update to coherence granule

IKILL_SHARER Invalidate cached copy of coherence granule

DKILL_SHARER Invalidate cached copy of coherence granule

Type 3–4 — Reserved Section 4.2.7

Type 5

CASTOUT Return ownership of coherence granule to home memory
Section 4.2.8

FLUSH (with data) Force return of ownership of coherence granule to home
memory, update returned coherence granule

Type 6–11 — Reserved Section 4.2.9

Table 4-1. Request Packet Type to Transaction Type Cross Reference (Continued)

Request
Packet

Format Type
Transaction Type Definition

Document
Section No.
44 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
granules. Sub-double-word data payloads due to I/O read operations start with the
requested size as shown.

Data payloads for cache coherent write-type transactions are always linear starting
with the specified address at the first double-word to be written, (including flush
transactions that are not the size of the coherence granule). Data payloads that cross
the coherence granule boundary can not be specified. This implies that all castout
transactions start with the first double-word in the coherence granule. Table 4-4 and
Table 4-5 show the cache-coherent write-data ordering for 32- and 64-byte
coherence granules, respectively.

Table 4-2. Coherent 32-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0, 1, 2, 3

1 1, 2, 3, 0

2 2, 3, 0, 1

3 3, 0, 1, 2

Table 4-3. Coherent 64-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0, 1, 2, 3, 4, 5, 6, 7

1 1, 2, 3, 0, 4, 5, 6, 7

2 2, 3, 0, 1, 4, 5, 6, 7

3 3, 0, 1, 2, 4, 5, 6, 7

4 4, 5, 6, 7, 0, 1, 2, 3

5 5, 6, 7, 4, 0, 1, 2, 3

6 6, 7, 4, 5, 0, 1, 2, 3

7 7, 4, 5, 6, 0, 1, 2, 3
RapidIO.org 45

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Table 4-4. Coherent 32-Byte Write Data Payload

Starting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule

0 1 0

0 2 0, 1

0 3 0, 1, 2

0 4 0, 1, 2, 3

1 1 1

1 2 1, 2

1 3 1, 2, 3

2 1 2

2 2 2, 3

3 1 3

Table 4-5. Coherent 64-Byte Write Data Payloads

Starting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule

0 1 0

0 2 0, 1

0 3 0, 1, 2

0 4 0, 1, 2, 3

0 5 0, 1, 2, 3, 4

0 6 0, 1, 2, 3, 4, 5

0 7 0, 1, 2, 3, 4, 5, 6

0 8 0, 1, 2, 3, 4, 5, 6, 7

1 1 1

1 2 1, 2

1 3 1, 2, 3

1 4 1, 2, 3, 4

1 5 1, 2, 3, 4, 5

1 6 1, 2, 3, 4, 5, 6

1 7 1, 2, 3, 4, 5, 6, 7

2 1 2

2 2 2, 3

2 3 2, 3, 4

2 4 2, 3, 4, 5

2 5 2, 3, 4, 5, 6

2 6 2, 3, 4, 5, 6, 7

3 1 3

3 2 3, 4
46 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.2.3 Field Definitions for All Request Packet Formats

Fields that are unique to type 1, type 2, and type 5 formats are defined in their
sections. Bit fields that are defined as “reserved” shall be assigned to logic 0s when
generated and ignored when received. Bit field encodings that are defined as
“reserved” shall not be assigned when the packet is generated. A received reserved
encoding is regarded as an error if a meaningful encoding is required for the
transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the
figures from left to right respectively.

The following field definitions in Table 4-6 apply to all of the request packet
formats.

3 3 3, 4, 5

3 4 3, 4, 5, 6

3 5 3, 4, 5, 6, 7

4 1 4

4 2 4, 5

4 3 4, 5, 6

4 4 4, 5, 6, 7

5 1 5

5 2 5, 6

5 3 5, 6, 7

6 1 6

6 2 6, 7

7 1 7

Table 4-6. General Field Definitions for All Request Packets

Field Definition

ftype Format type, represented as a 4-bit value; is always the first four bits in the logical packet stream.

wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table 4-7, Table 4-8, and
Section 3.4.

rdsize Data size for read transactions, used in conjunction with the word pointer (wdptr) bit—see Table 4-7 and Section
3.4.

wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit—see
Table 4-8 and Section 3.4. For writes greater than one double-word, the size is the maximum payload.

rsrv Reserved

srcTID The packet’s transaction ID.

Table 4-5. Coherent 64-Byte Write Data Payloads (Continued)

Starting
Double-word

Number of
Double-words

Double-word Data Ordering
Within Coherence Granule
RapidIO.org 47

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
transaction The specific transaction within the format class to be performed by the recipient; also called type or ttype.

extended
address

Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical
address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and extended
address fields by 2 bits. This field provides 34-, 50-, and 66-bit addresses to be specified in a packet with the
xamsbs as the most significant bits in the address.

address Least significant 29 bits (bits [0-28] of byte address [0-31]) of the double-word physical address

Table 4-7. Read Size (rdsize) Definitions

wdptr rdsize
Number of

Bytes
Byte Lanes Comment

0b0 0b0000 1 0b10000000 I/O read only

0b0 0b0001 1 0b01000000 I/O read only

0b0 0b0010 1 0b00100000 I/O read only

0b0 0b0011 1 0b00010000 I/O read only

0b1 0b0000 1 0b00001000 I/O read only

0b1 0b0001 1 0b00000100 I/O read only

0b1 0b0010 1 0b00000010 I/O read only

0b1 0b0011 1 0b00000001 I/O read only

0b0 0b0100 2 0b11000000 I/O read only

0b0 0b0101 3 0b11100000 I/O read only

0b0 0b0110 2 0b00110000 I/O read only

0b0 0b0111 5 0b11111000 I/O read only

0b1 0b0100 2 0b00001100 I/O read only

0b1 0b0101 3 0b00000111 I/O read only

0b1 0b0110 2 0b00000011 I/O read only

0b1 0b0111 5 0b00011111 I/O read only

0b0 0b1000 4 0b11110000 I/O read only

0b1 0b1000 4 0b00001111 I/O read only

0b0 0b1001 6 0b11111100 I/O read only

0b1 0b1001 6 0b00111111 I/O read only

0b0 0b1010 7 0b11111110 I/O read only

0b1 0b1010 7 0b01111111 I/O read only

0b0 0b1011 8 0b11111111 I/O read only

0b1 0b1011 16 I/O read only

0b0 0b1100 32

0b1 0b1100 64

0b0-1 0b1101
0b1111

Reserved

Table 4-6. General Field Definitions for All Request Packets (Continued)

Field Definition
48 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2

4.2.4 Type 0 Packet Format (Implementation-Defined)

The type 0 packet format is reserved for implementation-defined functions such as
flow control.

Table 4-8. Write Size (wrsize) Definitions

wdptr wrsize
Number of

Bytes
Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16
maximum

0b0 0b1100 32
maximum

0b1 0b1100 64
maximum

0b0-1 0b1101-1111 Reserved
RapidIO.org 49

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.2.5 Type 1 Packet Format (Intervention-Request Class)

Type 1 request packets never include data. They are the only request types that can
cause an intervention, so the secondary domain, secondary ID, and secondary
transaction ID fields are required. The total number of bits available for the
secondary domain and secondary ID fields (shown in Figure 4-1) is determined by
the size of the transport field defined in the appropriate transport layer specification,
so the size (labeled m and n, respectively) of these fields are not specified. The
division of the bits between the logical coherence domain and device ID fields is
determined by the specific application. For example, an 8 bit transport field allows
16 coherence domains of 16 participants.

The type 1 packet format is used for the READ_OWNER,
READ_TO_OWN_OWNER, and IO_READ_OWNER transactions that are
specified in the transaction sub-field column defined in Table 4-9. Type 1 packets
are issued only by a home memory controller to allow the third party intervention
data transfer.

Definitions and encodings of fields specific to type 1 packets are displayed in
Table 4-9. Fields that are not specific to type 1 packets are described in Table 4-6.

Figure 4-1 displays a type 1 packet with all its fields. The field value 0b0001 in
Figure 4-1 specifies that the packet format is of type 1.

Table 4-9. Specific Field Definitions and Encodings for Type 1 Packets

Field Encoding Sub-Field Definition

secID — Original requestor’s, or secondary, ID for intervention

secTID — Original requestor’s, or secondary, transaction ID for
intervention

sec_domain — Original requestor’s, or secondary, domain for intervention

transaction 0b0000 READ_OWNER

0b0001 READ_TO_OWN_OWNER

0b0010 IO_READ_OWNER

0b0011–1111 Reserved

Figure 4-1. Type 1 Packet Bit Stream Format

0 0 0 1

4 4 4 8

transaction rdsize srcTID

sec_domain

m n 8

secID secTID

address

29

extended address

0, 16, 32

wdptr xamsbs

1 2
50 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.2.6 Type 2 Packet Format (Request Class)

Type 2 request packets never include data. They cannot cause an intervention so the
secondary domain and ID fields specified in the intervention-request format are not
required. This format is used for the READ_HOME, IREAD_HOME,
READ_TO_OWN_HOME, IO_READ_HOME, DKILL_HOME,
DKILL_SHARER, IKILL_HOME, IKILL_SHARER, TLBIE, and TLBSYNC
transactions as specified in the transaction field defined in Table 4-10. Type 2
packets for READ_HOME, IREAD_HOME, READ_TO_OWN_HOME,
IO_READ_HOME, FLUSH without data, DKILL_HOME, and IKILL_HOME
transactions are issued to home memory by a processing element.
DKILL_SHARER and IKILL_SHARER transactions are issued by a home memory
to the sharers of a coherence granule. DKILL_HOME, DKILL_SHARER,
IKILL_HOME, IKILL_SHARER, FLUSH without data, and TLBIE are
address-only transactions so the rdsize and wdptr fields are ignored and shall be set
to logic 0. TLBSYNC is a transaction-type-only transaction so both the address,
xamsbs, rdsize, and wdptr fields shall be set to logic 0.

The transaction field encodings for type 2 packets are displayed in Table 4-10.
Fields that are not specific to type 2 packets are described in Table 4-6.

Figure 4-2 displays a type 2 packet with all its fields. The field value 0b0010 in
Figure 4-2 specifies that the packet format is of type 2.

Table 4-10. Transaction Field Encodings for Type 2 Packets

Encoding Transaction Field

0b0000 READ_HOME

0b0001 READ_TO_OWN_HOME

0b0010 IO_READ_HOME

0b0011 DKILL_HOME

0b0100 Reserved

0b0101 IKILL_HOME

0b0110 TLBIE

0b0111 TLBSYNC

0b1000 IREAD_HOME

0b1001 FLUSH without data

0b1010 IKILL_SHARER

0b1011 DKILL_SHARER

0b1100–1111 Reserved
RapidIO.org 51

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Figure 4-2. Type 2 Packet Bit Stream Format

4.2.7 Type 3–4 Packet Formats (Reserved)

The type 3–4 packet formats are reserved.

4.2.8 Type 5 Packet Format (Write Class)

Type 5 packets always contain data. A data payload that consists of a single
double-word or less has sizing information as defined in Table 4-8. The wrsize field
specifies the maximum size of the data payload for multiple double-word
transactions. The FLUSH with data and CASTOUT transactions use type 5 packets
as defined in Table 4-11. Note that type 5 transactions always contain data.

Fields that are not specific to type 5 packets are described in Table 4-6.

Figure 4-3 displays a type 5 packet with all its fields. The field value 0b0101 in
Figure 4-3 specifies that the packet format is of type 5.

Table 4-11. Transaction Field Encodings for Type 5 Packets

Encoding Transaction Field

0b0000 CASTOUT

0b0001 FLUSH with data

0b0010–1111 Reserved

Figure 4-3. Type 5 Packet Bit Stream Format

0 0 1 0

4 4 4 8

transaction rdsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229

0 1 0 1

4 4 4 8

transaction wrsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229

double-word 0

64

double-word 1

64

double-word n

64

• • •
52 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.2.9 Type 6–11 Packet Formats (Reserved)

The type 6–11 packet formats are reserved.

4.3 Response Packet Formats
A response transaction is issued by a processing element when it has completed a
request made by a remote processing element. Response packets are always directed
and are transmitted in the same way as request packets. Currently two response
packet format types exist, as shown in Table 4-12.

4.3.1 Field Definitions for All Response Packet Formats

The field definitions in Table 4-13 apply to more than one of the response packet
formats.

Table 4-12. Request Packet Type to Transaction Type Cross Reference

Request
Packet

Format Type
Transaction Type Definition

Document
Section No.

Type 12 — Reserved Section 4.3.2

Type 13
RESPONSE Issued by a processing element when it completes a

request by a remote element.
Section 4.3.3

Type 14 — Reserved Section 4.3.4

Type 15 Implementation-defined Defined by the device implementation Section 4.3.5

Table 4-13. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload

0b0001–0111 Reserved

0b1000 RESPONSE transaction with data payload

0b1001–1111 Reserved

targetTID — The corresponding request packet’s transaction ID
RapidIO.org 53

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.3.2 Type 12 Packet Format (Reserved)

The type 12 packet format is reserved.

4.3.3 Type 13 Packet Format (Response Class)

The type 13 packet format returns status, data (if required), and the requestor’s
transaction ID. A RESPONSE packet with an “ERROR” status or a response that is
not expected to have a data payload never has a data payload. The type 13 format is
used for response packets to all request transactions.

Note that type 13 packets do not have any special fields.

Figure 4-4 illustrates the format and fields of type 13 packets. The field value
0b1101 in Figure 4-4 specifies that the packet format is of type 13.

4.3.4 Type 14 Packet Format (Reserved)

The type 14 packet format is reserved.

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001 DATA_ONLY This is a data only response

0b0010 NOT_OWNER Not owner of requested coherence granule

0b0011 RETRY Requested transaction is not accepted; must retry the request

0b0100 INTERVENTION Update home memory with intervention data

0b0101 DONE_INTERVENTION Done for a transaction that resulted in an intervention

0b0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional
information such as an error code

Figure 4-4. Type 13 Packet Bit Stream Format

Table 4-13. Field Definitions and Encodings for All Response Packets (Continued)

1 1 0 1

4 4 4 8

transaction status targetTID

double-word 0

64

double-word 1

64

double-word n

64

• • •
54 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
4.3.5 Type 15 Packet Format (Implementation-Defined)

The type 15 packet format is reserved for implementation-defined functions such as
flow control.
RapidIO.org 55

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Blank page
56 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 5 Globally Shared Memory Registers

5.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

5.2 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
the RapidIO Part 1: Input/Output Logical Specification maintenance operations.
Any register offsets not defined are considered reserved for this specification unless
otherwise stated. Other registers required for a processing element are defined in
other applicable RapidIO specifications and by the requirements of the specific
device and are beyond the scope of this specification. Read and write accesses to
reserved register offsets shall terminate normally and not cause an error condition in
the target device. Writes to CAR (read-only) space shall terminate normally and not
cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. GSM Register Map

Configuration
Space Byte

Offset
Register Name

0x0-14 Reserved

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20-FC Reserved
RapidIO.org 57

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
5.3 Reserved Register, Bit and Bit Field Value Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x100-
FFFC Extended Features Space

0x10000-
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0-3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40-FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. GSM Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
58 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
When a writable bit field is set to a reserved value, device behavior is
implementation specific.

0x100-
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000-
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO.org 59

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO GSM logical operations that can be issued
by this processing element; see Table 5-3. It is assumed that a processing element
can generate I/O logical maintenance read and write requests if it is required to
access CARs and CSRs in other processing elements. RapidIO switches shall be
able to route any packet.

Table 5-3. Bit Settings for Source Operations CAR

Bit Field Name Description

0 Read PE can support a read operation

1 Instruction read PE can support an instruction read operation

2 Read-for-ownership PE can support a read-for-ownership operation

3 Data cache invalidate PE can support a data cache invalidate operation

4 Castout PE can support a castout operation

5 Data cache flush PE can support a data cache flush operation

6 I/O read PE can support an I/O read operation

7 Instruction cache invalidate PE can support an instruction cache invalidate operation

8 TLB invalidate-entry PE can support a TLB invalidate-entry operation

9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync operation

10–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–29 — Reserved

30–31 Implementation Defined Defined by the device implementation
60 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
5.4.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO GSM operations that can be supported by
this processing element; see Table 5-4. It is required that all processing elements can
respond to I/O logical maintenance read and write requests in order to access these
registers. The Destination Operations CAR is applicable for end point devices only.
RapidIO switches shall be able to route any packet.

Table 5-4. Bit Settings for Destination Operations CAR

Bit Field Name Description

0 Read PE can support a read operation

1 Instruction read PE can support an instruction read operation

2 Read-for-ownership PE can support a read-for-ownership operation

3 Data cache invalidate PE can support a data cache invalidate operation

4 Castout PE can support a castout operation

5 Data cache flush PE can support a flush operation

6 I/O read PE can support an I/O read operation

7 Instruction cache invalidate PE can support an instruction cache invalidate operation

8 TLB invalidate-entry PE can support a TLB invalidate-entry operation

9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync operation

10–13 — Reserved

14-15 Implementation Defined Defined by the device implementation

16-29 — Reserved

30-31 Implementation Defined Defined by the device implementation
RapidIO.org 61

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
5.5 Command and Status Registers (CSRs)
The RapidIO Globally Shared Memory Logical Specification does not define any
command and status registers (CSRs).
62 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 6 Communication Protocols

6.1 Introduction
This chapter contains the RapidIO globally shared memory (GSM) communications
protocol definitions. Three state machines are required for a processing element on
the RapidIO interface: one for local system accesses to local and remote space, one
for remote accesses to local space, and one for handling responses made by the
remote system to requests from the local system. The protocols are documented as
pseudo-code partitioned by operation type. The RapidIO protocols as defined here
assume a directory state definition that uses a modified bit with the local processor
always sharing as described in Chapter 2, “System Models.” The protocols can be
easily modified to use an alternate directory scheme that allows breaking the
SHARED state into a REMOTE_SHARED and a
REMOTE_AND_LOCAL_SHARED state pair.

Similarly, it may be desirable for an implementation to have an UNOWNED state
instead of defaulting to LOCAL_SHARED or LOCAL_MODIFIED. These
optimizations only affect the RapidIO transaction issuing behavior within a
processing element, not the globally shared memory protocol itself. This flexibility
allows a variety of local processor cache state coherence definitions such as MSI or
MESI.

Some designs may not have a source of local system requests, for example, the
memory only processing element described in Section 2.2.3, “Memory-Only
Processing Element Model”. The protocols for these devices are much less
complicated, only requiring the external request state machine and a portion of the
response state machine. Similarly, a design may not have a local memory controller,
which is also a much less complicated device, requiring only a portion of the internal
request and response state machines. The protocols assume a processor element and
memory processing element as described in Figure 2-2.

6.2 Definitions
The general definitions of Section 6.2.1 apply throughout the protocol, and the
requests and responses of state machines are defined in Section 6.2.2, “Request and
Response Definitions.”
RapidIO.org 63

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.2.1 General Definitions
address_collisionAn address match between the new request and an address

currently being serviced by the state machines or some other
address-based internal hazard. This frequently causes a retry
of the new request.

assign_entry() Assign resources (such as a queue entry) to service a request, mark
the address as able to participate in address collision detection
(if appropriate), and assign a transaction ID

data Any data associated with the transaction; this field is frequently null

directory_state The memory directory state for the address being serviced

error() Signal an error (usually through an interrupt structure) to software,
usually to indicate a coherence violation problem

free_entry() Release all resources assigned to this transaction, remove it from
address collision detection, and deallocate the transaction ID

local Memory local to the processing element

local_request(m,n,...)A local request to a local processor caused by an incoming
external request that requires a snoop of the processor’s
caches

local_response(m,n,.)A local response to a local request; usually indicates the cache
state for the requesting processor to mark the requested data

LOCAL_RTYPEThis is the response from the local agent to the local processor in
response to a local request.

LOCAL_TTYPEThis is the transaction type for a request passed from the RapidIO
interconnect to a local device.

(mask <= (mask ~= received_srcid))
“Assign the mask field to the old mask field with the received
ID bit cleared.” This result is generated when a response to a
multicast is received and it is not the last one expected.

((mask ~= (my_id OR received_id)) == 0)
“The mask field not including my ID or the received ID
equals 0.” This result indicates that we have received all of the
expected responses to a multicast request.

(mask ~= my_id)“The sharing mask not including my ID.” This result is used for
multicast operations where the requestor is in the sharing list
but does not need to be included in the multicast transaction
because it is the source of the transaction.

(mask <= (participant_list ~= my_id))
“The sharing mask includes all participants except my ID.”
This result is used for the IKILL operation, which does not
64 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
use the memory directory information.

(mask <= (participant_list ~= (received_srcid AND my_id)))
“The sharing mask includes all participants except the
requestor’s and my IDs.” This result is used for the IKILL
operation, which does not use the memory directory
information.

(mask == received_srcid)
“The sharing mask only includes the requestor’s ID.” This
result is used for the DKILL operation to detect a
write-hit-on-shared case where the requestor has the only
remote copy of the coherence granule.

original_srcid The ID of the initial requestor for a transaction, saved in the state
associated with the transaction ID

received_data The response contained data

received_data_only_message
Flag set by set_received_data_only_message()

received_done_message
Flag set by set_received_done_message()

remote_request(m,n,...)
Make a request to the interconnect fabric

remote_response(m,n,...)
Send a response to the interconnect fabric

RESPONSE_TTYPE
This is the RapidIO transaction type for a response to a
request

return_data() Return data to the local requesting processor, either from memory or
from a interconnect fabric buffer; the source can be
determined from the context

secondary_id The third party identifier for intervention responses; the processing
element ID concatenated with the processing element
domain.

set_received_data_only_message()
Remember that a DATA_ONLY response was received for
this transaction ID

set_received_done_message()
Remember that a DONE response was received for this
transaction ID

source_id The source device identifier; the processing element ID concatenated
with the processing element domain

target_id The destination device identifier; the processing element ID
RapidIO.org 65

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
concatenated with the processing element domain

TRANSACTIONThe RapidIO transaction type code for the request

update_memory()Write memory with data received from a response

update_state(m,n,...)Modify the memory directory state to reflect the new system
status

6.2.2 Request and Response Definitions

Following are the formats used in the pseudocode to describe request and response
transactions sent between processing elements and the formats of local requests and
responses between the cache coherence controller and the local cache hierarchy and
memory controllers.

6.2.2.1 System Request
The system request format is:

remote_request(TRANSACTION, target_id, source_id, secondary_id, data)

which describes the necessary RapidIO request to implement the protocol.

6.2.2.2 Local Request

The local request format is:

local_request(LOCAL_TTYPE)

that is the necessary local processor request to implement the protocol; the
pseudocode assumes a generic local bus. A local request also examines the remote
cache as part of the processing element’s caching hierarchy. The local transactions
are defined as:

DKILL Causes the processor to transition the coherence granule to invalid
regardless of the current state; data is not pushed if current
state is modified

IKILL Causes the processor to invalidate the coherence granule in the
instruction cache

READ Causes the processor to transition the coherence granule to shared
and push data if necessary

READ_LATESTCauses the processor to push data if modified but not transition the
cache state

READ_TO_OWNCauses the processor to transition the coherence granule to
invalid and push data

TLBIE Causes the processor to invalidate the specified translation
look-aside buffer entry

TLBSYNC Causes the processor to indicate when all outstanding TLBIEs have
completed
66 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.2.2.3 System Response

The system response format is:

remote_response(RESPONSE_TTYPE, target_id, source_id, data (opt.))

which is the proper response to implement the protocol.

6.2.2.4 Local Response

The local response format is:

local_response(LOCAL_RTYPE)

In general, a transaction ID (TID) is associated with each device ID in order to
uniquely identify a request. This TID is frequently a queue index in the source
processing element. These TIDs are not explicitly called out in the pseudocode
below. The local responses are defined as:

EXCLUSIVE The processor has exclusive access to the coherence granule

OK The transaction requested by the processor has or will complete
properly

RETRY Causes the processor to re-issue the transaction; this response may
cause a local bus spin loop until the protocol allows a different
response

SHARED The processor has a shared copy of the coherence granule

6.3 Operation to Protocol Cross Reference
Table 6-1 contains a cross reference of the operations defined in the RapidIO
Interconnect Globally Shared Memory Logical Specification and their system usage.

Table 6-1. Operation to Protocol Cross Reference

Operations Protocol

Read Section 6.4

Instruction read Section 6.4

Read for ownership Section 6.6

Data cache invalidate Section 6.7

Instruction cache invalidate Section 6.7

Castout Section 6.8

TLB invalidate entry Section 6.9

TLB invalidate entry
synchronize

Section 6.9

Data cache flush Section 6.10

I/O read Section 6.11
RapidIO.org 67

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.4 Read Operations
This operation is a coherent data cache read; refer to the description in Section 3.3.1.

6.4.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local
processor.

if (address_collision) // this is due to an external request
// in progress or a cache

local_response(RETRY); // index hazard from a previous request
elseif (local) // our local memory

switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default

// local memory to owned
local_response(EXCLUSIVE);
return_data();

case LOCAL_SHARED, // local, owned by memory
case SHARED: // shared local and remote

local_response(SHARED);
return_data(); // keep directory state

// the way it was
case REMOTE_MODIFIED:

local_response(SHARED);
assign_entry(); // this means to assign

// a transaction ID,
// usually a queue entry

remote_request(READ_OWNER, mask_id, my_id, my_id);
default:

error();
else // remote - we’ve got to go

// to another processing element
assign_entry();
local_response(RETRY); // can’t guarantee data before a

// snoop yet
remote_request(READ_HOME, mem_id, my_id);

endif;

6.4.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

if (my_id == mem_id == original_srcid) // original requestor is home memory
switch(remote_response) // matches my_id only for

// REMOTE_MODIFIED case
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
return_data();
free_entry();

case NOT_OWNER, // due to address collision or
case RETRY: // passing requests

switch (directory_state)
case LOCAL_MODIFIED:

local_response(EXCLUSIVE);
// when processor re-requests

return_data();
free_entry();

case LOCAL_SHARED:
68 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
local_response(SHARED);
// when processor re-requests

return_data();
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid

//or error; spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default

error();
elseif(my_id == mem_id ~== original_id // i’m home memory working for

// a third party
switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory,
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case REMOTE_MODIFIED: // spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m

// requesting a remote
// memory location

switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)
RapidIO.org 69

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(READ_HOME, received_srcid, my_id);
default

error();
endif;

6.4.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
elseif (READ_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,

my_id, received_srcid);
else

error(); // he already owned it;
// cache paradox (or I-fetch after d-
// store if not fixed elsewhere)

endif;
default:

error();
else // READ_OWNER request to our caches

assign_entry();
local_request(READ); // spin until a valid response

// from caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
cache_state(SHARED or INVALID);

// surrender ownership
if (received_srcid == received_secid)

// original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else

remote_response(DATA_ONLY, received_secid,
my_id, data);

remote_response(INTERVENTION, received_srcid,
my_id, data);

endif;
case INVALID: // must have cast it out
70 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
remote_response(NOT_OWNER, received_srcid, my_id);
default;

error();
free_entry();

endif;
RapidIO.org 71

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.5 Instruction Read Operations
This operation is a partially coherent instruction cache read; refer to the description
in Section 3.3.2.

6.5.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local
processor.

if (address_collision) // this is due to an external
 // request in progress or a cache

local_response(RETRY); // index hazard from a previous request
elseif (local) // our local memory

switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default

// local memory to owned
local_response(EXCLUSIVE);
return_data();

case LOCAL_SHARED, // local, owned by memory
case SHARED: // shared local and remote

local_response(SHARED);
return_data(); // keep directory state the way it was

case REMOTE_MODIFIED:
local_response(SHARED);
assign_entry(); // this means to assign a transaction

// ID, usually a queue entry
remote_request(READ_OWNER, mask_id, my_id, my_id);

default:
error();

else // remote - we’ve got to go
// to another processing element

assign_entry();
local_response(RETRY);

// can’t guarantee data before a
// snoop yet

remote_request(IREAD_HOME, mem_id, my_id);
endif;

6.5.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

if (my_id == mem_id == original_srcid) // original requestor is home memory
error();

elseif(my_id == mem_id ~== original_id) // i’m home memory working for a
// third party

switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory,
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
72 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
free_entry();
case LOCAL_MODIFIED:

update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention; a
// DONE_INTERVENTION should come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IREAD_HOME, received_srcid, my_id);
default

error();
endif;

6.5.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
elseif(IREAD_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();
RapidIO.org 73

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,

my_id, received_srcid);
else // he already owned it in his

//data cache; cache paradox case
remote_request(READ_OWNER, mask_id, my_id, my_id);

endif;
default:

error();
endif;
74 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.6 Read for Ownership Operations
This is the coherent cache store miss operation.

6.6.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local
processor.

if (address_collision) // this is due to an external request
// in progress or a cache index

local_response(RETRY); // hazard from a previous request
elseif (local) // our local memory

switch (directory_state
case LOCAL_MODIFIED, // local modified is OK if we

// default memory to owned locally
case LOCAL_SHARED:

local_response(EXCLUSIVE); // give ownership to processor
return_data();
if (directory_state == LOCAL_SHARED)
 update_state(LOCAL_MODIFIED)
endif;

case REMOTE_MODIFIED: // owned by another, get a copy
// and ownership

assign_entry();
local_response(RETRY); // retry
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);

case SHARED: // invalidate the sharing list
assign_entry();
local_response(RETRY); // retry
remote_request(DKILL_SHARER, (mask ~= my_id), my_id, my_id);

default:
error();

else // remote - we’ve got to go to another
// processing element

assign_entry();
local_response(RETRY);
remote_request(READ_TO_OWN_HOME, mem_id, my_id);

endif;

6.6.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

if (my_id == mem_id == original_srcid) // original requestor is home memory
switch (received_response)
case DONE: // SHARED, so invalidate case

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared
// bit and wait for next DONE

endif;
case NOT_OWNER: // due to address collision with

// CASTOUT or FLUSH
RapidIO.org 75

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
switch(directory_state)
case LOCAL_MODIFIED,:

local_response(EXCLUSIVE);
return_data();
free_entry();

case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

case REMOTE_MODIFIED:
// spin or wait for castout

remote_request(READ_TO_OWN_OWNER, mask_id,
my_id, my_id);

default:
error();

case INTERVENTION: // remotely owned
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:

local_response(EXCLUSIVE);
return_data();
free_entry();

case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();

case REMOTE_MODIFIED: //mask_id must match received_srcid
// or error condition

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();
elseif (my_id == mem_id ~= original_srcid)

// i’m home memory working
// for a third party

switch(received_response)
case DONE: // invalidates for shared

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id, data);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE

case INTERVENTION:
// remote_modified case

update_memory(); // for possible coherence error
// recovery

update_state(REMOTE_MODIFIED, original_id);
remote_response(DONE_INTERVENTION, original_id, my_id);
free_entry();

case NOT_OWNER: // data comes from memory, mimic
// intervention
76 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
switch(directory_state)
case LOCAL_SHARED:
case LOCAL_MODIFIED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
default:

error();
case RETRY:

switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid
// or error condition

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch (received_response)
case DONE:

local_response(EXCLUSIVE);
return_data();
free_entry();

case DONE_INTERVENTION:
set_received_done_message();
if (received_data_message)

free_entry();
else

// wait for DATA_ONLY
endif;

case DATA_ONLY:
set_received_data_message();
local_response(EXCLUSIVE);
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif; // and wait for a DONE
case RETRY: // lost at remote memory so retry

remote_request(READ_TO_OWN_HOME, mem_id, my_id);
default:

error();
endif;
RapidIO.org 77

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.6.3 External Request State Machine

This state machine handles requests from the interconnect to the local memory or
the local system. This may require making further external requests.

if (address_collision) // use collision tables
// in Chapter 7, “Address Collision Resolution

Tables”
elseif (READ_TO_OWN_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id, data);

// after possible push
update_state(REMOTE_MODIFIED, received_srcid);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

//intervention case
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,

received_srcid);
else

error(); // he already owned it!
endif;

case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)

//requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);

// from memory
free_entry();

else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid),

my_id, my_id);
endif;

default:
error();

elseif(READ_TO_OWN_OWNER) // request to our caches
assign_entry();
local_request(READ_TO_OWN); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push

cache_state(INVALID);
// surrender ownership

if (received_srcid == received_secid)
//the original request is from the home

remote_response(INTERVENTION, received_srcid, my_id,
data);

else // the original request is from a
// third party

remote_response(DATA_ONLY, received_secid, my_id,
data);

remote_response(INTERVENTION, received_srcid, my_id,
data);

endif;
free_entry();

case INVALID: // castout address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

endif;
78 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.7 Data Cache and Instruction Cache Invalidate
Operations

This operation is used with coherent cache store-hit-on-shared, cache operations;
refer to the description in Section 3.3.4.

6.7.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local
processor.

if (address_collision) // this is due to an external request in
// progress or a cache index

local_response(RETRY); // hazard from a previous request
elseif (local) // our local memory and we won

if (DKILL) // DKILL checks the directory
switch (directory_state)
case LOCAL_MODIFIED, // local modified is OK if we default

// memory to owned locally
case LOCAL_SHARED:

local_response(EXCLUSIVE);
if (LOCAL_SHARED)

update_state(LOCAL_MODIFIED, my_id);
endif;

case REMOTE_MODIFIED: // cache paradox; DKILL is
// write-hit-on-shared

error();
case SHARED:

local_response(RETRY);
assign_entry(); // Multicast if possible otherwise

// issue direct to each sharer
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);

default:
error();

else // IKILL always goes to everyone
remote_request(IKILL_SHARER,

(mask <= (participant_list ~= my_id)), my_id);
endif;

else // remote - we’ve got to go to another
// processing element

assign_entry();
local_response(RETRY);
remote_request({DKILL_HOME, IKILL_HOME}, mem_id, my_id);

endif;

6.7.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

if (my_id == mem_id == original_srcid) // original requestor is home memory
switch (received_response)
case DONE: // shared cases

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

if (DKILL) // don’t update state for IKILLs
update_state(LOCAL_MODIFIED);

endif;
free_entry();

else
RapidIO.org 79

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
mask <= (mask ~= received_srcid);
// flip the responder’s shared bit and

endif; // wait for next DONE
case RETRY:

remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,
my_id); // retry the transaction

default:
error();

elseif (my_id == mem_id ~= original_srcid)
// i’m home memory working
// for a third party

switch(received_response)
case DONE: // invalidates for shared

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
if (DKILL) // don’t update state for IKILLs

update_state(REMOTE_MODIFIED, original_srcid);
endif;
remote_response(DONE, original_srcid, my_id);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE

case RETRY:
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,

my_id); // retry
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch (received_response)
case DONE:

local_response(EXCLUSIVE);
free_entry();

case RETRY:
remote_request({DKILL_HOME, IKILL_HOME}, received_srcid,

my_id); // retry the transaction
default:

error();
endif;

6.7.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
elseif (DKILL_HOME || IKILL_HOME) // remote request to our local memory

assign_entry();
if (DKILL_HOME)

switch (directory_state)
case LOCAL_MODIFIED, // cache paradoxes; DKILL is

// write-hit-on-shared
case LOCAL_SHARED,
case REMOTE_MODIFIED:

error();
case SHARED: // this is the right case, send

// invalidates to the sharing list
local_request(DKILL);
if (mask == received_srcid

// requestor is only remote sharer
80 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
if (DKILL)// don’t update state for (IKILLs)
update_state(REMOTE_MODIFIED,

received_srcid);
endif;
remote_response(DONE, received_srcid, my_id);
free_entry();

else // there are other remote sharers
remote_request(DKILL_SHARER,

(mask ~= received_srcid), my_id, NULL);
endif;

default:
error();

else // IKILL goes to everyone except the
// requestor

remote_request(IKILL_SHARER,
(mask <= (participant_list ~=
(received_srcid AND my_id), my_id);

else // DKILL_SHARER or IKILL_SHARER to
our caches

assign_entry();
local_request({READ_TO_OWN, IKILL});

// spin until a valid response from the
// caches

switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases

cache_state(INVALID); // surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();

default:
error();

endif;
RapidIO.org 81

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.8 Castout Operations
This operation is used to return ownership of a coherence granule to home memory,
leaving it invalid in the cache; refer to the description in Section 3.3.5.

6.8.1 Internal Request State Machine

A castout is always done to remote memory space. A castout may require local
activity to flush all caches in the hierarchy.

if (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED: // if the processor is doing a castout

// this is the only legal state
local_response(OK);
update_memory();
update_state(LOCAL_SHARED);

default:
error();

else // remote - we’ve got to go to another
// processing element

assign_entry();
local_response(OK);
remote_request(CASTOUT, mem_id, my_id, data);

endif;

6.8.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

switch (received_response)
case DONE:

free_entry();
default:

error();

6.8.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.

assign_entry();
update_memory();
state_update(LOCAL_SHARED, my_id); // may be LOCAL_MODIFIED if the

// default is owned locally
remote_response(DONE, received_srcid, my_id);
free_entry();
82 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.9 TLB Invalidate Entry, TLB Invalidate Entry
Synchronize Operations

These operations are used for software coherence management of the TLBs; refer to
the descriptions in Section 3.3.6 and Section 3.3.7.

6.9.1 Internal Request State Machine

The TLBIE and TLBSYNC transactions are always sent to all domain participants
except the sender and are always to the processor not home memory.

assign_entry();
remote_request({TLBIE, TLBSYNC}, participant_id, my_id);
endif;

6.9.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system. The responses are always from a coherence
participant, not a home memory.

switch (received_response)
case DONE:

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

free_entry();
else

mask <= (mask ~= received_srcid);
// flip the responder’s participant
// bit and wait for next DONE

endif;
case RETRY:

remote_request({TLBIE, TLBSYNC}, received_srcid, my_id, my_id);
default

error();

6.9.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. The requests are always to the local caching hierarchy.

assign_entry();
local_request({TLBIE, TLBSYNC}); // spin until a valid response

// from the caches
remote_response(DONE, received_srcid, my_id);
free_entry();
RapidIO.org 83

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.10 Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and
performs a coherent write; refer to the description in Section 3.3.9.

6.10.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local
processor.

if (address_collision) // this is due to an external
// request in progress or a cache index

local_response(RETRY); // hazard from a previous request
elseif (local) // our local memory

switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_response(OK);
update_memory();

case REMOTE_MODIFIED:
assign_entry();
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);

case SHARED:
assign_entry();
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);

default:
error();

else // remote - we’ve got to go to
// another processing element

assign_entry();
remote_request(FLUSH, mem_id, my_id, data);

// data is optional
endif;

6.10.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

if (my_id == mem_id == original_srcid) // original requestor is home memory
switch (received_response)
case DONE:

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

if (received_data)
// with local request or response

update_memory();
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip responder’s shared bit
endif; // and wait for next DONE

case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

if (received_data)
// with local request from memory
84 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
update_memory();
endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,

my_id);
default:

error();
case RETRY:

switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

if (received_data)
// with local request

update_memory();
// if there was some write data

endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
local_response(OK);
free_entry();

case REMOTE_MODIFIED: // mask_id must match
// received_srcid or error

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();
elseif (my_id == mem_id ~= original_srcid)

// i’m home memory working for a third
// party

switch(received_response)
case DONE: // invalidates for shared directory

// states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
remote_response(DONE, original_srcid, my_id, my_id);
if (received_data)

// with original request or response
update_memory();

endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
free_entry();

else
mask <= (mask ~= received_srcid);

// flip responder’s shared bit
endif; // and wait for next DONE

case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
default:

error();
RapidIO.org 85

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
case RETRY:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, my_id);
case SHARED:

remote_request(DKILL_SHARER, received_srcid, my_id);
default:

error();
default:

error();
else // my_id ~= mem_id - I’m requesting

// a remote memory location
switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

// data is optional
default:

error();
endif;

6.10.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision) // use collision table in
// Chapter 7, “Address Collision Resolution

Tables”
elseif (FLUSH) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id);

// after snoop completes
if (received_data) // from request or local response

update_memory();
endif;
update_state(LOCAL_SHARED, my_id);

// or LOCAL_MODIFIED
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid) // owned elsewhere

remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
my_id); // secondary TID is a don’t care since data is

// not forwarded to original requestor
else // requestor owned it; shouldn’t

// generate a flush
error();

endif;
case SHARED:

local_request(READ_TO_OWN);
86 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
if (mask == received_srcid) // requestor is only remote sharer
remote_response(DONE, received_srcid, my_id);

// after snoop completes
if (received_data) // from request or response

update_memory();
endif;
update_state(LOCAL_SHARED, my_id); // or LOCAL_MODIFIED
free_entry();

else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid), my_id,

my_id);
endif;

default:
error();

endif;
RapidIO.org 87

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
6.11 I/O Read Operations
This operation is used for I/O reads of globally shared memory space; refer to the
description in Section 3.3.10.

6.11.1 Internal Request State Machine

This state machine handles requests to both local and remote memory from the local
processor.

if (address_collision) // this is due to an external request
// in progress or a cache index hazard

local_response(RETRY); // from a previous request
elseif (local) // our local memory

local_response(OK);
switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default

// local memory to owned
local_request(READ_LATEST);
return_data()) // after possible push

case LOCAL_SHARED,
case SHARED:

return_data(); // keep directory state the way it was
case REMOTE_MODIFIED:

assign_entry();
remote_request(IO_READ_OWNER, mask_id, my_id, my_id);

default:
error();

else // remote - we’ve got to go to
// another processing element

assign_entry();
local_response(OK);
remote_request(IO_READ_HOME, mem_id, my_id);

endif;

6.11.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local system or a third party.

if (my_id == mem_id == original_srcid)
// original requestor is home memory

switch(remote_response) // matches my_id only for
// REMOTE_MODIFIED case

case INTERVENTION:
return_data();
free_entry();

case NOT_OWNER, // due to address collision or
// passing requests

case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:
case LOCAL_SHARED

return_data();
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid or
// error; spin or wait for castout

remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();
88 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
default
error();

elseif(my_id == mem_id ~== original_id) // i’m home memory working for a third
// party

switch(remote_response)
case INTERVENTION:

update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, mimic
// intervention

case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

remote_response(DATA_ONLY, original_srcid, my_id,
data);

remote_response(DONE_INTERVENTION, original_srcid,
my_id);

free_entry();
case REMOTE_MODIFIED: // spin or wait for castout

remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();

default:
error();

else // my_id ~= mem_id - I’m requesting a
// remote memory location

switch(remote_response)
case DONE:

return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IO_READ_HOME, received_srcid, my_id);
default

error();
endif;

6.11.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
system. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
elseif (IO_READ_HOME) // remote request to our local memory
RapidIO.org 89

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);

// after push completes
free_entry();

case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

default:
error();

else // IO_READ_OWNER request to our caches
assign_entry();
local_request(READ_LATEST); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
if (received_srcid == received_secid)

// original requestor is also home
// memory

remote_response(INTERVENTION, received_srcid, my_id,
data);

else
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id);

endif;
case INVALID: // must have cast it out during

// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

free_entry();
endif;
90 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Chapter 7 Address Collision Resolution Tables

7.1 Introduction
Address collisions are conflicts between incoming cache coherence requests to a
processing element and outstanding cache coherence requests within it. A collision
is usually due to a match between the associated addresses, but also may be because
of a conflict for some internal resource such as a cache index. Within a processing
element, actions taken in response to an address collision vary depending upon the
outstanding request and the incoming request. These actions are described in
Table 7-1 through Table 7-17. Non-cache coherent transactions (transactions
specified in other RapidIO logical specifications) do not cause address collisions.

Some of the table entries specify that an outstanding request should be canceled at
the local processor and that the incoming transaction then be issued immediately to
the processor. This choosing between transactions is necessary to prevent deadlock
conditions between multiple processing elements vying for ownership of a
coherence granule.
RapidIO.org 91

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.2 Resolving an Outstanding READ_HOME Transaction
Table 7-1 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_HOME transaction.

Table 7-1. Address Collision Resolution for READ_HOME

Outstanding Request Incoming Request Resolution

READ_HOME READ_HOME Generate “ERROR” response

READ_HOME IREAD_HOME Generate “ERROR” response

READ_HOME READ_OWNER Generate “NOT_OWNER” response

READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response

READ_HOME DKILL_HOME Generate “ERROR” response

READ_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward DKILL_SHARER to processor then generate a
“DONE” response. If final response is “RETRY”, cancel
the read at the processor and forward DKILL_SHARED
to processor then generate a “DONE” response
If no outstanding request, cancel the read at the processor
and forward DKILL_SHARER to processor then generate
a “DONE” response (this case should be very rare).

READ_HOME CASTOUT Generate “ERROR” response

READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_HOME IKILL_HOME Generate “ERROR” response

READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

READ_HOME FLUSH Generate “ERROR” response

READ_HOME IO_READ_HOME Generate “ERROR” response

READ_HOME IO_READ_OWNER Generate “NOT_OWNER” response
92 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.3 Resolving an Outstanding IREAD_HOME
Transaction
Table 7-2 describes the address collision resolution for an incoming transaction that
collides with an outstanding IREAD_HOME transaction.

Table 7-2. Address Collision Resolution for IREAD_HOME

Outstanding Request Incoming Request Resolution

IREAD_HOME READ_HOME Generate “ERROR” response

IREAD_HOME IREAD_HOME Generate “ERROR” response

IREAD_HOME READ_OWNER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME READ_TO_OWN_HOME Generate “ERROR” response

IREAD_HOME READ_TO_OWN_OWNER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME DKILL_HOME Generate “ERROR” response

IREAD_HOME DKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME CASTOUT Generate “ERROR” response

IREAD_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IREAD_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IREAD_HOME IKILL_HOME Generate “ERROR” response

IREAD_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IREAD_HOME FLUSH Generate “ERROR” response

IREAD_HOME IO_READ_HOME Generate “ERROR” response

IREAD_HOME IO_READ_OWNER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)
RapidIO.org 93

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.4 Resolving an Outstanding READ_OWNER
Transaction
Table 7-3 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_OWNER transaction.

Table 7-3. Address Collision Resolution for READ_OWNER

Outstanding Request Incoming Request Resolution

READ_OWNER READ_HOME Generate “RETRY” response

READ_OWNER IREAD_HOME Generate “RETRY” response

READ_OWNER READ_OWNER Generate “ERROR” response

READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_OWNER DKILL_HOME Generate “RETRY” response

READ_OWNER DKILL_SHARER Generate “ERROR” response

READ_OWNER CASTOUT No collision, update directory state, generate “DONE”
response (CASTOUT bypasses address collision
detection)

READ_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

READ_OWNER IKILL_SHARER Generate “ERROR” response

READ_OWNER FLUSH Generate “RETRY” response

READ_OWNER IO_READ_HOME Generate “RETRY” response

READ_OWNER IO_READ_OWNER Generate “ERROR” response
94 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.5 Resolving an Outstanding READ_TO_OWN_HOME
Transaction

Table 7-4 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_TO_OWN_HOME transaction.

Table 7-4. Address Collision Resolution for READ_TO_OWN_HOME

Outstanding Request Incoming Request Resolution

READ_TO_OWN_HOME READ_HOME Generate “ERROR” response

READ_TO_OWN_HOME IREAD_HOME Generate “ERROR” response

READ_TO_OWN_HOME READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward READ_OWNER to processor and generate an
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator as in Section 3.3.1. If final
response is “RETRY” generate an “ERROR” response
If no outstanding request generate an “NOT_OWNER”
response.

READ_TO_OWN_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_TO_OWN_HOME READ_TO_OWN_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward READ_TO_OWN_OWNER to processor and
generate an “DONE_INTERVENTION” with data
response and a “DATA_ONLY” to originator as in
Section 3.3.3. If final response is “RETRY” generate an
“ERROR” response

READ_TO_OWN_HOME DKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE” generate an “ERROR”
response (we own the coherence granule and should never
see a DKILL). If final response is “RETRY” generate a
“DONE” response and continue the
READ_TO_OWN_HOME.
If no outstanding request generate a “DONE” response.

READ_TO_OWN_HOME CASTOUT Generate “ERROR” response

READ_TO_OWN_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_HOME IKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)
RapidIO.org 95

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
READ_TO_OWN_HOME FLUSH If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward FLUSH to processor and generate a “DONE”
with data response as in Section 3.3.9. If final response is
“RETRY” generate an “ERROR” response (we didn’t
own the data and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

READ_TO_OWN_HOME IO_READ_HOME Generate “ERROR” response

READ_TO_OWN_HOME IO_READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward IO_READ_OWNER to processor then generate a
“DONE” with data response, etc. as in Section 3.3.10. If
final response is “RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “NOT_OWNER”
response.

Table 7-4. Address Collision Resolution for READ_TO_OWN_HOME (Continued)

Outstanding Request Incoming Request Resolution
96 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.6 Resolving an Outstanding
READ_TO_OWN_OWNER Transaction

Table 7-5 describes the address collision resolution for an incoming transaction that
collides with an outstanding READ_TO_OWN_OWNER transaction.

Table 7-5. Address Collision Resolution for READ_TO_OWN_OWNER

Outstanding Request Incoming Request Resolution

READ_TO_OWN_OWNER READ_HOME Generate “RETRY” response

READ_TO_OWN_OWNER IREAD_HOME Generate “RETRY” response

READ_TO_OWN_OWNER READ_OWNER Generate “ERROR” response

READ_TO_OWN_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_TO_OWN_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_TO_OWN_OWNER DKILL_HOME Generate “RETRY” response

READ_TO_OWN_OWNER DKILL_SHARER Generate “ERROR” response

READ_TO_OWN_OWNER CASTOUT No collision, update directory state, generate “DONE”
response (CASTOUT bypasses address collision
detection)

READ_TO_OWN_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

READ_TO_OWN_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

READ_TO_OWN_OWNER IKILL_SHARER Generate “ERROR” response

READ_TO_OWN_OWNER FLUSH Generate “RETRY” response

READ_TO_OWN_OWNER IO_READ_HOME Generate “RETRY” response

READ_TO_OWN_OWNER IO_READ_OWNER Generate “ERROR” response
RapidIO.org 97

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.7 Resolving an Outstanding DKILL_HOME
Transaction

Table 7-6 describes the address collision resolution for an incoming transaction that
collides with an outstanding DKILL_HOME transaction.

Table 7-6. Address Collision Resolution for DKILL_HOME

Outstanding Request Incoming Request Resolution

DKILL_HOME READ_HOME Generate “ERROR” response

DKILL_HOME IREAD_HOME Generate “ERROR” response

DKILL_HOME READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward READ_OWNER to processor and generate a
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator as in Section 3.3.1. If final
response is “RETRY” generate an “ERROR” response
(we didn’t own the data and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

DKILL_HOME READ_TO_OWN_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE” forward
READ_TO_OWN_OWNER to processor and generate a
“DONE_INTERVENTION” with data response and a
“DATA_ONLY” to originator as in Section 3.3.3. If final
response is “RETRY” generate an “ERROR” response
(we didn’t own the data and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_HOME DKILL_HOME Generate “ERROR” response

DKILL_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE” generate an “ERROR”
response (we should never see a DKILL_SHARER if we
own the coherence granule). If final response is
“RETRY” cancel the data cache invalidate at the
processor and forward DKILL_SHARER to processor
then generate a “DONE” response
If no outstanding request, cancel the data cache invalidate
at the processor and forward DKILL_SHARER to
processor then generate a “DONE” response.

DKILL_HOME CASTOUT Generate “ERROR” response (cache paradox, can’t have
a SHARED granule also MODIFIED in another
processing element)

DKILL_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_HOME IKILL_HOME Generate “ERROR” response

DKILL_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)
98 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
DKILL_HOME FLUSH Generate “ERROR” response

DKILL_HOME IO_READ_HOME Generate “ERROR” response

DKILL_HOME IO_READ_OWNER If outstanding request, wait for all expected responses. If
final response is “DONE” forward IO_READ_OWNER
to processor then generate a “DONE” with data response,
etc. as in Section 3.3.10. If final response is “RETRY”
generate an “ERROR” response (we didn’t own the data
and we lost at home memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

Table 7-6. Address Collision Resolution for DKILL_HOME (Continued)

Outstanding Request Incoming Request Resolution
RapidIO.org 99

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.8 Resolving an Outstanding DKILL_SHARER
Transaction
Table 7-7 describes the address collision resolution for an incoming transaction that
collides with an outstanding DKILL_SHARER transaction.

Table 7-7. Address Collision Resolution for DKILL_SHARER

Outstanding Request Incoming Request Resolution

DKILL_SHARER READ_HOME Generate “RETRY” response

DKILL_SHARER IREAD_HOME Generate “RETRY” response

DKILL_SHARER READ_OWNER Generate “ERROR” response

DKILL_SHARER READ_TO_OWN_HOME Generate “RETRY” response

DKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

DKILL_SHARER DKILL_HOME Generate “RETRY” response

DKILL_SHARER DKILL_SHARER Generate “ERROR” response

DKILL_SHARER CASTOUT Generate “ERROR” response (cache paradox, can’t have
a SHARED granule also MODIFIED in another
processing element)

DKILL_SHARER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_SHARER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

DKILL_SHARER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

DKILL_SHARER IKILL_SHARER Generate “ERROR” response

DKILL_SHARER FLUSH Generate “RETRY” response

DKILL_SHARER IO_READ_HOME If processing element is HOME: generate a “RETRY”
response
If processing element is not HOME: If outstanding
request, wait for all expected responses. If final response
is “DONE” forward IO_READ to processor then generate
a “DONE” with data response, etc. as in Section 3.3.10. If
final response is “RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

DKILL_SHARER IO_READ_OWNER Generate “ERROR” response
100 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.9 Resolving an Outstanding IKILL_HOME Transaction
Table 7-8 describes the address collision resolution for an incoming transaction that
collides with an outstanding IKILL_HOME transaction.

Table 7-8. Address Collision Resolution for IKILL_HOME

Outstanding Request Incoming Request Resolution

IKILL_HOME READ_HOME Generate “ERROR” response

IKILL_HOME IREAD_HOME Generate “ERROR” response

IKILL_HOME READ_OWNER No collision, process normally

IKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

IKILL_HOME READ_TO_OWN_OWNER No collision, process normally

IKILL_HOME DKILL_HOME Generate “ERROR” response

IKILL_HOME DKILL_SHARER No collision, process normally

IKILL_HOME CASTOUT No collision, process normally

IKILL_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_HOME IKILL_HOME Generate “ERROR” response

IKILL_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IKILL_HOME FLUSH Generate “ERROR” response

IKILL_HOME IO_READ_HOME Generate “ERROR” response

IKILL_HOME IO_READ_OWNER No collision, process normally
RapidIO.org 101

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.10 Resolving an Outstanding IKILL_SHARER
Transaction
Table 7-9 describes the address collision resolution for an incoming transaction that
collides with an outstanding IKILL_SHARER transaction.

Table 7-9. Address Collision Resolution for IKILL_SHARER

Outstanding Request Incoming Request Resolution

IKILL_SHARER READ_HOME No collision, process normally

IKILL_SHARER IREAD_HOME No collision, process normally

IKILL_SHARER READ_OWNER Generate “ERROR” response

IKILL_SHARER READ_TO_OWN_HOME No collision, process normally

IKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

IKILL_SHARER DKILL_HOME No collision, process normally

IKILL_SHARER DKILL_SHARER Generate “ERROR” response

IKILL_SHARER CASTOUT No collision, process normally

IKILL_SHARER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_SHARER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IKILL_SHARER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

IKILL_SHARER IKILL_SHARER Generate “ERROR” response

IKILL_SHARER FLUSH No collision, process normally

IKILL_SHARER IO_READ_HOME If processing element is HOME: generate a “RETRY”
response
If processing element is not HOME: If outstanding
request, wait for all expected responses. If final response
is “DONE” forward IO_READ to processor then generate
a “DONE” with data response, etc. as in Section 3.3.10. If
final response is “RETRY” generate an “ERROR”
response (we didn’t own the data and we lost at home
memory)
If no outstanding request generate an “ERROR” response
(we didn’t own the data).

IKILL_SHARER IO_READ_OWNER Generate “ERROR” response
102 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.11 Resolving an Outstanding CASTOUT Transaction
Table 7-10 describes the address collision resolution for an incoming transaction
that collides with an outstanding CASTOUT transaction.

Table 7-10. Address Collision Resolution for CASTOUT

Outstanding Request Incoming Request Resolution

CASTOUT READ_HOME Generate “ERROR” response

CASTOUT IREAD_HOME Generate “ERROR” response

CASTOUT READ_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state

CASTOUT READ_TO_OWN_HOME Generate “ERROR” response

CASTOUT READ_TO_OWN_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state

CASTOUT DKILL_HOME Generate “ERROR” response

CASTOUT DKILL_SHARER Generate “ERROR” response

CASTOUT CASTOUT Generate “ERROR” response

CASTOUT TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

CASTOUT TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

CASTOUT IKILL_HOME Generate “ERROR” response

CASTOUT IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

CASTOUT FLUSH Generate “ERROR” response

CASTOUT IO_READ_HOME Generate “ERROR” response

CASTOUT IO_READ_OWNER Generate “RETRY” response; the CASTOUT will bypass
address collision at home memory and modify the
directory state
RapidIO.org 103

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.12 Resolving an Outstanding TLBIE or TLBSYNC
Transaction

Table 7-11 describes the address collision resolution for an incoming transaction
that collides with an outstanding TLBIE or TLBSYNC transaction.

Table 7-11. Address Collision Resolution for Software Coherence Operations

Outstanding Request Incoming Request Resolution

TLBIE,
TLBSYNC

ANY No collision, process request as described in Chapter 6,
“Communication Protocols”
104 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.13 Resolving an Outstanding FLUSH Transaction
The flush operation has two distinct versions. The first is for processing elements
that participate in the coherence protocol such as a processor and it’s associated
agent, which may also have a local I/O device. The second is for processing
elements that do not participate in the coherence protocols such as a pure I/O device
that does not have a corresponding bit in the directory sharing mask. Table 7-12
describes the address collision resolution for an incoming transaction that collides
with an outstanding participant FLUSH transaction.

Table 7-12. Address Collision Resolution for Participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response

FLUSH IREAD_HOME Generate “ERROR” response

FLUSH READ_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
be a CASTOUT)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response

FLUSH READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
be a CASTOUT)

FLUSH DKILL_HOME Generate “ERROR” response

FLUSH DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE” generate an “ERROR”
response (we should never see a DKILL_SHARER if we
own the coherence granule). If final response is
“RETRY” cancel the flush at the processor and forward
DKILL_SHARER to processor then generate a “DONE”
response
If no outstanding request, cancel the data cache invalidate
at the processor and forward DKILL_SHARER to
processor then generate a “DONE” response.

FLUSH CASTOUT Generate “ERROR” response

FLUSH TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

FLUSH TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

FLUSH FLUSH Generate “ERROR” response

FLUSH IO_READ_HOME Generate “ERROR” response

FLUSH IO_READ_OWNER Generate “NOT_OWNER” response (we are not allowed
to issue FLUSH to an owned coherence granule - should
be a CASTOUT)
RapidIO.org 105

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Table 7-13 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant FLUSH transaction.

Table 7-13. Address Collision Resolution for Non-participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

FLUSH DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

FLUSH CASTOUT Generate “ERROR” response (should never receive
coherent operation)

FLUSH TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

FLUSH TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence) - non-participant may have software
coherence.

FLUSH FLUSH Generate “ERROR” response (should never receive
coherent operation)

FLUSH IO_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

FLUSH IO_READ_OWNER Generate “ERROR” response (should never receive
coherent operation)
106 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.14 Resolving an Outstanding IO_READ_HOME
Transaction

The I/O read operation is used by processing elements that do not want to participate
in the coherence protocol but do want to get current copies of cached data. There are
two versions of this operation, one for processing elements that have both processors
and I/O devices, the second for pure I/O devices that do not have a corresponding
bit in the directory sharing mask. Table 7-14 describes the address collision
resolution for an incoming transaction that collides with an outstanding participant
IO_READ_HOME transaction.

Table 7-14. Address Collision Resolution for Participant IO_READ_HOME

Outstanding Request Incoming Request Resolution

IO_READ_HOME READ_HOME Generate “ERROR” response

IO_READ_HOME IREAD_HOME Generate “ERROR” response

IO_READ_HOME READ_OWNER Generate “NOT_OWNER” response (we don’t own the
data otherwise we could have obtained a copy locally)

IO_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

IO_READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we don’t own the
data otherwise we could have obtained a copy locally)

IO_READ_HOME DKILL_HOME Generate “ERROR” response

IO_READ_HOME DKILL_SHARER If outstanding request, wait for all expected responses. If
final response is “DONE”, return data if necessary and
forward DKILL_SHARER to processor then generate a
“DONE” response. If final response is “RETRY” forward
DKILL_SHARED to processor then generate a “DONE”
response
If no outstanding request forward DKILL_SHARER to
processor then generate a “DONE” response

IO_READ_HOME CASTOUT Generate “ERROR” response

IO_READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_HOME IKILL_HOME Generate “ERROR” response

IO_READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence)

IO_READ_HOME FLUSH Generate “ERROR” response

IO_READ_HOME IO_READ_HOME Generate “ERROR” response

IO_READ_HOME IO_READ_OWNER Generate “NOT_OWNER” response (we don’t own the
data otherwise we could have obtained a copy locally)
RapidIO.org 107

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Table 7-15 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant IO_READ_HOME transaction.

Table 7-15. Address Collision Resolution for Non-participant IO_READ_HOME

Outstanding Request Incoming Request Resolution

IO_READ_HOME READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME CASTOUT Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
broadcast operation and non-participant may have page
table hardware.

IO_READ_HOME TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
broadcast operation and non-participant may have page
table hardware.

IO_READ_HOME IKILL_HOME Generate “ERROR” response

IO_READ_HOME IKILL_SHARER No collision, forward to processor then generate “DONE”
response (software must maintain instruction cache
coherence) - broadcast operation and non-participant may
have software coherence.

IO_READ_HOME FLUSH Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME IO_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_HOME IO_READ_OWNER Generate “ERROR” response (should never receive
coherent operation)
108 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
7.15 Resolving an Outstanding IO_READ_OWNER
Transaction

The I/O read operation is used by processing elements that do not want to participate
in the coherence protocol but do want to get current copies of cached data. There are
two versions of this operation, one for processing elements that have both processors
and I/O devices, the second for pure I/O devices that do not have a corresponding
bit in the directory sharing mask. Table 7-16 describes the address collision
resolution for an incoming transaction that collides with an outstanding
IO_READ_OWNER transaction.

Table 7-16. Address Collision Resolution for Participant IO_READ_OWNER

Outstanding Request Incoming Request Resolution

IO_READ_OWNER READ_HOME Generate “RETRY” response

IO_READ_OWNER IREAD_HOME Generate “RETRY” response

IO_READ_OWNER READ_OWNER Generate “ERROR” response

IO_READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

IO_READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

IO_READ_OWNER DKILL_HOME Generate “RETRY” response

IO_READ_OWNER DKILL_SHARER Generate “ERROR” response

IO_READ_OWNER CASTOUT No collision, update directory state and memory, generate
DONE response (CASTOUT bypasses address collision
detection)

IO_READ_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence)

IO_READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

IO_READ_OWNER IKILL_SHARER Generate “ERROR” response

IO_READ_OWNER FLUSH Generate “RETRY” response

IO_READ_OWNER IO_READ_HOME Generate “RETRY” response

IO_READ_OWNER IO_READ_OWNER Generate “ERROR” response (we don’t own the data
otherwise we could have obtained a copy locally)
RapidIO.org 109

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Table 7-17 describes the address collision resolution for an incoming transaction
that collides with an outstanding non-participant IO_READ_OWNER transaction.

Table 7-17. Address Collision Resolution for Non-participant IO_READ_OWNER

Outstanding Request Incoming Request Resolution

IO_READ_OWNER READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER IREAD_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER READ_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER READ_TO_OWN_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER DKILL_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER DKILL_SHARER Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER CASTOUT Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER TLBIE No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

IO_READ_OWNER TLBSYNC No collision, forward to processor then generate “DONE”
response (software must maintain TLB entry coherence) -
non-participant may have page table hardware.

IO_READ_OWNER IKILL_HOME No collision, forward to processor, send IKILL_SHARER
to all participants except requestor (software must
maintain instruction cache coherence)

IO_READ_OWNER IKILL_SHARER Generate “ERROR” response

IO_READ_OWNER FLUSH Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER IO_READ_HOME Generate “ERROR” response (should never receive
coherent operation)

IO_READ_OWNER IO_READ_OWNER Generate “ERROR” response (should never receive
coherent operation)
110 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Address collision. An address based conflict between two or more cache
coherence operations when referencing the same coherence granule.

Agent. A processing element that provides services to a processor.

Asychronous transfer mode (ATM). A standard networking protocol which
dynamically allocates bandwidth using a fixed-size packet.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Block flush. An operation that returns the latest copy of a block of data from
caches within the system to memory.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Broadcast. The concept of sending a packet to all processing elements in a
system.

Bus-based snoopy protocol. A broadcast cache coherence protocol that
assumes that all caches in the system are on a common bus.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache. In other words, a
write operation to an address in the system is visible to all other
caches in the system. Also referred to as memory coherence.

A

B

C

RapidIO.org 111

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Cache coherent-non uniform memory access (CC-NUMA). A cache
coherent system in which memory accesses have different latencies
depending upon the physical location of the accessed address.

Cache paradox. A circumstance in which the caches in a system have an
undefined or disallowed state for a coherence granule, for example,
two caches have the same coherence granule marked “modified”.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Castout operation. An operation used by a processing element to relinquish
its ownership of a coherence granule and return it to home memory.

Coherence domain. A logically associated group of processing elements that
participate in the globally shared memory protocol and are able to
maintain cache coherence among themselves.

Coherence granule. A contiguous block of data associated with an address
for the purpose of guaranteeing cache coherence.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the
RapidIO interconnect.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Distributed memory. System memory that is distributed throughout the
system, as opposed to being centrally located.

Domain. A logically associated group of processing elements.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

D

112 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

Ethernet. A common local area network (LAN) technology.

Exclusive. A processing element has the only cached copy of a sharable
coherence granule. The exclusive state allows the processing
element to modify the coherence granule without notifying the rest
of the system.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Flush operation. An operation used by a processing element to return the
ownership and current data of a coherence granule to home memory.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Home memory. The physical memory corresponding to the physical address
of a coherence granule.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

Instruction cache. High-speed memory containing recently accessed
instructions (subset of main memory) associated with a processor.

Instruction cache invalidate operation. An operation that is used if the
instruction cache coherence must be maintained by software.

Instruction read operation. An operation used to obtain a globally shared
copy of a coherence granule specifically for an instruction cache.

Instruction set architecture (ISA). The instruction set for a certain
processor or family of processors.

Intervention. A data transfer between two processing elements that does not
go through the coherence granule’s home memory, but directly
between the requestor of the coherence granule and the current
owner.

Invalidate operation. An operation used to remove a coherence granule from
caches within the coherence domain.

E

F

G

H

I

RapidIO.org 113

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
I/O. Input-output.

I/O read operation. An operation used by an I/O processing element to
obtain a globally shared copy of a coherence granule without
disturbing the coherence state of the granule.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LSB. Least significant byte.

Memory coherence. Memory is coherent if a processor performing a read
from its cache is supplied with data corresponding to the most recent
value written to memory or to another processor’s cache. In other
words, a write operation to an address in the system is visible to all
other caches in the system. Also referred to as cache coherence.

Memory controller. The point through which home memory is accessed.

Memory directory. A table of information associated with home memory
that is used to track the location and state of coherence granules
cached by coherence domain participants.

Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

Modified. A processing element has written to a locally cached coherence
granule and so has the only valid copy of the coherence granule in
the system.

Modified exclusive shared invalid (MESI). A standard 4 state cache
coherence definition.

Modified shared invalid (MSI). A standard 3 state cache coherence
definition.

Modified shared local (MSL). A standard 3 state cache coherence
definition.

MSB. Most significant byte.

KL

M

114 RapidIO.org

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Multicast. The concept of sending a packet to more than one processing
elements in a system.

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Ownership. A processing element has the only valid copy of a coherence
granule and is responsible for returning it to home memory.

Packet. A set of information transmitted between devices in a RapidIO
system.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Priority. The relative importance of a packet; in most systems a higher
priority packet will be serviced or transmitted before one of lower
priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Read operation. An operation used to obtain a globally shared copy of a
coherence granule.

Read-for-ownership operation. An operation used to obtain ownership of a
coherence granule for the purposes of performing a write operation.

Remote access. An access by a processing element to memory located in
another processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

Shared. A processing element has a cached copy of a coherence granule that
may be cached by other processing elements and is consistent with
the copy in home memory.

N

O

P

R

S

RapidIO.org 115

RapidIO Part 5: Globally Shared Memory Logical Specification 3.2
Sharing mask. The state associated with a coherence granule in the memory
directory that tracks the processing elements that are sharing the
coherence granule.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Sub-double-word. Aligned on eight byte boundaries.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Translation look-aside buffer (TLB). Part of a processor’s memory
management unit; a TLB contains a set of virtual to physical page
address translations, along with a set of attributes that describe
access behavior for that portion of physical memory.

Write-through. A cache policy that passes all write operations through the
caching hierarchy directly to home memory.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

T

W

116 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIOTM Interconnect Specification
Part 6: LP-Serial Physical

Layer Specification
RapidIO.org

Revision History

Revision Description Date

1.1 First release 12/17/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings: 03-03-00004.002, 03-07-00002.001, 03-12-00000.002,
03-12-00002.004, 04-02-00000.001, 04-05-00000.003, 04-05-00006.002 (partial),
04-05-00007.001
and the following new features showings: 02-03-0003.004, 02-06-00001.004,
04-08-00013.002, 04-09-00022.002
Converted to ISO-friendly templates

02/23/2005

2.0 Significant editorial changes
Technical changes: errata showings 04-11-00031.001, 06-04-00000.003,
06-07-00001.001, 07-03-00000.002, 07-03-00001.001
new features showings 05-04-00001.005, 05-04-00003.004, new speed bin and width
definitions with supporting protocol

06/14/2007

2.0.1 Very minor editorial changes 08/29/2007

2.1 Significant editorial changes
Technical changes: errata showings 07-09-00000.003, 07-06-00000.010,
08-05-00001.003, 08-03-00000.001, 08-02-00000.008, 08-06-00001.004,
07-11-00001.010, 08-10-00000.003, 08-11-00001.000

MM/DD/200Y

2.2 Significant editorial changes
Technical changes: errata showings 09-08-00000.005, 09-09-00000.004,
10-02-00000.001, 10-03-00000.004, 10-01-00003.006, 10-08-00000.003,
10-08-00001.005, 10-10-00000.002, 10-10-00001.004, 10-11-00002.001,
11-02-00000.002, Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information.
Technical changes:
Addition of 10xN serial physical layer, including:

• 10.3125 Gbaud lane speed
• 10.3125 Gbaud electrical specifications
• 64b/67b encoding: codewords, ordered sequences, and IDLE3
• Increase ackID size for IDLE3 to 12 bits
• Control symbol encoding
• CRC32 link level error checking
• New per-port register block format, with new/modified registers
• Modified per-Lane Registers
• Specific link initialization state machines to support initialization of 10.3125 Gbaud

links
• Asymmetric operation of 10.3125 Gbaud links

Changed input/output error recovery protocol to enable faster recovery.
Allowed Packet Accepted control symbols to acknowledge multiple packets.
Added time synchronization support, including control symbol definition, register block
definition and control symbol protocol.
Added support for larger packets as created by addition of Dev32 and 64b/67b encoding
scheme.
Completed numerous other editorial changes to improve readability and clarify intent.

10/11/2013
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

3.1 Numerous typographical errors corrected and specification clarifications made.

Technical changes:
Resolution of errata against the 3.0 specification.
Addition of MECS Time Synchronization support and registers
Addition of Structurally Asymmetric Links support and registers
Addition of Pseudo Random Binary Sequence (PRBS) test support and registers
Clarified alignment field treatment in CRC24 computation.
Clarified that in IDLE3 the link-request control symbol shall start in Lane 0.
Added statement regarding transmit emphasis register control to section 4.13.2
Added statement regarding transmit emphasis register control to section 5.18
Added definition of LR_initialize, governing beginning transmit emphasis settings, to
section 5.19.2.

09/18/2014

3.2 Changes as required to add 12.5 Gbaud line rate to specification
Changes required to resolve errata:
Errata 10 Change to Retrain/Xmt_Width_Control State Machine
Errata 11 Corrections to Typical Data Flow Diagrams
Errata 12 Transmit Emphasis Timeout Control Clarification
Errata 14 Seed Control Word Bit Ordering Clarification
Errata 15 Descrambler Seed Ordered Sequence Spacing Clarification

01/28/2016

Revision Description Date
RapidIO.org

RapidIO.org

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 1 Overview

1.1 Introduction... 31
1.2 Contents .. 32
1.3 Terminology.. 34
1.4 Conventions .. 35

Chapter 2 Packets

2.1 Introduction... 37
2.2 Packet Field Definitions.. 37
2.3 Packet Format ... 39
2.4 Packet Protection .. 39
2.4.1 Packet CRC Operation.. 40
2.4.2 CRC-16 Code.. 42
2.5 Maximum Packet Size .. 44

Chapter 3 Control Symbols

3.1 Introduction... 45
3.2 Control Symbol Field Definitions... 47
3.3 Control Symbol Format .. 47
3.4 Stype0 Control Symbols ... 49
3.4.1 Packet-Accepted Control Symbol... 52
3.4.2 Packet-Retry Control Symbol... 52
3.4.3 Packet-Not-Accepted Control Symbol ... 52
3.4.4 Timestamp Control Symbol.. 54
3.4.5 Status Control Symbol .. 54
3.4.6 VC-Status Control Symbol ... 55
3.4.7 Link-Response Control Symbol ... 56
3.4.8 Loop-Response Control Symbol... 57
3.5 Stype1 Control Symbols ... 58
3.5.1 Start-of-Packet Control Symbol.. 59
3.5.2 Stomp Control Symbol ... 60
3.5.3 End-of-Packet Control Symbol... 60
3.5.4 Restart-From-Retry Control Symbol .. 61
3.5.5 Link-Request Control Symbol .. 61
3.5.5.1 Reset-port Command.. 62
3.5.5.2 Reset-Device Command ... 63
3.5.5.3 Port-status Command.. 64
3.5.6 Timing Control Symbols .. 64
3.5.6.1 Multicast-Event Control Symbol.. 64
RapidIO.org 5

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.5.6.2 Secondary Multicast-Event Control Symbol .. 64
3.5.6.3 Loop-Timing Control Symbol .. 65
3.6 Control Symbol Protection ... 65
3.6.1 CRC-5 Code.. 65
3.6.2 CRC-5 Parallel Code Generation.. 66
3.6.3 CRC-13 Code.. 67
3.6.4 CRC-13 Parallel Code Generation.. 67
3.6.5 CRC-24 Code.. 68
3.6.6 CRC-24 Parallel Code Generation.. 69

Chapter 4 8b/10b PCS and PMA Layers

4.1 Introduction... 71
4.2 PCS Layer Functions .. 71
4.3 PMA Layer Functions... 72
4.4 Definitions .. 72
4.5 8b/10b Transmission Code ... 73
4.5.1 Character and Code-Group Notation .. 74
4.5.2 Running Disparity... 75
4.5.3 Running Disparity Rules... 75
4.5.4 8b/10b Encoding ... 76
4.5.5 Transmission Order... 76
4.5.6 8b/10b Decoding... 77
4.5.7 Special Characters and Columns .. 86
4.5.7.1 Packet Delimiter Control Symbol (/PD/).. 87
4.5.7.2 Start of Control Symbol (/SC/) ... 87
4.5.7.3 Idle (/I/) ... 87
4.5.7.4 Sync (/K/).. 87
4.5.7.5 Skip (/R/) .. 87
4.5.7.6 Align (/A/) .. 87
4.5.7.7 Mark (/M/) .. 87
4.5.7.8 Illegal .. 87
4.5.8 Effect of Single Bit Code-Group Errors ... 88
4.6 LP-Serial Link Widths .. 88
4.7 Idle Sequence .. 89
4.7.1 Clock Compensation Sequence .. 90
4.7.2 Idle Sequence 1 (IDLE1) .. 91
4.7.3 Idle Sequence 1 Generation .. 92
4.7.4 Idle Sequence 2 (IDLE2) .. 93
4.7.4.1 Idle Frame... 94
4.7.4.1.1 IDLE Sequence 2 Random Data Field ... 95
4.7.4.1.2 IDLE Sequence 2 CS Field Marker .. 96
4.7.4.1.3 IDLE2 Command and Status Field (CS field).. 98
4.7.4.1.4 IDLE2 CS Field Use... 100
4.7.5 Idle Sequence Selection .. 102
4.8 Scrambling .. 103
6 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
4.8.1 Scrambling Rules.. 104
4.8.2 Descrambler Synchronization... 106
4.8.3 Descrambler Synchronization Verification .. 107
4.9 1x Mode Transmission Rules ... 108
4.9.1 1x Ports ... 108
4.9.2 Nx Ports Operating in 1x Mode.. 110
4.10 Nx Link Striping and Transmission Rules.. 111
4.11 Retimers and Repeaters .. 113
4.11.1 Retimers .. 114
4.11.2 Repeaters... 114
4.12 Port Initialization .. 115
4.12.1 1x Mode Initialization... 115
4.12.2 1x/Nx Mode Initialization... 115
4.12.3 Baud Rate Discovery .. 116
4.12.4 State Machines.. 118
4.12.4.1 State Machine Conventions, Functions and Variables 118
4.12.4.1.1 State Machine Conventions .. 118
4.12.4.1.2 State Machine Functions .. 118
4.12.4.1.3 State Machine Variables ... 119
4.12.4.2 Lane Synchronization State Machine ... 123
4.12.4.3 Lane Alignment State Machine .. 127
4.12.4.4 1x/2x Mode Detect State Machine ... 129
4.12.4.5 1x Mode Initialization State Machine... 130
4.12.4.6 1x/Nx Mode Initialization State Machine for N = 4, 8, 16......................... 131
4.12.4.7 1x/2x Mode Initialization State Machine ... 137
4.12.4.8 1x/Mx/Nx Mode Initialization State Machines .. 140
4.12.4.8.1 1x/2x/Nx Initialization State Machine.. 140
4.12.4.8.2 1x/Mx/Nx Initialization State Machine (N > M > 2) 144
4.13 Structurally Asymmetric Links... 147
4.13.1 Definitions .. 147
4.13.2 Structurally Asymmetric Link Operation ... 147
4.14 Pseudo Random Binary Sequence Testing ... 149

Chapter 5 64b/67b PCS and PMA Layers

5.1 Introduction... 153
5.2 PCS Layer Functions .. 153
5.3 PMA Layer Functions... 154
5.4 Definitions .. 154
5.5 64b/67b Transmission Code ... 156
5.5.1 Codeword Format ... 156
5.5.2 Data Codeword ... 157
5.5.3 Control Codeword... 157
5.5.3.1 Skip-Marker Control Codeword ... 158
5.5.3.2 Lane-Check Control Codeword.. 159
5.5.3.3 Descrambler Seed Control Codeword .. 160
RapidIO.org 7

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.5.3.4 Skip Control Codeword .. 160
5.5.3.5 Status/Control Control Codeword .. 160
5.5.3.6 CSB Control Codeword.. 165
5.5.3.7 CSE Control Codeword .. 165
5.5.3.8 CSEB Control Codeword ... 166
5.5.4 Scrambling .. 167
5.5.4.1 Scrambling Rules.. 167
5.5.4.2 Descrambler Synchronization... 169
5.5.5 Selective Codeword Inversion .. 170
5.5.5.1 Selective Codeword Inversion Rules.. 170
5.5.6 Lane Check Calculation.. 171
5.5.7 Transmission Order... 174
5.6 Packet Transmission Rules ... 174
5.6.1 Link CRC-32 Code ... 175
5.7 Packet Delimiting and Alignment... 177
5.7.1 Packet Start Delimiter... 177
5.7.2 Packet Termination Delimiters ... 177
5.8 Control Symbol Transmission Rules .. 178
5.9 Ordered Sequences ... 178
5.9.1 Seed Ordered Sequence .. 179
5.9.2 Status/Control Ordered Sequence... 180
5.9.3 Skip Ordered Sequence... 180
5.10 Idle Sequence .. 181
5.10.1 Idle Sequence 3 (IDLE3) .. 182
5.10.2 Idle Sequence 3 Generation .. 183
5.11 Adaptive Equalization... 185
5.11.1 Lane Training/Retraining.. 186
5.11.2 Ports Operating at 10.3125 and 12.5 Gbaud... 187
5.11.2.1 Long run 10.3125 and 12.5 Gbaud training.. 187
5.11.2.2 Short run 10.3125 and 12.5 Gbaud training ... 187
5.11.2.3 10.3125 and 12.5 Gbaud retraining .. 189
5.12 LP-Serial Link Widths .. 189
5.13 Transmission Rules... 190
5.13.1 Order of Operation.. 190
5.13.2 1x Ports ... 190
5.13.3 Nx Ports Operating in 1x Mode.. 191
5.13.4 Kx Link Striping and Transmission Rules.. 192
5.14 Effect of Transmission Errors and Error Detection .. 194
5.15 Retimers and Repeaters .. 195
5.15.1 Retimers .. 195
5.15.2 Repeaters... 196
5.16 Port Initialization .. 196
5.16.1 1x Mode Initialization... 197
5.16.2 1x/Nx Mode Initialization... 197
5.16.3 Baud Rate Discovery .. 197
5.17 Asymmetric Operation.. 199
8 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
5.17.1 Port Transmission Width .. 200
5.17.1.1 Port transmission width commands .. 200
5.17.1.1.1 Transmit width port command protocol ... 200
5.17.1.2 Port transmission width requests .. 202
5.17.2 Port Receive Width... 202
5.17.2.1 Receive Width Link Command Protocol.. 203
5.18 Structurally Asymmetric Links... 204
5.19 State Machines .. 205
5.19.1 State Machine Conventions, Functions and Variables 205
5.19.1.1 State Machine Conventions .. 205
5.19.1.2 State Machine Functions... 206
5.19.1.3 State Machine Variables ... 207
5.19.2 Frame_Lock State Machine .. 224
5.19.3 Lane Training State Machines .. 224
5.19.3.1 Long run Lane_Training State Machine... 225
5.19.3.2 Short run Lane_Training state machine.. 230
5.19.4 Codeword Lock State Machine... 232
5.19.5 Lane Synchronization State Machine ... 234
5.19.5.1 Entering Silence.. 235
5.19.5.1.1 Transmitter procedure... 236
5.19.5.1.2 Receiver procedure ... 236
5.19.6 Lane Alignment State Machine .. 237
5.19.7 Port Initialization State Machine .. 239
5.19.7.1 1x/2x/Nx Initialization State Machine.. 240
5.19.8 Retrain/Transmit_Width_Control State Machine... 247
5.19.9 Transmit Width State Machines ... 250
5.19.9.1 Transmit_Width_Cmd State Machine .. 250
5.19.9.2 Transmit_Width state machine ... 251
5.19.10 Receive Width State Machines ... 257
5.19.10.1 Receive_Width_Cmd State Machine.. 257
5.19.10.2 Receive_Width State Machine ... 258
5.20 Pseudo Random Binary Sequence Testing ... 262

Chapter 6 LP-Serial Protocol

6.1 Introduction... 265
6.2 Packet Exchange Protocol .. 265
6.3 Traffic types .. 266
6.4 Virtual Channels ... 267
6.4.1 Virtual channel 0 (VC0) ... 267
6.4.2 Virtual Channels 1-8 (VC1-8) .. 267
6.4.3 Virtual Channel Utilization... 268
6.5 Control Symbols ... 268
6.5.1 Control Symbol Selection... 268
6.5.2 Control Symbol Delimiting .. 269
6.5.3 Control Symbol Use ... 269
RapidIO.org 9

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
6.5.3.1 Link Initialization ... 269
6.5.3.2 Buffer Status Maintenance ... 271
6.5.3.3 Embedded Control Symbols ... 271
6.5.3.4 Timing Control Symbols .. 272
6.5.3.4.1 Multicast-Event Control Symbols .. 272
6.5.3.4.2 Loop-Timing Request... 273
6.5.3.5 Time Synchronization Protocol .. 274
6.5.3.5.1 Setting and Reading a Timestamp Generator ... 275
6.5.3.5.2 Calibrating Transmission Delay ... 278
6.5.3.5.3 Regular Timestamp Generator Re-synchronization 280
6.5.3.5.4 Timestamp Generator Synchronization Control Symbol Jitter 281
6.5.3.6 MECS Time Synchronization Protocol .. 282
6.5.3.6.1 (S)MECS Master Operation ... 282
6.5.3.6.2 MECS Slave Operation .. 283
6.6 Packets .. 284
6.6.1 Packet Delimiting ... 284
6.6.1.1 Packet Start ... 285
6.6.1.2 Packet Termination... 285
6.6.2 Acknowledgment Identifier .. 285
6.6.3 Packet Priority and Transaction Request Flows ... 286
6.7 Link Maintenance Protocol... 288
6.8 Packet Transmission Protocol... 289
6.9 Flow Control ... 291
6.9.1 Receiver-Controlled Flow Control ... 291
6.9.1.1 Reliable Traffic VC Receivers.. 292
6.9.1.2 Continuous Traffic VC Receivers .. 292
6.9.1.3 Single VC Retry Protocol ... 293
6.9.1.4 Input Retry-Stopped Recovery Process .. 294
6.9.1.5 Output Retry-Stopped Recovery Process ... 295
6.9.2 Transmitter-Controlled Flow Control... 295
6.9.2.1 Receive Buffer Management .. 297
6.9.2.2 Effective Number of Free Receive Buffers .. 298
6.9.2.3 Speculative Packet Transmission ... 300
6.9.3 Flow Control Mode Negotiation... 300
6.10 Canceling Packets ... 300
6.11 Transaction and Packet Delivery Ordering Rules... 302
6.12 Deadlock Avoidance... 303
6.13 Error Detection and Recovery .. 306
6.13.1 Lost Packet Detection ... 306
6.13.2 Link Behavior Under Error... 307
6.13.2.1 Recoverable Errors ... 308
6.13.2.2 Idle Sequence Errors... 308
6.13.2.2.1 IDLE1 Sequence Errors.. 308
6.13.2.2.2 IDLE2 Sequence Errors.. 309
6.13.2.2.3 IDLE3 Sequence Errors.. 309
6.13.2.3 Control Symbol Errors.. 310
10 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
6.13.2.3.1 Link Protocol Violations .. 310
6.13.2.3.2 Corrupted Control symbols .. 311
6.13.2.4 Packet Errors... 311
6.13.2.5 Link Timeout .. 312
6.13.2.6 Input Error-Stopped Recovery Process .. 312
6.13.2.7 Output Error-Stopped Recovery Process.. 314
6.14 Power Management .. 315

Chapter 7 LP-Serial Registers

7.1 Introduction... 317
7.2 Register Map... 317
7.3 Reserved Register, Bit and Bit Field Value Behavior .. 318
7.4 Capability Registers (CARs) .. 320
7.4.1 Processing Element Features CAR... 320
7.5 LP-Serial Extended Feature Blocks .. 321
7.5.1 Generic Endpoint Devices .. 321
7.5.2 Generic Endpoint Devices, Software-assisted Error Recovery Option 321
7.5.3 Generic Endpoint Free Devices .. 321
7.5.4 Generic Endpoint Free Devices, Software-assisted Error Recovery Option .. 322
7.5.5 Register Map - I .. 322
7.5.6 Register Map - II... 324
7.6 LP-Serial Command and Status Registers (CSRs) ... 328
7.6.1 LP-Serial Register Block Header.. 328
7.6.2 Port Link Timeout Control CSR... 329
7.6.3 Port Response Timeout Control CSR ... 330
7.6.4 Port General Control CSR .. 331
7.6.5 Port n Link Maintenance Request CSRs... 332
7.6.6 Port n Link Maintenance Response CSRs .. 333
7.6.7 Port n Local ackID CSRs.. 334
7.6.8 Port n Initialization Status CSRs .. 335
7.6.9 Port n Control 2 CSRs .. 336
7.6.10 Port n Error and Status CSRs.. 340
7.6.11 Port n Control CSRs ... 342
7.6.12 Port n Outbound ackID CSRs... 345
7.6.13 Port n Inbound ackID CSRs.. 346
7.6.14 Port n Power Management CSRs.. 347
7.6.15 Port n Latency Optimization CSRs... 349
7.6.16 Port n Link Timers Control CSRs .. 351
7.6.17 Port n Link Timers Control 2 CSRs ... 353
7.6.18 Port n Link Timers Control 3 CSRs ... 354
7.7 LP-Serial Lane Extended Features Block ... 355
7.7.1 Register Map... 355
7.7.2 LP-Serial Lane Command and Status Registers (CSRs) 357
7.7.2.1 LP-Serial Register Block Header.. 357
7.7.2.2 Lane n Status 0 CSRs ... 358
RapidIO.org 11

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2.3 Lane n Status 1 CSRs ... 360
7.7.2.4 Lane n Status 2 CSRs ... 364
7.7.2.5 Lane n Status 3 CSRs ... 366
7.7.2.6 Implementation Specific CSRs... 368
7.7.2.6.1 Lane n Status 2 CSR... 368
7.7.2.6.2 Lane n Status 3 CSR... 368
7.7.2.6.3 Lane n Status 4 CSR... 368
7.7.2.6.4 Lane n Status 5 CSR... 368
7.7.2.6.5 Lane n Status 6 CSR... 368
7.7.2.6.6 Lane n Status 7 CSR... 368
7.8 Virtual Channel Extended Features Block.. 369
7.8.1 Register Map... 369
7.8.2 Virtual Channel Control Block Registers ... 370
7.8.2.1 VC Register Block Header ... 370
7.8.2.2 Port n VC Control and Status Registers ... 371
7.8.2.3 Port n VC0 BW Allocation Registers... 373
7.8.2.4 Port n VCx BW Allocation Registers... 375
7.9 Timestamp Generation Extension Block .. 376
7.9.1 Timestamp Generation Extension Block Header.. 378
7.9.2 Timestamp CAR ... 379
7.9.3 Timestamp Generator Status CSR .. 380
7.9.4 MECS Tick Interval CSR ... 381
7.9.5 MECS Next Timestamp MSW CSR... 382
7.9.6 MECS Next Timestamp LSW CSR.. 383
7.9.7 Timestamp Generator MSW CSR .. 384
7.9.8 Timestamp Generator LSW CSR ... 384
7.9.9 Port n Timestamp 0 MSW CSRs .. 385
7.9.10 Port n Timestamp 0 LSW CSRs ... 385
7.9.11 Port n Timestamp 1 MSW CSRs .. 386
7.9.12 Port n Timestamp 1 LSW CSRs ... 386
7.9.13 Port n Timestamp Generator Synchronization CSRs 387
7.9.14 Port n Auto Update Counter CSRs ... 389
7.9.15 Port n Timestamp Synchronization Command CSRs..................................... 390
7.9.16 Port n Timestamp Synchronization Status CSRs.. 391
7.9.17 Port n Timestamp Offset CSRs... 392
7.10 Miscellaneous Physical Layer Extension Block ... 393
7.10.1 Miscellaneous Physical Layer Extension Block Header 394
7.10.2 Miscellaneous Physical Layer CAR ... 395
7.10.3 Port n Reinit Control CSR .. 396
7.10.4 Port n SAL Control and Status CSR... 397
7.10.5 Port n SMECS Control CSR... 398
7.10.6 Port n PRBS Control CSR .. 399
7.10.7 Port n PRBS Lane Control CSR ... 401
7.10.8 Port n PRBS Status 0 CSR.. 402
7.10.9 Port n PRBS Status 1 CSR.. 405
7.10.10 Port n PRBS Locked Time CSR... 408
12 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
7.10.11 Port n PRBS Seed CSR... 409

Chapter 8 Signal Descriptions

8.1 Introduction... 411
8.2 Signal Definitions ... 411
8.3 Serial RapidIO Interface Diagrams... 411

Chapter 9 Common Electrical Specifications for less than 6.5 Gbaud LP-Serial Links

9.1 Introduction... 413
9.2 References... 414
9.3 Abbreviations.. 415
9.4 Definitions .. 417
9.4.1 Definition of Amplitude and Swing.. 420
9.4.2 Transmitter (Near-End) Template .. 421
9.4.3 Receiver (Far-End) Template ... 424
9.4.3.1 Level I Receiver Template.. 424
9.4.3.2 Level II Receiver Template .. 426
9.4.4 Definition of Skew and Relative Wander ... 427
9.4.5 Total Wander Mask .. 428
9.4.6 Relative Wander Mask.. 429
9.4.7 Random Jitter Mask .. 429
9.4.8 Defined Test Patterns.. 429
9.4.9 Reference Model... 430
9.5 Common Electrical Specification ... 430
9.5.1 Introduction... 430
9.5.2 Data Patterns ... 431
9.5.3 Signal Levels... 431
9.5.4 Bit Error Ratio .. 432
9.5.4.1 Level I Bit Error Ratio.. 432
9.5.4.2 Level II Bit Error Ratio... 432
9.5.5 Ground Differences... 432
9.5.6 Cross Talk ... 432
9.5.7 Transmitter Test Load... 433
9.5.8 Transmitter Lane-to-Lane Skew ... 433
9.5.9 Receiver Input Lane-to-Lane Skew .. 433
9.5.10 Transmitter Short Circuit Current... 433
9.5.11 Differential Resistance and Return Loss, Transmitter and Receiver.............. 434
9.5.12 Baud Rate Tolerance... 434
9.5.13 Termination and DC Blocking.. 435
9.6 Pulse Response Channel Modelling ... 435
9.6.1 Generating a Pulse Response.. 435
9.6.2 Basic Pulse Response Definitions... 436
9.6.3 Transmitter Pulse Definition... 437
9.6.4 Receiver Pulse Response .. 438
RapidIO.org 13

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.6.5 Crosstalk Pulse Response ... 439
9.6.6 Decision Feedback Equalizer.. 439
9.6.7 Time Continuous Transverse Filter .. 440
9.6.7.1 Time Continuous Zero-Pole Equalizer Adaption 440
9.6.8 Time Continuous Zero/Pole.. 441
9.6.9 Degrees of Freedom.. 441
9.6.9.1 Receiver Sample Point.. 441
9.6.9.2 Transmit Emphasis ... 441
9.7 Jitter Modelling... 441
9.7.1 High Frequency Jitter vs. Wander .. 441
9.7.2 Total Wander vs. Relative Wander... 442
9.7.3 Correlated vs. Uncorrelated Jitter ... 442
9.7.4 Jitter Distributions .. 443
9.7.4.1 Unbounded and Bounded Gaussian Distribution 443
9.7.4.2 Bounded Gaussian Distribution.. 443
9.7.4.3 High Probability Jitter... 444
9.7.4.4 Total Jitter... 444
9.7.4.5 Probability Distribution Function vs. Cumulative Distribution Function .. 444
9.7.4.6 BathTub Curves .. 445
9.7.4.7 Specification of GJ and HPJ ... 447
9.7.4.8 Example of Bounded Gaussian... 448
9.7.5 Statistical Eye Methodology... 448
9.7.5.1 Derivation of Cursors and Calculation of PDF... 448
9.7.5.2 Inclusion of Sampling Jitter.. 451
9.7.5.3 Generation of Statistical Eye .. 452

Chapter 10 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud LP-Serial Links

10.1 Level I Application Goals... 455
10.2 Equalization .. 456
10.3 Explanatory Note on Level I Transmitter and Receiver Specifications 456
10.4 Level I Electrical Specification... 457
10.4.1 Level I Short Run Transmitter Characteristics ... 457
10.4.1.1 Level I SR Transmitter Test Load .. 458
10.4.1.2 Level I SR Transmitter Baud Rate.. 458
10.4.1.3 Level I SR Transmitter Amplitude and Swing ... 458
10.4.1.4 Level I SR Transmitter Rise and Fall Times .. 458
10.4.1.5 Level I SR Transmitter Differential Pair Skew .. 459
10.4.1.6 Level I SR Transmitter Output Resistance and Return Loss...................... 459
10.4.1.7 Level I SR Transmitter Lane-to-Lane Skew... 459
10.4.1.8 Level I SR Transmitter Short Circuit Current .. 459
10.4.1.9 Level I SR Transmitter Template and Jitter ... 459
10.4.2 Level I Long Run Transmitter Characteristics ... 460
10.4.2.1 Level I LR Transmitter Test Load .. 461
10.4.2.2 Level I LR Transmitter Baud Rate ... 461
10.4.2.3 Level I LR Transmitter Amplitude and Swing ... 461
14 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
10.4.2.4 Level I LR Transmitter Rise and Fall Times .. 461
10.4.2.5 Level I LR Transmitter Differential Pair Skew .. 462
10.4.2.6 Level I LR Transmitter Output Resistance and Return Loss...................... 462
10.4.2.7 Level I LR Transmitter Lane-to-Lane Skew .. 462
10.4.2.8 Level I LR Transmitter Short Circuit Current .. 462
10.4.2.9 Level I LR Transmitter Template and Jitter ... 462
10.4.3 Level I Receiver Specifications .. 463
10.4.3.1 Level I Receiver Input Baud Rate .. 464
10.4.3.2 Level I Receiver Reference Input Signals .. 464
10.4.3.3 Level I Receiver Input Signal Amplitude... 464
10.4.3.4 Level I Receiver Absolute Input Voltage ... 465
10.4.3.5 Level I Receiver Input Common Mode Impedance 465
10.4.3.6 Level I Receiver Input Lane-to-Lane Skew.. 465
10.4.3.7 Level I Receiver Input Resistance and Return Loss................................... 465
10.4.3.8 Level I Receiver Input Jitter Tolerance .. 466
10.5 Level I Measurement and Test Requirements .. 467
10.5.1 Level I Transmitter Measurements ... 467
10.5.1.1 Level I Eye Template Measurements ... 467
10.5.1.2 Level I Jitter Test Measurements.. 468
10.5.1.3 Level I Transmit Jitter Load ... 468
10.5.2 Level I Receiver Jitter Tolerance.. 468

Chapter 11 5 Gbaud and 6.25 Gbaud LP-Serial Links

11.1 Level II Application Goals ... 469
11.1.1 Common to Level II Short run, Medium run and Long run 469
11.1.2 Application Goals for Level II Short Run .. 470
11.1.3 Application Goals for Level II Medium Run.. 470
11.1.4 Application Goals for Long Run .. 470
11.1.5 Explanatory Note on Transmitter and Receiver Specifications...................... 471
11.2 Equalization .. 471
11.3 Link Compliance Methodology .. 472
11.3.1 Overview... 472
11.3.2 Reference Models ... 472
11.3.3 Channel Compliance... 473
11.3.4 Transmitter Compliance ... 474
11.3.5 Receiver Compliance.. 474
11.4 Level II Short Run Interface - General Requirements .. 475
11.4.1 Jitter and Inter-operability Methodology.. 475
11.4.1.1 Level II SR Defined Test Patterns .. 476
11.4.1.2 Level II SR Channel Compliance ... 476
11.4.1.3 Level II SR Transmitter Inter-operability... 477
11.4.1.4 Level II SR Receiver Inter-operability ... 477
11.4.2 Level II SR Electrical Characteristics... 478
11.4.2.1 Level II SR Transmitter Characteristics ... 478
11.4.2.1.1 Level II SR Transmitter Test Load... 480
RapidIO.org 15

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.2.1.2 Level II SR Transmitter Baud Rate .. 480
11.4.2.1.3 Level II SR Transmitter Amplitude and Swing...................................... 480
11.4.2.1.4 Level II SR Transmitter Rise and Fall Times... 480
11.4.2.1.5 Level II SR Transmitter Differential Pair Skew..................................... 480
11.4.2.1.6 Level II SR Transmitter Output Resistance and Return Loss 480
11.4.2.1.7 Level II SR Transmitter Lane-to-Lane Skew ... 480
11.4.2.1.8 Level II SR Transmitter Template and Jitter .. 481
11.4.2.2 Level II SR Receiver Characteristics.. 481
11.4.2.2.1 Level II SR Receiver Input Baud Rate ... 483
11.4.2.2.2 Level II SR Receiver Reference Input Signals 483
11.4.2.2.3 Level II SR Receiver Input Signal Amplitude.. 483
11.4.2.2.4 Level II SR Receiver Absolute Input Voltage.. 483
11.4.2.2.5 Level II SR Receiver Input Common Mode Impedance 484
11.4.2.2.6 Level II SR Receiver Input Lane-to-Lane Skew 484
11.4.2.2.7 Level II SR Receiver Input Resistance and Return Loss........................ 484
11.4.2.2.8 Level II SR Receiver Input Jitter Tolerance... 484
11.4.2.3 Level II SR Link and Jitter Budgets ... 485
11.4.3 Level II SR StatEye.org Template.. 486
11.5 Level II Long Run Interface General Requirements .. 488
11.5.1 Long Run Jitter and Inter-operability Methodology....................................... 488
11.5.1.1 Level II LR Channel Compliance... 488
11.5.1.2 Level II LR Transmitter Inter-operability... 490
11.5.1.3 Level II LR Receiver Inter-operability ... 490
11.5.2 Level II LR Interface Electrical Characteristics ... 491
11.5.2.1 Level II LR Transmitter Characteristics ... 491
11.5.2.1.1 Level II LR Transmitter Test Load... 493
11.5.2.1.2 Level II LR Transmitter Baud Rate .. 493
11.5.2.1.3 Level II LR Transmitter Amplitude and Swing...................................... 493
11.5.2.1.4 Level II LR Transmitter Rise and Fall Times... 493
11.5.2.1.5 Level II LR Transmitter Differential Pair Skew..................................... 493
11.5.2.1.6 Level II LR Transmitter Output Resistance and Return Loss 493
11.5.2.1.7 Level II LR Transmitter Lane-to-Lane Skew ... 494
11.5.2.1.8 Level II LR Transmitter Short Circuit Current....................................... 494
11.5.2.1.9 Level II LR Transmitter Template and Jitter.. 494
11.5.2.2 Level II LR Receiver Characteristics ... 494
11.5.2.2.1 Level II LR Receiver Input Baud Rate ... 495
11.5.2.2.2 Level II LR Receiver Reference Input Signals....................................... 495
11.5.2.2.3 Level II LR Receiver Input Signal Amplitude 495
11.5.2.2.4 Level II LR Receiver Absolute Input Voltage.. 496
11.5.2.2.5 Level II LR Receiver Input Common Mode Impedance........................ 496
11.5.2.2.6 Level II LR Receiver Input Lane-to-Lane Skew 496
11.5.2.2.7 Level II LR Receiver Input Resistance and Return Loss 496
11.5.2.2.8 Level II LR Receiver Jitter Tolerance .. 497
11.5.3 Level II LR Link and Jitter Budgets ... 497
11.5.4 Level II LR StatEye.org Template.. 498
11.6 Level II Medium Run Interface General Requirements 500
16 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
11.6.1 Medium Run Jitter and Inter-operability Methodology.................................. 500
11.6.1.1 Level II Medium Run Channel Compliance... 500
11.6.1.2 Level II MR Transmitter Inter-operability ... 501
11.6.1.3 Medium Receiver Inter-operability .. 502
11.6.2 Level II MR Interface Electrical Characteristics .. 502
11.6.2.1 Level II MR Transmitter Characteristics .. 502
11.6.2.1.1 Level II MR Transmitter Test Load ... 504
11.6.2.1.2 Level II MR Transmitter Baud Rate... 504
11.6.2.1.3 Level II MR Transmitter Amplitude and Swing 504
11.6.2.1.4 Level II MR Transmitter Rise and Fall Times 504
11.6.2.1.5 Level II MR Transmitter Differential Pair Skew.................................... 504
11.6.2.1.6 Level II MR Transmitter Output Resistance and Return Loss 504
11.6.2.1.7 Level II MR Transmitter Lane-to-Lane Skew.. 505
11.6.2.1.8 Level II MR Transmitter Short Circuit Current...................................... 505
11.6.2.1.9 Level II MR Transmitter Template and Jitter... 505
11.6.2.2 Level II MR Receiver Characteristics .. 505
11.6.2.2.1 Level II MR Receiver Input Baud Rate.. 506
11.6.2.2.2 Level II MR Receiver Reference Input Signals...................................... 506
11.6.2.2.3 Level II MR Receiver Input Signal Amplitude 506
11.6.2.2.4 Level II MR Receiver Absolute Input Voltage 507
11.6.2.2.5 Level II MR Receiver Input Common Mode Impedance....................... 507
11.6.2.2.6 Level II MR Receiver Input Lane-to-Lane Skew................................... 507
11.6.2.2.7 Level II MR Receiver Input Resistance and Return Loss 507
11.6.2.2.8 Level II MR Receiver Jitter Tolerance ... 508
11.6.3 Level II MR Link and Jitter Budgets .. 508
11.6.4 Level II MR StatEye.org Template... 509
11.7 Level II Measurement and Test Requirements ... 511
11.7.1 High Frequency Transmit Jitter Measurement ... 511
11.7.1.1 BERT Implementation.. 511
11.7.1.2 Spectrum Analyzer and Oscilloscope Methodology 513
11.7.1.2.1 Band Limited Unbounded Gaussian Noise .. 513
11.7.1.2.2 Band Limited 60 Second Total Jitter Measurements.............................. 513
11.7.1.2.3 Uncorrelated High Probability Jitter... 514
11.7.1.2.4 Total High Probability Jitter ... 515
11.7.2 Total Transmit Wander Measurement .. 515
11.7.3 Relative Transmit Wander Measurement ... 516
11.7.4 Jitter Tolerance ... 517
11.7.4.1 Jitter Tolerance with Relative Wander Lab Setup...................................... 517
11.7.4.1.1 General.. 518
11.7.4.1.2 Synchronization .. 518
11.7.4.1.3 Jitter .. 519
11.7.4.1.4 Amplitude ... 519
11.7.4.2 Jitter Tolerance with no Relative Wander Lab Setup................................. 520
11.7.4.3 Jitter Tolerance with Defined ISI and no Relative Wander........................ 520
11.7.4.4 Jitter Transfer.. 521
11.7.4.5 Network Analysis Measurement... 522
RapidIO.org 17

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.7.4.6 Eye Mask Measurement Setup ... 524

Chapter 12 Electrical Specification for 10.3125 and 12.5 Gbaud LP-Serial Links

12.1 References... 525
12.2 Level III Application Goals .. 525
12.2.1 Common to Level III Short run and Long run.. 525
12.2.2 Application Goals for Level III Short Run ... 526
12.2.3 Application Goals for Long Run .. 526
12.3 Equalization .. 527
12.3.1 Receiver .. 527
12.3.2 Transmitter.. 527
12.4 Level III Electrical Specification.. 527
12.4.1 Level III Short Run ... 527
12.4.2 Level III Long Run ... 528
12.4.3 Level III Transmitter Lane-to-Lane Skew.. 528
12.4.4 Receiver Input Lane-to-Lane Skew .. 528
12.4.5 Electrical IDLE... 528

Annex A Transmission Line Theory and Channel Information (Informative)

A.1 Transmission Lines Theory .. 529
A.2 Impedance Matching... 529
A.3 Impedance Definition Details ... 530
A.4 Density considerations .. 532
A.5 Common-Mode Impedance and Return Loss ... 533
A.6 Crosstalk Considerations .. 534
A.7 Equation Based Channel Loss by Curve Fit ... 535

Annex B BER Adjustment Methodology (Informative)

B.1 Extrapolation of Correlated Bounded Gaussian Jitter to low BERs................... 537
B.1.1 Bathtub Measurements ... 537
B.2 Confidence Level of Errors Measurement.. 537
B.3 Eye Mask Adjustment for Sampling Oscilloscopes ... 538
B.3.1 Theory... 539
B.3.2 Usage .. 541

Annex C Interface Management (Informative)

C.1 Introduction... 543
C.2 Packet Retry Mechanism .. 543
C.2.1 Input port retry recovery state machine .. 543
C.2.2 Output port retry recovery state machine ... 545
C.3 Error Recovery.. 547
18 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Table of Contents
C.3.1 Input port error recovery state machine.. 547
C.3.2 Output port error recovery state machine ... 548
C.3.3 Changes in Error Recovery Behavior for CT ... 552

Annex D Critical Resource Performance Limits (Informative)

D.1 IDLE1 and IDLE2 .. 553
D.2 IDLE3 ... 558

Annex E Manufacturability and Testability (Informative)

Annex F Multiple Port Configuration Example (Informative)

F.1 Introduction... 567
F.2 System with Different Port Width Capabilities .. 567

Annex G MECS Time Synchronization (Informative)

G.1 Introduction... 569
G.2 Detection of Missing MECS... 569
G.3 MECS and SMECS Redundant Operation ... 569
G.4 Detection of (S)MECS Source Failure ... 570
RapidIO.org 19

Table of Contents

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
20 RapidIO.org

List of Figures

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2-1 Packet Format ...39
2-2 Packet Alignment..39
2-3 Error Coverage of First 16 Bits of Packet Header ..40
2-4 Unpadded Packet of Length 80 Bytes or Less ..41
2-5 Padded Packet of Length 80 Bytes or Less...41
2-6 Unpadded Packet of Length Greater than 80 Bytes..41
2-7 Padded Packet of Length Greater than 80 Bytes ..42
2-8 CRC Generation Pipeline..43
3-1 Control Symbol 24 Format ...47
3-2 Control Symbol 48 Format ...48
3-3 Control Symbol 64 Format ...48
3-4 CRC-5 Implementation...67
4-1 Character Notation Example (D25.3) ...74
4-2 Code-Group Notation Example (/D25.3/) ..75
4-3 Lane Encoding, Serialization, Deserialization, and Decoding Process77
4-4 Example of a Pseudo-Random Idle Code-Group Generator ..93
4-5 Idle Sequence 2 Idle Frame ..94
4-6 5-tap Transversal Filter ...100
4-7 Example of CS Field CMD, ACK, NACK Handshake ..102
4-8 Scrambling Sequence Generator...105
4-9 1x Mode Control Symbol 24 Encoding and Transmission Order109
4-10 1x Mode Packet Encoding and Transmission Order ..109
4-11 1x Typical Data Flow with Control Symbol 24..110
4-12 Typical 4x Data Flow with Control Symbol 24..113
4-13 Baudrate_Discovery state machine (Informational) ...117
4-14 Lane_Synchronization State Machine ..126
4-15 Lane_Alignment State Machine ...128
4-16 1x/2x_Mode_Detect State Machine..130
4-17 1x_Initialization State Machine ..131
4-18 1x/Nx_Initialization State Machine for N = 4, 8, 16 ..135
4-19 Alternate 1x/4x_Initialization State Machine ...137
4-20 1x/2x_Initialization State Machine ...139
4-21 1x/2x/Nx_Initialization State Machine ...142
4-22 1x/Mx/Nx_Initialization State Machine for N > M > 2..145
5-1 64b/67b codeword format ...156
5-2 64b/67b Data codeword format ..157
5-3 General 64b/67b Control Codeword Format ..157
5-4 Skip-Marker Control Codeword Format...159
5-5 Lane-Check Control Codeword ..159
5-6 Descrambler Seed Control Codeword Format..160
5-7 Skip Control Codeword Format..160
RapidIO.org 21

List of Figures

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5-8 Status/Control Control Codeword Format ..161
5-9 CSB Control Codeword Format ...165
5-10 Logical Layout of CSB Control Codeword ..165
5-11 CSE Control Codeword Format..166
5-12 Logical Layout of CSE Control Codeword ..166
5-13 CSEB Control Codeword Format ...166
5-14 Scrambling Sequence Generator...168
5-15 Example of Calculation for Bit 1 of BIP-23 ...173
5-16 Lane Encoding, Serialization, Deserialization, and Decoding Process174
5-17 Link CRC-32 Generation Pipeline..177
5-18 Example of a Pseudo-Random Idle Codeword Generator..185
5-19 1x Typical Data Flow with Control Symbol 64..191
5-20 Typical 4x Data Flow with Control Symbol 64..193
5-21 Baudrate_Discovery state machine (Informational) ...199
5-22 Long run Lane_Training state machine (lane k) Part 1 of 3 ...227
5-23 Long run Lane_Training state machine (lane k) Part 2 of 3 ...228
5-24 Long run Lane_Training state machine (lane k) Part 3 of 3 ...229
5-25 Short run Lane_Training state machine for lane k Part 1 of 2......................................230
5-26 Short run Lane_Training state machine for lane k Part 2 of 2......................................231
5-27 Lane k Codeword_Lock state machine...233
5-28 Lane k Lane_Synchronization state machine ...235
5-29 N-lane Lane_Alignment State Machine (Part 1 of 2) ...238
5-30 N-lane Lane_Alignment State Machine (Part 2 of 2) ...239
5-31 1x/2x/Nx Port_Initialization State Machine, Part 1 of 3 ..242
5-32 1x/2x/Nx Port_Initialization state machine, Part 2 of 3..243
5-33 1x/2x/Nx Port_Initialization state machine, Part 3 of 3..244
5-34 Retrain/Xmt_Width_Control state machine ...249
5-35 Transmit_Width_Cmd state machine ...251
5-36 Transmit Width (XMT_Width) State Machine Part 1 of 4...253
5-37 Transmit Width (XMT_Width) State Machine Part 2 of 4...254
5-38 Transmit Width (XMT_Width) State Machine Part 3 of 4...255
5-39 Transmit Width (XMT_Width) State Machine Part 4 of 4, K, L, N 4256
5-40 Receive_Width_Cmd state machine ...257
5-41 Receive_Width (RCV_Width) State Machine, Part 1 of 4 ...259
5-42 Receive_Width (RCV_Width) State Machine, Part 2 of 4 ...260
5-43 Receive_Width (RCV_Width) State Machine, Part 3 of 4 ...261
5-44 Receive_Width (RCV_Width) State Machine, Part 4 of 4, K, L, N 4262
6-1 Example Transaction with Acknowledgment...266
6-2 Time Synchronization with Synchronous Link Partners ..278
6-3 Asymmetry Computation..279
6-4 Single VC Mode Receiver-Controlled Flow Control ...294
6-5 Single VC Mode Transmitter-Controlled Flow Control...297
8-1 RapidIO 1x Device to 1x Device Interface Diagram..412
8-2 RapidIO Nx Device to Nx Device Interface Diagram..412
8-3 RapidIO Nx Device to 1x Device Interface Diagram...412
9-1 Definition of Transmitter Amplitude and Swing..420
22 RapidIO.org

List of Figures

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9-2 Transition Symbol Transmit Eye Mask ..422
9-3 Transition and Steady State Symbol Eye Mask..423
9-4 Level I Receiver Input Mask ..425
9-5 Receiver Input Mask ...426
9-6 Skew and Relative Wander Between in Band Signals ...427
9-7 Total Wander of a Signal ..428
9-8 Total Wander Mask ..428
9-9 Relative Wander Mask..429
9-10 Random Jitter Spectrum..429
9-11 Reference Model...430
9-12 Transmitter and Input Differential Return Loss ...434
9-13 Termination Example ...435
9-14 Graphical Representation of Receiver Pulse ..436
9-15 Transmit Pulse ..437
9-16 Transmitter FIR Filter Function..438
9-17 Receiver Pulse Definition ...439
9-18 Crosstalk Pulse Definition ..439
9-19 Decision Feedback Equalizer..440
9-20 Feed Forward Filter ..440
9-21 Generation of Total and Relative Wander ..442
9-22 Jitter Probability Density Functions ...443
9-23 Example of Total Jitter PDF ...445
9-24 Example of Total Jitter CDF...445
9-25 Bathtub Definition ..447
9-26 Example of Bounded Gaussian...448
9-27 Statistics of Pulse Response Cursor..449
9-28 Variation of the c0 Sampling Time...450
9-29 Varying the Receiver Sampling Point ..451
9-30 Generation of the Data Eye and Bathtub ..453
9-31 Statistical Eye ...454
10-1 Single Frequency Sinusoidal Jitter Limits ..466
11-1 OIF Reference Model ...473
11-2 Transmitter Compliance Setup ...474
11-3 Receiver Compliance Setup..475
11-4 BERT with Golden PLL ...511
11-5 Spectral Measurement Setup ..513
11-6 Single Side Band Relative Power Spectrum for Phase Modulated Signal514
11-7 Transmit Wander Lab Setup ...515
11-8 Relative Wander Lab Setup ..516
11-9 Jitter Tolerance with Relative Wander Lab Setup ..518
11-10 Jitter Tolerance with no Relative Wander ..520
11-11 Jitter Tolerance with Defined ISI..521
11-12 Jitter Transfer Lab Setup...522
11-13 S-parameter Port Definitions ..522
11-14 Mask Measurement with Golden PLL..524
A-1 Transmission Line as 2-port ...531
RapidIO.org 23

List of Figures

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A-2 Network Terminations ..531
A-3 Measurement of Zodd, Zeven ...532
A-4 Minimization of Crosstalk at IC Pins ...534
A-5 Minimization of Crosstalk At Connector Pins..535
A-6 Minimization of Crosstalk Over Backplane ...535
A-7 Equations Based Channel Loss Curves ..536
B-1 Example Data Mask..539
B-2 Example Data Mask..540
B-3 Cumulative Distribution Function of Maximum Amplitude ..541
C-1 Input Port Retry Recovery State Machine ..544
C-2 Output Port Retry Recovery State Machine ...545
C-3 Input Port Error Recovery State Machine...547
C-4 Output Port Error Recovery State Machine ..549
F-1 Example system with asymmetric port-width capabilities ...568
24 RapidIO.org

List of Tables

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
1-1 Baud Rate Class support per IDLE/Control Symbol type ..34
2-1 Packet Field Definitions..37
2-2 Use of VC, PRIO and CRF Fields ..38
2-3 Parallel CRC-16 Equations ...42
2-4 Maximum Packet Size ..44
3-1 Control Symbol Field Definitions...47
3-2 Stype0 Control Symbol 24 and Control Symbol 48 Encoding.......................................49
3-3 Stype0 Control Symbol 64 Encoding ...49
3-4 Stype0 Parameter Definitions ...50
3-5 Packet-Accepted Control Symbol field usage and values. ...52
3-6 Packet-Retry Control Symbol field usage and values. ...52
3-7 Packet-Not-Accepted Control Symbol field usage and values.53
3-8 Cause Field Definition ..53
3-9 Timestamp Control Symbol field usage and values. ..54
3-10 Status Control Symbol field usage and values..54
3-11 VC-Status Control Symbol field usage and values...55
3-12 VCID Definition ...55
3-13 Link-Response Control Symbol field usage and values. ..56
3-14 Port_status Field Definitions for Control Symbol 24 and Control Symbol 48...............56
3-15 Port_status Field Definitions for Control Symbol 64 ...57
3-16 Control Symbol 64 Loop-Response Control Symbol field usage and values.................58
3-17 Stype1 Control Symbol 24 and Control Symbol 48 Encoding.......................................58
3-18 Stype1 Control Symbol 64 Encoding ...59
3-19 Start-of-Packet Control Symbol field usage and values. ..60
3-20 Stomp Control Symbol field usage and values. ..60
3-21 End-of-Packet Control Symbol field usage and values. ...60
3-22 Restart-From-Retry Control Symbol field usage and values..61
3-23 Link-Request Control Symbol field usage and values..61
3-24 Timing Control Symbol field usage and values..64
3-25 Parallel CRC-5 Equations ...66
3-26 Parallel CRC-13 Equations ...67
3-27 Parallel CRC-24 Equations ...69
4-1 Data Character Encodings ..78
4-2 Special Character Encodings ..85
4-3 Special Characters and Columns ..86
4-4 Code-Group Corruption Caused by Single Bit Errors ..88
4-5 Active Port Width Field Encodings ..97
4-6 Lane Number Field Encodings ...97
4-7 Command and Status Field Encodings ...98
4-8 CS Field 8/10 Bit Encodings ..99
4-9 Scrambler Initialization Values ..105
4-10 Dcounter Definition ..119
RapidIO.org 25

List of Tables

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4-11 lane_sync “Flicker” Probability..124
4-12 Structurally Asymmetric Link Tx/Rx Width Behaviors...148
5-1 Control Codeword function encoding...158
5-2 Lane_check field content ..159
5-3 Status_control field content ..161
5-4 Scrambler Initialization Values ..169
5-5 BIP-23 Calculation ...172
5-6 Parallel Link CRC-32 Equations ..175
5-7 Seed ordered sequence..179
5-8 Status/Control ordered sequence ..180
5-9 Skip ordered sequence ..181
5-10 Codeword Corruption Caused by Bit Errors...194
5-11 Transmit width port command..201
5-12 Transmit width port command status..201
5-13 Structurally Asymmetric Link Tx/Rx Width Behaviors...204
5-14 Reset value for variable from Status/Control control codewords.................................223
5-15 Effects of lane_sync or codeword_lock de-assertion..224
6-1 Additional VC Combinations ...268
6-2 Control Symbol Support for TSG Master and Slave Devices275
6-3 Sequence and Format of Control Symbol 24 Timestamp Control Symbols.................276
6-4 Sequence and Format of Control Symbol 48 Timestamp Control Symbols.................276
6-5 Sequence and Format of Control Symbol 64 Timestamp Control Symbols.................277
6-6 VC0 Transaction Request Flow to Priority Mapping ...287
6-7 VC0 Transaction Request Flow to Priority and Critical Request Flow Mapping287
6-8 Flow IDs for VCs..288
7-1 LP-Serial Register Map ..318
7-2 Configuration Space Reserved Access Behavior..318
7-3 Bit Settings for Processing Element Features CAR..320
7-4 LP-Serial Register Map - I..323
7-5 LP-Serial Register Map - II ..325
7-6 Bit Settings for LP-Serial Register Block Header ..328
7-7 Bit Settings for Port Link Timeout Control CSR ...329
7-8 Bit Settings for Port Response Timeout Control CSR..330
7-9 Bit Settings for Port General Control CSR, Generic Endpoint Devices.......................331
7-10 Bit Settings for General Port Control CSR, Generic Endpoint Free Device331
7-11 Bit Settings for Port n Link Maintenance Request CSRs ...332
7-12 Bit Settings for Port n Link Maintenance Response CSRs...333
7-13 Bit Settings for Port n Local ackID Status CSRs..334
7-14 Bit Settings for Port n Initialization Status CSRs ...335
7-15 Bit Settings for Port n Control 2 CSRs ...336
7-16 Bit Settings for Port n Error and Status CSRs ..340
7-17 Bit Settings for Port n Control CSRs ..342
7-18 Bit Settings for Port n Outbound ackID Status CSRs...345
7-19 Bit Settings for Port n Inbound ackID CSRs ..346
7-20 Bit Settings for Port n Power Management CSRs ..347
7-21 Bit Settings for Port n Latency Optimization CSRs ...349
26 RapidIO.org

List of Tables

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7-22 Bit Settings for Port n Link Timers Control CSRs ...351
7-23 Bit Settings for Port n Link Timers Control 2 CSRs ..353
7-24 Bit Settings for Port n Link Timers Control 3 CSRs ..354
7-25 LP-Serial Lane Register Map ...355
7-26 Bit Settings for LP-Serial Register Block Header ..357
7-27 Bit Settings for Lane n Status 0 CSRs ..358
7-28 Bit Settings for Lane n Status 1 CSRs ..360
7-29 Bit Settings for Lane n Status 2 CSRs ..364
7-30 Bit Settings for Lane n Status 3 CSRs ..366
7-31 Virtual Channel Registers ...369
7-32 Bit Settings for VC Register Block Header ..370
7-33 Port n VC Control and Status Registers..371
7-34 Port n VC0 BW Allocation CSRs...373
7-35 BW Allocation Register Bit Values..374
7-36 Port n VCx BW Allocation CSRs...375
7-37 Timestamp Generation Extension Block ..376
7-38 Bit Settings for Timestamp Generation Extension Block Header378
7-39 Bit Settings for Timestamp CAR..379
7-40 Bit Settings for Timestamp Generator Status CSR...380
7-41 Bit Settings for MECS Tick Interval CSR..381
7-42 Bit Settings for MECS Next Timestamp MSW CSR ...382
7-43 Bit Settings for MECS Next Timestamp LSW CSR ..383
7-44 Bit Settings for Timestamp Generator MSW CSR...384
7-45 Bit Settings for Timestamp Generator LSW CSR ..384
7-46 Bit Settings for Port n Timestamp 0 MSW CSRs...385
7-47 Bit Settings for Port n Timestamp 0 LSW CSRs..385
7-48 Bit Settings for Port n Timestamp 1 MSW CSRs...386
7-49 Bit Settings for Port n Timestamp 0 LSW CSRs..386
7-50 Bit Settings for Port n Timestamp Generator Synchronization CSRs387
7-51 Bit Settings for Port n Auto Update Counter CSRs..389
7-52 Bit Settings for Port n Timestamp Synchronization Command CSRs390
7-53 Bit Settings for Port n Timestamp Synchronization Status CSRs391
7-54 Bit Settings for Port n Timestamp Offset CSRs ...392
7-55 Miscellaneous Physical Layer Extension Block ...393
7-56 Bit Settings for Miscellaneous Physical Layer Extension Block Header394
7-57 Bit Settings for Miscellaneous Physical Layer CAR..395
7-58 Bit Settings for Port n Reinit Control CSR...396
7-59 Bit Settings for Port n SAL Control and Status CSR ...397
7-60 Bit Settings for Port n SMECS Control CSR ...398
7-61 Bit Settings for Port n PRBS Control CSR...399
7-62 Bit Settings for Port n PRBS Lane Control CSR..401
7-63 Bit Settings for Port n PRBS Status 0 CSR ..402
7-64 Bit Settings for Port n PRBS Status 1 CSR ..405
7-65 Bit Settings for Port n PRBS Locked Time CSR..408
7-66 Bit Settings for Port n PRBS Seed CSR ...409
8-1 LP-Serial Signal Description ..411
RapidIO.org 27

List of Tables

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9-1 Abbreviations..415
9-2 General Definitions...417
9-3 Jitter and Wander Definitions ...418
9-4 Transmitter Output Jitter Specification...423
9-5 Transmitter Eye Mask Cross Reference ...424
9-6 Level I Receiver Jitter Specification...425
9-7 Receiver Eye Mask Cross Reference..426
9-8 Level II Receiver Jitter Specification ...427
9-9 Definition of Load Types..432
10-1 Level I SR Transmitter AC Timing Specifications ..457
10-2 Level I SR Transmitter Output Jitter Specifications...458
10-3 Level I SR Transmitter Return Loss Parameters ..459
10-4 Level I SR Near-End (Tx) Template Intervals ...460
10-5 Level I LR Transmitter AC Timing Specifications ..460
10-6 Level I LR Transmitter Output Jitter Specifications ..461
10-7 Level I LR Transmitter Return Loss Parameters ..462
10-8 Level I LR Near-End (Tx) Template Intervals ...463
10-9 Level I Receiver Electrical Input Specifications ..463
10-10 Level I Receiver Input Jitter Tolerance Specifications...464
10-11 Level I Input Return Loss Parameters ..465
10-12 Level I Single Frequency Sinusoidal Jitter Limits Knee Frequencies..........................466
10-13 Level I Far-End (Rx) Template Intervals ...467
11-1 Reference Models ...473
11-2 Level II SR Transmitter Output Electrical Specifications ..478
11-3 Level II SR Transmitter Output Jitter Specifications ...479
11-4 Level II SR Transmitter Return Loss Parameters ...480
11-5 Level II SR Near-End (Tx) Template Intervals ..481
11-6 Level II SR Receiver Electrical Input Specifications ...481
11-7 Level II SR Receiver Input Jitter Tolerance Specifications ...482
11-8 Level II SR Input Return Loss Parameters ...484
11-9 Level II SR Far-End (Rx) Template Intervals ..485
11-10 Level II SR Informative Loss, Skew and Jitter Budget ..485
11-11 Level II SR High Frequency Jitter Budget ...485
11-12 Level II LR Receiver Equalization Output Eye Mask ..489
11-13 Level II LR Transmitter Output Electrical Specifications..492
11-14 Level II LR Transmitter Output Jitter Specifications ...492
11-15 Level II LR Transmitter Return Loss Parameters...493
11-16 Level II LR Near-End Template Intervals ..494
11-17 Level II LR Receiver Electrical Input Specifications ...495
11-18 Level II LR Input Return Loss Parameters ...496
11-19 Level II LR Informative Loss, Skew and Jitter Budget ..497
11-20 Level II LR High Frequency Jitter Budget ...497
11-21 Level II LR Receiver Equalization Output Eye Mask ..501
11-22 Level II MR Transmitter Output Electrical Specifications...503
11-23 Level II MR Transmitter Output Jitter Specifications ..503
11-24 Level II MR Transmitter Return Loss Parameters..504
28 RapidIO.org

List of Tables

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11-25 Level II MR Near-End Template Intervals...505
11-26 Level II MR Receiver Electrical Input Specifications..506
11-27 Level II MR Input Return Loss Parameters..507
11-28 Level II MR Informative Loss, Skew and Jitter Budget...508
11-29 Level II MR High Frequency Jitter Budget ..508
A-1 Curve fit Coefficients..536
C-1 Input Port Retry Recovery State Machine Transition Table...544
C-2 Output Port Retry Recovery State Machine Transition Table546
C-3 Input Port Error Recovery State Machine Transition Table ...548
C-4 Output Port Error Recovery State Machine Transition Table549
D-1 Packet Transmission Delay Components ...555
D-2 Packet Acknowledgment Delay Components...556
D-3 Packet Delays..556
D-4 Maximum Transmission Distances...557
D-5 IDLE3 Packet Transmission Delay Components ...560
D-6 IDLE3 Packet Acknowledgment Delay Components ..560
D-7 IDLE3 Packet Delays..561
D-8 IDLE3 Maximum Transmission Distances...562
RapidIO.org 29

List of Tables

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
30 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 1 Overview

1.1 Introduction
The RapidIO Part 6: LP-Serial Physical Layer Specification addresses the Physical
Layer requirements for devices utilizing an electrical serial connection medium.
This specification defines a full duplex Serial Physical Layer interface (link)
between devices. The links are comprised of one or more lanes, each lane being a
pair of unidirectional serial signaling paths with one path in each direction. Further,
it allows ganging of up to sixteen serial lanes for applications requiring higher link
performance. It also defines a protocol for link management and packet transport
over a link.

RapidIO systems are comprised of end point processing elements and switch
processing elements. The RapidIO interconnect architecture is partitioned into a
layered hierarchy of specifications which includes the Logical, Common Transport,
and Physical Layers. The Logical Layer specifications define the operations and
associated transactions by which end point processing elements communicate with
each other. The Common Transport Layer defines how transactions are routed from
one end point processing element to another through switch processing elements.
The Physical Layer defines how adjacent processing elements electrically connect
to each other. RapidIO packets are formed through the combination of bit fields
defined in the Logical, Common Transport, and Physical Layer specifications.

The RapidIO LP-Serial specification defines a protocol for packet delivery between
serial RapidIO devices including packet and control symbol transmission, flow
control, error management, and other device to device functions. A particular device
may not implement all of the mode selectable features found in this document. See
the appropriate user’s manual or implementation specification for specific
implementation details of a device.

With the introduction of the 10.3125 and 12.5 Gbaud speeds and higher it becomes
of interest to limit the coding overhead to increase the efficiency, because of this a
new encoding scheme (64b/67b) is being introduction in Rev. 3.0.

The LP-Serial Physical Layer Specification has the following properties:

• Embeds the transmission clock with data using an 8b/10b or 64b/67b encoding
scheme.

• Supports links with from one lane, up to sixteen ganged lanes where each lane
is a pair of unidirectional serial paths with one path in each direction.
RapidIO.org 31

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Employs retry and error recovery protocols for link level reliability.

• Supports transmission rates of 1.25, 2.5, 3.125, 5, 6.25, 10.3125 and 12.5
Gbaud (data rates of 1, 2, 2.5, 4, 5, 9.85 and 11.94 Gbps) per lane.

• Supports division of the Physical Layer bandwidth into up to 9 virtual channels
with independent flow control.

• Supports Time Synchronization across RapidIO links with several different
levels of accuracy.

This specification first defines the individual elements that make up the link protocol
such as packets, control symbols, and the serial bit encoding scheme. This is
followed by a description of the link protocol. Finally, the control and status
registers, signal descriptions, and electrical specifications are specified.

The virtual channel features are optional. This specification defines a single virtual
channel mode of operation that is fully compatible with previous RapidIO
specifications.

1.2 Contents
Following are the contents of the RapidIO Part 6: LP-Serial Physical Layer
Specification:

• Chapter 1, "Overview", (this chapter) provides an overview of the specification

• Chapter 2, "Packets", defines how a RapidIO LP-Serial packet is formed by
prefixing a 10-bit Physical Layer header to the combined RapidIO Transport
and Logical Layer bit fields followed by an appended 16-bit CRC field.

• Chapter 3, "Control Symbols", defines the format of three control symbols
(Control Symbol 24, Control Symbol 48, and Control Symbol 64) used for
packet acknowledgment, link utility functions, link maintenance, packet
delineation and to convey flow control information. They may be transmitted
between packets and some may be embedded within a packet.

• Chapter 4, "8b/10b PCS and PMA Layers", describes the Physical Coding
Sublayer (PCS) functionality as well as the Physical Media Attachment
(PMA) functionality for use with Baud Rate class 1 and 2 devices. The PCS
functionality includes 8b/10b encoding scheme for embedding clock with
data. It also gives transmission rules for the 1x-Nx interfaces and defines the
link initialization sequence for clock synchronization. Among other things,
the PMA function is responsible for serializing and de-serializing the 10-bit
code-groups to and from the serial bitstream(s).

• Chapter 5, "64b/67b PCS and PMA Layers", describes the Physical Coding
Sublayer (PCS) functionality as well as the Physical Media Attachment
(PMA) functionality for use with Baud Rate class 3 devices. The PCS
functionality includes 64b/67b encoding scheme for embedding clock with
data. It also gives transmission rules for the 1x-Nx interfaces and defines the
32 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
link initialization sequence for clock synchronization. Among other things,
the PMA function is responsible for serializing and de-serializing the 67-bit
codewords to and from the serial bitstream(s).

• Chapter 6, "LP-Serial Protocol", describes in detail how packets, control
symbols, and the PCS/PMA Layers are used to implement the Physical Layer
protocol. This includes topics such as link initialization, link maintenance,
error detection and recovery, flow control, bandwidth division, and
transaction delivery ordering.

• Chapter 7, "LP-Serial Registers", describes the Physical Layer control and
status register set. By accessing these registers a processing element may
query the capabilities and status and configure another LP-Serial RapidIO
processing element.

• Chapter 8, "Signal Descriptions", contains the signal pin descriptions for a
RapidIO LP-Serial port and shows connectivity between processing
elements.

• Chapter 9, "Common Electrical Specifications for less than 6.5 Gbaud
LP-Serial Links", Chapter 10, "1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud
LP-Serial Links", Chapter 11, "5 Gbaud and 6.25 Gbaud LP-Serial Links",
and Chapter 12, "Electrical Specification for 10.3125 and 12.5 Gbaud
LP-Serial Links" describe the electrical specifications for a RapidIO
LP-Serial device.

• Annex A, “Transmission Line Theory and Channel Information
(Informative)", contains a discussion to aid in applying the AC specifications
to a system design.

• Annex B, “BER Adjustment Methodology (Informative)", provides
recommendations for measuring link error rates.

• Annex C, "Interface Management (Informative)", contains information
pertinent to interface management in a RapidIO system, including error
recovery, link initialization, and packet retry state machines.

• Annex D, "Critical Resource Performance Limits (Informative)", contains a
discussion on outstanding transactions and their relationship to transmission
distance capability.

• Annex E, “Manufacturability and Testability (Informative)", recommends
implementing to IEEE standard 1149.6 for improved manufacturing and
manufacturing test.

• Annex F, “Multiple Port Configuration Example (Informative)", describes an
example of a port configuration scenario.

• Annex F, “Multiple Port Configuration Example (Informative)", describes an
example of a port configuration scenario.
RapidIO.org 33

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Annex G, “MECS Time Synchronization (Informative)", describes operational
and implementation considerations for MECS/SMECS Time
Synchronization.

1.3 Terminology
The following terms are used throughout this document:

• To easily relate features to the lane speed the following Baud Rate Classes are
defined:

– Baud Rate Class 1 is used for lanes running at 1.25 Gbaud, 2.5 Gbaud,
3.125 Gbaud or 5 Gbaud.

– Baud Rate Class 2 is used for lanes running at 6.25 Gbaud.

– Baud Rate Class 3 is used for lanes running at 10.3125 and 12.5 Gbaud.

• Control Symbol types are based on the IDLE sequences being used. The
following Control Symbol types are defined:

– Control Symbol 24 is used when running IDLE1 and was first defined in the 1.x
specifications.

– Control Symbol 48 is used when running IDLE2 and was first defined in the 2.x
specifications. It was created to increase the error protection needed with the
introduction of DFE in the receiver and to carry the additional ackIDs needed to
support same distance as previously with full bandwidth at 6.25G link speeds.

– Control Symbol 64 is used when running IDLE3 links. It was defined for Baud
Rate Class 3 links to support inclusion in 64b/67b encoded links. Control
Symbol 64 further enhance the error protection, widens the ackID space and
provides additional functionality for certain control symbol encodings as
detailed in Chapter 3.

The relationship between Baud Rate Class and IDLE/Control Symbol types is
shown in Table 1-1.

For other terminology refer to the Glossary at the back of this document.

Table 1-1. Baud Rate Class support per IDLE/Control Symbol type

IDLE1 / Control Symbol 24 IDLE2 / Control Symbol 48 IDLE3 / Control Symbol 64

Baud Rate Class 1 Supported Supported

Baud Rate Class 2 Supported

Baud Rate Class 3 Supported
34 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
1.4 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits.

ACTIVE_HIGH Names of active high signals are shown in uppercase text with
no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in
uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the
number of digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care.
RapidIO.org 35

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
36 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 2 Packets

2.1 Introduction
This chapter specifies the LP-Serial end to end packet format and the fields that are
added by LP-Serial Physical Layer. These packets are fed into and received from the
PCS function explained in Chapter 4, "8b/10b PCS and PMA Layers" and
Chapter 5, "64b/67b PCS and PMA Layers".

2.2 Packet Field Definitions
This section specifies the bit fields added to a packet by the LP-Serial Physical
Layer. These fields are required to implement the flow control, error management,
and other specified system functions of the LP-Serial Physical Layer Specification.
The fields are specified in Table 2-1.

Table 2-1. Packet Field Definitions

Field Description

ackID The acknowledgement identifier (ackID) is the packet identifier for link-level packet
acknowledgment (for more information, see Section 6.6.2, "Acknowledgment Identifier"). The
length of the ackID value depends on the length of the control symbol being used on the link
(for more information on the various control symbol formats, see Section Chapter 3, "Control
Symbols"). When the control symbol 24 is being used, the ackID value shall be 5 bits long and
shall be left justified in the ackID field (ackID[0-4]) with the right-most bit of the field
(ackID[5]) set to 0b0. When the control symbol 48 is being used, the ackID value shall be 6 bits
long which fills the ackID field. When the control symbol 64 is being used, the complete ackID
value shall be 12 bits long with the least significant 6 bits carried in the ackID field of the
packet, and the most significant 6 bits carried in the start-of-packet control symbol.

VC The VC bit specifies the usage of the PRIO and CRF fields. When VC = 0, the PRIO and CRF
fields contain the priority bits for a virtual channel 0 packet. When VC = 1 the PRIO and CRF
fields contain the Virtual Channel ID for a VC 1-8 packet. See Table 2-2.

prio Depending on the value of the VC field, PRIO specifies packet priority or contains the most
significant bits of the Virtual Channel ID (VCID). See Table 2-2. See Section 6.6.3, "Packet
Priority and Transaction Request Flows" for an explanation of prioritizing packets. See
Section 6.4, "Virtual Channels" for an explanation of virtual channels.

CRF Depending on the value of the VC field, CRF differentiates between virtual channel 0 flows of
equal priority or contains the least significant bit of the Virtual Channel ID. If VC=0 and
Critical Request Flow is not supported, this bit is reserved. See Table 2-2. See Section 6.6.3,
"Packet Priority and Transaction Request Flows" for an explanation of prioritizing packets. See
Section 6.4, "Virtual Channels" for an explanation of virtual channels.

CRC Cyclic Redundancy Code used to detect transmission errors in the packet. See Section 2.4.1,
"Packet CRC Operation" for details on the CRC error detection scheme.
RapidIO.org 37

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table 2-2 describes the use of the VC, prio, and CRF fields.

Table 2-2. Use of VC, PRIO and CRF Fields

VC Description

Single VC mode:

VC = 0 when CRF is RSVD = 0,
PRIO sets packet priority as follows:

00 - lowest priority
01 - medium priority
10 - high priority
11 - highest priority

VC = 0 when CRF is supported,
PRIO||CRF sets packet priority:

00 0 - lowest priority
00 1 - critical flow lowest priority
01 0 - medium priority
01 1 - critical flow medium priority
10 0 - high priority
10 1 - critical flow high priority
11 0 - highest priority
11 1 - critical flow high priority

Multiple VC Mode:

VC = 0

VC = 1

VC||PRIO||CRF Channel
0 XX X - VC0 (PRIO, CRF = Priority, same as single VC mode) *

1 00 0 - VC1 (PRIO, CRF = VCID)
1 00 1 - VC2
1 01 0 - VC3
1 01 1 - VC4
1 10 0 - VC5
1 10 1 - VC6
1 11 0 - VC7
1 11 1 - VC8

* Note: VC0 is the backwards-compatibility channel

When Fewer than 8 VCs are supported (in addition to VC0)

VC = 1
VC||PRIO||CRF Channel
1 00 X - VC1 (VC0 + 4 VCs)
1 01 X - VC3
1 10 X - VC5
1 11 X - VC7

1 0X X - VC1 (VC0 + 2VCs)
1 1X X - VC5

1 XX X - VC1 (VC0 + 1VC)
38 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2.3 Packet Format
This section specifies the format of LP-Serial Physical Layer packets. Figure 2-1
shows the format of the LP-Serial Physical Layer packet and how the Physical Layer
ackID, VC, CRF, and prio fields are prefixed at the beginning of the packet and a
16-bit CRC field is appended to the end of the packet. An additional CRC may be
included within the packet (see Section 2.4.1, "Packet CRC Operation", below).

The unshaded fields are the fields added by the Physical Layer. The shaded field is
the combined Logical and Transport Layer bits and fields that are passed to the
Physical Layer (also including the possible early CRC as described in Section 2.4.1).

LP-Serial Physical Layer packets shall have a length that is an integer multiple of 32
bits. This sizing simplifies the design of port logic whose internal data paths are an
integer multiple of 32 bits in width. Packets, as defined in the appropriate Logical
and Transport Layer Specifications, have a length that is an integer multiple of 16
bits. This is illustrated in Figure 2-2. If the length of a packet defined by the above
combination of Specifications is an odd multiple of 16 bits, a 16-bit pad whose value
is 0 (0x0000) shall be appended at the end of the packet such that the resulting
padded packet is an integer multiple of 32 bits in length.

Figure 2-2. Packet Alignment

2.4 Packet Protection
A 16-bit CRC code is added to each packet by the LP-Serial Physical Layer to
provide error detection. The code covers the entire packet except for the ackID field,
which is considered to be zero for the CRC calculations. Figure 2-3 shows the CRC
coverage for the first 16 bits of the packet which contain both the bits covered and
not covered by the code.

This structure allows the ackID value to be changed on a link-by-link basis as the
packet is transported across the fabric without requiring that the CRC be recomputed
for each link. Since ackID values on each link are assigned sequentially for each
subsequent transmitted packet, an error in the ackID field is easily detected.

Figure 2-1. Packet Format

prio
21 n

transport & logical fields & possible early CRCackID
6

CRC
161

CRFVC

n*16

16-bit boundarystart of packet

16 bits

remainder of packet fieldsackID ftype

46 1 2 2

CRC

161

VC CRF prio tt
RapidIO.org 39

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2.4.1 Packet CRC Operation

The CRC is appended to a packet in one of two ways. For a packet whose length,
exclusive of CRC, is 80 bytes or less, a single CRC is appended at the end of the
logical fields. For packets whose length, exclusive of CRC, is greater than 80 bytes,
a CRC is added after the first 80 bytes and a second CRC is appended at the end of
the Logical Layer fields.

The second CRC value is a continuation of the first. The first CRC is included in the
running calculation, meaning that the running CRC value is not re-initialized after it
is inserted after the first 80 bytes of the packet. This allows intervening devices to
regard the embedded CRC value as two bytes of packet payload for CRC checking
purposes. If the CRC appended to the end of the Logical Layer fields does not cause
the end of the resulting packet to align to a 32-bit boundary, a two byte pad of all
logic 0s is postpended to the packet. The pad of logic 0s allows the CRC check to
always be done at the 32-bit boundary. A corrupt pad may or may not cause a CRC
error to be detected, depending upon the implementation.

The early CRC value can be used by the receiving processing element to validate the
header of a large packet and start processing the data before the entire packet has
been received, freeing up resources earlier and reducing transaction completion
latency.

NOTE:

While the embedded CRC value can be used by a processing element
to start processing the data within a packet before receiving the entire
packet, it is possible that upon reception of the end of the packet the
final CRC value for the packet is incorrect. This would result in a
processing element that has processed data that may have been
corrupted. Outside of the error recovery mechanism described in
Section 6.13.2, "Link Behavior Under Error", the RapidIO
Interconnect Specification does not address the occurrence of such
situations nor does it suggest a means by which a processing element
would handle such situations. Instead, the mechanism for handling
this situation is left to be addressed by the device manufacturers for
devices that implement the functionality of early processing of packet
data.

Figure 2-3. Error Coverage of First 16 Bits of Packet Header

Protected by CRC

Protected by protocol
ackID ftype

46

VC

1

prio

2

tt

21

CRF
40 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 2-4 is an example of an unpadded packet of length less than or equal to 80
bytes.

Figure 2-5 is an example of a padded packet of length less than or equal to 80 bytes.

Figure 2-6 is an example of an unpadded packet of length greater than 80 bytes.

Figure 2-4. Unpadded Packet of Length 80 Bytes or Less

Figure 2-5. Padded Packet of Length 80 Bytes or Less

Figure 2-6. Unpadded Packet of Length Greater than 80 Bytes

Even multiple of 16-bits 16
start of packet

CRC First half-word Remainder of packet

32-bit boundary
16

16

CRC Logic 0 pad

16

Odd multiple of 16-bits
start of packet

First half-word Remainder of packet

32-bit boundary

16

Odd multiple of 16-bits
start of packet

First half-word Remainder of packet header

16 (bytes 81 and 82)

Logical data CRC

16

Remainder of logical data CRC

Even multiple of 16-bits

Even multiple of 16-bits

32-bit boundary

32-bit boundary

16 (bytes 1 and 2)
RapidIO.org 41

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 2-7 is an example of a padded packet of length greater than 80 bytes.

2.4.2 CRC-16 Code

The ITU polynomial x16+x12+x5+1 shall be used to generate the 16-bit CRC for
packets. The value of the CRC shall be initialized to 0xFFFF (all logic 1s) at the
beginning of each packet. For the CRC calculation, the uncovered six bits are treated
as logic 0s. As an example, a 16-bit wide parallel calculation is described in the
equations in Table 2-3. Equivalent implementations of other widths can be
employed.

Figure 2-7. Padded Packet of Length Greater than 80 Bytes

Table 2-3. Parallel CRC-16 Equations

Check Bit
e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
5

e
0
6

e
0
7

e
0
8

e
0
9

e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
5

C00 x x x x

C01 x x x x

C02 x x x x

C03 x x x x x

C04 x x x x x

C05 x x x x x

C06 x x x x x x

C07 x x x x x x x

C08 x x x x x x x x

C09 x x x x x x x x

C10 x x x x x x x x

C11 x x x x

C12 x x x x x

Even multiple of 16-bits
start of packet

First half-word Remainder of packet header

16 (bytes 81 and 82)

Logical data CRC

16

Remainder of logical data CRC

Odd multiple of 16-bits

Odd multiple of 16-bits

Logic 0 pad

16

32-bit boundary

32-bit boundary

16 (bytes 1 and 2)
42 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
where:

C00–C15 contents of the new check symbol

e00–e15 contents of the intermediate value symbol
e00 = d00 XOR c00
e01 = d01 XOR c01
through
e15 = d15 XOR c15

d00–d15 contents of the next 16 bits of the packet

c00–c15 contents of the previous check symbol

assuming the pipeline described in Figure 2-8

C13 x x x x x

C14 x x x x x

C15 x x x x x

Figure 2-8. CRC Generation Pipeline

Table 2-3. Parallel CRC-16 Equations (Continued)

Check Bit
e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
5

e
0
6

e
0
7

e
0
8

e
0
9

e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
5

c XOR d

XOR

d00–d15

e00–e15

C00–C15

c00–c15

equations network
RapidIO.org 43

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2.5 Maximum Packet Size
The RapidIO Specification does not contain an overall specification for the
maximum size of a packet that a Logical Layer may pass to the Transport Layer or
the Transport Layer may pass to a Physical Layer. Maximum sizes can only be
determined by examining the format of each packet type at the Logical Layer and
the operation of the Transport and Physical Layers.

The longest packets are those containing an operand address within the destination
device, an operand size and a maximum length payload (256 bytes). Currently the
largest packet format is the type 5 (write class) format, defined in the I/O Logical
specification. The sizes of the components of the maximum packet are shown in
more detail in Table 2-4.

The maximum transmitted packet size permitted by the LP-Serial specification shall
be 280 bytes. This includes all packet Logical, Transport, and Physical Layer header
information, data payload, and required end-to-end CRC bytes. This does not
include packet delimiting control symbols or other necessary Physical Layer control
information such as the IDLE3 link CRC-32.

Table 2-4. Maximum Packet Size

Field
Size

(bytes)
Layer Notes

Header 2 Logical,
Transport,
Physical

See Figure 2-2

Source ID 4 Transport Dev32

Destination ID 4 Transport Dev32

Trans/wrsize 1 Logical Type 5 (write class)

srcTID 1 Logical Type 5 (write class)

Address 8 Logical Type 5 (write class); includes
Extended_address, Address,
Wdptr, and Xambs

Payload 256 Logical Maximum data payload

CRC 4 Physical Two CRC-16 since packet is
greater than 80 bytes

Total 280
44 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 3 Control Symbols

3.1 Introduction
This chapter specifies RapidIO LP-Serial Physical Layer control symbols. Control
symbols are the message elements used by ports connected by a LP-Serial link to
manage all aspects of LP-Serial link operation. They are used for link maintenance,
packet delimiting, packet acknowledgment, error reporting, and error recovery.

Three control symbols are defined. The first one is 24 bits long and is referred to as
the Control Symbol 24, in previous revisions this was referred to as the “short”
control symbol. The second one is 48 bits long and is referred to as the Control
Symbol 48, in previous revisions this was referred to as the “long” control symbol.
The third one is 64 bits long and is referred to as the Control Symbol 64.

The Control Symbol 24 was the first control symbol defined for LP-Serial links. It
was designed for links operating at Baud Rate Class 1 and receivers that do not
employ decision feedback equalization (DFE). It provides the functionality needed
for the basic link protocol plus some extensions to the link protocol.

The Control Symbol 48 is an extension of the Control Symbol 24. It was designed
for links operating at Baud Rate Class 2 and receivers employing DFE. The
additional characters are required in part to provide stronger error detection for burst
errors that are characteristic of receivers using DFE. The additional characters are
also available to provide support for link protocol extensions beyond those
supported by the Control Symbol 24.

When use of the Control Symbol 48 is supported by both ends of a LP-Serial link
operating at Baud Rate Class 1, it may be used instead of the Control Symbol 24 to
provide enhanced control symbol functionality. The selection between Control
Symbol 24 and Control Symbol 48 usage for Baud Rate Class 1 links follows the
selection of IDLE Sequence as described in Section 4.7.5, "Idle Sequence
Selection". When IDLE1 is selected Control Symbol 24 shall be used and when
IDLE2 is selected Control Symbol 48 shall be used. Control Symbol 48 shall be used
when a LP-Serial link operates at Baud Rate Class 2.

The Control Symbol 64 is an extension of the Control Symbol 24. It was designed
for links operating at Baud Rate Class 3. The additional bits are required mainly to
provide stronger error detection for burst errors that are characteristic of receivers
using DFE. The additional bits are also available to provide support for Baud Rate
RapidIO.org 45

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Class 3 link protocol enhancements. Control Symbol 64 shall be used when a
LP-Serial link operates at Baud Rate Class 3.

LP-Serial control symbols carry at least two independent functions. Each function is
assigned one or more control symbol fields for its use. One of the fields assigned to
a function specifies the primary function type. The other fields assigned to the
function may, depending on the primary function type, further specify the function
type, contain information required for the execution of the function, contain
“supplemental information” that is not required for the execution of the function and
whose value does not affect the behavior of the receiving port, or be unused. Fields
that specify the function type or contain data required for the execution of the
function are called “functional” fields. Fields that contain “supplemental
information” are called “informational” fields. All fields are functional unless
specified otherwise.

For forward compatibility, a control symbol function received by a port with an
encoding in one or more of the fields assigned to the function that the port does not
understand or support shall be handled as follows. If an encoding that the port does
not understand or support occurs in a functional field, the control symbol function
shall be ignored. If an encoding that the port does not understand or support occurs
only in an informational field, the control symbol function shall be executed. In
either case, no error shall be reported.
46 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.2 Control Symbol Field Definitions
This section describes the fields that make up the control symbols.

3.3 Control Symbol Format
This section describes the general formats of the LP-Serial control symbols. All
Control Symbol 24 shall have the 24 data bit format shown in Figure 3-1.

Figure 3-1. Control Symbol 24 Format

Control Symbols 24 can carry two functions, one encoded in the stype0 field and one
encoded in the stype1 field. The fields parameter0 and parameter1 are used by the
functions encoded in the stype0 field. The cmd field is a modifier for the functions
encoded in the stype1 field.

The functions encoded in stype0 are “status” functions that convey some type of
status about the port transmitting the control symbol. The functions encoded in
stype1 are requests to the receiving port or transmission delimiters.

All Control Symbol 48 shall have the 48 data bit format shown in Figure 3-2.

Table 3-1. Control Symbol Field Definitions

Field Definition

stype0 Encoding for control symbols that use parameter0 and parameter1. The encodings are defined for Control Symbol
24 and Control Symbol 48 in Table 3-2, and for Control Symbol 64 in Table 3-3.

parameter0 Used in conjunction with stype0 encodings. For the description of parameter0 encodings, see Table 3-2 and
Table 3-3.

parameter1 Used in conjunction with stype0 encodings. For the description of parameter1 encodings, see Table 3-2 and
Table 3-3.

stype1 Encoding for control symbols that use the cmd field. The encodings are defined for Control Symbol 24 and Control
Symbol 48 in Table 3-17, and for Control Symbol 64 in Table 3-18.

cmd Used for Control Symbol 24 and Control Symbol 48 in conjunction with the stype1 field to define the link
maintenance commands. For the cmd field descriptions, see Table 3-17.

reserved Set to logic 0s on transmission and ignored on reception

alignment Fixed value of 0b00. These bits are discarded when the control symbol is encoded into codewords and reinserted
when it is decoded from codewords.

CRC-5 5-bit code used to detect transmission errors in Control Symbol 24. See Section 3.6, "Control Symbol Protection"
for details on the CRC error detection scheme.

CRC-13 13-bit code used to detect transmission errors in Control Symbol 48. See Section 3.6, "Control Symbol Protection"
for details on the CRC error detection scheme.

CRC-24 24-bit code used to detect transmission errors in Control Symbol 64. See Section 3.6, "Control Symbol Protection"
for details on the CRC error detection scheme.

stype0

3 5

stype1

3

parameter1

5

cmd

3

CRC-5

5

parameter0

0 2 3 7 8 12 13 15 16 18 19 23bits
RapidIO.org 47

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 3-2. Control Symbol 48 Format

With one exception, the stype0, parameter0, parameter1, stype1, and cmd fields in
the Control Symbol 48 have exactly the same function, encoding, and size as the
same named fields in the Control Symbol 24. The exception is that parameter0 and
parameter1 are 5-bit fields in the Control Symbol 24 and 6-bit fields in the Control
Symbol 48.

All Control Symbol 64 shall have the 64 data bit format shown in Figure 3-3.

Figure 3-3. Control Symbol 64 Format

The stype0, parameter0, parameter1, and stype1 fields in the Control Symbol 64
have a similar function as fields of the same name in the Control Symbol 48. The
cmd field is not used for Control Symbol 64; the function it provided for Control
Symbol 48 is folded onto the stype1 field. The alignment fields are used to bring the
length of the unencoded control symbol up to 64 bits, the number of bits encoded
into a 64b/67b codeword. The alignment fields are positioned to allow a Control
Symbol 64 to be split across codewords.

Control symbols are defined with the ability to carry at least two functions so that a
packet acknowledgment and a packet delimiter can be carried in the same control
symbol. Packet acknowledgment and packet delimiter control symbols constitute
the vast majority of control symbol traffic on a busy link. Carrying an
acknowledgment (or status) and a packet delimiter whenever possible in a single
control symbol allows a significant reduction in link overhead traffic and an increase
in the link bandwidth available for packet transmission.

A control symbol carrying one function is referred to using the name of the function
it carries. A control symbol carrying more than one function may be referred to using
the name of any function that it carries. For example, a control symbol with stype0
set to packet-accepted and stype1 set to NOP is referred to a packet-accepted control
symbol. A control symbol with stype0 set to packet-accepted and stype1 set to
restart-from-retry is referred to as either a packet-accepted control symbol or a

stype0

3 6

stype1

3

parameter1

6

cmd

3

CRC-13

13

parameter0

0 2 3 8 9 14 15 17 18 20 47bits

reserved

14

353421

st
yp

e1
[0

:1
]

st
yp

e0
[0

:3
]

st
yp

e1
[2

:7
]

pa
ra

m
et

er
0

pa
ra

m
et

er
1

CRC-24

24 12 24612

0 31 32 63

al
ig

nm
en

t

2

al
ig

nm
en

t

2

48 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
restart-from-retry control symbol depending on which name is appropriate for the
context.

3.4 Stype0 Control Symbols
The encoding and function of stype0, and the information carried in parameter0 and
parameter1 for each stype0 encoding, shall be as specified in Table 3-2 for Control
Symbol 24 and Control Symbol 48, and as specified in Table 3-3 for Control Symbol
64.

* While implementation-defined control symbols are allowed, their use can result in
inter-operability problems and is not recommended. There is no registration facility
for implementation-defined control symbols. As a result, two implementations may
assign different meanings to the same encoding of the Parameter0 and/or Parameter1
fields which could result in undefined and/or inconsistent behavior, data corruption,
or system failure. The default state of a processing element after power-up shall
disable transmission and processing of implementation specific control symbols.

Table 3-2. Stype0 Control Symbol 24 and Control Symbol 48 Encoding

stype0 Function
Contents of

Reference
Parameter0 Parameter1

0b000 packet-accepted packet_ackID buf_status Section 3.4.1

0b001 packet-retry packet_ackID buf_status Section 3.4.2

0b010 packet-not-accepted arbitrary/ackID_status cause Section 3.4.3

0b011 timestamp timestamp
Bits 0–4

timestamp
Bits 5–9

Section 3.4.4

0b100 status ackID_status buf_status Section 3.4.5

0b101 VC_status VCID buf_status Section 3.4.6

0b110 link-response ackID_status port_status Section 3.4.7

0b111 implementation-defined * implementation-defined implementation-defined —

Table 3-3. Stype0 Control Symbol 64 Encoding

stype0 Function
Contents of

Reference
Parameter0 Parameter1

0b0000 packet-accepted packet_ackID buf_status Section 3.4.1

0b0001 packet-retry packet_ackID buf_status Section 3.4.2

0b0010 packet-not-accepted arbitrary/ackID_status cause Section 3.4.3

0b0011 timestamp See Section 3.4.4 Section 3.4.4

0b0100 status ackID_status buf_status Section 3.4.5

0b0101 VC_status VCID buf_status Section 3.4.6

0b0110 link-response ackID_status port_status Section 3.4.7

0b0111 implementation-defined * implementation-defined implementation-defined —
RapidIO.org 49

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
* While implementation-defined control symbols are allowed, their
use can result in inter-operability problems and is not recommended.
There is no registration facility for implementation-defined control
symbols. As a result, two implementations may assign different
meanings to the same encoding of the Parameter0 and/or Parameter1
fields that could result in undefined and/or inconsistent behavior, data
corruption, or system failure.

The packet-accepted, packet-retry and packet-not-accepted control symbols are
collectively referred to as “packet acknowledgment” control symbols.

“Status” is the default stype0 encoding, and is used when a control symbol does not
convey another stype0 function.

Table 3-4 defines the parameters valid for stype0 control symbols and that are used
for more than one value of stype0.

0b1000 reserved — — —

0b1001 reserved — — —

0b1010 reserved — — —

0b1011 loop-response device_delay 0x000 Section 3.4.8

0b1100 reserved — — —

0b1101 VoQ-backpressure as defined in Part 12 Part 12

0b1110 reserved — — —

0b1111 reserved — — —

Table 3-4. Stype0 Parameter Definitions

Parameter Definition

packet_ackID The ackID of the packet being acknowledged or the ackID of the packet that caused the retry
condition.

ackID_status The value of the ackID field expected in the next packet the port receives. This value is 1
greater than the ackID of the last packet accepted by the port exclusive of CT mode packets
accepted after the port entered an Input-stopped state. For example, a value of 0x01 (Control
Symbol 24), 0x01 (Control Symbol 48) or 0x001 (Control Symbol 64) indicates that the
ackID of the last packet accepted by the port exclusive of CT mode packets accepted after
the port entered an Input-stopped state was 0 and that the port is expecting to receive a
packet with an ackID field value of 1.

Table 3-3. Stype0 Control Symbol 64 Encoding

stype0 Function
Contents of

Reference
Parameter0 Parameter1
50 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
NOTE:

The following sections describes various control symbols. Since
control symbols can contain one or more functions, the fields that are
applicable to each control symbol function is shown in the tables.

buf_status The number of maximum length packet buffers the port has available for packet reception on
the specified virtual channel (VC) at the time the control symbol containing the field is
generated. The value of the buf_status field in a packet-accepted control symbol is inclusive
of the receive buffer consumption of the packet being accepted. The field is used in
transmitter controlled flow control to control the rate at which packets are transmitted to
prevent loss of packets at the receiver due to a lack of packet buffers.

For Control Symbol 24:
Value 0–29: The encoded value is the number of maximum sized packet buffers the port has
available for reception on the specified VC. The value 0, for example, signifies that the port
has no packet buffers available for the specified VC (thus is not able to accept any new
packets for that VC).

Value 30: The value 30 indicates that the port has at least 30 maximum length packet buffers
available for reception on the specified VC.

Value 31: The port has an undefined number of maximum sized packet buffers available for
packet reception, and relies on retry for flow control.

For Control Symbol 48:
Value 0–61: The encoded value is the number of maximum sized packet buffers the port has
available for reception on the specified VC. The value 0, for example, signifies that the port
has no packet buffers available for the specified VC (thus is not able to accept any new
packets for that VC).

Value 62: The value 62 indicates that the port has at least 62 maximum length packet buffers
available for reception on the specified VC.

Value 63: The port has an undefined number of maximum sized packet buffers available for
packet reception, and relies on retry for flow control.

For Control Symbol 64:
Value 0–4093: The encoded value is the number of maximum sized packet buffers the port
has available for reception on the specified VC. The value 0, for example, signifies that the
port has no packet buffers available for the specified VC (thus is not able to accept any new
packets for that VC).

Value 4094: The value 4094 indicates that the port has at least 4094 maximum length packet
buffers available for reception on the specified VC.

Value 4095: The port has an undefined number of maximum sized packet buffers available
for packet reception, and relies on retry for flow control.

Timestamp A time value, sent as a loop-response or as part of a timestamp update.

Table 3-4. Stype0 Parameter Definitions

Parameter Definition
RapidIO.org 51

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.4.1 Packet-Accepted Control Symbol

The packet-accepted control symbol indicates that the port sending the control
symbol has taken responsibility for sending the packet or packets to its final
destination and that resources allocated to the packet or packets by the port receiving
the control symbol can be released. This control symbol shall be generated only after
the entire packet or packets has been received and found to be free of detectable
errors. The packet-accepted control symbol field usage and values are displayed in
Table 3-5.

The buf_status value in the control symbol is for the VC of the packet being
accepted. Since the VC of the packet is not carried in the control symbol, the port
receiving the control symbol must re-associate the ackID in the packet_ackID field
with the VC of the accepted packet to determine the VC to which the buf_status
applies.

3.4.2 Packet-Retry Control Symbol

A packet-retry control symbol indicates that the port sending the control symbol was
not able to accept the packet due to some temporary resource conflict such as
insufficient buffering and the packet must be retransmitted. The control symbol field
usage and values are displayed in Table 3-6.

The packet-retry control symbol shall be used in single VC mode. Packet retry is
replaced with error recovery when multiple VCs are active. See Section 6.9, "Flow
Control", for more information.

The buf_status shall be for VC0 since retries are only supported for single VC.

3.4.3 Packet-Not-Accepted Control Symbol

The packet-not-accepted control symbol indicates that the port sending the control
symbol has either detected an error in the received character stream or, when

Table 3-5. Packet-Accepted Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 24 0b000 packet_ackID buf_status

Control Symbol 48 0b000 packet_ackID buf_status

Control Symbol 64 0b0000 packet_ackID buf_status

Table 3-6. Packet-Retry Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 24 0b001 packet_ackID buf_status

Control Symbol 48 0b001 packet_ackID buf_status

Control Symbol 64 0b0001 packet_ackID buf_status
52 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
operating in multiple VC mode, has insufficient buffer resources and as a result may
have rejected a packet or control symbol. The control symbol contains an
“arbitrary/ackID_status” field and a “cause” field. The control symbol field usage
and values are displayed in Table 3-7.

The “arbitrary/ackID_status” field may be an arbitrary value, or may be the
ackID_Status, indicating the ackID of the next packet expected by the link partner,
depending on the capabilities and configuration of the device. For more information,
refer to Section 7.6.15, "Port n Latency Optimization CSRs".

The “cause” field is used to provide information about the type of error that was
detected for diagnostics and debug use. The content of the cause field is
informational only.

The contents of both the arbitrary/ackID_status field and the cause field are
informational only, unless bit 9 of the Port n Latency Optimization CSR register is
set within both the transmitting and receiving port's configuration space. If both
ports support “Error Recovery with ackID in PNA Enabled”, then the contents of the
Parameter0 and Parameter1 fields are functional for packet-not-accepted control
symbols.

The cause field shall be encoded as specified in Table 3-8 which lists a number of
common faults and their encodings. If the port issuing the control symbol is not able
to specify the fault, or the fault is not one of those listed in the table, the general error
encoding shall be used.

Table 3-7. Packet-Not-Accepted Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 24 0b010 arbitrary/ackID_status cause

Control Symbol 48 0b010 arbitrary/ackID_status 0b0, cause

Control Symbol 64 0b0010 arbitrary/ackID_status 0b000_0000, cause

Table 3-8. Cause Field Definition

Cause Definition

0b00000 Reserved

0b00001 Received a packet with an unexpected ackID

0b00010 Received a control symbol with bad CRC

0b00011 Non-maintenance packet reception is stopped

0b00100 Received a packet with bad CRC

0b00101 Received an invalid character or codeword, or valid but illegal character

0b00110 Packet not accepted due to lack of resources

0b00111 Loss of descrambler sync

0b01000 - 0b11110 Reserved

0b11111 General error
RapidIO.org 53

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.4.4 Timestamp Control Symbol

Timestamp control symbols are used to set the timestamp generator value of the link
partner with a high degree of accuracy, and for links operating at Baud Rate Class 1
or Baud Rate Class 2 as a response to a loop-timing request (loop-response).
Timestamp control symbols contain 10 bits of a time value that is spread across the
parameter0 and parameter1 fields. The control symbol field usage and values are
displayed in Table 3-9. The use of timestamp control symbols is described in
Section 6.5.3.5, "Time Synchronization Protocol".

3.4.5 Status Control Symbol

The status control symbol indicates receive status information about the port
sending the control symbol. The control symbol contains the ackID_status and the
buf_status fields. The ackID_status field allows the receiving port to determine if it
and the sending port are in sync with respect to the next ackID value the sending port
expects to receive. The ackID_status field is informational. The buf_status field
indicates to the receiving port the number of maximum length packet buffers the
sending port has available for reception on VC0 as defined in Table 3-4.

“Status” is the default stype0 encoding and is used when the control symbol does not
convey another stype0 function.

The status control symbol field usage and values are displayed in Table 3-10.

Table 3-9. Timestamp Control Symbol field usage and values.

Format stype0 Usage Parameter0 Parameter1

Control Symbol 24 0b011 Timestamp Start bit, end bit, most
significant 3 bits of

timestamp byte value

Least significant 5 bits of
timestamp byte value

Loop-response Delay[0:4] Delay[5:9]

Control Symbol 48 0b011 Timestamp 0b0, Start bit, end bit, most
significant 3 bits of

timestamp byte value

0b0, Least significant 5 bits
of timestamp byte value

Loop-response Delay[0:5] Delay[6:11]

Control Symbol 64 0b0011 Timestamp See Table 6-5 See Table 6-5

Table 3-10. Status Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 24 0b100 ackID_status buf_status

Control Symbol 48 0b100 ackID_status buf_status

Control Symbol 64 0b0100 ackID_status buf_status
54 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.4.6 VC-Status Control Symbol

The VC-status control symbol indicates to the receiving port the available buffer
space that the sending port has available for packet reception on the virtual channel
(VC) specified in the control symbol. The VC-status control symbol is used only for
virtual channels 1 through 8 (VC1 through VC8) and may be transmitted only when
the specified VC is implemented and enabled. (The status control symbol described
in Section 3.4.5, "Status Control Symbol" provides this function for VC0.)

The VCID field specifies the VC to which the control symbol applies. VCID is a
3-bit field that is right justified in the Parameter0 field of the control symbol. The
remaining bits of the parameter0 field are reserved, set to 0 on transmission and
ignored on reception. The buf_status field indicates to the receiving port the number
of maximum length packet buffers the sending port has available for reception on
the specified VC as defined in Table 3-4.

The VC-status control symbol may be transmitted at any time and should be
transmitted whenever the number of maximum length packet buffers available for
reception on a VC has changed and has not been otherwise communicated to the
connected port.

The VC-status control symbol field usage and values are displayed in Table 3-11.

The encoding of the VCID field is specified in Table 3-12. The VCID corresponds
to the VCID in the Physical Layer format as described in Chapter 2, "Packets".

Table 3-11. VC-Status Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 24 0b101 0b00, VCID buf_status

Control Symbol 48 0b101 0b000, VCID buf_status

Control Symbol 64 0b0101 0b0_0000_0000, VCID buf_status

Table 3-12. VCID Definition

8 Optional VCs Active 4 Optional VCs Active 2 Optional VCs Active 1 Optional VC Active

VCID Definition VCID Definition VCID Definition VCID Definition

0b000 VC1 0b00x VC1 0b0xx VC1 0bxxx VC1

0b001 VC2 0b01x VC3 0b1xx VC5

0b010 VC3 0b10x VC5

0b011 VC4 0b11x VC7

0b100 VC5

0b101 VC6

0b110 VC7

0b111 VC8 Active VCs are in addition to VC0
RapidIO.org 55

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Formats for 4, 2, and 1 active VCs are shown in the three right hand columns of the
table. When using fewer than 8 VCs, bits in the VCID are ignored starting from the
LSB, consistent with the bit usage in the packet format. For example, with one
optional VC active, all bit patterns in the VCID are interpreted as pertaining to VC1.

3.4.7 Link-Response Control Symbol

The link-response control symbol is used by a port to respond to a link-request
control symbol (Section 3.5.5) as described in Section 6.7, "Link Maintenance
Protocol". The status reported in the port_status field shall be the status of the port
at the time the associated port-status link-request control symbol was received. The
port_status field shall be treated as “information only” when a link-response control
symbol is received. For backwards compatibility with 1.x revisions of this
specification, when operating with lane speeds of less than 3.5 Gbaud, the
port_status field shall only use one of the following values: 0b00010, 0b00100,
0b00101 or 0b10000 even if other values are defined in the specification. The
link-response control symbol field usage and values are displayed in Table 3-13.

For Control Symbol 24 and Control Symbol 48, the encoding of the link-response
control symbol port_status field shall be as defined in Table 3-14.

The Control Symbol 64 encoding of the link-response control symbol port_status
field shall be as defined in Table 3-15.

Table 3-13. Link-Response Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 24 0b110 ackID_status port_status

Control Symbol 48 0b110 ackID_status 0b0, port_status

Control Symbol 64 0b0110 ackID_status port_status

Table 3-14. Port_status Field Definitions for Control Symbol 24 and Control Symbol 48

Port_status Status Description

0b00000 - 0b00001 — Reserved

0b00010 Error The port has encountered an unrecoverable error and is unable to accept
packets.

0b00011 — Reserved

0b00100 Retry-stopped The port has retried a packet and is waiting in the input retry-stopped
state to be restarted.

0b00101 Error-stopped The port has encountered a transmission error and is waiting in the input
error-stopped state to be restarted.

0b00110 - 0b01111 — Reserved

0b10000 OK The port is accepting packets

0b10001 - 0b11111 — Reserved
56 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.4.8 Loop-Response Control Symbol

The loop-response control symbol is used by ports operating at Control Symbol 64
to respond to a Loop-timing Request control symbol. The loop-response control
symbol carries a single 12-bit value, Delay, which represents the number of
nanoseconds between the time the loop-timing request was received by the link
partner, and the time the loop-response was generated. A Delay value of all 1s
(0xFFF) indicates that the amount of delay exceeded 4094 nanoseconds. For more
information, refer to Section 6.5.3.5, "Time Synchronization Protocol". The
loop-response control symbol field usage and values are displayed in Table 3-13.

Table 3-15. Port_status Field Definitions for Control Symbol 64

Port_status
bit number

Description

0 Reserved

1–2 Input Port Status
0b00 - No input error condition exists
0b01 - Port n Error and Status CSR “Input retry-stopped” status bit is asserted
0b10 - Port n Error and Status CSR “Input Error-Stopped” status bit is asserted
0b11 - Implementation specific Input Port Fatal Error condition
The values are encoded in increasing order of priority. 0b00 is the lowest priority.
When multiple conditions exist simultaneously the highest priority condition shall be
encoded.

3 Input Port Enabled
This bit shall be set if all of the following conditions are true, otherwise this bit shall be
cleared:
- The Port n Control CSR Input Port Enabled bit is set.
- All implementation specific bits allow Physical Layer packet acceptance.

4 Reserved

5–6 Output Port Status
0b00 - No output error condition exists
0b01 - Port n Error and Status CSR “Output retry-stopped” bit is asserted
0b10 - Port n Error and Status CSR “Output Error-Stopped” status bit is asserted
0b11 - Output Port Fatal Error condition
The values are encoded in increasing order of priority. 0b00 is the lowest priority.
When multiple conditions exist simultaneously the highest priority condition shall be
encoded.

7 Output Port Enabled
This bit shall be set if both of the following conditions are true, otherwise this bit shall be
cleared:
- The Port n Control CSR Output Port Enabled bit is set.
- All implementation specific bits allow Physical Layer packet acceptance.

8 Port-Write Pending
The port has encountered a condition which required it to initiate a Maintenance Port-write
operation.

9–11 Reserved
RapidIO.org 57

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.5 Stype1 Control Symbols
The encoding of stype1 and the function of the cmd field are defined in Table 3-17
for Control Symbol 24 and Control Symbol 48, and the encoding of stype1 is defined
in Table 3-18 for Control Symbol 64.

Note: * denotes that restart-from-retry and link-request control symbols may only be
packet delimiters if a packet is in progress.

Note: ** NOP (Ignore) is not defined as a control symbol, but is the default value
when the control symbol does not convey another stype1 function.

Table 3-16. Control Symbol 64 Loop-Response Control Symbol field usage and values.

Format stype0 Parameter0 Parameter1

Control Symbol 64 0b1011 Delay bits 0–11 Reserved

Table 3-17. Stype1 Control Symbol 24 and Control Symbol 48 Encoding

stype1
(3 bits)

stype1
Function

cmd
cmd

Function
Packet

Delimiter
Reference

0b000 Start-of-packet 0b000 Start-of-packet Yes Section 3.5.1

0b001–0b111 Reserved No

0b001 Stomp 0b000 Stomp Yes Section 3.5.2

0b001–0b111 Reserved No

0b010 End-of-packet 0b000 End-of-packet Yes Section 3.5.3

0b001–0b111 Reserved No

0b011 Restart-from-retry 0b000 Restart-from-retry * Section 3.5.4

0b001–0b111 Reserved No

0b100 Link-request 0b000–0b001 Reserved No -

0b010 Reset-port * Section 3.5.6

0b011 Reset-device * Section 3.5.5.1

0b100 Port-status * Section 3.5.5.3

0b101–0b111 Reserved No -

0b101 Timing 0b000 Multicast-event No Section 3.5.6.1

0b001 Secondary
Multicast-event

Section 3.5.6.2

0b010 Reserved

0b011 Loop-Timing Request Section 3.5.6.3

0b100–0b111 Reserved

0b110 Reserved 0b000–0b111 Reserved No -

0b111 NOP (Ignore) ** 0b000 NOP (Ignore) ** No -

0b001–0b111 Reserved No
58 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Note: * denotes that restart-from-retry and link-request control symbols may only be
packet delimiters if a packet is in progress.

Note: ** NOP (Ignore) is not defined as a control symbol, but is the default value
when the control symbol does not convey another stype1 function.

NOTE:

The following sections describe various control symbols. Since
control symbols can contain one or more functions, the fields that are
applicable to each control symbol function are shown in the respective
tables.

3.5.1 Start-of-Packet Control Symbol

The start-of-packet control symbol is used to delimit the beginning of a packet. The
control symbol field usage and values are displayed in Table 3-19.

Table 3-18. Stype1 Control Symbol 64 Encoding

stype1
(8 bits)

Function
Packet

Delimiter
Reference

0x00–0x07 Reserved -

0x08 Stomp yes Section 3.5.2

0x09–0x0F Reserved -

0x10 End-of-packet-unpadded yes Section 3.5.3

0x11 End-of-packet-padded yes Section 3.5.3

0x12–0x17 Reserved -

0x18 Restart-from-retry * Section 3.5.4

0x19–0x21 Reserved -

0x22 Link-request/Reset-port * Section 3.5.6

0x23 Link-request/Reset-device * Section 3.5.5.1

0x24 Link-request/Port-status * Section 3.5.5.3

0x25–0x27 Reserved -

0x28 Multicast-event No Section 3.5.6.1

0x29 Secondary Multicast-event No Section 3.5.6.2

x2A Reserved -

0x2B Loop-timing-request No Section 3.5.6.3

0x2C–0x37 Reserved -

0x38 NOP (Ignore) ** No -

0x39–0x7F Reserved -

0b10, ackID[0:5] Start-of-packet-unpadded yes Section 3.5.1

0b11, ackID[0:5] Start-of-packet-padded yes Section 3.5.1
RapidIO.org 59

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The Control Symbol 64 start-of-packet control symbol has two variants –
start-of-packet-unpadded and start-of-packet-padded – to indicate if a previous
packet has padding appended to achieve a total length that is a multiple of 8 bytes.
The start-of-packet-unpadded control symbol shall be used for cases where the
start-of-packet does not terminate a previous packet or where the start-of-packet
terminates a packet that was not padded. The start-of-packet-padded control symbol
shall be used when the start-of-packet terminates a packet that was padded to
multiple of 8 bytes. It is needed to differentiate between padded and non-padded
packets so devices like switches that do not completely decode the packet can
separate link overhead from the packet.

For Control Symbol 64, the stype1[2:7] bits contain the most significant 6 bits of the
packet ackID.

3.5.2 Stomp Control Symbol

The stomp control symbol is used to cancel a partially transmitted packet. The
protocol for packet cancellation is specified in Section 6.10, "Canceling Packets".
The stomp control symbol field usage and values are displayed in Table 3-20.

3.5.3 End-of-Packet Control Symbol

The end-of-packet control symbol is used to delimit the end of a packet. The control
symbol field usage and values are displayed in Table 3-21.

Table 3-19. Start-of-Packet Control Symbol field usage and values.

Format stype1 cmd Function

Control Symbol 24
Control Symbol 48

0b000 0b000 Start-of-packet

Control Symbol 64 0b10, ackID[0:5] N/A Start-of-packet-unpadded

0b11, ackID[0:5] N/A Start-of-packet-padded

Table 3-20. Stomp Control Symbol field usage and values.

Format stype1 cmd

Control Symbol 24
Control Symbol 48

0b001 0b000

Control Symbol 64 0x08 N/A

Table 3-21. End-of-Packet Control Symbol field usage and values.

Format stype1 cmd Function

Control Symbol 24
Control Symbol 48

0b010 0b000 End-of-packet

Control Symbol 64 0x10 N/A End-of-packet-unpadded

0x11 N/A End-of-packet-padded
60 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The Control Symbol 64 end-of-packet control symbol has two variants –
end-of-packet-unpadded and end-of-packet-padded – to indicate if a previous packet
has padding appended to achieve a total length that is a multiple of 8 bytes. The
end-of-packet-unpadded control symbol shall be used when the end-of-packet
terminates a packet that was not padded. The end-of-packet-padded control symbol
shall be used when the end-of-packet terminates a packet that was padded to
multiple of 8 bytes. It is needed to differentiate between padded and non-padded
packets so devices like switches that do not completely decode the packet can
separate link overhead from the packet.

3.5.4 Restart-From-Retry Control Symbol

This control symbol is used to mark the beginning of packet retransmission, so that
the receiver knows when to start accepting packets after the receiver has requested
a packet to be retried. The restart-from-retry control symbol cancels a current packet
and may also be transmitted on an idle link.

The control symbol field usage and values are displayed in Table 3-22.

3.5.5 Link-Request Control Symbol

A link-request control symbol is used by a port to either issue a command to the
connected port or request its input port status. A link-request control symbol always
cancels a packet whose transmission is in progress and can also be sent between
packets. Under error conditions, a link-request/port-status control symbol acts as a
link-request/restart-from-error control symbol as described in Section 6.7, "Link
Maintenance Protocol".

The control symbol field usage and values are displayed in Table 3-23.

Table 3-22. Restart-From-Retry Control Symbol field usage and values.

Format stype1 cmd

Control Symbol 24
Control Symbol 48

0b011 0b000

Control Symbol 64 0x18 N/A

Table 3-23. Link-Request Control Symbol field usage and values.

Format stype1 cmd Function Reference

Control Symbol 24
Control Symbol 48

0b100 0b000–0b001 Reserved

0b100 0b010 Reset-port Section 3.5.5.1

0b100 0b011 Reset-device Section 3.5.5.2

0b100 0b100 Port-status Section 3.5.5.3

0b100 0b101–0b111 Reserved
RapidIO.org 61

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.5.5.1 Reset-port Command

A reset-port command is intended to allow packet exchange to resume after an
unrecoverable link error condition has been detected and system software has
handled this condition. Examples of the use of reset-port are link recovery after a
field replaceable unit has been inserted, and when one link partner has failed and/or
has been reset but not the other.

Scenarios that require a reset-port command for recovery also require packet discard
to prevent packets which are undeliverable due to the unrecoverable link error
condition from creating a cascade congestion failure of the entire system. Packet
discard mechanisms that are part of the RapidIO Part 8: Error Management/Hot
Swap Extensions Specification may be activated by the unrecoverable link error
condition. Implementation specific packet discard mechanisms may also be
activated by the unrecoverable link error condition. System recovery from packet
discard is vendor specific, and outside the scope of this specification.

A device that receives a reset-port command shall perform the following:

• Disable transmission of implementation specific control symbols and, for links
operating with IDLE3, implementation specific control codewords.

• Reset all ackID tracking logic for packets received, transmitted, and
unacknowledged to a state consistent with a power-up reset.

• Clear all input-error, output-error, input-retry, output-retry, and port error
states.

• Clear the tracking of link-request/port-status control symbol requests received
or transmitted.

• Reset the port’s initialization state machine.

• Deactivate the packet discard mechanisms.

• Update the status of register values based on the above changes.

• Retain the values of registers that are not affected by the above changes.

The reset-port command shall not generate a link-response control symbol.

The timing relationship between deactivation of packet discard mechanisms and the
arrival of packets may not be deterministic in all systems. For this reason, no
assumptions shall be made about the effect of a reset-port command on packet
storage for transmission or reception. The effect of a reset-port command on packet

Control Symbol 64 0x22 N/A Reset-port Section 3.5.5.1

0x23 N/A Reset-device Section 3.5.5.2

0x24 N/A Port-status Section 3.5.5.3

Table 3-23. Link-Request Control Symbol field usage and values.

Format stype1 cmd Function Reference
62 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
storage is implementation specific behavior and outside the scope of this
specification.

Note that transmission and reception of a reset-port request may trigger additional
functionality defined in Part 8: Error Management/Hot Swap Extensions
Specification.

After a port transmits a reset-port request, if the port’s initialization state
machine(Section 5.19.7) transitions to the SILENT state within one link-response
timeout period, the port shall behave as if it has received a reset-port request. The
timeout period shall be tracked only for the most recently transmitted reset-port
command.

Due to the undefined reliability of system designs it is necessary to put a safety
lockout on the reset-port function of the link-request control symbol. A port
receiving a reset-port command in a link-request control symbol shall not perform
the reset-port function unless it has received four reset-port commands in a row
without any other intervening packets or control symbols, except status control
symbols. Such a sequence is known as a reset-port request. Reset-port requests are
intended to prevent spurious reset-port commands from inadvertently resetting a
port.

When issuing a reset with four consecutive reset-port commands, care must be taken
to account for all effects associated with the reset event. For more information, see
the RapidIO Part 8: Error Management/Hot Swap Extensions Specification.

3.5.5.2 Reset-Device Command

The reset-device command causes the receiving device to go through its reset or
power-up sequence. All state machines and the configuration registers reset to the
original power-up states. Note that the device power-up state shall disable
transmission of implementation specific control symbols and, for links operating
with IDLE3, implementation specific control codewords. The reset-device
command does not generate a link-response control symbol.

Due to the undefined reliability of system designs it is necessary to put a safety
lockout on the reset function of the link-request control symbol. A port receiving a
reset-device command in a link-request control symbol shall not perform the reset
function unless it has received four reset-device commands in a row without any
other intervening packets or control symbols, except status control symbols. This
will prevent spurious reset commands from inadvertently resetting a device.

When issuing a reset with four consecutive reset-device commands, care must be
taken to account for all effects associated with the reset event. For more information,
see the RapidIO Part 8: Error Management/Hot Swap Extensions Specification.
RapidIO.org 63

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.5.5.3 Port-status1 Command

The port-status command requests the receiving port to return a link-response
containing the ackID value it expects to next receive on its input port and the current
input port operational status for informational purposes. This command causes the
receiver to flush its output port of all control symbols generated by packets received
before the port-status command. The implementation of flushing the output port is
device specific and may result in either discarding the contents of the receive buffers
or sending the control symbols on the link. The receiver then responds with a
link-response control symbol.

3.5.6 Timing Control Symbols

Timing control symbols are related to communication of events and time within a
system. Unlike other control symbols, timing control symbols can trigger activity on
other links of a device.

The timing control symbol field usage and values are displayed in Table 3-24.

3.5.6.1 Multicast-Event Control Symbol

The multicast-event control symbol allows the occurrence of a user-defined system
event to be multicast throughout a system. The multicast-event control symbol
differs from other control symbols in that it carries information not related to the link
carrying the control symbol. For more information on Multicast-Events, see
Section 6.5.3.4.1, "Multicast-Event Control Symbols".

3.5.6.2 Secondary Multicast-Event Control Symbol

Secondary Multicast-Event Control Symbol support is optional. The secondary
multicast-event control symbol allows two discrete sources of multicast events to

1Note that Port-Status was known as Input-Status in this specification for revisions prior to 3.0.

Table 3-24. Timing Control Symbol field usage and values.

Format stype1 cmd Function Reference

Control Symbol 24
Control Symbol 48

0b101 0b000 Multicast-event Section 3.5.6.1

0b101 0b001 Secondary Multicast-event Section 3.5.6.2

0b101 0b010 Reserved -

0b101 0b011 Loop-Timing Request Section 3.5.6.3

0b101 0b100–0b111 Reserved -

Control Symbol 64 0x28 N/A Multicast-event Section 3.5.6.1

0x29 N/A Secondary Multicast-event Section 3.5.6.2

0x2B N/A Loop-Timing Request Section 3.5.6.3
64 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
exist within a system. The secondary multicast-event control symbol differs from
other control symbols in that it carries information not related to the link carrying
the control symbol. For more information on Multicast-Events, see
Section 6.5.3.4.1, "Multicast-Event Control Symbols".

3.5.6.3 Loop-Timing Control Symbol

The loop-timing control symbol requests the receiver to send a loop-response
control symbol in order to determine the transmission delay from the transmitting
link partner to the receiving link partner. For information on the use of the
loop-timing control symbol, refer to Section 6.5.3.5, "Time Synchronization
Protocol".

A processing element shall support transmitting a loop-timing request when the
Timestamp Master Supported bit of the Timestamp CAR (Section 7.9.2) is 1. A
processing element shall support receiving a loop-timing request when the
Timestamp Slave Supported bit of the Timestamp CAR is 1.

3.6 Control Symbol Protection
Control symbol error detection is provided by a cyclic redundancy check (CRC)
code.

A 5-bit CRC is used for the Control Symbol 24. It provides detection of a single
burst error of 5 bits or less in the 24 data bits of the 8b/10b decoded control symbol.
A single 5 bit burst error is the longest burst error that can be caused by a single bit
transmission error at the 8b/10b code-group level.

A 13-bit CRC is used for the Control Symbol 48. It provides detection of any set of
errors in the 48 data bits of the 8b/10b decoded control symbol that can be caused
by a burst error on one lane of 11 bits or less at the 8b/10b code-group level. An
11-bit error at the code-group level can corrupt at most two code-groups.

A 24-bit CRC is used for the Control Symbol 64. It provides detection of a single
error burst of up to 24 bits and any odd number of bit errors. It can also detect up to
7 single bit errors across the control symbol. Further protection is provided at the
codeword level as described in Chapter 5, "64b/67b PCS and PMA Layers".

3.6.1 CRC-5 Code

The ITU polynomial x5+x4+x2+1 shall be used to generate the 5-bit CRC for
Control Symbol 24.

The 5-bit CRC shall be computed over 20 bits comprised of control symbol bits 0
through 18 plus a 20th bit that is appended after bit 18 of the control symbol. The
added bit shall be set to logic 0 (0b0). The 20th bit is added in order to provide
maximum implementation flexibility for all types of designs. The CRC shall be
RapidIO.org 65

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
computed beginning with control symbol bit 0. Before the CRC is computed, the
CRC shall be set to all 1s (0b11111).

The CRC check bits c[0:4] occupy Control Symbol 24 bits [19:23] respectively.

The 5-bit CRC shall be generated by each transmitter and verified by each receiver
using the Control Symbol 24.

3.6.2 CRC-5 Parallel Code Generation

Since it is often more efficient to implement a parallel CRC algorithm rather than a
serial, examples of the equations for a complete, 19-bit single-stage parallel
implementation are shown in shown in Table 3-25. Since only a single stage is used,
the effect of both setting the initial CRC to all 1s (0b11111) and a 20th bit set to logic
0 (0b0) have been included in the equations.

In Table 3-25, an “x” means that the data input should be an input to the
Exclusive-OR necessary to compute that particular bit of the CRC. A “!x”, means
that bit 18 being applied to the CRC circuit must be inverted.

Table 3-25. Parallel CRC-5 Equations

Control
Symbol

CRC Checksum Bits

Data for
CRC

C0 C1 C2 C3 C4

D18 x !x !x !x x

D17 x x x

D16 x x x

D15 x x x

D14 x x x

D13 x x x

D12 x x x

D11 x x x

D10 x x x

D9 x

D8 x

D7 x

D6 x

D5 x

D4 x x x

D3 x x x x x

D2 x x x

D1 x x x

D0 x x x
66 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 3-4 shows the 19-bits that the CRC covers and how they should be applied to
the circuit. As seen in Figure 3-4, bits are labeled with 0 on the left and 18 on the
right. Bit 0, from the stype0 field, would apply to D0 in Table 3-25 and bit 18, from
the cmd field, would apply to D18 in Table 3-25. Once completed, the 5-bit CRC is
appended to the control symbol.

Figure 3-4. CRC-5 Implementation

3.6.3 CRC-13 Code

The polynomial x13+x10+x8+x5+x2+1 shall be used to generate the 13-bit CRC for
Control Symbol 48.

The 13-bit CRC shall be computed over control symbol bits 0 through 34 beginning
with control symbol bit 0. Before the 13-bit CRC is computed, the CRC shall be set
to all 0s (0b0_0000_0000_0000).

The CRC check bits c[0:12] shall occupy Control Symbol 48 bits [35:47]
respectively.

The 13-bit CRC shall be generated by each transmitter and verified by each receiver
using the Control Symbol 48.

3.6.4 CRC-13 Parallel Code Generation

For the CRC-13 parallel code generation, the equations are shown in Table 3-26,
using rules as for the CRC-5 parallel generation.

Table 3-26. Parallel CRC-13 Equations

Control
Symbol

CRC Checksum Bits

Data For
CRC

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
C
10

C
11

C
12

D34 x x x x x

stype0 parameter0 stype1parameter1 cmd CRC

Function From Equations

0 18

5-bit CRC (C0:C4)

In Table 3-8
RapidIO.org 67

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3.6.5 CRC-24 Code

The following polynomial shall be used to generate the 24-bit CRC for Control
Symbol 64:

x24+x22+x20+x19+x18+x16+x14+x13+x11+x10+x8+x7+x6+x3+x+1

D33 x x x x x

D32 x x x x x

D31 x x x x x

D30 x x x x x

D29 x x x x x

D28 x x x x x x x

D27 x x x x x x x

D26 x x x x x x x

D25 x x x x x x x x x

D24 x x x x x x x

D23 x x x x x x x

D22 x x x x x

D21 x x x x x

D20 x x x

D19 x x x

D18 x x x

D17 x x x

D16 x x x

D15 x x x

D14 x x x

D13 x x x

D12 x x x

D11 x x x

D10 x x x

D9 x x x

D8 x x x x x

D7 x x x x x

D6 x x x x x

D5 x x x x x

D4 x x x x x

D3 x x x

D2 x x x

D1 x x x

D0 x x x

Control
Symbol

CRC Checksum Bits
68 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
This polynomial factors into:

(x11+x9+x8+x7+x6+x3+1)(x11+x9+x8+x7+x5+x3+x2+x+1)(x+1)(x+1)

The 24-bit CRC shall be computed over control symbol bits 0 through 37 beginning
with control symbol bit 0. Before the CRC is computed, the CRC shall be set to all1s
(0b1111_1111_1111_1111_1111_1111). Note that the alignment field shall be
treated as 0 by the encode and decode functions, as described in Table 3-1

The CRC check bits, c[0:23], occupy Control Symbol 64 bits, [38:61], respectively.

The 24-bit CRC shall be generated by each transmitter and verified by each receiver
using the Control Symbol 64.

3.6.6 CRC-24 Parallel Code Generation

For the CRC-24 parallel code generation, the equations are shown in Table 3-27,
using rules as for the CRC-5 parallel generation.

Table 3-27. Parallel CRC-24 Equations

Control
Symbol

CRC Checksum Bits

Data For
CRC

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

D37 x !x !x !x x !x x x !x !x x !x !x !x x

D36 x x x x !x !x x x x x x x !x !x x

D35 x x x x x x x x x !x x x x

D34 x x x x x x x x x x x x x

D33 x x x x x x x x x x x x x

D32 x x x x x x x x x x x x x x x

D31 x x x x x x x x x x x x x x x

D30 x x x x x x x x x x x x x x x

D29 x x x x x x x x x x x x x x x

D28 x x x x x x x x x x x x x x x

D27 x x x x x x x x x x x

D26 x x x x x x x x x x x x x x x

D25 x x x x x x x x x x x x x x x

D24 x x x x x x x x x x x x x x x

D23 x x x x x x x x x x x

D22 x x x x x x x x x x x

D21 x x x x x x x x x x x

D20 x x x x x x x x x x x

D19 x x x x x x x x x x x

D18 x x x x x x x x x x x

D17 x x x x x x x x x x x
RapidIO.org 69

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D16 x x x x x x x x x x x

D15 x x x x x x x x x x x

D14 x x x x x x x x x x x x x x x

D13 x x x x x x x x x

D12 x x x x x x x x x

D11 x x x x x x x x x x x x x x x x x

D10 x x x x x x x x x x x x x x x x x

D9 x x x x x x x x x

D8 x x x x x x x x x x x

D7 x x x x x x x x x x x

D6 x x x x x x x x x x x

D5 x x x x x x x x x x x

D4 x x x x x x x x x x x

D3 x x x x x x x x x x x

D2 x x x x x x x x x x x

D1 x x x x x x x x x x x x x x x

D0 x x x x x x x x x x x x x x x

Control
Symbol

CRC Checksum Bits
70 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 4 8b/10b PCS and PMA Layers

4.1 Introduction
This chapter specifies the functions provided by the Physical Coding Sublayer
(PCS) and Physical Media Attachment (PMA) sublayer used for 8b/10b encoded
links. (The PCS and PMA terminology is adopted from IEEE 802.3). The topics
include character representation, scrambling, lane striping, 8b/10b encoding,
serialization of the data stream, code-groups, columns, link transmission rules, idle
sequences, and link initialization. The 8b/10b PCS and PMA Layers shall be used
by links operating at Baud Rate Class 1 or Baud Rate Class 2.

The concept of lanes is used to describe the width of a LP-Serial link. A lane is a
single unidirectional signal path between two LP-Serial ports. Five widths are
defined for LP-Serial links, 1, 2, 4, 8 and 16 lanes per direction. A link with N lanes
in each direction is referred to as a Nx link, e.g. a link with 4 lanes in each direction
is referred to as a 4x link.

4.2 PCS Layer Functions
The Physical Coding Sublayer (PCS) function is responsible for idle sequence
generation, lane striping, scrambling and encoding for transmission and decoding,
lane alignment, descrambling and destriping on reception. The PCS uses an 8b/10b
encoding for transmission over the link.

The PCS also provides mechanisms for determining the operational mode of the port
as Nx or 1x operation, and means to detect link states. It provides for clock
difference tolerance between the sender and receiver without requiring flow control.

The PCS performs the following transmit functions:

• Dequeues packets and delimited control symbols awaiting transmission as a
character stream.

• Scrambles packet and control symbol data if required.

• Stripes the transmit character stream across the available lanes.

• Generates the idle sequence and inserts it into the transmit character stream for
each lane when no packets or delimited control symbols are available for
transmission.
RapidIO.org 71

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Encodes the character stream of each lane independently into 10-bit parallel
code-groups.

• Passes the resulting 10-bit parallel code-groups to the PMA.

The PCS performs the following receive functions:

• Decodes the received stream of 10-bit parallel code-groups for each lane
independently into characters.

• Marks characters decoded from invalid code-groups as invalid.

• If the link is using more than one lane, aligns the character streams to eliminate
the skew between the lanes and reassembles (destripes) the character stream
from each lane into a single character stream.

• Descrambles packet and control symbol data if required.

• Delivers the decoded character stream of packets and delimited control
symbols to the higher layers.

4.3 PMA Layer Functions
The Physical Medium Attachment (PMA) Layer is responsible for serializing and
de-serializing 10-bit parallel code-groups to and from a serial bitstream on a
lane-by-lane basis. Upon receiving data, the PMA function provides alignment of
the received bitstream to 10-bit code-group boundaries, independently on a
lane-by-lane basis. It then provides a continuous stream of 10-bit code-groups to the
PCS, one stream for each lane. The 10-bit code-groups are not observable by layers
higher than the PCS.

If a LP-Serial port supports either baud rate discovery or adaptive equalization, these
functions are also performed in the PMA Layer.

4.4 Definitions
Definitions of terms used in this specification are provided below.

1x mode: A LP-Serial port mode of operation in which the port transmits on a single lane
and receives on a single lane.

Byte: An 8-bit unit of information. Each bit of a byte has the value 0 or 1.

Character: A 9-bit entity comprised of an information byte and a control bit that indicates
whether the information byte contains data or control information. The control bit has the
value D or K indicating that the information byte contains respectively data or control
information.

Code-group: A 10-bit entity that is the result of 8b/10b encoding a character.

Column: The group of N characters that are transmitted at nominally the same time by a
LP-Serial port operating in Nx mode.
72 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Comma: A 7-bit pattern, unique to certain 8b/10b special code-groups, that is used by a
receiver to determine code-group boundaries. See more in Section 4.5.7.4, "Sync (/K/)" and
Table 4-2.

D-character: A character whose control bit has the value “D”. Also referred to as a data
character.

Destriping: This process reverses the operation done during striping of data across
multiple lanes. The method used on a link operating in Nx mode to collect and merge the
data across the N lanes received simultaneously and form a single character stream. For
each direction of the link, the character stream is merged across the lanes, on a
character-by-character basis, beginning with lane 0, continuing in incrementing lane
number order across the lanes, and wrapping back to lane 0 for character N.

Idle sequence: The sequence of characters (code-groups after 8b/10b encoding) that is
transmitted by a port on each of its active output lanes when the port is not transmitting a
packet or control symbol. The idle sequence allows the receiver to maintain bit
synchronization, code-group alignment and, if applicable, adaptive equalization settings in
between packets and control symbols.

K-character: A character whose control bit has the value “K”. Also referred to as a special
character.

Lane: A single unidirectional signal path, typically a differential pair, between two
LP-Serial ports.

Lane Alignment: The process of eliminating the skew between the lanes of a LP-Serial
link operating in Nx mode such that the characters transmitted as a column by the sender
are output by the alignment process of receiver as a column. Without lane alignment, the
characters transmitted as a column might be scattered across several columns output by the
receiver. The alignment process uses the columns of “A” special characters transmitted as
part of the idle sequence.

Nx mode: A LP-Serial port mode of operation in which the port both transmits and receives
on multiple lanes. A LP-Serial port operating in Nx mode transmits on N lanes and receives
on N lanes where N has a value greater then 1. The transmit data stream is distributed across
the N transmit lanes and the receive data stream is distributed across the N receive lanes.

Nx port: A LP-Serial port that supports links with up to a maximum of N lanes in each
direction.

Striping: The method used on a link operating in Nx mode to distribute data across the N
lanes simultaneously. For each direction of the link, the character stream is striped across
the lanes, on a character-by-character basis, beginning with lane 0, continuing in
incrementing lane number order across the lanes, and wrapping back to lane 0 for character
N.

4.5 8b/10b Transmission Code
The 8b/10b transmission code used by the PCS encodes 9-bit characters (8 bits of
information and a control bit) into 10-bit code-groups for transmission and reverses
RapidIO.org 73

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
the process on reception. Encodings are defined for 256 data characters and 12
special characters.

The code-groups comprising the 8b/10b code have either an equal number of ones
and zeros (balanced) or the number of ones differs from the number of zeros by two
(unbalanced). This eases the task of maintaining 0/1 balance. The selection of
code-groups also guarantees a minimum of three transitions, 0 to 1 or 1 to 0, within
each code-group. For encoding, unbalanced code-groups are grouped in pairs with
one member of the pair having more ones than zeros and the other member of the
pair having more zeros than ones. This allows the encoder, when selecting an
unbalanced code-group, to select a code-group unbalanced toward ones or
unbalanced toward zeros, depending on which is required to maintain the 0/1
balance of the encoder output code-group stream.

The 8b/10b code has the following properties.

• Sufficient bit transition density (3 to 8 transitions per code-group) to allow
clock recovery by the receiver.

• Special code-groups that are used for establishing the receiver synchronization
to the 10-bit code-group boundaries, delimiting control symbols and
maintaining receiver bit and code-group boundary synchronization.

• 0/1 balanced. (can be AC coupled)

• Detection of all single and some multiple-bit errors.

4.5.1 Character and Code-Group Notation

The description of 8b/10b encoding and decoding uses the following notation for
characters, code-group and their bits.

The information bits ([0-7]) of an unencoded character are denoted with the letters
“A” through “H” where the letter “H” denotes the most significant information bit
(RapidIO bit 0) and the letter “A” denotes the least significant information bit
(RapidIO bit 7). This is shown in Figure 4-1.

Each data character has a representation of the form Dx.y where x is the decimal
value of the least significant 5 information bits EDCBA, and y is the decimal value
of the most significant 3 information bits HGF as shown in Figure 4-1. Each special
character has a similar representation of the form Kx.y.

Figure 4-1. Character Notation Example (D25.3)

HGF EDCBA
011 11001

X=25Y=3

D25.3
74 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The output of the 8b/10b encoding process is a 10-bit code-group. The bits of a
code-group are denoted with the letters “a” through “j”. The bits of a code-group are
all of equal significance, there is no most significant or least significant bit. The
ordering of the code-group bits is shown in Figure 4-2.

The code-groups corresponding to the data character Dx.y is denoted by /Dx.y/. The
code-groups corresponding to the special character Kx.y is denoted by /Kx.y/.

Figure 4-2. Code-Group Notation Example (/D25.3/)

4.5.2 Running Disparity

The 8b/10b encoding and decoding functions use a binary variable called running
disparity. The variable can have a value of either positive (RD+) or negative (RD-).
The encoder and decoder each have a running disparity variable for each lane which
are all independent of each other.

The primary use of running disparity in the encoding process is to keep track of
whether the decoder has output more ones or more zeros. The current value of
encoder running disparity is used to select the which unbalanced code-group will be
used when the encoding for a character requires a choice between two unbalanced
code-groups.

Another use of running disparity in the decoding process is to detect errors. Given a
value of decoder running disparity, only (256 + 12) = 268 of the 1024 possible
code-group values have defined decodings. The remaining 756 possible code-group
values have no defined decoding and represent errors, either in that code-group or in
an earlier code-group.

4.5.3 Running Disparity Rules

After power-up and before the port is operational, both the transmitter (encoder) and
receiver (decoder) must establish current values of running disparity.

The transmitter shall use a negative value as the initial value for the running
disparity for each lane.

The receiver may use either a negative or positive initial value of running disparity
for each lane.

The following algorithm shall be used for calculating the running disparity for each
lane. In the encoder, the algorithm operates on the code-group that has just been
generated by the encoder. In the receiver, the algorithm operates on the received
code-group that has just been decoded by the decoder.

abcdei fghj
100110 1100

/D25.3/
RapidIO.org 75

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Each code-group is divided to two sub-blocks as shown in Figure 4-2, where the
first six bits (abcdei) form one sub-block (6-bit sub-block) and the second four bits
(fghj) form a second sub-block (4-bit sub-block). Running disparity at the beginning
of the 6-bit sub-block is the running disparity at the end of the preceding code-group.
Running disparity at the beginning of the 4-bit sub-block is the running disparity at
the end of the preceding 6-bit sub-block. Running disparity at the end of the
code-group is the running disparity at the end of the 4-bit sub-block.

The sub-block running disparity shall be calculated as follows:

1. The running disparity is positive at the end of any sub-block if the sub-block
contains more 1s than 0s. It is also positive at the end of a 4-bit sub-block if
the sub-block has the value 0b0011 and at the end of a 6-bit sub-block if the
sub-block has the value 0b000111.

2. The running disparity is negative at the end of any sub-block if the sub-block
contains more 0s than 1s. It is also negative at the end of a 4-bit sub-block if
the sub-block has the value 0b1100 and at the end of a 6-bit sub-block if the
sub-block has the value 0b111000.

3. In all other cases, the value of the running disparity at the end of the
sub-block is running disparity at the beginning of the sub-block (the running
disparity is unchanged).

4.5.4 8b/10b Encoding

The 8b/10b encoding function encodes 9-bit characters into 10-bit code-groups.

The encodings for the 256 data characters (Dx.y) are specified in Table 4-1. The
encodings for the 12 special characters (Kx.y) are specified in Table 4-2. Both tables
have two columns of encodings, one marked RD- and one marked RD+. When
encoding a character, the code-group in the RD- column is selected if the current
value of encoder running disparity is negative and the code-group in the RD+
column is selected if the current value of encoder running disparity is positive.

Data characters (Dx.y) shall be encoded according to Table 4-1 and the current value
of encoder running disparity. Special characters (Kx.y) shall be encoded according
to Table 4-2 and the current value of encoder running disparity. After each character
is encoded, the resulting code-group shall be used by the encoder to update the
running disparity according to the rules in Section 4.5.3, "Running Disparity Rules".

4.5.5 Transmission Order

The parallel 10-bit code-group output of the encoder shall be serialized and
transmitted with bit “a” transmitted first and a bit ordering of “abcdeifghj”. This is
shown in Figure 4-3.

Figure 4-3 gives an overview of a character passing through the encoding,
serializing, transmission, deserializing, and decoding processes. The left side of the
76 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
figure shows the transmit process of encoding a character stream using 8b/10b
encoding and the 10-bit serialization. The right side shows the reverse process of the
receiver deserializing and using 8b/10b decoding on the received code-groups.

The dotted line shows the functional separation between the PCS, that provides
10-bit code-groups, and the PMA Layer that serializes the code-groups.

The drawing also shows on the receive side the bits of a special character containing
the comma pattern that is used by the receiver to establish 10-bit code-boundary
synchronization.

Figure 4-3. Lane Encoding, Serialization, Deserialization, and Decoding Process

4.5.6 8b/10b Decoding

The 8b/10b decoding function decodes received 10-bit code-groups into 9-bit
characters and detects and reports received code-groups that have no defined
decoding due to one or more transmission errors.

The decoding function uses Table 4-1, Table 4-2 and the current value of the decoder
running disparity. To decode a received code-group, the decoder shall select the RD-
column of Table 4-1 and Table 4-2 if the current value of the decoder running
disparity is negative or shall select the RD+ column if the value is positive. The
decoder shall then compare the received code-group with the code-groups in the
selected column of both tables. If a match is found in one of the tables, the
code-group is defined to be a “valid” code-group and is decoded to the associated
character. If no match is found, the code-group is defined to be an “invalid”
code-group and is decoded to a character that is flagged in some manner as
INVALID. After each code-group is decoded, the decoded code-group shall be used

8B/10B
Encoder

PMA Layer

8 + controlInput to the
ENCODE function

0 1 2 3 4 5 6 7

MSB LSB

0 1 2 3 4 5 6 7

H G F E D C B A

a b c d e i f g

Output of the
ENCODE function

Lane bitstream
Bit 0 transmitted first

8 9

h j

PCS Layer
8B/10B
Decoder

10

8 + control

0 1 2 3 4 5 6 7

MSB LSB

H G F E D C B A

0 1 2 3 4 5 6 7

a b c d e i f g

8 9

h j

10

0 0 1 1 1 1 1 x x x

Lane bitstream
Bit 0 transmitted first

Output of the
DECODE function

Input to the
DECODE function

Aligned comma code -group
RapidIO.org 77

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
by the decoder to update the decoder running disparity according to the rules in
Section 4.5.3, "Running Disparity Rules".

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj

D0.0 00 000 00000 100111 0100 011000 1011

D1.0 01 000 00001 011101 0100 100010 1011

D2.0 02 000 00010 101101 0100 010010 1011

D3.0 03 000 00011 110001 1011 110001 0100

D4.0 04 000 00100 110101 0100 001010 1011

D5.0 05 000 00101 101001 1011 101001 0100

D6.0 06 000 00110 011001 1011 011001 0100

D7.0 07 000 00111 111000 1011 000111 0100

D8.0 08 000 01000 111001 0100 000110 1011

D9.0 09 000 01001 100101 1011 100101 0100

D10.0 0A 000 01010 010101 1011 010101 0100

D11.0 0B 000 01011 110100 1011 110100 0100

D12.0 0C 000 01100 001101 1011 001101 0100

D13.0 0D 000 01101 101100 1011 101100 0100

D14.0 0E 000 01110 011100 1011 011100 0100

D15.0 0F 000 01111 010111 0100 101000 1011

D16.0 10 000 10000 011011 0100 100100 1011

D17.0 11 000 10001 100011 1011 100011 0100

D18.0 12 000 10010 010011 1011 010011 0100

D19.0 13 000 10011 110010 1011 110010 0100

D20.0 14 000 10100 001011 1011 001011 0100

D21.0 15 000 10101 101010 1011 101010 0100

D22.0 16 000 10110 011010 1011 011010 0100

D23.0 17 000 10111 111010 0100 000101 1011

D24.0 18 000 11000 110011 0100 001100 1011

D25.0 19 000 11001 100110 1011 100110 0100

D26.0 1A 000 11010 010110 1011 010110 0100

D27.0 1B 000 11011 110110 0100 001001 1011

D28.0 1C 000 11100 001110 1011 001110 0100

D29.0 1D 000 11101 101110 0100 010001 1011

D30.0 1E 000 11110 011110 0100 100001 1011

D31.0 1F 000 11111 101011 0100 010100 1011

D0.1 20 001 00000 100111 1001 011000 1001
78 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D1.1 21 001 00001 011101 1001 100010 1001

D2.1 22 001 00010 101101 1001 010010 1001

D3.1 23 001 00011 110001 1001 110001 1001

D4.1 24 001 00100 110101 1001 001010 1001

D5.1 25 001 00101 101001 1001 101001 1001

D6.1 26 001 00110 011001 1001 011001 1001

D7.1 27 001 00111 111000 1001 000111 1001

D8.1 28 001 01000 111001 1001 000110 1001

D9.1 29 001 01001 100101 1001 100101 1001

D10.1 2A 001 01010 010101 1001 010101 1001

D11.1 2B 001 01011 110100 1001 110100 1001

D12.1 2C 001 01100 001101 1001 001101 1001

D13.1 2D 001 01101 101100 1001 101100 1001

D14.1 2E 001 01110 011100 1001 011100 1001

D15.1 2F 001 01111 010111 1001 101000 1001

D16.1 30 001 10000 011011 1001 100100 1001

D17.1 31 001 10001 100011 1001 100011 1001

D18.1 32 001 10010 010011 1001 010011 1001

D19.1 33 001 10011 110010 1001 110010 1001

D20.1 34 001 10100 001011 1001 001011 1001

D21.1 35 001 10101 101010 1001 101010 1001

D22.1 36 001 10110 011010 1001 011010 1001

D23.1 37 001 10111 111010 1001 000101 1001

D24.1 38 001 11000 110011 1001 001100 1001

D25.1 39 001 11001 100110 1001 100110 1001

D26.1 3A 001 11010 010110 1001 010110 1001

D27.1 3B 001 11011 110110 1001 001001 1001

D28.1 3C 001 11100 001110 1001 001110 1001

D29.1 3D 001 11101 101110 1001 010001 1001

D30.1 3E 001 11110 011110 1001 100001 1001

D31.1 3F 001 11111 101011 1001 010100 1001

D0.2 40 010 00000 100111 0101 011000 0101

D1.2 41 010 00001 011101 0101 100010 0101

D2.2 42 010 00010 101101 0101 010010 0101

D3.2 43 010 00011 110001 0101 110001 0101

D4.2 44 010 00100 110101 0101 001010 0101

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
RapidIO.org 79

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D5.2 45 010 00101 101001 0101 101001 0101

D6.2 46 010 00110 011001 0101 011001 0101

D7.2 47 010 00111 111000 0101 000111 0101

D8.2 48 010 01000 111001 0101 000110 0101

D9.2 49 010 01001 100101 0101 100101 0101

D10.2 4A 010 01010 010101 0101 010101 0101

D11.2 4B 010 01011 110100 0101 110100 0101

D12.2 4C 010 01100 001101 0101 001101 0101

D13.2 4D 010 01101 101100 0101 101100 0101

D14.2 4E 010 01110 011100 0101 011100 0101

D15.2 4F 010 01111 010111 0101 101000 0101

D16.2 50 010 10000 011011 0101 100100 0101

D17.2 51 010 10001 100011 0101 100011 0101

D18.2 52 010 10010 010011 0101 010011 0101

D19.2 53 010 10011 110010 0101 110010 0101

D20.2 54 010 10100 001011 0101 001011 0101

D21.2 55 010 10101 101010 0101 101010 0101

D22.2 56 010 10110 011010 0101 011010 0101

D23.2 57 010 10111 111010 0101 000101 0101

D24.2 58 010 11000 110011 0101 001100 0101

D25.2 59 010 11001 100110 0101 100110 0101

D26.2 5A 010 11010 010110 0101 010110 0101

D27.2 5B 010 11011 110110 0101 001001 0101

D28.2 5C 010 11100 001110 0101 001110 0101

D29.2 5D 010 11101 101110 0101 010001 0101

D30.2 5E 010 11110 011110 0101 100001 0101

D31.2 5F 010 11111 101011 0101 010100 0101

D0.3 60 011 00000 100111 0011 011000 1100

D1.3 61 011 00001 011101 0011 100010 1100

D2.3 62 011 00010 101101 0011 010010 1100

D3.3 63 011 00011 110001 1100 110001 0011

D4.3 64 011 00100 110101 0011 001010 1100

D5.3 65 011 00101 101001 1100 101001 0011

D6.3 66 011 00110 011001 1100 011001 0011

D7.3 67 011 00111 111000 1100 000111 0011

D8.3 68 011 01000 111001 0011 000110 1100

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
80 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D9.3 69 011 01001 100101 1100 100101 0011

D10.3 6A 011 01010 010101 1100 010101 0011

D11.3 6B 011 01011 110100 1100 110100 0011

D12.3 6C 011 01100 001101 1100 001101 0011

D13.3 6D 011 01101 101100 1100 101100 0011

D14.3 6E 011 01110 011100 1100 011100 0011

D15.3 6F 011 01111 010111 0011 101000 1100

D16.3 70 011 10000 011011 0011 100100 1100

D17.3 71 011 10001 100011 1100 100011 0011

D18.3 72 011 10010 010011 1100 010011 0011

D19.3 73 011 10011 110010 1100 110010 0011

D20.3 74 011 10100 001011 1100 001011 0011

D21.3 75 011 10101 101010 1100 101010 0011

D22.3 76 011 10110 011010 1100 011010 0011

D23.3 77 011 10111 111010 0011 000101 1100

D24.3 78 011 11000 110011 0011 001100 1100

D25.3 79 011 11001 100110 1100 100110 0011

D26.3 7A 011 11010 010110 1100 010110 0011

D27.3 7B 011 11011 110110 0011 001001 1100

D28.3 7C 011 11100 001110 1100 001110 0011

D29.3 7D 011 11101 101110 0011 010001 1100

D30.3 7E 011 11110 011110 0011 100001 1100

D31.3 7F 011 11111 101011 0011 010100 1100

D0.4 80 100 00000 100111 0010 011000 1101

D1.4 81 100 00001 011101 0010 100010 1101

D2.4 82 100 00010 101101 0010 010010 1101

D3.4 83 100 00011 110001 1101 110001 0010

D4.4 84 100 00100 110101 0010 001010 1101

D5.4 85 100 00101 101001 1101 101001 0010

D6.4 86 100 00110 011001 1101 011001 0010

D7.4 87 100 00111 111000 1101 000111 0010

D8.4 88 100 01000 111001 0010 000110 1101

D9.4 89 100 01001 100101 1101 100101 0010

D10.4 8A 100 01010 010101 1101 010101 0010

D11.4 8B 100 01011 110100 1101 110100 0010

D12.4 8C 100 01100 001101 1101 001101 0010

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
RapidIO.org 81

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D13.4 8D 100 01101 101100 1101 101100 0010

D14.4 8E 100 01110 011100 1101 011100 0010

D15.4 8F 100 01111 010111 0010 101000 1101

D16.4 90 100 10000 011011 0010 100100 1101

D17.4 91 100 10001 100011 1101 100011 0010

D18.4 92 100 10010 010011 1101 010011 0010

D19.4 93 100 10011 110010 1101 110010 0010

D20.4 94 100 10100 001011 1101 001011 0010

D21.4 95 100 10101 101010 1101 101010 0010

D22.4 96 100 10110 011010 1101 011010 0010

D23.4 97 100 10111 111010 0010 000101 1101

D24.4 98 100 11000 110011 0010 001100 1101

D25.4 99 100 11001 100110 1101 100110 0010

D26.4 9A 100 11010 010110 1101 010110 0010

D27.4 9B 100 11011 110110 0010 001001 1101

D28.4 9C 100 11100 001110 1101 001110 0010

D29.4 9D 100 11101 101110 0010 010001 1101

D30.4 9E 100 11110 011110 0010 100001 1101

D31.4 9F 100 11111 101011 0010 010100 1101

D0.5 A0 101 00000 100111 1010 011000 1010

D1.5 A1 101 00001 011101 1010 100010 1010

D2.5 A2 101 00010 101101 1010 010010 1010

D3.5 A3 101 00011 110001 1010 110001 1010

D4.5 A4 101 00100 110101 1010 001010 1010

D5.5 A5 101 00101 101001 1010 101001 1010

D6.5 A6 101 00110 011001 1010 011001 1010

D7.5 A7 101 00111 111000 1010 000111 1010

D8.5 A8 101 01000 111001 1010 000110 1010

D9.5 A9 101 01001 100101 1010 100101 1010

D10.5 AA 101 01010 010101 1010 010101 1010

D11.5 AB 101 01011 110100 1010 110100 1010

D12.5 AC 101 01100 001101 1010 001101 1010

D13.5 AD 101 01101 101100 1010 101100 1010

D14.5 AE 101 01110 011100 1010 011100 1010

D15.5 AF 101 01111 010111 1010 101000 1010

D16.5 B0 101 10000 011011 1010 100100 1010

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
82 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D17.5 B1 101 10001 100011 1010 100011 1010

D18.5 B2 101 10010 010011 1010 010011 1010

D19.5 B3 101 10011 110010 1010 110010 1010

D20.5 B4 101 10100 001011 1010 001011 1010

D21.5 B5 101 10101 101010 1010 101010 1010

D22.5 B6 101 10110 011010 1010 011010 1010

D23.5 B7 101 10111 111010 1010 000101 1010

D24.5 B8 101 11000 110011 1010 001100 1010

D25.5 B9 101 11001 100110 1010 100110 1010

D26.5 BA 101 11010 010110 1010 010110 1010

D27.5 BB 101 11011 110110 1010 001001 1010

D28.5 BC 101 11100 001110 1010 001110 1010

D29.5 BD 101 11101 101110 1010 010001 1010

D30.5 BE 101 11110 011110 1010 100001 1010

D31.5 BF 101 11111 101011 1010 010100 1010

D0.6 C0 110 00000 100111 0110 011000 0110

D1.6 C1 110 00001 011101 0110 100010 0110

D2.6 C2 110 00010 101101 0110 010010 0110

D3.6 C3 110 00011 110001 0110 110001 0110

D4.6 C4 110 00100 110101 0110 001010 0110

D5.6 C5 110 00101 101001 0110 101001 0110

D6.6 C6 110 00110 011001 0110 011001 0110

D7.6 C7 110 00111 111000 0110 000111 0110

D8.6 C8 110 01000 111001 0110 000110 0110

D9.6 C9 110 01001 100101 0110 100101 0110

D10.6 CA 110 01010 010101 0110 010101 0110

D11.6 CB 110 01011 110100 0110 110100 0110

D12.6 CC 110 01100 001101 0110 001101 0110

D13.6 CD 110 01101 101100 0110 101100 0110

D14.6 CE 110 01110 011100 0110 011100 0110

D15.6 CF 110 01111 010111 0110 101000 0110

D16.6 D0 110 10000 011011 0110 100100 0110

D17.6 D1 110 10001 100011 0110 100011 0110

D18.6 D2 110 10010 010011 0110 010011 0110

D19.6 D3 110 10011 110010 0110 110010 0110

D20.6 D4 110 10100 001011 0110 001011 0110

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
RapidIO.org 83

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
D21.6 D5 110 10101 101010 0110 101010 0110

D22.6 D6 110 10110 011010 0110 011010 0110

D23.6 D7 110 10111 111010 0110 000101 0110

D24.6 D8 110 11000 110011 0110 001100 0110

D25.6 D9 110 11001 100110 0110 100110 0110

D26.6 DA 110 11010 010110 0110 010110 0110

D27.6 DB 110 11011 110110 0110 001001 0110

D28.6 DC 110 11100 001110 0110 001110 0110

D29.6 DD 110 11101 101110 0110 010001 0110

D30.6 DE 110 11110 011110 0110 100001 0110

D31.6 DF 110 11111 101011 0110 010100 0110

D0.7 E0 111 00000 100111 0001 011000 1110

D1.7 E1 111 00001 011101 0001 100010 1110

D2.7 E2 111 00010 101101 0001 010010 1110

D3.7 E3 111 00011 110001 1110 110001 0001

D4.7 E4 111 00100 110101 0001 001010 1110

D5.7 E5 111 00101 101001 1110 101001 0001

D6.7 E6 111 00110 011001 1110 011001 0001

D7.7 E7 111 00111 111000 1110 000111 0001

D8.7 E8 111 01000 111001 0001 000110 1110

D9.7 E9 111 01001 100101 1110 100101 0001

D10.7 EA 111 01010 010101 1110 010101 0001

D11.7 EB 111 01011 110100 1110 110100 1000

D12.7 EC 111 01100 001101 1110 001101 0001

D13.7 ED 111 01101 101100 1110 101100 1000

D14.7 EE 111 01110 011100 1110 011100 1000

D15.7 EF 111 01111 010111 0001 101000 1110

D16.7 F0 111 10000 011011 0001 100100 1110

D17.7 F1 111 10001 100011 0111 100011 0001

D18.7 F2 111 10010 010011 0111 010011 0001

D19.7 F3 111 10011 110010 1110 110010 0001

D20.7 F4 111 10100 001011 0111 001011 0001

D21.7 F5 111 10101 101010 1110 101010 0001

D22.7 F6 111 10110 011010 1110 011010 0001

D23.7 F7 111 10111 111010 0001 000101 1110

D24.7 F8 111 11000 110011 0001 001100 1110

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
84 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The “comma” is an important element of 8b/10b encoding. A comma is a pattern of
7 bits that is used by receivers to acquire code-group boundary alignment. Two
commas patterns are defined, 0b0011111 (comma+) and 0b1100000 (comma-). The
pattern occurs in bits abcdeif of the special characters K28.1, K28.5 and K28.7.
Within the code-group set, it is a singular bit pattern, which, in the absence of
transmission errors, cannot appear in any other location of a code-group and cannot

D25.7 F9 111 11001 100110 1110 100110 0001

D26.7 FA 111 11010 010110 1110 010110 0001

D27.7 FB 111 11011 110110 0001 001001 1110

D28.7 FC 111 11100 001110 1110 001110 0001

D29.7 FD 111 11101 101110 0001 010001 1110

D30.7 FE 111 11110 011110 0001 100001 1110

D31.7 FF 111 11111 101011 0001 010100 1110

Table 4-2. Special Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

Current RD – Current RD
Notes

abcdei fghj abcdei fghj

K28.0 1C 000 11100 001111 0100 110000 1011

K28.1 3C 001 11100 001111 1001 110000 0110 2,3

K28.2 5C 010 11100 001111 0101 110000 1010 1

K28.3 7C 011 11100 001111 0011 110000 1100

K28.4 9C 100 11100 001111 0010 110000 1101 1

K28.5 BC 101 11100 001111 1010 110000 0101 2

K28.6 DC 110 11100 001111 0110 110000 1001 1

K28.7 FC 111 11100 001111 1000 110000 0111 1,2

K23.7 F7 111 10111 111010 1000 000101 0111 1

K27.7 FB 111 11011 110110 1000 001001 0111

K29.7 FD 111 11101 101110 1000 010001 0111

K30.7 FE 111 11110 011110 1000 100001 0111 1

Notes
1. Reserved code-group.
2. The code-group contain a comma.
3. A Reserved code-group for Idle Sequence 1

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits
HGF EDCBA

 Current RD – Current RD

abcdei fghj abcdei fghj
RapidIO.org 85

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
be generated across the boundaries of any two adjacent code-groups with the
following exception:

The /K28.7/ special code-group when followed by any of the data
code-groups /D3.y/, /D11.y/, /D12.y/, /D19.y/, /D20.y/, /D28.y/, or
/K28.y/, where y is an integer in the range 0 through 7, may
(depending on the value of running disparity) cause a comma to be
generated across the boundary of the two code-groups. A comma that
is generated across the boundary between two adjacent code-groups
may cause the receiver to change the 10-bit code-group alignment. As
a result, the /K28.7/ special code-group may be used for test and
diagnostic purposes only.

4.5.7 Special Characters and Columns

Table 4-3 defines the special characters and columns of special characters used by
LP-Serial links. Special characters are used for the following functions:

1. Alignment to code-group (10-bit) boundaries on lane-by-lane basis.

2. Alignment of the receive data stream across N lanes.

3. Marking the start of the IDLE2 CS field

4. Clock rate compensation between receiver and transmitter.

5. Control symbol delimiting.

Table 4-3. Special Characters and Columns

Code-Group/Column
Designation

Code-Group/Column
Use

Number of
Code-groups

Encoding

/PD/ Packet_Delimiter Control
Symbol

1 /K28.3/

/SC/ Start_of_Control_Symbol 1 /K28.0/

/K/ Sync 1 /K28.5/

/R/ Skip 1 /K29.7/

/A/ Align 1 /K27.7/

/M/ Mark 1 /K28.1/

/I/ Idle 1

||K|| Sync column N a column of /K28.5/

||R|| Skip column N a column of /K29.7/

||A|| Align column N a column of /K27.7/

||M| Mark column N a column of /K28.1/

||I|| Idle column N a column of Idle
86 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.5.7.1 Packet Delimiter Control Symbol (/PD/)

PD and /PD/ are aliases for respectively the K28.3 character and the /K28.3/
code-group which are used to delimit a control symbol that contains a packet
delimiter.

4.5.7.2 Start of Control Symbol (/SC/)

SC and /SC/ are aliases for respectively the K28.0 character and the /K28.0/
code-group which are used to delimit a control symbol that does not contain a packet
delimiter.

4.5.7.3 Idle (/I/)

I and /I/ are aliases for respectively any of the idle sequence characters and idle
sequence code-groups.

4.5.7.4 Sync (/K/)

K and /K/ are aliases for respectively the K28.5 character and the /K28.5/
code-group which are used in idle sequences to provide the receiver with the
information it requires to achieve and maintain bit and 10-bit code-group boundary
synchronization. /K28.5/ was selected as the Sync character as it contains the
comma pattern in bits abcdeif which is required to locate the code-group boundaries
and it provides the maximum number of transitions in bits ghj.

4.5.7.5 Skip (/R/)

R and /R/ are aliases for respectively the K29.7 character and the /K29.7/ code-group
which are used in the idle sequences and in the clock compensation sequence.

4.5.7.6 Align (/A/)

A and /A/ are aliases for respectively the K27.7 character and the /K27.7/
code-group which are used in idle sequences and for lane alignment on links
operating in Nx mode.

4.5.7.7 Mark (/M/)

M and /M/ are aliases for respectively the K28.1 character and the /K28.1/
code-group which are used in Idle Sequence 2 to provide the receiver with the
information it requires to achieve and maintain 10-bit code-group boundary
synchronization and to mark the location of the Idle frame CS field.

4.5.7.8 Illegal

A special character and its associated code-group that is defined by the 8b/10b code,
but not specified for use by the LP-Serial protocol are declared to be an “illegal”
character and “illegal” code-group respectively. The special characters K23.7,
RapidIO.org 87

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
K28.2, K28.4, K28.6, K28.7 and K30.7 are illegal characters, and if a link is
operating with Idle Sequence 1, K28.1 is also an illegal character.

4.5.8 Effect of Single Bit Code-Group Errors

Except in receivers using decision feedback equalization (DFE), single bit
code-group errors will be the dominant code-group error by many orders of
magnitude. It is therefore useful to know the variety of code-group corruptions that
can be caused by a single bit error.

Table 4-4 lists all possible code-group corruptions that can be caused by a single-bit
error. The notation /X/ => /Y/ means that the code-group for the character X has
been corrupted by a single-bit error into the code-group for the character Y. If the
corruption results in a code-group that is invalid for the current receiver running
disparity, the notation /X/ => /INVALID/ is used. The table provides the information
required to deterministically detect all isolated single bit transmission errors on links
operating with idle sequence 1 and Control Symbol 24.

4.6 LP-Serial Link Widths
LP-Serial links may have 1, 2, 4, 8, or 16 lanes per direction. All LP-Serial ports
shall support operation on links with one lane per direction (1x mode) and may

Table 4-4. Code-Group Corruption Caused by Single Bit Errors

Corruption Detection on links using idle sequence 1 and Control Symbol 24

/SC/ => /INVALID/ Detectable as an error when decoding the code-group.
When this error occurs within a packet, it is indistinguishable from a
/Dx.y/ => /INVALID/.
When this error occurs outside of a packet, the type of error can be
inferred from whether the /INVALID/ is followed by the three /Dx.y/
that comprise the control symbol data.

/PD/ => /INVALID/ Detectable as an error when decoding the code-group.
When this error occurs within a packet, it is indistinguishable from a
/Dx.y/ => /INVALID/.
When this error occurs outside of a packet, the type of error can be
inferred from whether the /INVALID/ is followed by the three /Dx.y/
that comprise the control symbol data.

/A/, /K/ or /R/ => /Dx.y/ Detectable as an error as /Dx.y/ is illegal outside of a packet or control
symbol and /A/, /K/ and /R/ are illegal within a packet or control
symbol.

/A/, /K/ or /R/ => /INVALID/ Detectable as an error when decoding the code-group.

/Dx.y/ => /A/, /K/ or /R/ Detectable as an error as /A/, /K/ and /R/ are illegal within a packet or
control symbol and /Dx.y/ is illegal outside of a packet or control
symbol.

/Dx.y/ => /INVALID/ Detectable as an error when decoding the code-group.

/Dx.y/ => /Du.v/ Detectable as an error by the packet or control symbol CRC. The error
will also result in a subsequent unerrored code-group being decoded as
INVALID, but that resulting INVALID code-group may occur an
arbitrary number of code-groups after the errored code-group.
88 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
optionally support operation over links with 2, 4, 8 and/or 16 lanes per direction
(respectively 2x mode, 4x mode, 8x mode and 16x mode). For example, a port that
supports operation over 8 lanes per direction (8x mode) must also support operation
over one lane per direction (1x mode) and may optionally also support operation
over 2 and/or 4 lanes per direction (2x mode and/or 4x mode). The requirement that
all LP-Serial ports support 1x mode is to ensure that any pair of LP-Serial ports that
are capable of operating at the same baud rate also support a common link width
over which they can always communicate with each other.

LP-Serial ports that support operation over two or more lanes per direction shall
support 1x mode operation over two of those lanes, lane 0 and lane R (the
redundancy lane). If the port supports operation over at most two lanes per direction
(2x mode), lane R shall be lane 1. If the port supports operation over more than two
lanes, lane R shall be lane 2. Requiring ports that support operation over links with
two or more lanes per direction to also support 1x mode over two lanes per direction
provides a redundant fallback capability that allows communication over the link at
reduced bandwidth in the presence of lane failure, regardless of the lane that fails.

4.7 Idle Sequence
An idle sequence is a sequence of characters, code-groups after 8b/10b encoding,
that is transmitted by a LP-Serial port on each of its active output lanes when the port
is not initialized and, when the port is initialized, there is nothing else to transmit. At
a minimum, an idle sequence provides the information required by a LP-Serial
receiver to acquire and retain bit, code-group and lane alignment and contains clock
compensation sequences.

Two idles sequences are defined, Idle Sequence 1, which is referred to as IDLE1,
and Idle sequence 2, which is referred to as IDLE2. Both sequences contain the /K/,
/A/ and /R/ special code-groups that are required respectively for establishing
code-group and lane alignment in the LP-Serial receiver and providing clock
compensation.

IDLE1 was the first idle sequence defined for LP-Serial links and is unchanged from
the IDLE specified in Rev. 1.3 of this specification. It is based on and is very similar
to the idle sequence used by XAUI, an interconnect that is defined in Clause 47 of
IEEE Standard 802.3. IDLE1 was designed for LP-Serial Baud Rate Class 1 links
and transmitters and receivers that do not use adaptive equalization. IDLE1 provides
only the minimum idle sequence functionality.

IDLE2 was designed for LP-Serial Baud Rate Class 2 links and transmitters and
receivers using adaptive equalization. In addition to the minimum idle sequence
functionality, IDLE2 provides link width, lane identification and lane polarity
information, randomized data for equalizer training and a command and status
channel for receiver control of the transmit equalizer.
RapidIO.org 89

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When idle is transmitted by a LP-Serial port, an idle sequence shall be transmitted
on each of the port’s active output lanes. Ports operating in Nx mode shall not stripe
the idle sequence across the active lanes; there is an idle sequence for each of the N
lanes.

An uninitialized LP-Serial port (state variable port_initialized not asserted) shall
continuously transmit an idle sequence on all active output lanes. An initialized
LP-Serial port (state variable port_initialized asserted) shall transmit an idle
sequence on each of its active output lanes when there is nothing else to transmit. An
idle sequence may not be inserted in a packet or control symbol. An initialized
LP-Serial port that becomes uninitialized while transmitting a packet or control
symbol may transmit several code-groups per lane of the packet and/or control
symbol before beginning the transmission of an idle sequence.

On links operating in 1x mode, the first code-group of the idle sequence shall
immediately follow the last code-group of the preceding control symbol. When a
link is operating in Nx mode, the first column of N idle code-groups shall
immediately follow the column containing the last code-groups of the preceding
control symbol.

4.7.1 Clock Compensation Sequence

The “clock compensation sequence” is four character sequence comprised of a K
special character immediately followed by three R special characters (K,R,R,R).
Clock compensation sequences are transmitted as part of idle sequences.

A port shall transmit a clock compensation sequence on each of its active output
lanes at least once every 5000 characters transmitted per lane by the port. When a
clock compensation sequence is transmitted, the entire 4 character sequence shall be
transmitted. When transmitted by a port operating in Nx mode, the clock
compensation sequence shall be transmitted in parallel on all N lanes resulting in the
column sequence ||K||R||R||R||.

Since a packet or delimited control symbol may not be interrupted by an idle
sequence, it is recommended that a port transmit a clock compensation sequence on
each of its active output lanes at least once every 4096 characters transmitted per
lane by the port. This requirement implies that the flow of packets and delimited
control symbols available from the upper layers can be interrupted long enough to
transmit an idle sequence containing a clock compensation sequence.

The compensation sequence allows retimers (discussed in Section 4.11) to
compensate for up to a +/- 200 ppm difference between input bit rate and output bit
rate. Both rates have a +/-100 ppm tolerance. It may also be used to allow the input
side of an end point port to compensate for up to a +/-200 ppm difference between
the input bit rate and the bit rate of the device core which may be running off a
different clock. This is done by dropping or adding an /R/ immediately following a
90 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
/K/ in 1x mode or an ||R|| immediately following a ||K|| in Nx mode as needed to
avoid overrun or underrun.

4.7.2 Idle Sequence 1 (IDLE1)

Idle Sequence 1 is a sequence of the special characters A, K and R. The sequence is
8b/10b encoded before transmission, yielding a sequence of the special code-groups
/A/, /K/ and /R/ that is transmitted on the link.

The IDLE1 sequence shall comply with the following requirements:

1. Each instance of an IDLE1 sequence shall begin with the K special character.

2. The second, third and fourth characters of each IDLE1 sequence may be the
R special character. This allows the first four characters of an IDLE1
sequence to be K,R,R,R, the “clock compensation sequence”.

3. Except when generating the clock compensation sequence, all characters
following the first character of an IDLE1 shall be a randomly selected
sequence of A, K and R special characters that is based on a pseudo-random
sequence generator of 7th degree or greater and subject to minimum and
maximum requirements on the spacing of the A special characters. The
pseudo-random selection of characters in the idle sequence results in a
sequence code-groups whose spectrum has no discrete lines which helps
control the EMI of long idle sequences.

4. The number of non-A special characters between A special characters within
an IDLE1 sequence shall be no less than 16 and no more than 31. The number
shall be pseudo-randomly selected based on a pseudo-random sequence
generator of 7th degree of greater. Ideally, the number of non-A characters
separating A characters should be uniformly distributed across the range of
16 through 31. However, the IDLE1 spectrum appears to be relatively
insensitive to the actual distribution.

5. The requirement on the number of characters between successive A special
characters should be maintained between successive IDLE1 sequences to
ensure that two successive A special characters are always separated by at
least 16 non-A characters.

6. Except when transmitting a clock compensation sequence, an IDLE1
sequence may be of any length and may be terminated after any code-group.

7. Each instance of IDLE1 shall be a new IDLE1 sequence that is unrelated to
any previous IDLE1 sequence. Once transmission of an IDLE1 sequence has
begun, the sequence may only be terminated. It may not be interrupted or
stalled and then continued later.

8. When a port transmitting IDLE1 is operating in Nx mode, the port shall
transmit the identical sequence of A, K and R special characters in parallel on
each of the N lanes and the N idle sequences shall be aligned across the lanes
such that the initial /K/ of the N sequences shall all occur in the same column
RapidIO.org 91

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
and the last code-group of the N sequences shall all occur in the same column.
As a result, the IDLE1 sequence will appear as a sequence of the columns
||K||, ||R|| and ||A|| at the transmitter output.

4.7.3 Idle Sequence 1 Generation

A primitive polynomial of at least 7th degree is recommended as the generating
polynomial for the pseudo-random sequence that is used in the generation of the idle
sequence. The polynomials x7 + x6 + 1 and x7 + x3 + 1 are examples of primitive 7th
degree polynomials which may be used as generator polynomials. The
pseudo-random sequence generator is clocked (generates a new pseudo-random
sequence value) once per idle sequence code-group (column). Four of the
pseudo-random sequence generator state bits may be selected to generate the
pseudo-random value for /A/ spacing. The selection of the state bits and their
weighting has a significant effect of the distribution of values for /A/ spacing. Any
other state bit or logical function of state bits may be selected as the /K/ vs. /R/
selector.

Figure 4-4 shows an example circuit illustrating how this may be done. The clock
ticks whenever a code-group or column is transmitted. Send_idle is asserted
whenever an idle sequence begins. The equations indicate the states in which to
transmit the indicated idle code-group, except when the compensation sequence is
being transmitted. Any equivalent method is acceptable.
92 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-4. Example of a Pseudo-Random Idle Code-Group Generator

4.7.4 Idle Sequence 2 (IDLE2)

IDLE 2 is a sequence of data characters and the special characters A, K, M and R.
The character sequence is 8b/10b encoded before transmission, yielding a sequence
of data code-groups and the special /A/, /K/, /M/ and /R/ code-groups that are
transmitted on the link.

The IDLE sequence 2 shall be comprised of a continuous sequence of idle frames
and clock compensation sequences. Subject to the following requirements, the exact
order of idle frames and clock compensation sequences in an IDLE 2 sequence is
implementation dependent.

1. The minimum clock compensation sequence density (clock compensation
sequences per characters transmitted per lane) shall comply with the
requirements specified in Section 4.7.1, "Clock Compensation Sequence".

2. Each clock compensation sequence shall be followed by an idle frame.

3. Each idle frame shall be followed by either a clock compensation sequence
or another idle frame.

1

DD D D D

Q Q Q Q Q
LOAD

pseudo_random_integer_generator

down_counter

lsbmsb

Acntr_eq_zero

Q Q Q QQ Q Q

clock
pseudo_random_bit

send_K = send_idle & (!send_idle_dlyd | send_idle_dlyd & !Acntr_eq_zero & pseudo_random_bit)

send_A = send_idle & send_idle_dlyd & Acntr_eq_zero

send_R = send_idle & send_idle_dlyd & !Acntr_eq_zero & !pseudo_random_bit

D Q

send_idle

send_idle_dlyd

send_idle
RapidIO.org 93

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4. When a port is operating in Nx mode, the sequence of clock compensation
sequences and idle frames shall be the same for all N lanes.

After a port using IDLE2 is initialized (the port initialization state variable
port_initialized is asserted), the port may terminate an IDLE2 sequence after any
character of an idle frame to transmit a control symbol or a SYNC sequence
immediately followed by a link-request control symbol subject to the following
requirements:

1. Each M special character transmitted that is part of the idle frame random
data field shall be followed by a minimum of four (4) random data field
random data characters.

2. The sequence of four (4) M special characters at the beginning of a CS field
marker shall not be truncated.

3. A port operating in Nx mode shall terminate an IDLE2 sequence at exactly
the same character position in the sequence for each of the N lanes.

Each instance of IDLE2 shall be a new IDLE2 sequence that is unrelated to any
previous IDLE2 sequence. Once transmission of an IDLE2 sequence has begun, the
sequence may only be terminated. It may not be interrupted or stalled and then
continued later.

When a port transmitting IDLE2 is operating in Nx mode, the port shall transmit
IDLE2 sequences in parallel on each of the N lanes. The sequences will be similar,
but not identical because the information carried in the CS Field Marker will differ
from lane to lane and the information carried in the CS Field may also differ from
lane to lane. The IDLE2 sequences transmitted on each of the N lanes shall be
aligned across the lanes such that the first character of the N idle sequences shall all
occur in the same column and the last character of the N idle sequences shall all
occur in the same column. As a result, the IDLE2 sequence will appear at the
transmitter output as a sequence of the columns ||K||, ||R||, ||M|| and ||A|| and columns
containing only data code-groups.

4.7.4.1 Idle Frame

Each idle frame shall be composed of three parts, a random data field, a command
and status (CS) field marker and an encoded CS field as shown in Figure 4-5.

Figure 4-5. Idle Sequence 2 Idle Frame

random data field

encoded CS field

CS field marker

509-515 characters

32 characters

8 characters
94 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.7.4.1.1 IDLE Sequence 2 Random Data Field

The IDLE2 random data field shall contain pseudo-random data characters and the
A and M special characters. The total length of the random data field shall be no less
than 509 and no more than 515 characters. The idle field shall comply with the
following requirements.

1. Unless otherwise specified, the characters comprising the random data field
shall be pseudo-random data characters.

2. The random data field of an idle frame that immediately follows a clock
compensation sequence shall begin with a M special character. Otherwise,
the random data field of an idle frame shall begin with a pseudo-random data
character.

3. Unless otherwise specified, the pseudo-random data characters in the random
data field shall occur in contiguous sequences of not less than 16 and no more
than 31 pseudo-random characters. The length of each contiguous sequence
shall be pseudo-randomly selected. The lengths of the contiguous sequences
should be uniformly distributed across the range of 16 to 31 characters.
Adjacent contiguous sequences shall be separated by a single A or M special
character. Each separator shall be pseudo-randomly selected. The probability
of selecting the A or M special character for a given separator should be
equal. The last four (4) characters of the random data field shall be
pseudo-random data characters. The length of the first contiguous sequence
of pseudo-random characters in the random data field shall be no less than 16
and no more than 35 characters. The length of the last contiguous sequence
of pseudo-random characters in the random data field shall be no less than 4
and no more than 35 characters.

4. Each random data field that is transmitted on a given lane of a link shall be
generated by first generating a prototype random data field using the above
rules, but with a D0.0 character in the place of each pseudo-random data
character, and then scrambling the prototype random data field with the
transmit scrambler for that lane. The scrambling shall be done in exactly the
same manner as packet and control symbol data characters are scrambled.
The scrambler, the scrambling method and the scrambling rules are specified
in Section 4.8.1, "Scrambling Rules".

5. When a port is operating in Nx mode, the location A or M special characters

in a random data field shall be identical for all N lanes. If the kth character of
a random data field transmitted on lane 0 is an A (M) special character, the

kth character of the random data fields transmitted on lanes 1 through N-1 is
also an A (M) special character.

Generating the random data field pseudo-random data characters by scrambling
D0.0 characters results in the output serial random data bit stream being the
scrambling sequence. This allows the receiver to recover the descrambler seed from
the received idle frame random data field. It also allows the receiver to verify that
RapidIO.org 95

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
the lane descramblers are synchronized to the incoming data stream. If a lane
descrambler is correctly synchronized, the pseudo-random data characters in the idle
frame random data field will all descramble to D0.0 characters.

4.7.4.1.2 IDLE Sequence 2 CS Field Marker

The CS field marker indicates the beginning of the command and status (CS) field
and provides information about the link polarity, link width and lane numbering.

The CS field marker shall be the 8 character sequence

M, M, M, M, D21.5, Dx.y, D21.5, Dx.y

where

x, the least significant 5 bits of Dx.y, encodes lane_number[0-4], the
number of the lane within the port,

y, the most significant 3 bits of Dx.y, encodes active_link_width[0-2],
the active width of the port and

Dx.y is the bit wise complement of Dx.y.

As shown above, the CS frame marker characters shall be transmitted from left to
right. The first character transmitted is M, the last character transmitted is Dx.y.

The “M, M, M, M” sequence that begins the CS field marker is unique and is used
to locate the start of the CS data field. The sequence occurs only between the Idle
Sequence 2 idle frame random data and CS fields. It never occurs in control symbols
or packet data and can not be created by an isolated burst error of 11 bits or less at
the code-group level.

The character D21.5 provides lane polarity indication. The 8b/10b encoding of
D21.5 is independent of running disparity. If the lane polarity is inverted, the
character will decode as D10.2.

If the decoding of the D21.5 characters in the CS field marker is used to detect lane
polarity inversion, then consideration shall be given to Section 4.7.4 that allows a
CS field marker to be terminated at any point after the initial four M characters of
the marker. D21.5 or D10.2 characters can occur in the control symbol and/or packet
immediately following the truncated CS field marker in such a pattern that it falsely
appears that lane polarity is inverted. Therefore, it is recommended that lane polarity
checking mechanisms, if present, should test only correctly formed CS Field
Markers, require a consistent indication of lane polarity over multiple CS field
markers, and make the lane polarity decision as early in the link initialization
process as possible. The lane polarity determination for any of a port’s lanes shall
not be changed when the state machine variable port_initialized is asserted.

The active_port_width field shall be encoded as specified in Table 4-5.
96 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The lane_number field shall be encoded as specified in Table 4-6.

A CS field marker whose first four characters are not all M special characters, fifth
and seventh characters are not both D21.5 or D10.2 or sixth and eight character are
not the bit wise complements of each other shall be determined to be corrupted. A
received CS field marker that is determined to be truncated and/or corrupted shall be

Table 4-5. Active Port Width Field Encodings

y active_link_width[0-2] Link mode Notes

0 0b000 1x

1 0b001 2x

2 0b010 4x

3 0b011 8x

4 0b100 16x

5 0b101 1x on lanes 0, 1 and 2 3

6 0b110 1x on both lanes 0 and 1 1

7 0b111 1x on both lanes 0 and 2 2

Notes
1. Used when a 2x port is operating in 1x mode.
2. Used when a 4x, 8x, or 16x port is operating in 1x mode.
3. Used when a 1x/2x/Nx port is operating in 1x mode. Some early implementations may report
this mode as an active_link_width of 0b110 or 0b111 instead of 0b101.

Table 4-6. Lane Number Field Encodings

x lane_number[0-4] lane number

0 0b00000 0

1 0b00001 1

2 0b00010 2

3 0b00011 3

4 0b00100 4

5 0b00101 5

6 0b00110 6

7 0b00111 7

8 0b01000 8

9 0b01001 9

10 0b01010 10

11 0b01011 11

12 0b01100 12

13 0b01101 13

14 0b01110 14

15 0b01111 15

16-31 0b10000 - 0b11111 Reserved
RapidIO.org 97

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
ignored and discarded. Any error detected in a truncated and/or corrupted CS field
marker that is determined to be the result of a transmission error and not the result
of truncation, such as an “invalid” or “illegal” character, shall be reported as an input
error.

4.7.4.1.3 IDLE2 Command and Status Field (CS field)

The CS field allows a port to provide certain status information about itself to the
connected port and to control the transmit emphasis settings of the connected port if
the connected port supports adaptive transmit emphasis.

The CS field shall have 32 information bits, cs_field[0-31], and 32 check bits,
cs_field[32-63]. The check bits cs_field[32-63] shall be the bit wise complement of
the information bits cs_field[0-31] respectively.

The CS field bits are defined in Table 4-7.

Table 4-7. Command and Status Field Encodings

CS_field bit(s) Definition

0 CMD - Command
This bit indicates to the connected port when an emphasis update
command is present
0b0 - no request present
0b1 - request present

1 Implementation defined

2 Receiver trained
When the lane receiver controls any transmit or receive adaptive
equalization, this bit indicates whether or not all adaptive equalizers
controlled by the lane receiver are trained
0b0 - One or more adaptive equalizers are controlled by the lane
receiver and at least one of those adaptive equalizers is not trained
0b1 - The lane receiver controls no adaptive equalizers or all of the
adaptive equalizers controlled by the receiver are trained

3 Data scrambling/descrambling enabled
This bit indicates whether control symbol and packet data characters
are being scrambled before transmission and descrambled upon
reception
This bit indicates whether or not the transmitter is scrambling control
symbol and packet data characters.
0b0: scrambling/descrambling disabled
0b1: scrambling/descrambling enabled

4-5 Tap(-1) status - Transmit emphasis tap(-1) status
These bits indicate the status of transmit emphasis tap(-1).
0b00: not implemented
0b01: at minimum emphasis
0b10: at maximum emphasis
0b11: at intermediate emphasis setting

6-7 Tap(+1) status - Transmit emphasis tap(+1) status.
These bits indicate the status of transmit emphasis tap(+1).
0b00: not implemented
0b01: at minimum emphasis
0b10: at maximum emphasis
0b11: at intermediate emphasis setting
98 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The 64 cs_field bits shall be encoded in pairs as specified in Table 4-8.

This encoding has the property that after 8b/10b encoding, the resulting transmit
signal has a minimum run length of 2 except at the boundary between code-groups

8-23 Reserved

24-25 Tap(-1) Command - Transmit emphasis tap(-1) update command
This bit is used in conjunction with the “CMD” bit to change or retain
the emphasis setting of tap(-1).
0b00: hold
0b01: decrease emphasis by one step
0b10: increase emphasis by one step
0b11: reserved

26-27 Tap(+1) Command - Transmit emphasis tap(+1) update command
This bit is used in conjunction with the “CMD” bit to change or retain
the emphasis setting of tap(+1).
0b00: hold
0b01: decrease emphasis by one step
0b10: increase emphasis by one step
0b11: reserved

28 Reset emphasis
This bit is used in conjunction with the “CMD” bit to force the
transmit emphasis settings in the connected transmitter to no emphasis
0b0: Ignore
0b1: Reset all transmit emphasis taps to no emphasis

29 Preset emphasis
This bit is used in conjunction with the “CMD” bit to force the
transmit emphasis settings in the connected transmitter to initial or
preset values
0b0: Ignore
0b1: Set all transmit emphasis setting to their preset values.

30 ACK
This bit indicates when a transmit emphasis update command from the
connected port has been accepted.
0b0: command not accepted
0b1: command accepted

31 NACK
This bit indicates when a transmit emphasis update command from the
connected port has been refused.
0b0: command not refused
0b1: command refused

Table 4-8. CS Field 8/10 Bit Encodings

CS_field[n,n+1]
n even

Encoding

0,0 D7.3

0,1 D24.3

1,0 D30.3

1,1 D24.7

Table 4-7. Command and Status Field Encodings

CS_field bit(s) Definition
RapidIO.org 99

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
when a /D24.7/ is immediately followed by a /D30.3/. The minimum run length of
2 reduces the effective bandwidth of the transmitted signal which improves the
reliability of transmission over an unequalized or partially equalized lane.

The characters encoding the CS channel shall be transmitted in the order of the bits
they encode beginning with the character encoding CS field bits [0,1] and ending
with the character encoding bits [62-63].

A CS field whose bits [32-63] are not the bit wise complement of bits [0-31]
respectively shall be determined to be corrupted. A received CS field that is
determined to be truncated and/or corrupted shall be ignored and discarded. Any
error detected in a truncated and/or corrupted CS field that is determined to be the
result of a transmission error and not the result of truncation, such as an “invalid” or
“illegal” character, shall be reported as an input error.

4.7.4.1.4 IDLE2 CS Field Use

The transmit emphasis status and update commands supported by the CS Field are
based on a reference model for the transmitter emphasis network that is a transversal
filter with K taps with baud period tap spacing. A 5-tap transversal filter is shown in
Figure 4-6. The filter taps are named according to their position relative to the
“main” tap which is designated tap(0). As the signal propagates through the filter,
taps that are reached by the signal before it reaches the main tap are designated with
negative integers. Taps that are reached by the signal after it has passed the main tap
are designated with positive integers. For example, the tap immediately before the
main tap is designated tap(-1), the tap immediately following the main tap is
designated tap(+1) and the second tap after the main tap is designated tap(+2). The
output signal of a transversal filter is formed by multiplying the voltage of each tap
by a tap coefficient and summing the products together. The coefficient for tap(n) is
designated kn. The main tap, tap(0), has the property that its coefficient (k0) is
always positive. When all emphasis is disabled, the main tap coefficient is 1 and all
of the other tap coefficients are 0.

Figure 4-6. 5-tap Transversal Filter

k-2

1 baud
delay

Input

Output

1 baud
delay

1 baud
delay

1 baud
delay

k-1 k0 k1 k2
100 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The structure of the transmit emphasis transversal filter in a given port is conveyed
to the connected port by the Tap(n) status fields in the CS fields transmitted by the
port.

The intended use for transmit emphasis is to allow at least partial compensation for
the transmission losses of links implemented with differential printed circuit board
(PCB) trace pairs which increase with increasing frequency. Compensation is
achieved by emphasizing the higher frequency portion of the transmit spectrum
before transmission. A transversal filter for this purpose typically has two or three
taps. The two tap filter has a main tap, tap(0), and either a tap(-1) or a tap(+1). The
three tap filter has a main tap and both a tap(-1) and a tap(+1). When adjusted for
transmit emphasis, the coefficients of tap(-1) and tap(+1) will be negative with
emphasis increasing as the coefficients become more negative.

The CS fields exchanged between connected LP-Serial ports provides a command
and acknowledgement path that allows a LP-Serial receiver to control the transmit
emphasis of the connected transmitter. The issuing and acknowledgement of
transmit emphasis commands is control by a handshake that uses the CS field signals
CMD, ACK and NACK.

A receiver may issue the following commands. Only one of these commands may
be issued at a time.

reset emphasis

preset emphasis

modify the emphasis provided by tap(-1), if tap(-1) is implemented

modify the emphasis of tap(+1), if tap(+1) is implemented

CS field commands shall be issued and acknowledged using the following rules.
References to specific command bits and to the CMD bit refer to the specific
command bits and the CMD bit in CS fields transmitted by the port issuing the
command. References to the ACK and NACK bits refer to the ACK and NACK bits
in CS fields received from the connected port. An example of this handshake is
shown in Figure 4-7.

Specific command bits may be changed only when the ACK and
NACK bits are both de-asserted and the CMD bit is either de-asserted
or transitioning from de-asserted to asserted.

Once the CMD bit is asserted, the connected port will either assert
ACK after accepting and executing the command or assert NACK if
the command cannot be executed. The assertion of ACK or NACK
shall occur no more than 250usec after the assertion of CMD. ACK
and NACK shall never be asserted at the same time.
RapidIO.org 101

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Once ACK or NACK is asserted in a CS field received by the port
issuing the command, the CMD bit is de-asserted.

ACK or NACK, whichever is asserted, shall be de-asserted within
250usec of receipt of a CS field with the CMD bit deasserted.

If, for any reason, the connected port fails to assert ACK or NACK the
assertion of CMD within the timeout period configured in Port n Link
Timers Control CSRs Emphasis Command Timeout field, CMD shall
be deasserted. Once deasserted, CMD shall remain deasserted for at
least the timeout period configured in the Emphasis Command
Timeout field before being reasserted..

A CS field command to increase the emphasis of tap(n) by one step shall cause the
tap(n) coefficient to be made more negative by one step. A command to decrease the
emphasis of tap(n) by one step shall cause the tap(n) coefficient to be made more
positive by one step. The transmit emphasis step sizes are implementation
dependant. The adjustment of the tap(n) coefficient value may result in the
coefficient value of one or more of the other taps to be modified by the transmitter
to maintain certain specifications such as the minimum or maximum transmit
amplitude.

Figure 4-7. Example of CS Field CMD, ACK, NACK Handshake

4.7.5 Idle Sequence Selection

LP-Serial Baud Rate Class 2 links shall always use the IDLE2 sequence. LP-Serial
Baud Rate Class 1 links shall support use of the IDLE1 sequence and may support
use of the IDLE2 sequence.

CMD

preset_emphasis

tap(-1)_command(0-1)

ACK

NACK

tap(+1)_command(0-1)
102 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
If a LP-Serial port is operating at Baud Rate Class 1 and both ports on the link
support both IDLE1 and IDLE2, the port shall determine which idle sequence to use
on the link by using the following algorithm during the port initialization process.

If a LP-Serial port is operating at Baud Rate Class 1, supports the
IDLE2 sequence and its configuration allows it to use the IDLE2
sequence, the port shall transmit the IDLE2 sequence when it enters
the SEEK state of the port initialization process. (The port
initialization process is specified in Section 4.12.) Otherwise, a
LP-Serial port operating at Baud Rate Class 1 shall transmit the
IDLE1 sequence when entering the SEEK state and shall use the
IDLE1 on the link until the port reenters the SEEK state.

A LP-Serial port transmitting the IDLE2 sequence shall monitor the
idle sequence it is receiving from the connected port. The port shall
determine the idle sequence being received from the connected port
using a lane for which lane_sync is asserted. The techniques and
algorithms used by a port supporting both IDLE1 and IDLE2 to
determine which idle sequence it is receiving are implementation
specific and outside the scope of this specification.

If the LP-Serial port that is transmitting the IDLE2 sequence receives
IDLE2 from the connected port, IDLE2 shall be the idle sequence
used on the link until the port reenters the SEEK state. If the port
receives IDLE1 from the connected port, the port shall switch to
transmitting IDLE1 and IDLE1 shall be the idle sequence used on the
link until the port reenters the SEEK state.

There are restrictions on the type of equalizers and, if any of the equalization is
adaptive, on the adaptive equalizer training algorithms that can be used by ports
operating at Baud Rate Class 1. These restrictions are specified in Section 10.2,
"Equalization" and Section 11.2, "Equalization".

4.8 Scrambling
Scrambling smooths the spectrum of a port’s transmit signal and reduces the
spectrum’s peak values. This is most important when long strings of the same
character or of a repeating character sequence are transmitted. The result is a
reduction in the amount of electromagnetic interference (EMI) generated by the link
and easier design of adaptive equalizer training algorithms. Scrambling of packet
and control symbol data characters is used only on links operating with idle
sequence 2 (IDLE2). It is not used on links operating with idle sequence 1 (IDLE1)
for backwards compatibility with early revisions of this specification.
RapidIO.org 103

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.8.1 Scrambling Rules

The use of control symbol and packet data character scrambling on a LP-Serial link
is determined by the idle sequence being used on the link.

If the idle sequence selection process specified in Section 4.7.5 has
selected idle sequence 1 (IDLE1) for use on the link, no characters
shall be scrambled before transmission on the link.

If the idle sequence selection process has selected idle sequence 2
(IDLE2), control symbol and packet data characters shall be
scrambled by the transmitter before transmission on the link and
descrambled in the receiver upon reception. (The per lane scramblers
are also used to generate the pseudo-random data characters in the
IDLE2 random data field as specified in Section 4.7.4.1.1). Special
characters, CS field marker data characters, and CS field data
characters shall not be scrambled before transmission.

Scrambling and descrambling of control symbol and packet data characters can be
disabled for test purposes by setting the Data scrambling disable bit in the Port n
Control 2 CSR. Scrambling and descrambling of control symbol and packet data
characters shall not be disabled for normal link operation. Setting the Data
scrambling disable bit does not disable the use of the lane scramblers for the
generation of pseudo-random data characters for the IDLE2 random data field. (See
Section 7.6.9, "Port n Control 2 CSRs").

Scrambling and descrambling shall be done at the lane level. Nx ports shall have a
transmit scrambling and receive descrambling function for each of the N lanes. In
the transmitter, scrambling shall occur before 8b/10b encoding, and if the port is
operating in Nx mode, after lane striping. In the receiver, descrambling shall occur
after 8b/10b decoding, and if the port is operating in Nx mode, before lane
destriping.

The polynomial x17+x8+1 shall be used to generate the pseudo-random sequences
that are used for scrambling and descrambling. This polynomial is not primitive, but
when the sequence generator is initialized to all 1s or other appropriate values, the
polynomial produces a sequence with a repeat length of 35,805 bits. The bit serial
output of the pseudo-random sequence generator shall be taken from the output of
the register holding x17. The pseudo random sequence generator is shown in
Figure 4-8.
104 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-8. Scrambling Sequence Generator

Control symbol and packet data characters shall be scrambled and descrambled by
XORing the bits of each character with the output of the pseudo-random sequence
generator. The bits of each data character are scrambled/descrambled in order of
decreasing significance. The most significant bit (bit 0) is scrambled/descrambled
first, the least significant bit (bit 7) is scrambled/descrambled last.

The transmitter and receiver scrambling sequence generators shall step during all
characters except R special characters. This is to prevent loss of sync between
transmit and receive scramblers when an /R/ or ||R|| is added or removed by a
retimer.

To minimize any correlation between lanes when a port is transmitting on multiple
lanes, the scrambling sequence applied to a given output lane of the port shall be
offset from the scrambling sequence applied to any other output lane of the port by
at least 64 bits. If separate scrambling sequence generators are used for each lane,
the offset requirement can be achieved by initializing the scramblers to the values
specified in Table 4-9, which provide an offset of 64.

Table 4-9. Scrambler Initialization Values

Lane
Initialization value

[x1-x17]

0 0b1111 1111 1111 1111 1

1 0b1111 1111 0000 0110 1

2 0b0000 0000 1000 0110 1

3 0b0000 0110 0111 1010 0

4 0b1000 0000 1011 1001 0

5 0b1111 1010 1000 0111 0

6 0b0100 0011 1001 1011 1

7 0b1100 0100 1010 0101 0

8 0b0101 1111 0100 1001 0

9 0b1111 1010 0111 1001 1

D

XOR

Q

>

x1

D Q

>

x2

D Q

>

x3

D Q

>

x4

D Q

>

x5

D Q

>

x6

D Q

>

x7

D Q

>

x8

D Q

>

x9

D Q

>

x10

D Q

>

x11

D Q

>

x12

D Q

>

x13

D Q

>

x14

D Q

>

x15

D Q

>

x16

D Q

>

x17

Clock

Output
RapidIO.org 105

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.8.2 Descrambler Synchronization

Since the pseudo-random data characters of the random data field of the idle
sequence 2 idle frame are generated by scrambling D0.0 characters, the
pseudo-random characters of the random data field contain the pseudo-random
sequence used by the transmitter to scramble control symbol and packet data
characters. A sequence of at least four (4) contiguous pseudo-random data
characters immediately follow each M special character in the random data field.

Each lane descrambler shall synchronize itself to the scrambled data stream it is
receiving by using the scrambling sequence extracted from the pseudo-random data
characters received by the lane to re-initialize the state of the descrambler.

After a lane descrambler has been re-initialized, the next two descrambler sync tests,
which are defined in Section 4.8.3, shall be used to verify descrambler
synchronization. If the result of both lane descrambler sync tests is “pass”, the
descrambler shall be determined to be “in sync”. Otherwise, the lane descrambler
shall be determined to be “out of sync” and the resynchronization process shall be
repeated.

To ensure that a port that may have lost descrambler sync is able to recover
descrambler sync before it is sent a link maintenance protocol link-request control
symbol, a LP-Serial port that is operating with IDLE2 shall transmit a SYNC
sequence (described below) before transmitting any link-request control symbol.
The SYNC sequence shall be transmitted in parallel on each of the N active lanes of
a link operating in Nx mode and shall immediately precede the link-request control
symbol. If the link is operating in 1x mode, the last character of the SYNC sequence
is immediately followed by the first character of the link-request. If the link is
operating in Nx mode, the last column of the SYNC sequence is immediately
followed by the column containing the first characters of the link-request.

The SYNC sequence shall be comprised of four contiguous repetitions of a five
character sequence that begins with a M special character immediately followed by
4 pseudo-random data characters, i.e. the SYNC sequence is MDDDD MDDDD
MDDDD MDDDD. The pseudo-random data characters shall be generated in the

10 0b1011 0011 0111 0010 1

11 0b1100 1010 1011 0011 0

12 0b1011 1000 0101 0011 1

13 0b0000 1011 0110 1111 0

14 0b0101 1000 1001 1010 1

15 0b0011 0111 1010 1000 1

Table 4-9. Scrambler Initialization Values

Lane
Initialization value

[x1-x17]
106 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
same way as the pseudo-random data characters in the random data field of the
IDLE2 idle frame are generated. The SYNC sequence will appear as four repetitions
of ||M||D||D||D||D|| on a link operating in Nx mode.

4.8.3 Descrambler Synchronization Verification

Each active lane of a LP-Serial port that is descrambling received control symbol
and packet data characters shall, with the one exception stated below, perform a
descrambler synchronization state check (descrambler sync check) whenever a
descrambler sync check trigger event is detected in the received character stream of
the lane.

A descrambler sync check trigger event is defined as the occurrence of one of the
following character sequences in the received character stream of an active lane.

1. A single K, M or R special character that is not part of a contiguous sequence
of K, M and/or R special characters.

2. A contiguous sequence of K and/or R special characters possibly followed by
a M special character.

The descrambler sync check shall consist of inspecting the descrambled values of
the four contiguous characters following the trigger sequence. These four characters
are designated the descrambler sync “check field”. The characters comprising the
check field shall be determined as follows.

The check field for the first type of trigger event shall be the four characters
immediately following the K, M or R special character.

The check field for the second type of trigger event that does not end with a
M special character shall be the four characters immediately following the
contiguous sequence of K and/or R special characters.

The check field for the second type of trigger event that ends with a M special
character shall be the four characters immediately following the M special
character.

When the descrambler is in sync and in the absence of transmission errors, the
“check field” will contain four data characters that are all D0.0s after descrambling.

The exception to the rule stated above that each descrambler sync check trigger
sequence shall cause the receiving lane to execute a descrambler sync check is when
the descrambler check trigger sequence begins in the four character check field of a
previous trigger sequence. When this occurs, the trigger sequence shall not trigger a
descrambler sync check. For example, the RM in the sequence KRXRMDDDD,
where X is neither a K nor R, shall not trigger a descrambler sync check as it begins
in the four character check field used by the descrambler sync check triggered by the
KR sequence.
RapidIO.org 107

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
If the descrambled value of each of the four characters in a check field is D0.0, the
result of the descrambler sync test shall be “pass”. Otherwise, the result of the
descrambler sync test shall be “fail” and the descrambler shall be determined to be
“out of sync”.

A sync test can fail because of either a loss of descrambler sync or a data
transmission error(s) in either the sync trigger sequence or the check field.

If a descrambler sync test fails, the port shall immediately enter the Input
Error-stopped state if it is not already in that state and resynchronize the
descrambler. All control symbols and packet received while a lane descrambler is
out of sync shall be ignored and discarded. The cause field in the
packet-not-accepted control symbol issued by the port on entering the Input
Error-stopped state due to a sync check failure shall indicate “loss of descrambler
sync”.

4.9 1x Mode Transmission Rules

4.9.1 1x Ports

A 1x LP-Serial port shall 8b/10b encode and transmit the character stream of
delimited control symbols and packets received from the upper layers in the order
the characters were received from the upper layers. When neither control symbols
nor packets are available from the upper layers for transmission, an idle sequence
shall be fed to the input of the 8b/10b encoder for encoding and transmission.

On reception, the code-group stream is 8b/10b decoded and the resulting character
stream of error free delimited control symbols and packets shall be passed to the
upper layers in the order the characters were received from the link.

If the link is operating with idle sequence 2, control symbol and packet data
characters shall be scrambled before transmission and descrambled after reception
as specified in Section 4.8.

Figure 4-9 shows the encoding and transmission order for a Control Symbol 24
transmitted over a LP-Serial link operating in 1x mode.
108 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-9. 1x Mode Control Symbol 24 Encoding and Transmission Order

Figure 4-10 shows the encoding and transmission order for a packet transmitted over
a 1x LP-Serial link.

Figure 4-10. 1x Mode Packet Encoding and Transmission Order

1st byte[0-7] 2nd byte[0-7] 3rd byte[0-7]

stype0 param 0 param 1 stype1 cmd CRC-5

Delimiter 1st byte 2nd byte 3rd byte

/SC/ or /PD/ 1st /Dx.y/ 2nd /Dx.y/ 3rd /Dx.y/

Unencoded

Encoded

bit and code-group transmission order

8b/10b 8b/10b 8b/10b 8b/10b

1st byte[0-7] 2nd byte[0-7] 3rd byte[0-7]

ackID prio tt

1st byte 2nd byte 3rd byte

1st /Dx.y/ 2nd /Dx.y/ 3rd /Dx.y/

...

bit and code-group transmission order

8b/10b 8b/10b 8b/10b

Encoded

Unencoded

...

...
RapidIO.org 109

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-11 shows an example of idle sequence 1, Control Symbol 24 and packet
transmission on a 1x LP-Serial link.

Figure 4-11. 1x Typical Data Flow with Control Symbol 24

4.9.2 Nx Ports Operating in 1x Mode

When a Nx port is operating in 1x mode, the character stream of delimited control
symbols and packets received from the upper layers shall be fed in parallel to both
lanes 0 and R for encoding and transmission in the order the characters were
received from the upper layers. (The character stream is not striped across the lanes
before encoding as is done when operating in Nx mode.) When neither delimited
control symbols nor packets are available from the upper layers for transmission, an
idle sequence shall be fed in parallel to both lane 0 and lane R for 8b/10b encoding
and transmission on lanes 0 and R.

On reception, the code-group stream from either lane 0 or R shall be selected
according to the state of the 1x/Nx_Initialization state machine (Section 4.12.4.5),
decoded and the error free delimited control symbols and packets passed to the upper
layers.

Time

Control

/SC/

Cdata-0

Cdata-1

Cdata-2

/PD/

Symbol

(start-pkt)

/I/

/I/

/I/

Data-0

Data-1

Data-2

Data-3

Data-4

Data-5

Data-6

Data-7

char-0

char-1

char-2

char-3

char-0

char-1

char-2

char-0

char-1

char-2

char-3

char-0

char-1

char-2

char-3

char-0

char-1

char-2

char-3

Control

/PD/

Symbol

(start-pkt)

char-0

char-1

char-2

char-3

Data-0

Data-1

Data-2

Data-3

Data-4

Data-5

Data-6

Data-7

char-0

char-1

char-2

char-3

char-0

char-1

char-2

char-3

Data-8

Data-9

Data-10

Data-11

char-0

char-1

char-2

char-3

/SC/

Cdata-0

Cdata-1

Cdata-2

char-0

char-1

char-2

char-3

Control

/PD/

Symbol

(end-pkt)

char-0

char-1

char-2

char-3

Control

/PD/

Symbol

(start-pkt)

char-0

char-1

char-2

char-3

Data-0

Data-1

Data-2

Data-3

Data-4

Data-5

Data-6

Data-7

char-0

char-1

char-2

char-3

char-0

char-1

char-2

char-3

/SC/

Cdata-0

Cdata-1

Cdata-2

char-0

char-1

char-2

char-3

Data-8

Data-9

Data-10

Data-11

char-0

char-1

char-2

char-3

/SC/

Cdata-0

Cdata-1

Cdata-2

char-0

char-1

char-2

char-3

Data-12

Data-13

Data-14

Data-15

char-0

char-1

char-2

char-3

Restart

/PD/

from

Retry

char-0

char-1

char-2

char-3

Control

/PD/

Symbol

(start-pkt)

char-0

char-1

char-2

char-3

/SC/

Cdata-0

Cdata-1

Cdata-2

char-0

char-1

char-2

char-3

Data-0

Data-1

Data-2

Data-3

Data-4

Data-5

Data-6

Data-7

char-0

char-1

char-2

char-3

char-0

char-1

char-2

char-3

Control

/PD/

Symbol

(end-pkt)

char-0

char-1

char-2

char-3

/I/

/I/

/I/

/I/ char-0

char-1

char-2

char-3

/I/ char-0
110 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When a port that optionally supports and is enabled for both 2x mode and a wider
Nx mode is operating in 1x, the port shall support both lanes 1 and 2 as redundancy
lanes. The port shall transmit the 1x mode data stream on lanes 0, 1 and 2 and
attempt to receive 1x mode data stream on lanes 0, 1 and 2. The port shall select
between using the data received on lane 0 or the data received on the redundancy
lane which may be either lane 1 or lane 2 depending on the connected port. Unless
forced to use the redundancy lane, the port shall use the data stream received on lane
0 if it is available. The 1x/2x/Nx_Initialization state machine specified in Section
4.12.4.8.1 shall be used for a port supporting both 2x and a wider Nx mode to
comply with the above requirements.

If the link is operating with idle sequence 2, control symbol and packet data
characters shall be scrambled before transmission and descrambled after reception
as specified in Section 4.8.

Once a Nx port is initialized to a 1x mode, the port may elect to disable the output
driver of the lane which was not selected for reception by the initialization state
machine of the connected port. Since the ports connected by the link may not be
receiving on the same lane (one port could be receiving on lane 0 and the other port
receiving on lane R), the connected port must be interrogated to determine which
lane can be output disabled. It is recommended that the mechanism for disabling the
output driver be under software control.

4.10 Nx Link Striping and Transmission Rules
A LP-Serial port operating in Nx mode shall stripe the character stream of delimited
control symbols and packets received from the upper layers across the N active
output lanes in the order the characters were received from the upper layers. Each
lane shall then 8b/10b encode and transmit the characters assigned to it. When
neither control symbols nor packets are available from the upper layers for
transmission, an idle sequence shall be fed to each of the N lanes for 8b/10b
encoding and transmission.

Packets and delimited control symbols shall be striped across the N active lanes
beginning with lane 0. The first character of each packet, or delimited control
symbol, shall be placed in lane K where K modulo 4 = 0. The second character shall
be placed in lane (K + 1), and the nth character shall be placed in lane (K + (n - 1))
which wraps around to lane 0 when (K + (n - 1)) modulo N = 0.

The lengths of control symbols and packets in the LP-Serial Physical Layer are
positive integer multiples of 4 characters. As a result, when N, the width of the link,
is greater than 4, occasions will occur when there are not enough packets and/or
control symbols available for transmission to fill a column. For example, lanes 0-3
of a link operating in 8x mode contain a delimited Control Symbol 24 or the last 4
characters of a delimited Control Symbol 48, but there is nothing available to put in
lanes 4-7. When this occurs, all remaining characters in the column shall be filled
(padded) with pseudo-random data characters. The first pseudo-random data pad
RapidIO.org 111

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
character shall occur in a lane whose lane_number modulo 4 = 0. The number of
pseudo-random data pad characters in a column shall be a positive integer multiple
of 4. If the link is operating with idle sequence 2, the pseudo-random data characters
shall be generated by using the lane scramblers to scramble D0.0 characters. With
the exception stated in Section 6.6.1.2, padding characters shall not be inserted
between packet delimiting control symbols and the packet(s) they delimit.

After striping, each of the N streams of characters shall be independently 8b/10b
encoded and transmitted.

On reception, each lane shall be 8b/10b decoded.

If the link is operating with idle sequence 2, control symbol and packet data
characters shall be scrambled before transmission and descrambled after reception
as specified in Section 4.8.

After decoding, the N lanes shall be aligned. The ||A|| columns transmitted as part of
an idle sequence provide the information needed to perform alignment. After
alignment, the columns are destriped into a single character stream and passed to the
upper layers.

The lane alignment process eliminates the skew between lanes so that after
destriping, the ordering of characters in the received character stream is the same as
the ordering of characters before striping and transmission. Since the minimum
number of non ||A|| columns between ||A|| columns is 16, the maximum lane skew
that can be unambiguously corrected is the time it takes to transmit 7 code-groups
on a lane.

Figure 4-12 shows an example of Idle Sequence 1, Control Symbol 24 and packet
transmission on a 4x link.
112 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-12. Typical 4x Data Flow with Control Symbol 24

4.11 Retimers and Repeaters
The LP-Serial Specification allows “retimers” and “repeaters”. Retimers amplify a
weakened signal, but do not transfer jitter to the next segment because they use a
local transmit clock. Repeaters also amplify a weakened signal, but transfer jitter to
the next segment because they use a transmit clock derived from the received data
stream. Retimers allow greater distances between end points at the cost of additional
latency. Repeaters support less distance between end points than retimers and only
add a small amount of latency.

Time

Control Symbol (Start-of-packet)

/SC/ Cdata-0 Cdata-1 Cdata-2

/PD/

/I//I//I//I/

Data-0 Data-1 Data-2 Data-3

Data-4 Data-5 Data-6 Data-7

Data-8 Data-9 Data-10 Data-11

Control Symbol (Start-of-packet)/PD/

Data-0 Data-1 Data-2 Data-3

Data-4 Data-5 Data-6 Data-7

/SC/ Cdata-0 Cdata-1 Cdata-2

Control Symbol (End-of-packet)/PD/

Control Symbol (Start-of-packet)/PD/

Data-8 Data-9 Data-10 Data-11

Data-0 Data-1 Data-2 Data-3

Data-4 Data-5 Data-6 Data-7

/SC/ Cdata-0 Cdata-1 Cdata-2

/SC/ Cdata-0 Cdata-1 Cdata-2

Data-12 Data-13 Data-14 Data-15

Control Symbol (Restart-from-retry)/PD/

Control Symbol (Start-of-packet)/PD/

/SC/ Cdata-0 Cdata-1 Cdata-2

Lane-0 Lane-1 Lane-2 Lane-3

Data-0 Data-1 Data-2 Data-3

Data-4 Data-5 Data-6 Data-7

Control Symbol (End-of-packet)/PD/

/I//I//I//I/
RapidIO.org 113

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.11.1 Retimers

A retimer shall comply with all applicable AC specifications found in Chapter 9,
"Common Electrical Specifications for less than 6.5 Gbaud LP-Serial Links",
Chapter 10, "1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud LP-Serial Links", and
Chapter 11, "5 Gbaud and 6.25 Gbaud LP-Serial Links". This includes resetting the
jitter budget thus extending the transmission distance for the link. The retimer
repeats the received code-groups after performing code-group synchronization and
serializes the bitstream again on transmission, based on a local clock reference. Up
to two retimers are allowed between two end nodes.

A retimer is not RapidIO protocol-aware or addressable in any way. The only
awareness a retimer has is to the synchronization on the /K/ code-group and the
function of /R/ insertion and removal. A retimer may insert up to one /R/ code-group
immediately following a /K/ code-group, or remove one /R/ code-group that
immediately follows a /K/ code-group. Since the /R/ code-group is disparity neutral,
its insertion or deletion does not affect the running disparity.

A N-lane retimer must perform lane synchronization and deskew, in exactly the
same way a RapidIO device implementing the LP-Serial Physical Layer does when
synchronizing inputs during initialization and startup. A Nx mode retimer will
synchronize and align all lanes that are driven to it. Therefore, such a retimer allows
for the degradation of an input Nx link to a 1x link on either lane 0 or R. If any link
drops out, the retimer must merely continue to pass the active links, monitoring for
the compensation sequence and otherwise passing through whatever code-groups
appear on its inputs. A retimer may optionally not drive any outputs whose
corresponding inputs are not active.

Any insertion or removal of a /R/ code-groups in a N-lane retimer must be done on
a full column. A retimer may retime links operating at the same width only (i.e.
cannot connect a link operating at 1x to a link operating at Nx). A retimer may
connect a 1x link to a Nx link that is operating in 1x mode. Retimers perform clock
tolerance compensation between the receive and transmit clock. The transmit clock
is usually derived from a local reference.

Retimers do not check for code violations. Code-groups received on one port are
transmitted on the other regardless of code violations or running disparity errors.

4.11.2 Repeaters

A repeater is used to amplify the signal, but does not retime the signal, and therefore
can add additional jitter to the signal. It does not compensate for clock rate variation.
The repeater repeats the received code-groups as the bits are received by sampling
the incoming bits with a clock derived from the bit stream, and then retransmitting
them based on that clock. Repeaters may be used with Nx links but lane-to-lane
skew may be amplified. Repeaters do not interpret or alter the bit stream in any way.
114 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.12 Port Initialization
This section specifies the port initialization process. The process includes detecting
the presence of a partner at the other end of the link (a link partner), establishing bit
synchronization and code-group boundary alignment and if present, adjusting any
adaptive equalizers. The process also includes determining if the connected port
supports an Nx mode in addition to 1x mode and selecting 1x or Nx mode operation,
then, if 1x mode is selected, selecting lane 0 or lane R (the redundancy lane, lane 1
for 2x ports and lane 2 for 4x, 8x or 16x ports) for link reception.

Port initialization may optionally include baud rate discovery.

The initialization process is controlled by several state machines. The number and
type of state machines depends on whether the port supports only 1x mode (a 1x
port) or supports both 1x and one or more Nx modes (a 1x/Nx port). In either case,
there is a primary state machine and one or more secondary state machines. The use
of multiple state machines results in a simpler overall design. As might be expected,
the initialization process for a 1x port is simpler than and is a subset of the
initialization process for a 1x/Nx port.

The port initialization process supports an optional test mode that allows ports that
support more than one multi-lane mode of operation to enable and monitor the
operation of the inactive lanes when the port is operating at less than maximum
width. The performance of inactive lanes can be monitored only if the inactive lanes
are connected to and supported by the connected port and the test mode is
implemented and enabled in both ports. The test mode is enabled with the “Enable
inactive lanes” bit defined in Section 7.6.9. The initiation, implementation and
interpretation of tests conducted using this test mode is outside of this specification.

The initialization process for 1x, 1x/Nx ports, and ports supporting 1x mode and
multiple Nx modes is both described in text and specified with state machine
diagrams. In the case of conflict between the text and a state machine diagram,
the state machine diagram takes precedence.

4.12.1 1x Mode Initialization

The initialization process for ports that support only 1x mode shall be controlled by
two state machines, 1x_Initialization and Lane_Synchronization. 1x_Initialization
is the primary state machine and Lane_Synchronization is the secondary state
machine. The operation of these state machines is described and specified in Section
4.12.4.4 and Section 4.12.4.2 respectively.

4.12.2 1x/Nx Mode Initialization

The initialization process for ports that support both 1x and a Nx mode is controlled
by a primary state machine and four or more secondary state machines. The primary
state machine is the 1x/Nx_Initialization state machine. Lane_Synchronization[0]
RapidIO.org 115

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
through Lane_Synchronization[N-1] (one for each of the N lanes), Lane_Alignment
(one for each supported Nx mode) and 1x/2x_Mode_Detect (used only in the
1x/2x_Initialization state machine) are the secondary state machines. The operation
of the secondary state machines is described and specified in Section 4.12.4.2
through Section 4.12.4.4 respectively.

The 1x/Nx_Initialization state machine provides a degree of LP-Serial link width
auto-negotiation. The goal of the auto-negotiation is to ensure that any connected
combination of 1x, 1x/2x, 1x/4x, 1x/8x or 1x/16x LP-Serial ports that are configured
in some manner to operate at the same baud rate will automatically find a link width
over which they can communicate. For example if a 1x/4x port is connected to a
1x/8x port, they will auto-negotiate to operate in 1x mode. If however the 1x/8x port
optionally also supports 4x mode (making it a 1x/4x/8x port) and its
1x/Nx_Initialization state machine has been modified as shown in Figure 4-22 to be
a 1x/4x/8x_Initialization state machine, then the ports will auto-negotiate to operate
in 4x mode.

In most configurations, the auto-negotiation also ensures that a pair of connected
multi-lane LP-Serial ports configured in some manner to operate at the same baud
rate will find a link width over which they can communicate in the presence of a lane
failure. For example, if two 1x/4x ports are connected and lane 0 is broken in one
direction, the ports will auto-negotiate to operate in 1x mode using lane 0 in the
direction that lane 0 is operational and lane 2 in the direction that lane 0 is broken.
This feature works only for pairs of ports that support the same redundancy lane. It
does not work when a 1x/2x port is connected to a 1x/4x or wider port.

4.12.3 Baud Rate Discovery

Baud rate discovery is optional. If implemented, baud rate discovery occurs during
the SEEK state of the 1x_Initialization and 1x/Nx_Initialization state machines.
Ports that implement baud rate discovery shall use the following algorithm.

1. When the port enters the SEEK state, it begins transmitting an idle sequence
on lane 0 and, if the port supports a Nx mode, on lane R, the 1x mode
redundancy lane. The idle sequence shall be transmitted at the highest lane
baud rate that is supported by the port and that is enabled for use.

2. The port shall then look for an inbound signal on lane 0 or lane R of the link
from a connected port. The method of detecting the presence of an inbound
signal from a connected port is implementation specific and outside the scope
of this specification.

3. Once an inbound signal is detected, the port shall determine the baud rate of
the signal. The method of detecting the baud rate of the signal is
implementation specific and outside the scope of this specification.

4. If the baud rate of the inbound signal is the same as the baud rate at which the
port is transmitting, the link shall operate at that per lane baud rate until the
port reenters the SEEK state and the baud rate discovery process is complete.
116 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5. If the baud rate on the inbound signal is less than the baud rate of the idle
sequence being transmitted by the port, the port shall reduce the baud rate at
which it is transmitting to the next lowest baud rate that it supports and that
is enabled for use and go to step 2.

6. If the baud rate on the inbound signal is greater than the baud rate of the idle
sequence being transmitted by the port, the port shall continue transmitting at
the current baud rate go to step 2.

An informational state diagram for the Baudrate_Discovery state machine is shown
in Figure 4-13.

The techniques and algorithms used to compare the baud rates of the signals being
transmitted and received are implementation specific and beyond the scope of this
specification.

Figure 4-13. Baudrate_Discovery state machine (Informational)

WAIT

xmt_baudrate = max

seek_lanes_drvr_oe

COMPARE

DECREMENT

xmt_baudrate =

DONE

!seek_lanes_drvr_oe

next_lowest_baudrate

!seek_lanes_drvr_oe

seek_lanes_drvr_oe &
(rcv_baudrate >= xmt_baudrate) &
(lane_sync[0] | lane_sync[R]

seek_lanes_drvr_oe &
rcv_baudrate < xmt_baudrate
RapidIO.org 117

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.12.4 State Machines

4.12.4.1 State Machine Conventions, Functions and Variables

4.12.4.1.1 State Machine Conventions

The conventions used in state machine specification are as follows.

A state machine state is persistent until an exit condition occurs.

A state machine variable that is listed in the body of a state but is not part of
an assignment statement is asserted for the duration of that state only.

A state machine variable that is assigned a value in the body of a state retains
that value until assigned a new value in another state.

A state machine function that is listed in the body of a state is executed once
during the state.

A state machine variable is asserted when its value is 1 and de-asserted when
it value is 0.

Except when otherwise directed by parentheses, the order of precedence of
logic operations when evaluating a logic expression is, in order of decreasing
precedence, negation/compliment (!) followed by intersection (&) and
union (|).

Logic expressions within paired parentheses are evaluated before the rest of
a logic expression is evaluated with the operations within the innermost pair
of parentheses evaluated first.

4.12.4.1.2 State Machine Functions

The functions used in the state machines are defined as follows.

change()

Asserted when the variable on which it operates changes state.

next_code_group()

Gets the next 10 bit code-group for the lane when it becomes available.

next_Ncolumn()

Gets the next column of N code-groups or characters, as appropriate, from lanes 0
to N-1 when it becomes available.
118 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.12.4.1.3 State Machine Variables

The variables used in the state machines are defined as follows.

1x_mode_delimiter

Asserted when a column of two characters from lanes 0 and 1 contains two SC or
two PD special characters. Otherwise de-asserted.

1x_mode_detected

Asserted by the 1x/2x_Mode_Detect state machine when it determines that the link
receiver input signals on lanes 0 and 1 are in 1x mode. Otherwise, de-asserted.

2x_mode_delimiter

Asserted when a column of two characters from lanes 0 and 1 contains one SC or
PD special character and one data character. Otherwise de-asserted.

||A||

Asserted when the current column contains all /A/s. Otherwise de-asserted.

Acounter

A counter used in the Lane Alignment state machine to count received alignment
columns (||A||s).

align_error

Asserted when the current column contains at least one /A/, but not all /A/s.
Otherwise, de-asserted.

/COMMA/

If Idle Sequence 1 is being used on the link to which the port is connected, asserted
when the current code-group is /K28.5/. Otherwise, de-asserted.

If Idle Sequence 2 is being used on the link to which the port is connected, asserted
when the current code-group is either /K28.1/ or /K28.5/. Otherwise, de-asserted.

Dcounter

A 2-bit synchronous saturating up/down counter with the behavior specified in
Table 4-10. The counter is used in the 1x/2x_Mode_Detect state machine.

Table 4-10. Dcounter Definition

Counter
Value

(count_up,count_down)

0,0 0,1 1,0 1,1

0x0 0x0 0x0 0x1 0x0

0x1 0x1 0x0 0x2 0x1
RapidIO.org 119

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
disc_tmr_done (discovery timer done)

Asserted when disc_tmr_en has been continuously asserted for 28 +/- 4 msec and
the state machine is in the DISCOVERY or a RECOVERY state. The assertion of
disc_tmr_done causes disc_tmr_en to be de-asserted. When the state machine is in
a state other than the DISCOVERY or a RECOVERY state, disc_tmr_done is
de-asserted.

disc_tmr_en (discovery timer enable)

When asserted, the discovery timer (disc_tmr) runs. When de-asserted, the
discovery timer is reset to and maintains its initial value.

force_1x_mode

Asserted when all Nx (multi-lane) modes are disabled. When asserted, forces the
1x/Nx Initialization state machine to use 1x mode.

force_laneR

When force_1x_mode is asserted, force_laneR controls whether lane 0 or lane R, the
redundancy lane, is preferred for 1x mode reception. If force_laneR is asserted, lane
R is the preferred lane. If force_laneR is deasserted, lane 0 is the preferred lane. If
the preferred lane is functional, it is selected by the port initialization state machine
for 1x mode reception. If the preferred lane is not functional, the non-preferred lane,
if functional, is selected for 1x mode reception.

If force_1x_mode is not asserted, the state of force_laneR has no effect on the
initialization state machine.

force_reinit

When asserted, forces the port Initialization state machine to re-initialize. The signal
is set under software control and is cleared by the Initialization state machine.

Icounter

Counter used in the Lane_Synchronization state machine to count INVALID
received code-groups. There is one Icounter for each lane in a Nx mode receiver.

idle_selected

When asserted, indicates that the IDLE sequence for use on the link has been
selected by the Idle Sequence Selection process specified in Section 4.7.5.

0x2 0x2 0x1 0x3 0x2

0x3 0x3 0x2 0x3 0x3

Table 4-10. Dcounter Definition

Counter
Value

(count_up,count_down)

0,0 0,1 1,0 1,1
120 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
If the port supports only one IDLE sequence at the current baud rate, the bit is always
asserted.

If the port supports multiple IDLE sequences at the current baud rate, the bit is
de-asserted when the Initialization state machine is in the SILENT state and is
otherwise controlled by the Idle Sequence Selection process. The Idle Sequence
Selection process runs when the Initialization state machine is in the SEEK state and
lane_sync has been asserted for lane 0, 1 and/or 2. The bit is asserted when the Idle
Sequence Selection process completes.

/INVALID/

When asserted, /INVALID/ indicates that the current code-group is an invalid
code-group.

Kcounter

Counter used in the Lane_Synchronization state machine to count received
code-groups that contain a comma pattern. There is one Kcounter for each lane in a
Nx mode receiver.

lane_ready[n]

lane_ready[n] = lane_sync[n] & lane_trained[n]

lane_sync

Asserted by the Lane_Synchronization state machine when it determines that the
lane it is monitoring is in bit synchronization and code-group boundary alignment.
Otherwise de-asserted.

lane_sync[n]

The lane_sync signal for lane n.

lane_trained[n]

De-asserted when the local lane[n] receiver controls adaptive equalization in the
receiver and/or the connected lane[n] transmitter and the training of the equalization
in either the lane[n] receiver or the connected lane[n] transmitter has not been
completed. Otherwise, asserted.

lane0_drvr_oe

When asserted, the output driver for lanes 0 is enabled

lanes01_drvr_oe

When asserted, the output drivers for lanes 0 and 1 are enabled

lanes02_drvr_oe

When asserted, the output drivers for lanes 0 and 2 are enabled
RapidIO.org 121

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
lanes13_drvr_oe

When asserted, the output drivers for lanes 1 and 3 are enabled

Mcounter

Mcounter is used in the Lane_Alignment state machine to count columns received
that contain at least one /A/, but not all /A/s.

N_lanes_aligned

Asserted by the Lane_Alignment state machine when it determines that lanes 0
through N-1 are in sync and aligned.

N_lanes_drvr_oe

The output enable for the lanes 0 through N - 1.

N_lanes_ready

N_lanes_ready = N_lanes_aligned & lane_ready[0] & ... & lane_ready[N-1]

N_lane_sync

Indicates when lanes 0 through N-1 of a receiver operating in Nx mode are in bit
synchronization and code-group boundary alignment.

N_lane_sync = lane_sync[0] & ... & lane_sync[N-1]

Nx_mode

Asserted when the port is initialized and operating in Nx mode

port_initialized

When asserted, port_initialized indicates that the port is initialized. Otherwise the
port is not initialized. The state of port_initialized affects what the port may transmit
on and accept from the link.

receive_lane1

In a 2x port that is initialized and is operating in 1x mode (2x_mode de-asserted),
receive_lane1 indicates which lane the port has selected for input. When asserted,
the port input is taken from lane 1. When de-asserted the port input is taken from
lane 0. When the port is operating in 2x mode (2x_mode asserted), receive_lane1 is
undefined and shall be ignored.

receive_lane2

In a Nx port that is initialized and is operating in 1x mode (Nx_mode de-asserted for
all N > 2), receive_lane2 indicates which lane the port has selected for input. When
asserted, the port input is taken from lane 2. When de-asserted the port input is taken
from lane 0. When the port is operating in Nx mode (some Nx_mode asserted),
122 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
receive_lane2 is undefined and shall be ignored.

seek_lanes_drvr_oe

The output enable for the lane 0 and the lane R output drivers of a 1x/Nx port.

signal_detect

Asserted when a lane receiver is enabled and a signal meeting an implementation
defined criteria is present at the input of the receiver. The use of signal_detect is
implementation dependent. It may be continuously asserted or it may be used to
require that some implementation defined additional condition be met before the
Lane_Synchronization state machine is allowed to exit the NO_SYNC state.
Signal_detect might for example be used to ensure that the input signal to a lane
receiver meet some minimum AC input power requirement to prevent the receiver
from locking on to crosstalk.

silence_tmr_done

Asserted when silence_tmr_en has been continuously asserted for 120 +/- 40 µs and
the state machine is in the SILENT state. The assertion of silence_tmr_done causes
silence_tmr_en to be de-asserted. When the state machine is not in the SILENT
state, silence_tmr_done is de-asserted.

silence_tmr_en

When asserted, the silence_tmr runs. When de-asserted, the silence_tmr is reset to
and maintains its initial value.

/VALID/

When asserted, /VALID/ indicates that the current code-group is a valid code-group
given the current running disparity.

Vcounter

Vcounter is used in the Lane_Synchronization state machine to count VALID
received code-groups. There is one Vcounter for each lane in a Nx mode receiver.

4.12.4.2 Lane Synchronization State Machine

The Lane_Synchronization state machine monitors the bit synchronization and
code-group boundary alignment for a lane receiver. A port that supports only 1x
mode (1x port) has one Lane_Synchronization state machine. A port that supports
Nx mode has N Lane_Synchronization state machines, one for each lane
(Lane_Synchronization[0] through Lane_Synchronization[N-1]).

The Lane_Synchronization state machine is specified in Figure 4-14

The state machine determines the bit synchronization and code-group boundary
alignment state of a lane receiver by monitoring the received code-groups and
looking for code-groups containing the “comma” pattern, other valid code-groups
and invalid code-groups. The “comma” pattern is the bit sequence that is used to
RapidIO.org 123

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
establish code-group boundary alignment. When a lane is error free the “comma”
pattern occurs only in the /K28.1/ and /K28.5/ code-groups. Several counters are
used to provide hysteresis so that occasional bit errors do not cause spurious
lane_sync state changes.

The state machine does not specify how bit synchronization and code-group
boundary alignment is to be achieved. The methods used by a lane receiver to
achieve bit synchronization and code-group boundary alignment are
implementation dependent. However, an isolated single bit or burst error shall not
cause the code-group boundary alignment mechanism to change alignment. For
example, a single bit or burst error that results in a “comma” pattern across a
code-group boundary shall not cause the code-group boundary alignment
mechanism to change alignment.

The state machine starts in the NO_SYNC state and sets the variables Kcounter[n],
Vcounter[n], and lane_sync[n] to 0 (lane n is out of code-group boundary sync). It
then looks for a /COMMA/ code-group. When it finds one and the signal
signal_detect[n] is asserted, the machine moves to the NO_SYNC_1 state.

The NO_SYNC_1 state in combination with the NO_SYNC_2 and NO_SYNC_3
states looks for the reception of 127 /COMMA/ and Vmin /VALID/ code-groups
without any intervening /INVALID/ code-groups. When this condition is achieved,
state machine goes to state SYNC. If an intervening /INVALID/ code-group is
detected, the machine goes back to the NO_SYNC state.

The values of 127 and Vmin are selected such that it is highly unlikely that SYNC
would be falsely reported and that the bit error rate (BER) is low enough that it is
highly unlikely that once asserted, lane_sync will “flicker” ON and OFF while the
training of the receiver timing recovery and any adaptive equalization is completed.
Vmin shall have a minimum value of 0 and is implementation dependent. When
Vmin = 0, the behavior of this Lane_Synchronization state machine is identical to
that of the Lane_Synchronization state machine specified in Rev. 1.3 of this
specification.

Table 4-11 shows the approximate maximum probability of lane_sync “flicker” for
some values of Vmin and over the BER range of 1*10-2 to 1*10-12. It is
recommended that Vmin be at least 212 - 1.

Table 4-11. lane_sync “Flicker” Probability

Vmin
Approximate maximum probability

of lane_sync flicker

0 0.24

212 - 1 0.021

213 - 1 0.011
124 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When Vmin = 0 and IDLE1 is being received, something more than 256
code-groups must be received after the first /COMMA/ to achieve the 128
/COMMA/ code-groups without error criteria to transition to the SYNC state
because the /COMMA/ code-group comprises slightly less than half of the
code-groups in the IDLE1 sequence.

When Vmin = 0 and IDLE2 is being received, something more than 9 Idle Frames
must be received after the first /COMMA/ to achieve the 127 /COMMA/
code-groups without error to transition to the SYNC state because there are on
average about 14 /COMMA/ code-groups per Idle Frame.

In the SYNC state, the machine sets the variable lane_sync[n] to 1 (lane n is in
code-group boundary sync), sets the variable Icounter[n] to 0 and begins looking for
/INVALID/ code-groups. If an /INVALID/ code-group is detected, the machine goes
to state SYNC_1.

The SYNC_1 state in combination with the SYNC_2, SYNC_3, and SYNC_4 states
looks for 255 consecutive /VALID/ code-groups without any /INVALID/
code-groups. When 255 /VALID/ symbols are received, the Icounter[n] value is
decremented in the transition through the SYNC_4 state. If it does not, it increments
Icounter[n]. If Icounter[n] is decremented back to 0, the state machine returns to the
SYNC state. If Icounter[n] is incremented to Imax, the state machine goes to the
NO_SYNC state and starts over. Imax is an integer and shall have a value of 3 or
greater for receivers not using DFE and a value of 4 or greater for receivers using
DFE. This algorithm tolerates isolated single bit or burst errors in that an isolated
single bit or burst error will not cause the machine to change the variable
lane_sync[n] from 1 to 0 (in sync to out of sync).

A single bit error at the code-group level can cause two INVALID characters to be
reported, one due to a corrupted code-group and one due to corrupted running
disparity with causes a subsequent code-group to be reported as INVALID. A burst
error no longer than 11 bits in length can cause three INVALID characters to be
reported, two due to two corrupted code-groups and one due to corrupted running
disparity which causes a subsequent code-group to be reported as INVALID.

214 - 1 0.0056

215 - 1 0.0028

216 - 1 0.0014

Table 4-11. lane_sync “Flicker” Probability

Vmin
Approximate maximum probability

of lane_sync flicker
RapidIO.org 125

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

Figure 4-14. Lane_Synchronization State Machine

NO_SYNC
lane_sync[n] = 0
Kcounter[n] = 0
Vcounter[n] = 0
next_code_group()

NO_SYNC_1
Kcounter[n] = Kcounter[n] + 1
Vcounter[n] = Vcounter[n] + 1

NO_SYNC_2
next_code_group()

SYNC
lane_sync[n] = 1
Icounter[n] = 0
next_code_group()

Icounter[n] = Icounter[n] + 1
Vcounter[n] = 0

Vcounter[n] = Vcounter[n] + 1

Icounter[n] = Icounter[n] - 1
Vcounter[n] = 0

SYNC_2
next_code_group()

SYNC_1

SYNC_3

SYNC_4

reset | change(signal_detect)

signal_detect[n] & /COMMA/ !signal_detect[n] | !/COMMA/

(Kcounter[n] >126) &
(Vcounter[n] > Vmin -1)

(Kcounter[n] < 127)
| (Vcounter[n] < Vmin)

!(/COMMA/ | /INVALID/)

/COMMA/
/INVALID/

/INVALID/

/VALID/

Icounter[n] = Imax

Vcounter[n] = 255

/INVALID/

/VALID/

Icounter[n] > 0

Icounter[n] < Imax

Icounter[n] = 0

Vcounter[n] < 255

NO_SYNC_3
Vcounter[n] = Vcounter[n] + 1
126 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.12.4.3 Lane Alignment State Machine

The Lane_Alignment state machine monitors the alignment of the output of the N
lane receivers in a port operating in Nx mode. A port supporting one or more
multi-lane modes has one Lane_Alignment state machine for each supported Nx
mode. A port supporting only 1x mode does not have a Lane_Alignment state
machine. Lane alignment is required in a Nx port receiver to compensate for unequal
propagation delays through the N lanes.

The Lane_Alignment state machine is specified in Figure 4-15.

The state machine determines the alignment state by monitoring the N lanes for
columns containing all /A/s (||A||), columns containing at least one but not all /A/s
and columns containing no /A/s. Several counters are used to provide hysteresis so
that isolated single bit or burst errors do not cause spurious lanes_aligned state
changes.

The state machine does not specify how lane alignment is to be achieved. The
methods used by a port receiver to achieve lane alignment are implementation
dependent. However, isolated single bit or burst errors shall not cause the lane
alignment mechanism to change lane alignment. For example, an isolated single bit
or burst error that results in a column that contains at least one /A/ but not all /A/s
shall not cause the lane alignment mechanism to change the lane alignment.

The state machine starts in the NOT_ALIGNED state where the variables Acounter
and N_lanes_aligned are set to 0 (all N lanes are not aligned). The machine then
waits for all N lanes to achieve code-group boundary alignment (N_lanes_sync
asserted) and the reception of an ||A|| (a column of all /A/s). When this occurs, the
machine goes to NOT_ALIGNED_1 state.

The NOT_ALIGNED_1 state in combination with the NOT_ALIGNED_2 state
looks for the reception of four ||A||s without the intervening reception of a
misaligned column (a column with at least one /A/ but not all /A/s which causes the
signal align_error to be asserted). When this occurs, the machine goes to the
ALIGNED state. If an intervening misaligned column is received, the machine goes
back to the NOT_ALIGNED state.

In the ALIGNED state, the machine sets the variable N_lanes_aligned to 1 (all N
lanes are aligned) and the variable Mcounter to 0 and looks for a misaligned column
(align_error asserted). If a misaligned column is detected, the machine goes to the
ALIGNED_1 state.

The ALIGNED_1 state in combination with the ALIGNED_2 and ALIGNED_3
states look for the reception of four ||A||s without the intervening reception of more
than Mmax - 1 additional misaligned columns. If this condition occurs, the state
machine returns to the ALIGNED state. If Mmax - 1 additional intervening
misaligned columns occurs, the machine goes to the NOT_ALIGNED state and
RapidIO.org 127

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
starts over. Mmax is an integer and shall have a value of 2 or greater for receivers
not using DFE and a value of 3 or greater for receivers using DFE.

This algorithm tolerates an isolated single bit or burst error in that such an error will
not cause the machine to change the variable N_lanes_aligned from 1 to 0 (in lane
alignment to out of lane alignment).

Figure 4-15. Lane_Alignment State Machine

N_lanes_aligned = 0
Acounter = 0
next_colunm()

NOT_ALIGNED

Acounter = Acounter + 1

NOT_ALIGNED_1

next_column()

NOT_ALIGNED_2

N_lanes_aligned = 1
Mcounter = 0
next_column()

ALIGNED

Acounter = 0
Mcounter = Mcounter + 1

ALIGNED_1

next_column()

ALIGNED_2

Acounter = Acounter + 1

ALIGNED_3

reset | change(N_lane_sync)

!(N_lane_sync & ||A||)

!align_error & !||A||

N_lane_sync & ||A||

Acounter = 4 Acounter < 4

||A||
align_error

!align_error & !||A||
align_error

align_error !align_error

||A||

Mcounter = Mmax Mcounter < Mmax

Acounter = 4Acounter < 4
128 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.12.4.4 1x/2x Mode Detect State Machine

The 1x/2x_Mode_Detect state machine monitors the columns formed from aligned
characters received on lanes 0 and 1 of a port that supports 2x mode. When such a
port is receiving an input signal on only lanes 0 and 1, the state machine is used to
determine whether the connected port is transmitting in 1x mode or in 2x mode. A
port that supports 2x mode shall have one 1x/2x_Mode_Detect state machine.

The 1x/2x_Mode_Detect state machine is specified in Figure 4-16.

Except for the case of N = 2, a 1x/Nx receiver can tell whether the connected port is
operating in 1x mode or Nx mode by observing the number of active lanes it is
receiving (the number of lanes for which lane_sync[n] is asserted). This follows
from the fact that a 1x/Nx port operating in 1x mode transmits only on lanes 0 and
R. In the case of N = 2, the port transmits on both lanes regardless of whether it is
operating in 1x or 2x mode making it impossible for a 1x/2x receiver to determine
the mode of the connected port based on the number of active lanes it is receiving.
The 1x/2x_Mode_Detect state machine provides mode detection for the 1x/2x
receiver.

The 1x/2x_Mode_Detect state machine enters the INITIALIZE state whenever the
port is reset or the state of 2_lanes_aligned changes state. The machine initializes the
1x_mode_detected and Dcounter variables (the connected port is initially assumed
to be operating in 2x mode) and waits for the lanes to become aligned. Once the two
lanes are aligned, the machine goes to the GET_COLUMN state to get the next
available column.

In the GET_COLUMN state, each column is examined as it becomes available to
determine whether it contains any control symbol delimiter special characters (SC
or PD characters). If no SC or PD characters are found, no action is taken and the
state machine remains in the GET_COLUMN state. If the column contains a single
SC or PD special character, the column is determined to be a 2x mode delimiter and
the state machine enters the 2x_DELIMITER state. If the column contains a two SC
or two PD special characters, the column is determined to be a 1x mode delimiter
and the state machine enters the 1x_DELIMITER state.

In the 1x_DELIMITER state, the Dcounter is decremented by 1 and the value of the
Dcounter is tested. If the Dcounter is > 0, the state machine goes to the
GET_COLUMN state. If the Dcounter is = 0, the state machine goes to the
SET_1x_MODE state where 1x_mode_detected is set to 1. The state machine then
goes to the GET_COLUMN state.

In the 2x_DELIMITER state, the Dcounter is incremented by 1 and the value of the
Dcounter is tested. If the Dcounter is < 3, the state machine goes to the
GET_COLUMN state. If the Dcounter is = 3, the state machine goes to the
SET_2x_MODE state where 1x_mode_detected is set to 0. The state machine then
goes to the GET_COLUMN state.
RapidIO.org 129

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The Dcounter is used to prevent transmission errors from erroneously changing the
state of 1x_mode_detected.

Figure 4-16. 1x/2x_Mode_Detect State Machine

4.12.4.5 1x Mode Initialization State Machine

The 1x_Initialization state machine specified in this section shall be used by ports
that support only 1x mode (1x ports). The state machine is specified in Figure 4-17.

The machine starts in the SILENT state. The link output driver is disabled to force
the link partner to initialize regardless of its current state. The duration of the
SILENT state is controlled by the silence_tmr. The duration must be long enough to
ensure that the link partner detects the silence (as a loss of lane_sync) and is forced
to initialize but short enough that it is readily distinguished from a link break. When
the silent interval is complete, the SEEK state is entered.

In the SEEK state, the link output driver is enabled, an idle sequence is transmitted,
and the port waits for lane_ready to be asserted indicating the presence of a link
partner. While lane_ready as defined indicates the bit and code-group boundary

1x_mode_detected = 0
Dcounter = 3

2_lanes_aligned

next_2column()

Dcounter = Dcounter - 1 Dcounter = Dcounter + 1

1x_mode_detected = 1

1x_mode_delimiter 2x_mode_delimiter

1x_mode_detected = 0

reset | change(2_lanes_aligned)

Dcounter = 3Dcounter < 3Dcounter = 0 Dcounter > 0

!1x_mode_delimiter &
!2x_mode_delimiter

INITIALIZE

GET_COLUMN

1x_DELIMITER 2x_DELIMITER

SET_1x_MODE SET_2x_MODE
130 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
alignment state of the link receiver, it is used by the state machine to indicate the
presence of a link partner. When lane_ready and idle_selected are both asserted, the
1X_MODE state is entered.

The input signal force_reinit allows the port to force link initialization at any time.

The variable port_initialized is asserted only in the 1X_MODE state.

Figure 4-17. 1x_Initialization State Machine

4.12.4.6 1x/Nx Mode Initialization State Machine for N = 4, 8, 16

The 1x/Nx_Initialization state machines specified in this section shall be used by
ports that support both 1x mode and an Nx mode (1x/Nx ports) for N = 4, 8 or 16.
The initialization state machine for 1x/2x ports is specified in Section 4.12.4.7.
1x/8x and 1x/16x ports shall use the 1x/Nx_Initialization state machine specified in
Figure 4-18. 1x/4x ports should use the 1x/Nx_Initialization state machine specified
in Figure 4-18, but may use the 1x/4x_Initialization state machine specified in
Figure 4-19. The 1x/4x_Initialization state machine of Figure 4-19 shall not be used
in new designs.

The 1x/Nx_Initialization state machine controls port initialization and determines
when the port is initialized. The state machine also controls whether the port receiver
operates in 1x or Nx mode and in 1x mode whether lane 0 or lane 2, the 1x mode
redundancy lane, is selected for control symbol and packet reception.

port_initialized = 0
lane0_drvr_oe = 1

SEEK

!lane_ready &
lane_sync &
!force_reinit

lane_ready &
idle_selected

reset

1X_MODE

port_initialized = 1

lane0_drvr_oe = 0
port_initialized = 0
force_reinit = 0
silence_tmr_en = 1

SILENT

silence_tmr_done

!lane_sync
| force_reinit
RapidIO.org 131

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The 1x/Nx_Initialization state machine starts in SILENT state. All N lane output
drivers are disabled to force the link partner to re-initialize regardless of its current
state. The duration of the SILENT state is controlled by the silence_tmr. The
duration must be long enough to ensure that the link partner detects the silence (as a
loss of lane_sync) and is forced to re-initialize. When the silent interval is complete,
the state machine enters the SEEK state.

In the SEEK state, a 1x/Nx port transmits an idle sequence on lanes 0 and 2 (the other
output drivers remain disabled to save power) and waits for an indication that a link
partner is present. While lane_sync as defined indicates the bit and code-group
boundary alignment state of a lane receiver, it is used by the state machine to indicate
the presence of a link partner. A link partner is declared to be present when either
lane_sync[0] or lane_sync[2] is asserted. The assertion of idle_selected and either
lane_sync[0] or lane_sync[2] causes the state machine to enter the DISCOVERY
state.

In the DISCOVERY state, the port enables the output drivers for all N lanes and
transmits an idle sequence on all N lanes if Nx mode is enabled. The discovery timer
(disc_tmr) is started. The discovery timer allows time for the link partner to enter its
DISCOVERY state and if Nx mode is enabled in the link partner, for all N local lane
receivers to acquire bit synchronization and code-group boundary alignment and to
complete the training of any adaptive equalization that is present and for all N lanes
to be aligned.

While waiting for the end of the discovery period (disc_tmr_en asserted but
disc_tmr_done de-asserted), if Nx_mode is enabled, all N lanes become ready and
lane alignment is achieved (N_lanes_ready asserted), the machine enters the
Nx_MODE state. If force_1x_mode is asserted (Nx_mode_enabled is deasserted),
force_laneR is not asserted and lane 0 becomes ready (lane_ready[0] asserted), the
machine enters the 1x_MODE_LANE0 state. If both force_1x_mode and
force_laneR are asserted and lane 2 becomes ready (lane_ready[2] asserted), the
machine enters the 1x_MODE_LANE2 state.

At the end of the discovery period (disc_tmr_done asserted), if the state machine has
not entered the Nx_mode or one of the 1x modes and at least one of lane 0 or lane 2
is ready, the machine will enter one of the 1x mode states. If lane 0 is ready and either
force_1x_mode and force_laneR are asserted but lane 2 is not ready or Nx mode is
enabled but N_lanes_ready is deasserted, the machine enters the
1X_MODE_LANE0 state. If lane 2 is ready, lane 0 is not ready and either
force_1x_mode is asserted and force_laneR is not asserted or neither
force_1x_mode nor N_lanes_ready are asserted, the machine enters the
1X_MODE_LANE2 state. If neither lane_ready[0] nor lane_ready[2] is asserted,
the machine enters the SILENT state and restarts the port initialization process.

If lane synchronization for both lane 0 and lane R is lost (both lane_sync[0] and
lane_sync[2] de-asserted) during the DISCOVERY state, the state machine
enters the SILENT state and restarts the port initialization process.
132 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When in the Nx_MODE state, port_initialized is asserted. If N_lanes_ready is lost
(N_lanes_ready de-asserted), the state machine transitions to either the SILENT
state if both lane_sync[0] and lane_sync[2] are de-asserted or the DISCOVERY
state if either lane_sync[0] or lane_sync[2] is asserted. This allows a 1x/Nx port in
the Nx_MODE state to recover to Nx_MODE if N_lanes_ready was de-asserted due
to multi-bit reception error or the need to retrain some of the adaptive equalization,
but also allows the port to switch to 1x mode if the port is no longer able to receive
in Nx mode or if the connected 1x/Nx port is not able to receive in Nx mode and has
switched to 1x mode.

When in the 1x_MODE_LANE0 state, port_initialized is asserted. If lane_ready[0]
is de-asserted but lane_sync[0] is still asserted, the machine transitions to the
1x_RECOVERY state to attempt recovery to the 1x_MODE_LANE0 state. If
lane_sync[0] is de-asserted the state machine enters the SILENT state.

When in the 1x_MODE_LANE2 state, port_initialized is asserted. If lane_ready[2]
is de-asserted but lane_sync[2] is still asserted, the machine transitions to the
1x_RECOVERY state to attempt recovery to the 1x_MODE_LANER state. If
lane_sync[2] is de-asserted, the state machine enters the SILENT state.

When the 1x_RECOVERY state is entered, the discovery timer (disc_tmr_en
asserted) is started. The port reenters the 1x_MODE_LANE0 state if lane_ready[0]
is reasserted and the port was in the 1x_MODE_LANE0 state immediately before
entering the 1x_RECOVERY state. The port reenters the 1x_MODE_LANE2 state
if lane_ready[2] is reasserted and the port was in the 1x_MODE_LANE2 state
immediately before entering the 1x_RECOVERY state. If both lane_sync[0] and
lane_sync[2] are lost (both lane_sync[0] and lane_sync[R] de-asserted), the
SILENT state in entered. To prevent that state machine from possibly being stuck in
the 1x_RECOVERY state, if the appropriate lane_ready[] is not asserted before the
discovery time is up (disc_tmr_done asserted), the SILENT state is entered.

The state machine does not support recovery from a 1x mode state to Nx_MODE or
the other 1x mode without going through the SILENT state.

The input signals force_1x_mode and force_laneR allow the state of the machine to
be forced during initialization into 1x mode, and in 1x mode to be forced to receive
on lane 2.

The input signal force_reinit allows the port to force port n link re-initialization at
any time.

The variable port_initialized is asserted only in the 1x_MODE_LANE0,
1x_MODE_LANE2 and Nx_MODE states.

NOTE:

The name and specified function of the state machine variable
N_lanes_drvr_oe is potentially confusing. As specified, its assertion
causes the drivers for all N lanes of an Nx link to be output enabled.
RapidIO.org 133

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
However, N_lanes_drvr_oe is only asserted when the state machine
variable lanes02_drvr_oe is also asserted. (The assertion of
lanes02_drvr_oe causes the drivers for lane 0 and 2 to be output
enabled). As a consequence, the net effect of the assertion or
de-assertion of N_lanes_drvr_oe is that the drivers of all of the N lanes
except the lanes 0 and 2 are output enabled or disabled respectively.
The operation of an implementation that uses lanes02_drvr_oe as the
output enable for the seek lane drivers and N_lanes_drvr_oe as the
output enable for the remaining N-2 lanes will be operationally
indistinguishable from an implementation that uses (lanes02_drvr_oe
OR N_lanes_drvr_oe) as the output enable for the seek lane drivers
and N_lanes_drvr_oe as the output enable for the remaining N-2
lanes.
134 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-18. 1x/Nx_Initialization State Machine for N = 4, 8, 16

lanes02_drvr_oe = 1

SEEK

port_initialized = 0
Nx_mode = 0
N_lanes_drvr_oe =
 Nx_mode_enabled
disc_tmr_en = 1

DISCOVERY

Nx_MODE 1x_MODE_LANE0

disc_tmr_en = 0
Nx_mode = 1
port_initialized = 1

disc_tmr_en = 0
N_lanes_drvr_oe = 0
port_initialized = 1

1x_MODE_LANE2

disc_tmr_en = 0
receive_lane2 = 1
N_lanes_drvr_oe = 0
port_initialized = 1

!lane_sync[0] &
!lane_sync[2] |
disc_tmr_done &
!lane_ready[0] &
!lane_ready[2]

reset | force_reinit

Nx_mode_enabled
& N_lanes_ready

lane_ready[2] &
(force_1x_mode & force_laneR
 | disc_tmr_done & !lane_ready[0] &
 (force_1x_mode & !force_laneR
 | !force_1x_mode & !N_lanes_ready))

lane_ready[0] &
(force_1x_mode &
 (!force_laneR
 | force_laneR & disc_tmr_done & !lane_ready[2])
 | !force_1x_mode & disc_tmr_done & !N_lanes_ready)

!lane_sync[2]!lane_sync[0]

!N_lanes_ready &
!lane_sync[0] &
!lane_sync[2]

disc_tmr_en = 0
lanes02_drvr_oe = 0
N_lanes_drvr_oe = 0
port_initialized = 0
Nx_mode = 0
receive_lane2 = 0
force_reinit = 0
silence_tmr_en = 1

SILENT

silence_tmr_done

!N_lanes_ready &
(lane_sync[0]
 | lane_sync[2])

!lane_ready[0]
& lane_sync[0]

!lane_ready[2]
& lane_sync[2]

port_initialized = 0
disc_tmr_en = 1

1x_RECOVERY

!lane_sync[0] &
!lane_sync[2]
| disc_tmr_done

(lane_sync[0]
 | lane_sync[2]) &
idle_selected

lane_ready[2] &
receive_lane2 &
!disc_tmr_done

lane_ready[0] &
!receive_lane2 &
!disc_tmr_done
RapidIO.org 135

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The following Initialization state machine may be used for 1x/4x ports that support
only the IDLE1 idle sequence. The only difference between the 1x/Nx Initialization
state machine of Figure 4-18 and the 1x/4x_Initialization state machine of
Figure 4-19 is that the 1x/4x_Initialization machine does not have the
1x_RECOVERY state. As a consequence, the machines have different behavior
when force_1x_mode is asserted. Unlike the 1x/Nx machine, the 1x/4x machine
does not have a bias for the 1x_MODE_LANE0 state when force_1x_mode is not
asserted.
136 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-19. Alternate 1x/4x_Initialization State Machine

4.12.4.7 1x/2x Mode Initialization State Machine

The 1x/2x_Initialization state machine specified in this section shall be used by
1x/2x ports. Except for the method it uses to decide whether to operate in 1x or 2x

lanes02_drvr_oe = 1

SEEK

port_initialized = 0
4x_mode = 0
lanes13_drvr_oe = 1
disc_tmr_en = 1

DISCOVERY

4x_MODE 1x_MODE_LANE0

disc_tmr_en = 0
4x_mode = 1
port_initialized = 1

lanes13_drvr_oe = 0
port_initialized = 1

1x_MODE_LANE2

receive_laneR = 1
lanes13_drvr_oe = 0
port_initialized = 1

!lane_sync[0] &
!lane_sync[2]

reset | force_reinit

4_lanes_ready

disc_tmr_done &
!4_lanes_ready &
!lane_ready[0] &
lane_ready[2]

disc_tmr_done &
!4_lanes_ready & lane_ready[0]

!lane_sync[2]
| force_reinit

!lane_sync[0]
| force_reinit

(!4_lanes_ready &
!lane_sync[0] &
!lane_sync[2])
| force_reinit

disc_tmr_en = 0
lanes02_drvr_oe = 0
lanes13_drvr_oe = 0
port_initialized = 0
4x_mode = 0
receive_laneR = 0
force_reinit = 0
silence_tmr_en = 1

SILENT

silence_tmr_done

force_1x_mode &
(!lane_ready[0] | force_laneR) &

!force_1x_mode &
(lane_sync[0]

force_1x_mode &
!force_laneR &
lane_ready[0]

lane_ready[2])

!4_lanes_ready &
(lane_sync[0]
| lane_sync[2])

| lane_sync[2])

!lane_ready[0]
& lane_sync[0]

!lane_ready[2]
& lane_sync[2]
RapidIO.org 137

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
mode and the use of lane 1 as the redundancy lane, this state machine is identical to
the 1x/Nx_Initialization state machine specified in Figure 4-18 with N = 2.

Ports that support more than 2 lanes disable all lanes except lanes 0 and R when
operating in 1x mode. This allows the Initialization state machine for a port
supporting more than 2 lanes to use the number of active lanes the port is receiving
to determine whether to operate in 1x or Nx mode. 1x/2x ports transmit on both lanes
regardless of whether they are operating in 1x or 2x mode. As a result, 1x/2x ports
need a mechanism other than the number of active lanes being received to determine
whether to operate in 1x or 2x mode. The 1x/2x_Mode_Detect state machine
specified in Section 4.12.4.4 provides this mechanism.
138 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-20. 1x/2x_Initialization State Machine

lanes01_drvr_oe = 1

SEEK

port_initialized = 0
2x_mode = 0
disc_tmr_en = 1

DISCOVERY

2x_MODE 1x_MODE_LANE0

disc_tmr_en = 0
2x_mode = 1
port_initialized = 1

disc_tmr_en = 0
port_initialized = 1

1x_MODE_LANE1

disc_tmr_en = 0
receive_lane1 = 1
port_initialized = 1

!lane_sync[0] &
!lane_sync[1] |
disc_tmr_done &
!lane_ready[0] &
!lane_ready[1]

reset | force_reinit

2x_mode_enable &
2_lanes_ready &
!1x_mode_detected

lane_ready[1] &
(force_1x_mode & force_laneR
 | disc_tmr_done & !lane_ready[0] &
 (force_1x_mode & !force_laneR
 | !force_1x_mode & !2_lanes_ready))

lane_ready[0] &
(force_1x_mode &
 (!force_laneR
 | force_laneR & disc_tmr_done & !lane_ready[1])
 | !force_1x_mode & disc_tmr_done & !2_lanes_ready)
| !force_1x_mode & 2_lanes_ready & 1x_mode_detected

!lane_sync[1]!lane_sync[0]

!2_lanes_ready &
!lane_sync[0] &
!lane_sync[1]

disc_tmr_en = 0
lanes01_drvr_oe = 0
port_initialized = 0
2x_mode = 0
receive_lane1 = 0
force_reinit = 0
silence_tmr_en = 1

SILENT

silence_tmr_done

!2_lanes_ready &
(lane_sync[0]
 | lane_sync[1])
| 2_lanes_ready &
1x_mode_detected

!lane_ready[0]
& lane_sync[0]

!lane_ready[1]
& lane_sync[1]

port_initialized = 0
disc_tmr_en = 1

1x_RECOVERY

!lane_sync[0] &
!lane_sync[1]
| disc_tmr_done

(lane_sync[0]
 | lane_sync[1]) &
idle_selected

lane_ready[1] &
receive_lane1 &
!disc_tmr_done

lane_ready[0] &
!receive_lane1&
!disc_tmr_done
RapidIO.org 139

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4.12.4.8 1x/Mx/Nx Mode Initialization State Machines

A Nx port may optionally support more than one multi-lane mode of operation. For
example, an 8x port may support 4x mode in addition to the 8x mode and 1x modes.
A port supporting more than one multi-lane mode is referred to as a 1x/Mx/ /Nx
port where 1 < M < ... < N.

The initialization state machine for a port that supports multiple multi-lane modes
of operation requires two or three additional states for each additional supported
mode of multi-lane operation.

Like the 1x/Nx_Initialization state machine, the 1x/Mx/Nx_Initialization state
machines support link width negotiation. The negotiation algorithm implemented by
the state machine attempts to select the greatest link width supported by both ports
of a connected port pair. However, once a link width is selected, a wider link width
can be selected only if the state machine enters the SILENT state which restarts the
selection algorithm.

4.12.4.8.1 1x/2x/Nx Initialization State Machine

The 1x/2x/Nx_Initialization state machine is specified in Figure 4-21 and shall be
used by 1x/2x/Nx ports. Because the redundancy lane, lane R, differs for a 1x/2x
port and a 1x/Nx port (N = 4, 8 or 16), the Initialization state machine for a 1x/2x/Nx
port is the most complicated of the possible 1x/Mx/Nx_Initialization state machines.

The 1x/2x/Nx_Initialization state machine has three more states than a
1x/Nx_Initialization state machine, the 2x_MODE, 2x_RECOVERY and the
1x_MODE_LANE1 states

The operation of the 1x/2x/Nx_Initialization state machine is essentially the same as
that of a 1x/2x_Initialization state machine for the 1x and 2x modes operation and
that of a 1x/Nx_Initialization state machine for Nx mode operation. The differences
between the 1x/2x/Nx_Initialization state machine and the 1x/2x_Initialization and
1x/Nx_Initialization state machines are as follows.

In the SEEK state, the lanes whose drivers are output enabled depend on the modes
that are enabled. Lanes 0 and 1 are output enabled if the 2x mode is enabled. Lanes
0 and 2 are output enabled if the Nx mode is enabled or the 2x mode is disabled. And
if both modes are enabled, lanes 0, 1 and 2 are output enabled. The state machine
enters the DISCOVERY state when lane_sync is asserted for lanes 0, 1 or 2.

In the DISCOVERY state, the lane selection priority for 1x mode is lane 0 first, lane
2 second and lane 1 third. This priority is to bias the selection to lane 0 and to ensure
that lane 2, not lane 1, is selected when 4x mode or wider is enabled in the connected
port.

In the 2x_MODE state, the state machine transitions to the 2x_RECOVERY state if
1x_mode_detected is asserted. The state machine goes to the 2x_RECOVERY state
rather than directly to the 1x_MODE_LANE0 state so that the port_initialized bit is
140 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
de-asserted indicating that the port is no longer in the normal operational state and
that the link must be re-initialized before packet transmission can be resumed. Once
in the 2x_RECOVERY state, the state machine then transitions to the
1x_MODE_LANE0 state if both 2_lanes_ready and 1x_mode_detected are still
asserted.

The 2x_RECOVERY state is used to prevent the port from recovering to Nx mode
once 2x mode has been selected.

In the 1x_MODE_LANE2 state, the state machine is allowed to transition to the
1x_MODE_LANE1 state via the 1x_RECOVERY state in the event that the
connected port is a 1x/2x/Nx port and the connected port switches to 2x_MODE.
RapidIO.org 141

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-21. 1x/2x/Nx_Initialization State Machine

2x
_M

O
D

E
la

ne
s0

2_
dr

vr
_o

e
=

 0
N

_l
an

es
_d

rv
r_

oe
 =

 0
di

sc
_t

m
r_

en
 =

 0
2x

_m
od

e
=

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 1

N
xM

to
S

L

2x
_R

E
C

O
V

E
R

Y
di

sc
_t

m
r_

en
 =

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 0
2x

_m
od

e
=

 0

1x
_M

O
D

E
_L

A
N

E
0

N
_l

an
es

_d
rv

r_
oe

 =
 0

di
sc

_t
m

r_
en

 =
 0

po
rt

_i
ni

ti
al

iz
ed

 =
 1

N
_l

an
es

_d
rv

r_
oe

 =
 0

di
sc

_t
m

r_
en

 =
 0

re
ce

iv
e_

la
ne

2
=

 0
re

ce
iv

e_
la

ne
1

=
 1

po
rt

_i
ni

ti
al

iz
ed

 =
 1

D
IS

C
O

V
E

R
Y

po
rt

_i
ni

ti
al

iz
ed

 =
 0

N
x_

m
od

e
=

 0
N

_l
an

es
_d

rv
r_

oe
 =

N
x_

m
od

e_
en

ab
le

d
di

sc
_t

m
r_

en
 =

 1

N
xM

to
D

1x
_M

O
D

E
_L

A
N

E
1

N
_l

an
es

_d
rv

r_
oe

 =
 0

di
sc

_t
m

r_
en

 =
 0

re
ce

iv
e_

la
ne

2
=

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 1

1x
_M

O
D

E
_L

A
N

E
2

N
x_

M
O

D
E

di
sc

_t
m

r_
en

 =
 0

N
x_

m
od

e
=

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 1

1x
_R

E
C

O
V

E
R

Y
di

sc
_t

m
r_

en
 =

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 0

D
to

N
xM

D
to

2x
M

D
to

1x
M

0

D
to

1x
M

1

D
to

1x
M

2

2x
M

to
2x

R

2x
R

to
2x

M
D

to
S

Lla
ne

s0
1_

dr
vr

_o
e

=

 2
x_

m
od

e_
en

ab
le

d
la

ne
s0

2_
dr

vr
_o

e
=

 N

x_
m

od
e_

en
ab

le
d

 |
 !

2x
_m

od
e_

en
ab

le
d

S
E

E
K

di
sc

_t
m

r_
en

 =
 0

la
ne

s0
1_

dr
vr

_o
e

=
 0

la
ne

s0
2_

dr
vr

_o
e

=
 0

N
_l

an
es

_d
rv

r_
oe

 =
 0

po
rt

_i
ni

ti
al

iz
ed

 =
 0

N
x_

m
od

e
=

 0
2x

_m
od

e
=

 0
re

ce
iv

e_
la

ne
1

=
 0

re
ce

iv
e_

la
ne

2
=

 0
fo

rc
e_

re
in

it
 =

 0
si

le
nc

e_
tm

r_
en

 =
 1

S
IL

E
N

T

si
le

nc
e_

tm
r_

do
ne

re
se

t |
 f

or
ce

_r
ei

ni
t

1x
R

to
1x

M
2

1x
R

to
S

L

1x
R

to
1x

M
0 1x

R
to

1x
M

1

2x
R

to
S

L

2x
R

to
1x

M
0

2x
R

to
1x

M
1

1x
M

0t
oS

L
1x

M
1t

oS
L

1x
M

2t
oS

L

1x
M

0t
o1

xR
1x

M
1t

o1
xR

1x
M

2t
o1

xR

2x
M

to
S

L

S
K

to
D

142 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The variables that are local to the 1x/2x/Nx_Initialization state machine shown in
Figure 4-21 are defined as follows.

1xM0to1xR = !lane_ready[0] & lane_sync[0]

1xM0toSL = !lane_sync[0]

1xM1to1xR = !lane_ready[1] & lane_sync[1]

1xM1toSL = !lane_sync[1]

1xM2to1xR = !lane_ready[2] & (lane_sync[1] | lane_sync[2])

1xM2toSL = !lane_sync[2] & !lane_sync[1]

1xR to1xM0 = !disc_tmr_done & !receive_lane1 & !receive_lane2 & lane_ready[0]

1xR to1xM1 = !disc_tmr_done &
(receive_lane1 | receive_lane2 & !lane_ready[2]) & lane_ready[1]

1xR to1xM2 = !disc_tmr_done & receive_lane2 & lane_ready[2]

1xRtoSL = !lane_sync[0] & !lane_sync[1] & !lane_sync[2]
| disc_tmr_done

2xMto2xR = !2_lanes_ready & (lane_sync[0] | lane_sync[1])
| 2_lanes_ready & 1x_mode_detected

2xMtoSL = !lane_sync[0] & !lane_sync[1]

2xRto1xM0 = disc_tmr_done & !2_lanes_ready & lane_ready[0]
| 2_lanes_ready & 1x_mode_detected

2xRto1xM1 = disc_tmr_done & !2_lanes_ready & !lane_ready[0] & lane_ready[1]

2xRto2xM = 2_lanes_ready & !1x_mode_detected

2xRtoSL = !lane_sync[0] & !lane_sync[1]
| disc_tmr_done & !lane_ready[0] & !lane_ready[1]

Dto1xM0 = lane_ready[0] &
(force_1x_mode &
 (!force_laneR
 | force_laneR & disc_tmr_done & !lane_ready[1] & !lane_ready[2]
)
 | !force_1x_mode & disc_tmr_done &
 (!Nx_mode_enabled | !N_lanes_ready) &
 (!2x_mode_enabled | !2_lanes_ready)
)

RapidIO.org 143

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Dto1xM1 = disc_tmr_done & lane_ready[1] & !lane_ready[2] &
(force_1x_mode &
 (force_laneR | !force_laneR & disc_tmr_done & !lane_ready[0])
 | !force_1x_mode & !lane_ready[0] &
 (!Nx_mode_enabled | !N_lanes_ready) &
 (!2x_mode_enabled | !2_lanes_ready)
)

Dto1xM2 = lane_ready[2] &
(force_1x_mode &
 (force_laneR | !force_laneR & disc_tmr_done & !lane_ready[0])
 | !force_1x_mode & disc_tmr_done & !lane_ready[0] &
 (!Nx_mode_enabled | !N_lanes_ready) &
 (!2x_mode_enabled | !2_lanes_ready)
)

Dto2xM = 2x_mode_enabled & 2_lanes_ready &
(!Nx_mode_enabled | disc_tmr_done & !N_lanes_ready)

DtoNxM = Nx_mode_enabled & N_lanes_ready

DtoSL = !lane_sync[0] & !lane_sync[1] & !lane_sync[2]
| disc_tmr_done & !lane_ready[0] & !lane_ready[1] & !lane_ready[2]

NxMtoD = !N_lanes_ready & (lane_sync[0] | lane_sync[2])

NxMtoSL = !lane_sync[0] & !lane_sync[2]

SKtoD = (lane_sync[0] | lane_sync[1] | lane_sync[2]) & idle_selected

4.12.4.8.2 1x/Mx/Nx Initialization State Machine (N > M > 2)

The 1x/Mx/Nx_Initialization state machine for N > M > 2 is specified in Figure
4-22 and shall be used by 1x/Mx/Nx ports.

The 1x/Nx/Nx_Initialization state machine has two more states than a
1x/Nx_Initialization state machine, the Mx_MODE and Mx_RECOVERY states,
but one less state than the 1x/2x/Nx_Initialization state machine, the
1x_MODE_LANE1 state. Its operation is most similar to that of the
1x/2x/Nx_Initialization state machine, but is less complex as the redundancy lane R
is the same for all N and M > 2.
144 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 4-22. 1x/Mx/Nx_Initialization State Machine for N > M > 2

The variables that are local to the 1x/Mx/Nx_Initialization state machine shown in
Figure 4-22 are defined as follows.

M
x_

M
O

D
E

N
_l

an
es

_d
rv

r_
oe

 =
 0

di
sc

_t
m

r_
en

 =
 0

M
x_

m
od

e
=

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 1

N
xM

to
S

L

M
x_

R
E

C
O

V
E

R
Y

di
sc

_t
m

r_
en

 =
 1

po
rt

_i
ni

tia
liz

ed
 =

 0
M

x_
m

od
e

=
 0

1x
_M

O
D

E
_L

A
N

E
0

N
_l

an
es

_d
rv

r_
oe

 =
 0

M
_l

an
es

_d
rv

r_
oe

 =
 0

di
sc

_t
m

r_
en

 =
 0

po
rt

_i
ni

ti
al

iz
ed

 =
 1

D
IS

C
O

V
E

R
Y

po
rt

_i
ni

ti
al

iz
ed

 =
 0

N
x_

m
od

e
=

 0
M

_l
an

es
_d

rv
r_

oe
 =

 M

x_
m

od
e_

en
ab

le
d

N
_l

an
es

_d
rv

r_
oe

 =

 N
x_

m
od

e_
en

ab
le

d
di

sc
_t

m
r_

en
 =

 1

N
xM

to
D

N
_l

an
es

_d
rv

r_
oe

 =
 0

M
_l

an
es

_d
rv

r_
oe

 =
 0

di
sc

_t
m

r_
en

 =
 0

re
ce

iv
e_

la
ne

2
=

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 1

1x
_M

O
D

E
_L

A
N

E
2

N
x_

M
O

D
E

di
sc

_t
m

r_
en

 =
 0

N
x_

m
od

e
=

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 1

1x
_R

E
C

O
V

E
R

Y
di

sc
_t

m
r_

en
 =

 1
po

rt
_i

ni
ti

al
iz

ed
 =

 0

D
to

N
xM

D
to

M
xM

D
to

1x
M

0D
to

1x
M

2

M
xM

to
M

xR

M
xR

to
M

xM
D

to
S

Lla
ne

s0
2_

dr
vr

_o
e

=
 1

S
E

E
K

di
sc

_t
m

r_
en

 =
 0

la
ne

s0
2_

dr
vr

_o
e

=
 0

N
_l

an
es

_d
rv

r_
oe

 =
 0

M
_l

an
es

_d
rv

r_
oe

 =
 0

po
rt

_i
ni

ti
al

iz
ed

 =
 0

N
x_

m
od

e
=

 0
M

x_
m

od
e

=
 0

re
ce

iv
e_

la
ne

2
=

 0
fo

rc
e_

re
in

it
 =

 0
si

le
nc

e_
tm

r_
en

 =
 1

S
IL

E
N

T

si
le

nc
e_

tm
r_

do
ne

re
se

t |
 f

or
ce

_r
ei

ni
t

1x
R

to
1x

M
2

1x
R

to
S

L

1x
R

to
1x

M
0

M
xR

to
S

L

M
xR

to
1x

M
0

1x
M

0t
o

S
L

1x
M

2t
oS

L
1x

M
0t

o1
xR

1x
M

2t
o1

xR

M
xM

to
S

L

S
K

to
D

M
xR

to
1x

M
0

RapidIO.org 145

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
1xM0to1xR = !lane_ready[0] & lane_sync[0]

1xM0toSL = !lane_sync[0]

1xM2to1xR = !lane_ready[2] & lane_sync[2]

1xM2toSL = !lane_sync[2]

1xR to1xM0 = !disc_tmr_done & !receive_lane2 & lane_ready[0]

1xR to1xM2 = !disc_tmr_done & receive_lane2 & lane_ready[2]

1xRtoSL = !lane_sync[0] & !lane_sync[2]
| disc_tmr_done

Dto1xM0 = lane_ready[0] &
(force_1x_mode &
 (!force_laneR | force_laneR & disc_tmr_done & !lane_ready[2])
 | !force_1x_mode & disc_tmr_done &
 (!Nx_mode_enabled | !N_lanes_ready) &
 (!Mx_mode_enabled | !M_lanes_ready)
)

Dto1xM2 = lane_ready[2] &
(force_1x_mode &
 (force_laneR | !force_laneR & disc_tmr_done & !lane_ready[0])
 | !force_1x_mode & disc_tmr_done & !lane_ready[0] &
 (!Nx_mode_enabled | !N_lanes_ready) &
 (!Mx_mode_enabled | !M_lanes_ready)
)

DtoMxM = Mx_mode_enabled & M_lanes_ready &
(!Nx_mode_enabled | disc_tmr_done & !N_lanes_ready)

DtoNxM = Nx_mode_enabled & N_lanes_ready

DtoSL = !lane_sync[0] & !lane_sync[2]
| disc_tmr_done & !lane_ready[0] & !lane_ready[2]

MxMtoMxR = !M_lanes_ready & (lane_sync[0] | lane_sync[2])

MxMtoSL = !lane_sync[0] & !lane_sync[2]

MxRto1xM0 = disc_tmr_done & !M_lanes_ready & lane_ready[0]

MxRto1xM2 = disc_tmr_done & !M_lanes_ready & !lane_ready[0] & lane_ready[2]

MxRtoMxM = !disc_tmr_done & M_lanes_ready

MxRtoSL = !lane_sync[0] & !lane_sync[2]
| disc_tmr_done & !lane_ready[0] & !lane_ready[2]

NxMtoD = !N_lanes_ready & (lane_sync[0] | lane_sync[2])

NxMtoSL = !lane_sync[0] & !lane_sync[2]
146 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
SKtoD = (lane_sync[0] | lane_sync[2]) & idle_selected

4.13 Structurally Asymmetric Links
Many power-sensitive applications have traffic patterns where the data flow in one
direction of a link is always far greater than the other direction. Structurally
asymmetric links (SAL) optimize transmitter and receiver designs by removing the
unneeded unidirectional serial signaling paths.

SAL support is optional.

4.13.1 Definitions

Far Link Partner: The processing element that must be accessed over the
Structurally Asymmetric Link.

Near Link Partner: The processing element that can be accessed without using the
Structurally Asymmetric Link.

4.13.2 Structurally Asymmetric Link Operation

The procedure for configuring Structurally Asymmetric Link Operation is as
follows:

1. Disable all Asymmetric Mode support on both link partners by writing zero
to the “Asymmetric Modes Enabled” field in the Port n Power Management
CSRs.

2. Configure the Far Link Partner registers: Port n Reinit Control CSR and Port
n SAL Control and Status CSR.

3. Configure the Near Link Partner: Port n Reinit Control CSR and Port n SAL
Control and Status CSR.

After this step, the Port n SAL Control and Status CSR “SAL RX
Width” field of each link partner shall match the other link partner's
Port n SAL Control and Status CSR “SAL TX Width” field.

Note that if the programmed configuration does not allow the links to
successfully initialize in both directions, the link will recover by
repeatedly decrementing the Silence Count field of the Port n Reinit
Control CSR until Structurally Asymmetric Mode is disabled and the
link reverts to redundant 1x operation.

4. Write 1 to the “Pulse Force Reinit” field in the Port n Reinit Control CSR.

5. Wait sufficient time for the link to reinitialize, as defined in Section 4.12,
"Port Initialization".

6. Check the operational width of the Near Link Partner and Far Link Partner to
confirm that the link is operating in Structurally Asymmetric Mode.
RapidIO.org 147

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Structurally Asymmetric Link mode shall be attempted when SAL_Enabled is
asserted. Structurally Asymmetric Link Operation mode shall be disabled when
SAL_Enabled is deasserted.

Behavioral requirements for SAL RX Width and SAL TX Width field values are
specified below in terms of which lanes are enabled for transmission and reception,
what data is transmitted on each lane, and which lanes are enabled for reception.
When SAL RX Width or SAL TX Width values are not 0b0000, the link partners
shall not process received IDLE2 transmit emphasis commands (IDLE2 “ACK” and
“NACK” fields shall be 0b0), and shall not send IDLE2 transmit emphasis
commands (“Tap(+1) Command” and “Transmit emphasis tap(-1)” fields shall be
0b00).

Table 4-12. Structurally Asymmetric Link Tx/Rx Width Behaviors

SAL RX Width SAL TX Width Description

0b0000
(No Override)

0b0000
(No Override)

No effect on receive or transmit width.

0b0001
(1x, lane 0)

0b0001
(1x, lane 0.
Disable lanes 1, 2,
and 3)

Transmitter shall transmit a valid 1x bit stream on lane 0. Transmitter shall ensure that
the link partner cannot detect a valid bit stream on lanes 1, 2, and 3.

Receiver shall enable reception on lane 0 only.

Receiver and transmitter shall operate as a 1x port.

0b0010
(1x, lane 1)

0b0010
(1x, lane 1.
Disable lanes 0, 2,
and 3)

Transmitter shall transmit a valid 1x bit stream on lane 1. Transmitter shall ensure that
the link partner cannot detect a valid bit stream on lanes 0, 2, and 3.

Receiver shall enable reception on lane 1 only.

Receiver and transmitter shall operate as a 1x port.

0b0011
(1x, lane 2)

0b0011
(1x, lane 2.
Disable lanes 0, 1,
and 3)

Transmitter shall transmit a valid 1x bit stream on lane 2. Transmitter shall ensure that
the link partner cannot detect a valid bit stream on lanes 0, 1, and 3.

Receiver shall enable reception on lane 2 only.

Receiver and transmitter shall operate as a 1x port.

0b0100
(1x, lane 3)

0b0100
(1x, lane 3.
Transmit Lane 0
compliant data on
lane 3. Disable
Lanes 0, 1, and 2)

Transmitter shall transmit a valid 1x lane 0 bit stream on lane 3. Transmitter shall
ensure that the link partner cannot detect a valid bit stream on lanes 0, 1, and 2.

Receiver shall behave as if data received on lane 3 was actually received on lane 0.

Receiver and transmitter shall operate as a 1x port.

0b0101
(2x, lanes 0 & 1.
Lanes 2 and 3 are
not used)

0b0101
(2x, lanes 0 & 1.
Disable lanes 2
and 3)

Transmitter shall send valid 2x mode bit streams on lanes 0 and 1. Transmitter shall
ensure that the link partner cannot detect a valid bit stream on lanes 2 and 3.
Transmitter shall operate as a 2x port.

Receiver shall operate as a 2x/1x port.
148 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
It is strongly recommended that devices which support structurally asymmetric links
operating at Baud Rate Class 2 speeds implement register control of the transmit
emphasis coefficient set.

4.14 Pseudo Random Binary Sequence Testing
Serial interfaces require Pseudo Random Binary Sequence (PRBS) generation and
checking capabilities for qualifying and testing devices. This section specifies the
PRBS generation and checking capabilities of RapidIO devices for in-field
diagnostics. The capabilities defined are sufficient to perform diagnostics without
the use of external test equipment. It is possible to use the capabilities defined in this
section for qualifying devices.

Support for PRBS generation and checking is optional.

A link that is under test is not available for packet or control symbol exchange. If
PRBS testing begins while packets are in flight the operation of the link is
implementation specific, since PRBS testing may require an extended period of
time.

Since a link cannot be used for packet or control symbol exchange while under test,
the programming model for PRBS testing assumes that register access to one end of

0b0110
(2x, lanes 2 & 3)

0b0110
(2x, lanes 2 & 3.
Transmit lane 0
and 1 2x compliant
data streams on
lanes 2 and 3.
Disable
transmission on
lanes 0 and 1.)

Transmitter shall send a valid 2x mode bit stream, as composed for lane 0, on lane 2.
Transmitter shall send a valid 2x mode bit stream, as composed for lane 1, on lane 3.
Transmitter shall ensure that the link partner cannot detect a valid bit stream on lanes 0
and 1. Transmitter shall operate as a 2x port.

Receiver shall behave as if the data received on lane 2 was actually received on lane 0,
and as if the data received on lane 3 was actually received on lane 1. Receiver shall
operate as a 2x/1x port.

0b0111
(4x, lanes 0-3)

0b0111
(4x, lanes 0-3)

Transmitter shall operate as a 4x port.

Receiver shall operate as a 4x/1x port.

0b1000
(8x, lanes 0-7)

0b1000
(8x, lanes 0-7)

Transmitter shall operate as an 8x port.

Receiver shall operate as an 8x/1x port.

0b1001
(16x)

0b1001
(16x)

Transmitter shall operate as a 16x/1x port.

Receiver shall operate as a 16x/1x port.

0b1010-
0b1011
(Implementation
specific)

0b1010-
0b1011
(Implementation
specific)

Implementation specific behavior.

0b1100-
0b1111
(Reserved)

0b1100-
0b1111
(Reserved)

Reserved.

Table 4-12. Structurally Asymmetric Link Tx/Rx Width Behaviors

SAL RX Width SAL TX Width Description
RapidIO.org 149

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
the link will be interrupted while the PRBS test is active. The end of the link that is
not accessible during the test is known as the “far” end of the link. The “near” end
of the link is the “far” end's link partner.

The following points define the operation of a PRBS test.

1. Program the following values on the far end of the link, in any order:

– Port n Reinit Control CSR “Silence Count” to a non-zero value

– Port n PRBS Control CSR “PRBS Pattern Selection”, “PRBS Lock Interval
Threshold” and “PRBS Test Interval” values

– Port n PRBS Lane Control CSR “PRBS Transmit Lane Control” and “PRBS
Receive Lane Control” values

2. Repeat step 1 for the near end of the link.

3. Set the Port n Reinit Control CSR “Pulse Force-Reinit” field on the near end
of the link to trigger Silence detection by the far end.

4. A PRBS test shall be performed if silence is detected and all of the following
are true:

– Port n Reinit Control CSR “Silence Count” value is not 0

– Port n PRBS Control CSR “PRBS Pattern Selection” value is not 0

5. The Port n PRBS Control CSR “PRBS Active” bit shall be set at the start of
a PRBS test. The bit shall remain asserted for the interval programmed in the
PRBS Test Interval field. The bit shall be cleared when the PRBS Test
Interval has completed. While PRBS Active is set, all receive lanes for the
port shall pass data marked as “error” to the ports state machines.

6. All PRBS status values shall be cleared to 0 whenever the PRBS Active bit
transitions from 0 to 1, including the following registers/fields:

– Port n PRBS Control CSR “PRBS Completed”

– Port n PRBS Status 0 CSR

– Port n PRBS Status 1 CSR

– Port n PRBS Locked Time CSR

7. The PRBS Completed bit shall remain cleared for the interval programmed
in the PRBS Test Interval field. The PRBS Completed bit shall be set when
the PRBS Test Interval has completed.

8. While PRBS Active is set, the port shall transmit the selected PRBS sequence
on all lanes enabled in the Port n PRBS Lane Control CSR “PRBS Transmit
Lane Control” field. Lanes that are disabled in the Port n PRBS Lane Control
CSR “PRBS Transmit Lane Control” field shall be electrically idle.

9. While PRBS Active is set, the port shall check the selected PRBS sequence
on all lanes enabled in the Port n PRBS Lane Control CSR “PRBS Receive
Lane Control” field. The checking algorithm shall be as follows:

– The Port n PRBS Status 1 CSR “Lane x PRBS Lock Status” shall be set if
150 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
checking for the lane is enabled and the received PRBS sequence has matched
the predicted PRBS sequence for at least the PRBS Lock Interval Threshold.

– The “Lane x PRBS Error Count” shall be incremented by 1 if the received PRBS
sequence does not match the predicted PRBS sequence and the “Lane x PRBS
Lock Status” field is set. When the receive equalization method used by a device
can cause a single error to be replicated as a burst of errors, the checking
algorithm shall ensure that the “Lane x PRBS Error Count” shall be incremented
by 1 for each burst of errors. An example of such a receive equalization method
is DFE.

10. While PRBS Active is set, the Port n PRBS Locked Time CSR “All PRBS
Locked Time” field shall be incremented by 1 whenever a period equal to the
currently programed Discovery Timer period has expired, and the “Lane x
PRBS Lock Status” field is set for all lanes enabled in the Port n PRBS Lane
Control CSR “PRBS Receive Lane Control” field.
RapidIO.org 151

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
152 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 5 64b/67b PCS and PMA Layers

5.1 Introduction
This chapter specifies the functions provided by the Physical Coding Sublayer
(PCS) and Physical Media Attachment (PMA) sublayer used for 64b/67b encoded
links. (The PCS and PMA terminology is adopted from IEEE 802.3). The topics
include character representation, scrambling, lane striping, 64b/67b encoding,
serialization of the data stream, codewords, columns, link transmission rules, idle
sequences, and link initialization. The 64b/67b PCS and PMA Layers shall be
supported by links operating at Baud Rate Class 3.

The concept of lanes is used to describe the width of a LP-Serial link. A lane is a
single unidirectional signal path between two LP-Serial ports. Five widths are
defined for LP-Serial links, 1, 2, 4, 8 and 16 lanes per direction. A link with N lanes
in each direction is referred to as a Nx link, e.g. a link with 4 lanes in each direction
is referred to as a 4x link.

5.2 PCS Layer Functions
The Physical Coding Sublayer (PCS) function is responsible for idle sequence
generation, lane striping, scrambling and encoding for transmission and decoding,
lane alignment, descrambling and destriping on reception. The PCS uses a 64b/67b
encoding for transmission over the link.

The PCS also provides mechanisms for determining the operational mode of the port
as Nx or 1x operation, and means to detect link states. It provides for clock
difference tolerance between the sender and receiver without requiring flow control.

The PCS performs the following transmit functions:

• Adds link CRC-32 and padding as needed.

• Dequeues packets and control symbols awaiting transmission as a character
stream.

• Stripes the transmit character stream across the available lanes.

• Scrambles outgoing data stream.

• Generates the idle sequence and inserts it into the transmit character stream for
each lane when no packets or control symbols are available for transmission.
RapidIO.org 153

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Encodes the character stream of each lane independently into 67-bit parallel
codewords.

• Passes the resulting 67-bit parallel codewords to the PMA.

The PCS performs the following receive functions:

• Decodes the received stream of 67-bit parallel codewords for each lane
independently into characters.

• Marks characters decoded from errored codewords as invalid.

• If the link is using more than one lane, aligns the character streams to eliminate
the skew between the lanes and reassembles (destripes) the character stream
from each lane into a single character stream.

• Descrambles incoming data stream.

• Delivers the decoded character stream of packets and control symbols to the
higher layers.

• Removes link CRC-32 and padding as needed.

5.3 PMA Layer Functions
The Physical Medium Attachment (PMA) Layer is responsible for
serializing/de-serializing 67-bit parallel codewords to/from a serial bitstream on a
lane-by-lane basis. Upon receiving data, the PMA function provides alignment of
the received bitstream to 67-bit codeword boundaries, independently on a
lane-by-lane basis. It then provides a continuous stream of 67-bit codewords to the
PCS, one stream for each lane. The 67-bit codewords are not observable by layers
higher than the PCS.

If a LP-Serial port supports either baud rate discovery or adaptive equalization, these
functions are also performed in the PMA Layer.

5.4 Definitions
Definitions of terms used in this specification are provided below.

1x mode: An LP-Serial port mode of operation in which the port transmits on a single lane
or receives on a single lane.

1x port: An LP-Serial port that supports a link with only one lane in each direction.

Asymmetric mode: An LP-Serial port mode of operation in which the number of lanes the
port transmits on is independent from the number of lanes the port receives on.

Block: An entity of 64 bits of data with additional control to indicate the type of
information carried in the 64-bit.

Byte: An 8-bit unit of information. Each bit of a byte has the value 0 or 1. The bits of a byte
are numbered 0 through 7 with bit 0 being the most significant bit (msb).
154 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Character: A 9-bit entity comprised of an information byte and a control bit that indicates
whether the information byte contains data or control information. A byte is defined to
contain data if it is part of a packet, is padding or idle bytes. A byte is defined to contain
control information if it is part of a control symbol.

Codeword: A 67-bit entity that is the result of 64b/67b encoding of a block.

Codeword disparity: The number of “1”s in a codeword minus the number of “0”s in the
codeword.

Column: The group of N codewords that are transmitted at nominally the same time by a
LP-Serial port operating in Nx mode.

Destriping: The method used on a link operating in Nx mode to collect and merge the data
across the N lanes received simultaneously and form a single block stream. This process
reverses the operation done during striping of data across multiple lanes. For each direction
of the link, the block stream is merged across the lanes, on a block-by-block basis,
beginning with lane 0, continuing in incrementing lane number order across the lanes, and
wrapping back to lane 0 for block N.

Differential Manchester Encoding (DME): A line code in which data and clock signals
are combined to form a single 2-level self-synchronizing data stream. It is a differential
encoding, using the presence or absence of transitions to indicate logical value. The DME
scheme used in this specification is specified in Clause 72.6.10.2.2 of the IEEE Standard
802.3-2008 (Part 5).

Disparity: The number of “1”s in an arbitrary block of binary data minus the number of
“0”s in that block of data.

Idle sequence: The sequence of codewords that is transmitted by a port on each of its active
output lanes when the port is not transmitting a packet or control symbol. The idle sequence
allows the receiver to maintain bit synchronization, codeword alignment and, if applicable,
adaptive equalization settings between packets and control symbols.

Lane: A single unidirectional signal path, typically a differential pair, between two
LP-Serial ports.

Lane Alignment: The process of eliminating the skew between the lanes of a LP-Serial
link operating in Nx mode such that the codewords transmitted as a column by the sender
are output by the alignment process of the receiver as a column. Without lane alignment,
the codewords transmitted as a column might be scattered across several columns output
by the receiver.

Nx mode: A LP-Serial port mode of operation in which the port both transmits or receives
on multiple lanes. A LP-Serial port operating in Nx mode transmits on N lanes and receives
on N lanes where N has a value greater than 1. The transmit data stream is distributed across
the N transmit lanes and the receive data stream is distributed across the N receive lanes.

Nx port: A LP-Serial port that supports a link with up to a maximum of N lanes in each
direction.

Ordered Sequence: A sequence of two or more control codewords with fixed ordering.
RapidIO.org 155

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Running Disparity: The running disparity of the signal transmitted over a lane is defined
as the sum of the disparities of all of the codewords transmitted over the lane since the
transmitting port exited the SILENT state.

Striping: The method used on a link operating in Nx mode to distribute data across the N
lanes simultaneously. For each direction of the link, the block stream is striped across the
lanes, on a block-by-block basis, beginning with lane 0, continuing in incrementing lane
number order across the lanes, and wrapping back to lane 0 for block N.

5.5 64b/67b Transmission Code
The 64b/67b transmission code used by the PCS encodes 64-bit blocks of data
and/or control information into 67-bit codewords for transmission and reverses the
process on reception. There are two types of codewords: “data” codewords and
“control” codewords. Data codewords encode 64 bits of data. Control codewords
encode 64 bits of control information or some combination of data and control
information.

Codewords are scrambled to statistically achieve an acceptable transition density for
baud rate recovery in the receiver. Codewords are selectively inverted based on the
running disparity and codeword disparity to ensure that the transmitted signal on
each lane is DC balanced within +/- 66 1’s or 0’s at all times..

5.5.1 Codeword Format

The codeword is comprised of an inverted bit, a pair of bits marking the beginning
and type of the codeword and a 64-bit data_field. The basic format of the codeword
is shown in Table 5-1.

Figure 5-1. 64b/67b codeword format

The inverted bit indicates whether the data_field has been inverted to control the
running disparity of the transmitted signal:

0b0 - data_field[0:63] has not been inverted.

0b1 - data_field[0:63] has been inverted.

The type bit indicates the type of codeword:

ty
pe

0 1 2 66

in
ve

rt
ed

data_field[0:63]

3

!t
yp

e

156 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
0b0: Control, the codeword encodes a block that contains control information
and may contains data information.

0b1: Data, the codeword encodes a block that contains only data information.

The !type bit is the complement of the type bit.

The transition between the !type and type bits indicates a fixed offset from the
beginning of the codeword, for use in codeword lock state machine in Section
5.19.4.

The format and content of the data_field depends on the information encoded in the
codeword.

Codewords shall be transmitted from left to right, bit 0 to bit 66 starting with the
inverted bit and progressing to data_field[63].

5.5.2 Data Codeword

The format of a data codeword (type bit = 0b1) shall be as shown in Figure 5-2.

Figure 5-2. 64b/67b Data codeword format

5.5.3 Control Codeword

The format of a control codeword (type bit = 0b0) depends on the information the
codeword encodes. The 2 bits at location [30:31] of a control codeword data_field
are a cc_type field that specifies the contents and format of data_field[0:29,32:63].
The general format of a control codeword shall be as shown in Figure 5-3.

Figure 5-3. General 64b/67b Control Codeword Format

0
data

byte 0
[0:7]

0 1 2 66

in
ve

rt
ed

1

3

data
byte 1
[0:7]

data
byte 2
[0:7]

data
byte 3
[0:7]

data
byte 4
[0:7]

data
byte 5
[0:7]

data
byte 6
[0:7]

data
byte 7
[0:7]

0 1 2 66

in
ve

rt
ed

data_field[32:63]

33

01

3 34 35

data_field[0:29]

32

cc
_t

yp
e[

0:
1]
RapidIO.org 157

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The encoding of the control codeword functions are shown in Table 5-1

Control codewords can be further sub-divided into two categories: Symbol Bearing
and Non-Symbol Bearing. Symbol Bearing control codewords include: CSB, CSE
and CSEB. Non-Symbol Bearing control codewords include: Skip-Marker, Lane
Check, Descrambler Seed, Skip and Status/Control.

5.5.3.1 Skip-Marker Control Codeword

The Skip-Marker control codeword is used together with the Skip control codeword
to provide clock compensation. The format of the Skip-Marker control codeword
shall be as shown in Figure 5-4. The codeword data field has a disparity of 0 and a
Hamming distance of 32 from the Skip control codeword. The codeword shall be
transmitted only as part of a Skip ordered sequence. For more information, refer to
Section 5.9.3, "Skip Ordered Sequence".

Table 5-1. Control Codeword function encoding

cc_type[0:1] data_field[32:35] Name Description

0b00 0b0000 - 0b0011 Implementation
Specific

Reserved for implementation specific purposes.
The default power-up state of a processing element shall disable
transmission and processing of implementation specific control
codewords.

0b0100 - 0b1010 Reserved

0b1011 Skip-Marker A fixed value 67-bit control codeword used to mark the beginning
of the Skip ordered sequence. The data field of the codeword has
a disparity of 0.

0b1100 Lane Check Used to monitor lane bit error rate.

0b1101 Descrambler Seed The descrambler seed is used to initialize and/or check the state of
the per lane descrambler.

0b1110 Skip A fixed value 67-bit codeword that can be added or removed from
a Skip ordered sequence for clock compensation. The data field of
the codeword has a disparity of 0.

0b1111 Status/Control The data_field contains the status/control data field.

0b01 see description Control Symbol Begin
(CSB)

data_field[0:63] contains
Control Symbol[0:29] || 0b01 || 4 data characters

0b10 see description Control Symbol End
(CSE)

Data_field[0:63] contains
Control Symbol[32:61] || 0b10 || 4 data characters

0b11 see description Control Symbol End
and Begin (CSEB)

Data_field[0:63] contains
Control SymbolA[32:61] || 0b11 || Control SymbolB[0:29] || 0b00
158 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-4. Skip-Marker Control Codeword Format

5.5.3.2 Lane-Check Control Codeword

The Lane-Check control codeword is used to monitor the BER of the lanes in the
link. The Lane-Check control codeword is only intended to be used for bit error rate
estimation and shall not influence or trigger error recovery. Its format shall be as
shown in Figure 5-5. The codeword shall be transmitted only as a part of the Skip
ordered sequence. For more information, refer to Section 5.9.3, "Skip Ordered
Sequence".

Figure 5-5. Lane-Check Control Codeword

The content of the Lane-Check control codeword lane check value field shall be as
specified in Table 5-2.

Table 5-2. Lane_check field content

Location Bit(s) Definition

0-22 23 bits The BIP-23 field contains the result of a bit interleaved parity calculation. Each bit in the
BIP-23 field is an even parity calculation over all of the previous specified bits of a given
lane since the previous Lane-Check control codeword, but not including the current
Lane-Check control codeword, any Skip-Marker control codeword, or Skip control
codeword. The Lane Check calculation is described in Section 5.5.6.

23-34 12 bits Fixed value of 0b1011_0101_0101.
Combined with the rest of the data_field of the Lane Check control codeword this results
in a codeword with a data field disparity of 0.

35-57 23 bits Bit-wise inversion of BIP-23, also referred to as the iBIP-23 field.

0 1 2 66

in
ve

rt
ed

0x85E_2FA0

33

01

3 38 39

0x394D_E8D1

32

0b
00

10
11

0 1 2 66

in
ve

rt
ed

lane_check[30:57]

33

01

3 38 39

lane_check[0:29]

32

0b
00

11
00
RapidIO.org 159

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.5.3.3 Descrambler Seed Control Codeword

The format of the Descrambler Seed control codeword shall be as shown in Figure
5-6. Seed codewords transmitted on lane k of a link shall contain the value of the
lane k transmit scrambler (seed) which would have been used to scramble the
Descrambler Seed Control Codeword if it was a codeword that is scrambled before
transmission. The lane k transmit scrambler state (seed) is used to set or check the
state of the lane k descrambler in the connected receiver at the time that the Seed
codeword would have been descrambled. The Descrambler Seed control codeword
is transmitted only as part of a Seed ordered sequence. For more information, refer
to Section 5.9.1, "Seed Ordered Sequence".

Figure 5-6. Descrambler Seed Control Codeword Format

5.5.3.4 Skip Control Codeword

The Skip control codeword is used together with the Skip-Marker control codeword
to provide clock compensation. The format of the Skip control codeword shall be as
shown in Figure 5-7. The codeword data field has a disparity of 0 and a Hamming
distance of 32 from the Skip-marker control codeword. The codeword shall be
transmitted only as part of a Skip ordered sequence. For more information, refer to
Section 5.9.3, "Skip Ordered Sequence".

Figure 5-7. Skip Control Codeword Format

5.5.3.5 Status/Control Control Codeword

The Status/Control control codeword is use to communicate various link level
information between two link partners, this includes link training control, link
initialization and asymmetric link width control. The format of the Status/Control
control codeword shall be as shown in Figure 5-8. The codeword shall be

0 1 2 66

in
ve

rt
ed

seed[30:57]

33

01

3 38 39

seed[0:29]

32

0b
00

11
01

0 1 2 66

in
ve

rt
ed

0x537_A344

33

01

3 38 39

0x2E17_8BE8

32

0b
00

11
10
160 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
transmitted only as part of a Status/Control ordered sequence. For more information,
refer to Section 5.9.2, "Status/Control Ordered Sequence".

Figure 5-8. Status/Control Control Codeword Format

The content of the status_control field shall be as specified in Table 5-3

Table 5-3. Status_control field content

Location Bit(s) Scope Definition

0-7 8 bits Port1 Port number.
The number of the port within the device to which the lane is assigned.

8-11 4 bits Lane3 Lane number
The number of the lane within the port to which the lane is assigned.

12 1 bit Port1 Remote training support
Indicates whether the port supports control of per lane transmit equalization by the lane
receivers in the connected port.
0b0 - The port does not support control of its transmit equalization by the connected
port.
0b1 - The port supports control of its transmit equalization by the connected port.

13 1 bit Port1 Retraining enabled
Indicates whether the port is allowed to enter retraining mode, based on the register
value of the “10G Retraining Enable” field described in Section 7.6.9.
0b0 - Retraining mode is not enabled.
0b1 - Retraining mode is enabled.

14 1 bit Port1 Asymmetric mode enabled
Indicates whether the port is allowed to enter asymmetric mode, based on the register
value of the “Asymmetric modes enabled” field described in Section 7.6.14.
0b0 - Asymmetric mode is not enabled.
0b1 - Asymmetric mode is enabled.

15 1 bit Port1 Port initialized
Indicates the initialization status of the port. The value and meaning of this bit
transmitted on all lanes of a port shall be the same as that of the port’s state machine
variable port_initialized.

16 1 bit Port1 Transmit 1x mode
Indicates when the port is transmitting in 1x symmetric mode.
0b0 - The port is not transmitting in 1x mode. The state machine variable
max_width != 1x.
0b1 - The port is transmitting in 1x symmetric mode. The state machine variable
max_width = 1x.

0 1 2 66
in

ve
rt

ed

status_control[30:57]

33

01

3 38 39

status_control[0:29]

32

0b
00

11
11
RapidIO.org 161

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
17-19 3 bits Port1 Receive width
The width at which the port is currently receiving control symbols and packets
(destriping width)
0b000 - None
0b001 - 1x mode, lane 0
0b010 - 2x mode
0b011 - 4x mode
0b100 - 8x mode
0b101 - 16x mode
0b110 - 1x mode, lane 1
0b111 - 1x mode, lane 2

The receive width field shall retain the value it held prior to the Port Initialization State
Machine entering the 1x_RECOVERY, 2x_RECOVERY, or Nx_RECOVERY states
for the duration of those recovery states.

20-22 3-bits Asym. Port2 Receive lanes ready
The value of the field shall indicate the lanes being received by the port as indicated by
the lanes for which lane_ready is asserted, lanes beyond max_width shall not be
considered ready for this purpose
0b000 - No lanes ready
0b001 - lane_ready[0]
0b010 - lane_ready[0] & lane_ready[1]
0b011 - lane_ready[0] & lane_ready[1] & ... & lane_ready[3]
0b100 - lane_ready[0] & lane_ready[1] & ... & lane_ready[7]
0b101 - lane_ready[0] & lane_ready[1] & ... & lane_ready[15]
0b110 - 0b111 - reserved

23 1 bit Lane3 Receive lane ready
The value and meaning of this bit transmitted on lane k shall be the same as that of the
lane’s state machine variable lane_ready[k]

24 1 bit Lane3 Lane trained
Indicates the training status of the lane.
The value and meaning of this bit transmitted on lane k shall be the same as that of the
port’s state machine variable lane_trained[k]

25-27 3 bits Asym. Port2 Receive width command
The port receiving the command shall attempt to switch to the receive width specified
in the command received on lane 0.
0b000 - hold current receive width
0b001 - receive in 1x mode
0b010 - receive in 2x mode
0b011 - receive in 4x mode
0b100 - receive in 8x mode
0b101 - receive in 16x mode
0b110-0b111 - reserved

28 1 bit Asym. Port2 Receive width command ACK
0b0 - No command status
0b1 - Command executed

29 1 bit Asym. Port2 Receive width command NACK
0b0 - No command status
0b1 - Command not executed

Table 5-3. Status_control field content

Location Bit(s) Scope Definition
162 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
30-32 3 bits Asym. Port2 Transmit width request
A request that the port receiving this field change its transmit width to the width
specified in the request. This field, in conjunction with the “Transmit width request
pending” bit transmitted by the port receiving the transmit width request, is used to
send, acknowledge, and control the flow of transmit width requests across the link.

The receiver shall only see the transmit width request on lane 0 as a valid request.

0b000 - no request (hold current transmit width)
0b001 - request transmit 1x mode
0b010 - request transmit 2x mode
0b011 - request transmit 4x mode
0b100 - request transmit 8x mode
0b101 - request transmit 16x mode
0b110-0b111 - reserved

33 1 bit Asym. Port2 Transmit width request pending
This bit is used by a port to acknowledge the receipt of a transmit width request.
This bit, in conjunction with the “Transmit width request” field transmitted by the
connected port, is used to acknowledge and control the flow of transmit width requests
across the link.
0b0 - No request pending
0b1 - Request pending

34 1 bit Asym. Port2 Transmit Status/Control ordered sequences
Indicates the required rate of Status/Control ordered sequences on a link. The value
and meaning of this bit transmitted on a lane shall be the same as that of the lanes state
machine variable xmt_sc_seq.

35-38 4 bits Lane3 Transmit equalizer tap
When the transmit equalizer command is tap specific, this field contains the number of
the equalizer tap to which the tap specific command shall be applied. The tap number
is encoded as a signed 2’s complement 4-bit integer.
0b0000 - Tap 0
0b0001 - Tap +1
0b0010 - Tap +2
0b0011 - Tap +3
0b0100 - Tap +4
0b0101 - Tap +5
0b0110 - Tap +6
0b0111 - Tap +7
0b1000 - Tap -8
0b1001 - Tap -7
0b1010 - Tap -6
0b1011 - Tap -5
0b1100 - Tap -4
0b1101 - Tap -3
0b1110 - Tap -2
0b1111 - Tap -1
When the transmit equalizer update command is not tap specific, the field shall have
the value 0b0000 and shall be ignored.

Table 5-3. Status_control field content

Location Bit(s) Scope Definition
RapidIO.org 163

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
39-41 3 bits Lane3 Transmit equalizer command
0b000 - Hold/No command
0b001 - Decrement (make more negative by one step) the coefficient of the specified
tap.
0b010 - Increment (make more positive by one step) the coefficient of the specified
tap.
0b011-0b100 - Reserved
0b101- Initialize - Set the tap coefficients to their INITIALIZE state as defined Clause
72.6.10.4.2 of IEEE Standard 802.3-2008 (part 5).
0b110 - Preset coefficients - Set the coefficient of tap 0 to its maximum value and the
coefficients of all other taps to 0 as specified in Clause 72.6.10.4.1 of IEEE Standard
802.3-2008 (part 5).
0b111 - Indicate specified tap implementation status.
When Transmit equalizer command are 0b001, 0b010 or 0b111; the Transmit equalizer
tap value shall contain the value of the Tap; for other commands the Transmit equalizer
tap value shall be 0b0000

42-44 3 bits Lane3 Transmit equalizer status
0b000 - Not updated - No command is pending or the status of the current command
has not been determined.
0b001 - Updated - The tap specific command has been executed and the tap is at
neither its minimum nor maximum value.
0b010 - Minimum - Either the tap specified tap decrement command has been
executed and the tap is now at its minimum value or the specified tap was already at its
minimum value.
0b011 - Maximum - Either the tap specific tap increment command has been executed
and the tap is now at its maximum value or the specified tap was already at it
maximum value.
0b100 - Preset or Initialize command executed.
0b101 - Reserved.
0b110 - Specified tap not implemented.
0b111 - Specified tap implemented.

45 1 bit Port1 Retrain grant
When the Status/Control control codeword is formed, the value of this bit shall be the
same as the value of the port’s state machine variable retrain_grnt.

46 1 bit Port1 Retrain ready
When the Status/Control control codeword is formed, the value of this bit shall be the
same as the value of the port’s state machine variable retrain_ready.

47 1 bit Port1 Retraining
When the Status/Control control codeword is formed, the value of this bit shall be the
same as the value of the port’s state machine variable retraining.

48 1 bit Port1 Port Entering Silence
0b0 - The port is transmitting normally.
0b1 - All lanes of the port are going to enter the Silence state.

49 1 bit Lane3 Lane Entering Silence
0b0 - The lane is transmitting normally.
0b1 - The lane is going to enter the Silence state based on asymmetric mode operation,
based on port width downgrade in symmetric mode or other events that makes the lane
enter silence i.e. after a keep alive event.

50-57 8 bits - Reserved

1 The “Port” scope means that the transmitting port shall transmit the same value on all lanes and that the
receiving port shall only use the values received on lane 0 or lane R if operating in redundant mode.

Table 5-3. Status_control field content

Location Bit(s) Scope Definition
164 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.5.3.6 CSB Control Codeword

The format of the CSB control codeword shall be as shown in Figure 5-9.

Figure 5-9. CSB Control Codeword Format

The CSB control codeword encodes 8 sequential bytes beginning with 4 data bytes
followed by 4 bytes containing the first 32 bits of a control symbol,
control_symbol[0:31], as shown in Figure 5-10. The 8 bytes (64 bits) are encoded
by first performing a 32-bit rotation on the bits being encoded, inserting the rotated
64 bits into the control codeword, and then setting the control codeword
cc_type[0:1] to 0b01, which overwrites the 2-bit alignment field of the control
symbol. Notice how the logical layout differ from the actual codeword layout by
showing the logical ordering of the data with oldest data showing to the left.

Figure 5-10. Logical Layout of CSB Control Codeword

When there is no data for encoding in codeword bits [35:66], the bits shall be loaded
with bytes of 0x00, which when scrambled become pseudo-random data bytes.

5.5.3.7 CSE Control Codeword

The format of the CSE control codeword shall be as shown in Figure 5-11.

2 The “Asym. Port” scope means that the transmitting port shall transmit the same value on all lanes and that
the receiving port shall only use the values received on lane 0. The value transmitted is only used when the
link is operating in asymmetric mode as defined in Section 5.17, "Asymmetric Operation"

3 The “Lane” scope means that the transmitted value is lane specific.

1
data

byte 0
[0:7]

0 1 2 66

in
ve

rt
ed

0

3

data
byte 1
[0:7]

data
byte 2
[0:7]

data
byte 3
[0:7]

0b01control_symbol[0:29]

3332 3534

0 63

control_symbol[0:31]

31 32

data
byte 1
[0:7]

data
byte 2
[0:7]

data
byte 3
[0:7]

data
byte 0
[0:7]
RapidIO.org 165

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-11. CSE Control Codeword Format

The CSE control codeword encodes 8 sequential bytes beginning with 4 bytes
containing the second 32 bits of a control symbol, control_symbol[32:63], followed
by 4 data bytes as shown in Figure 5-12. The 8 bytes (64 bits) are encoded by
inserting the 64 bits directly into the control codeword data_field and then setting
control codeword cc_type[0:1] to 0b10 which overwrites the 2-bit alignment field of
the control symbol.

Figure 5-12. Logical Layout of CSE Control Codeword

When there is no data for encoding in codeword bits [35:66], the bits shall be loaded
with bytes of 0x00, which when scrambled become pseudo-random data bytes.

5.5.3.8 CSEB Control Codeword

The format of the CSEB control codeword shall be as shown in Figure 5-13.

Figure 5-13. CSEB Control Codeword Format

1
data

byte 0
[0:7]

0 1 2 66
in

ve
rt

ed

0

3

data
byte 1
[0:7]

data
byte 2
[0:7]

data
byte 3
[0:7]

0b10control_symbol[32:61]

3332 3534

0 63

control_symbol[32:63]

31 32

data
byte 1
[0:7]

data
byte 2
[0:7]

data
byte 3
[0:7]

data
byte 0
[0:7]

0 1 2 64

0b11control_symbol_A[32:61]

3 65

0b00control_symbol_B[0:29]

35 6632

1

in
ve

rt
ed

0

33 34
166 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The CSEB control codeword encodes 8 sequential bytes beginning with 4 bytes
containing the last 32 bits of a control symbol (control_symbol_A) followed by 4
bytes containing the first 32 bits of the immediately following control symbol
(control_symbol_B). The control symbol alignment fields are overwritten with the
cc_type (2'b11) in the case of control_symbol_A and with zeros (2'b00) in the case
of control_symbol_B.

5.5.4 Scrambling

Scrambling smooths the spectrum of a port’s transmit signal and reduces the
spectrum’s peak values. This is most important when long strings of the same
character or of a repeating character sequence are transmitted. The result is a
reduction in the amount of electromagnetic interference (EMI) generated by the link
and easier design of adaptive equalizer training algorithms.

5.5.4.1 Scrambling Rules

A portion of all data codewords and of some control codewords are scrambled
before transmission on an LP-Serial link. Bits [0:2] of a codeword (inverted, !type
and type) shall never be scrambled.

Scrambling and descrambling shall be done on a per lane basis. At any specific time,
each of the lanes scramblers shall have a different state.

Scramblers and descramblers shall step and generate 64 bits of scrambling sequence
for every codeword except Skip control codewords. Scramblers and descramblers
shall neither step nor generate any scrambling sequence bits for Skip control
codewords.

Codewords shall be scrambled according to the following rules:

Codeword bits [3:66] of all data codewords shall be scrambled.

Codeword bits [3:32] and [35:66] of all control codewords with codeword
bits[33:34] != 0b00 shall be scrambled.

Control codewords with codeword bits[33:34] = 0b00 shall not be scrambled.

Therefore the CSB, CSE and CSEB control codewords shall be scrambled
and all other control codeword types shall not be scrambled.

The codeword data_field shall be scrambled from left to right beginning with
codeword bit [3] and ending with codeword bit [66]. When scrambling a control
codeword with codeword bits[33:34] != 0b00, the scrambler bits that would be used
to scramble codeword bits[33:34] shall be ignored and not used. When a control
codeword with codeword bits[33:34] = 0b00 is encountered, all 64 scrambler bits
shall be ignored and not used. The scrambler shall still step 64 bits for each
codeword except for Skip control codewords, even if only some or none of the 64
bits are used for scrambling.
RapidIO.org 167

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A pseudo-random sequence generated by a Fibonacci (external) form linear
feedback shift register (LFSR) generator using the primal generating polynomial
x58+x39+1 shall be used for scrambling. The output of the scrambler shall be the
output of the register holding x58, the oldest and most significant state bit.

Figure 5-14. Scrambling Sequence Generator

To minimize any correlation between lanes when a port is transmitting on multiple
lanes, the scrambling sequence applied to a given output lane of the port shall be
offset from the scrambling sequence applied to any other output lane of the port by
at least 512 bits. If separate scrambling sequence generators are used for each lane,
the offset requirement can be achieved by initializing the scramblers to the values
specified in Table 5-4, which provide an offset of 512.

D

XOR

Q

>

x1

D Q

>

x2

D Q

>

x3

D Q

>

x4

D Q

>

x5

D Q

>

x6

D Q

>

x7

D Q

>

x8

D Q

>

x9

D Q

>

x10

D Q

>

x11

D Q

>

x12

D Q

>

x13

D Q

>

x14

D Q

>

x15

D Q

>

x16

D Q

>

x17

D Q

>

x18

D Q

>

x19

D Q

>

x20

Clock

D Q

>

x21

D Q

>

x22

D Q

>

x23

D Q

>

x24

D Q

>

x25

D Q

>

x26

D Q

>

x27

D Q

>

x28

D Q

>

x29

D Q

>

x30

D Q

>

x31

D Q

>

x32

D Q

>

x33

D Q

>

x34

D Q

>

x35

D Q

>

x36

D Q

>

x37

D Q

>

x38

D Q

>

x39

D Q

>

x40

D Q

>

x41

D Q

>

x42

D Q

>

x43

D Q

>

x44

D Q

>

x45

D Q

>

x46

D Q

>

x47

D Q

>

x48

D Q

>

x49

D Q

>

x50

D Q

>

x51

D Q

>

x52

D Q

>

x53

D Q

>

x54

D Q

>

x55

D Q

>

x56

D Q

>

x57

D Q

>

x58

Output
168 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.5.4.2 Descrambler Synchronization

Each lane descrambler shall synchronize itself to the data stream it is receiving by
using Seed ordered sequences. For more information about Seed ordered sequences,
refer to Section 5.9.1, "Seed Ordered Sequence".

The first Descrambler Seed control codeword of the Seed ordered sequence shall be
used to re-initialize the state of the descrambler. Refer to 5.5.3.3 Descrambler Seed
Control Codeword for the mapping of seed[0:57] to the descrambler coefficients. A
Descrambler Seed control codeword shall be determined to be the first in a Seed
ordered sequence if the preceding codeword is not a Descrambler Seed control
codeword. Based on this definition, only the first Seed ordered sequence of a
sequence of consecutive Seed ordered sequences will trigger descrambler
re-initialization.

After a lane descrambler has been re-initialized, the second Descrambler Seed
control codeword of the Seed ordered sequence shall be used to verify descrambler
synchronization. The descrambler verification is done by comparing the received
seed value from the Descrambler Seed control codeword with the current seed value
of the descrambler and if they match then the descrambler is determined to be “in
sync”; otherwise, the descrambler shall be determined to be “out of sync”.

A sync test can fail because of either a loss of descrambler sync or a data
transmission error(s) in either of the codewords of the Seed ordered sequence.

Table 5-4. Scrambler Initialization Values

Lane
Initialization value

[x1-x58]

0 0x1ec_f564_79a8_b120

1 0x1a1_af7d_7264_5f9e

2 0x2ef_2b62_302b_d094

3 0x14a_da90_3a26_68aa

4 0x1fe_d572_55e7_da1d

5 0x283_8ff2_c69c_3618

6 0x3bc_111d_3429_3ece

7 0x1c0_3994_44ae_4a2b

8 0x09f_ebc2_faee_77fb

9 0x239_7200_3b8e_9cff

10 0x00a_45db_c14e_f218

11 0x36d_3a42_6876_e9c4

12 0x2c1_a537_55d7_8dea

13 0x2b9_e833_dd9d_6b34

14 0x1cb_c090_ab7f_79b3

15 0x26f_aa25_7342_3ae5
RapidIO.org 169

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
If a descrambler sync test fails while receive_enable is asserted, an initialized port
shall immediately enter the Input Error-stopped state if it is not already in that state
and resynchronize the descrambler. An uninitialized port shall ignore scrambler
sync failures. For more information about error recovery processes, refer to
Section 6.13, "Error Detection and Recovery". All control symbols and packets
received while the lane descrambler of a 1x link or the lane descrambler of any lane
carrying control symbols and packets in a multi-lane mode is out of sync shall be
ignored and discarded. The cause field in the packet-not-accepted control symbol
issued by the port on entering the Input Error-stopped state due to a sync check
failure shall indicate “loss of descrambler sync”.

To ensure that a port that may have lost descrambler sync can recover descrambler
sync before it is sent a link maintenance protocol link-request control symbol, a
LP-Serial port that is operating with IDLE3 shall transmit a Seed ordered sequence
before every transmitted link-request control symbol. For reset-device or reset-port
where four link-request control symbols are transmitted, each of the four
link-request control symbols shall be preceded by a Seed ordered sequence. The
Seed ordered sequence shall be transmitted in parallel on each of the N active lanes
of a link operating in Nx mode, and shall immediately precede the link-request
control symbol. If the link is operating in 1x mode, the last codeword of the Seed
ordered sequence is immediately followed by the first codeword of the link-request.
If the link is operating in Nx mode, the last column of the Seed ordered sequence is
immediately followed by the column containing the codewords of the link-request.

5.5.5 Selective Codeword Inversion

Selective codeword inversion is used to bound the running disparity of the signal
transmitted over each lane of a LP-Serial link that uses 64b/67b encoding.

5.5.5.1 Selective Codeword Inversion Rules

Selective codeword inversion shall be applied to the signal transmitted over each
lane of an LP-Serial link according to the following rules.

1. The transmitter shall start with 0 as the initial value for the running disparity
calculation for each lane.

2. After each codeword is formed and if appropriate, scrambled, compute the
disparity of the resulting codeword.

3. If the signs of the codeword disparity and the running disparity of the lane over
which the codeword will be transmitted are different, the codeword shall be
transmitted as is without inversion. The running disparity at the end of the
codeword shall be the running disparity at the beginning of the codeword plus
the disparity of the codeword.
170 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4. If the signs of the codeword disparity and the running disparity of the lane over
which the codeword will be transmitted are the same, invert bits [0,3:66] of
the codeword and transmit the resulting codeword. The running disparity at
the end of the codeword shall be the running disparity at the beginning of the
codeword minus the disparity of the codeword before inversion.

5. At the receiver, invert bits [0,3:66] of each received codeword if codeword
bit[0] = 0b1 (the codeword was inverted before transmission).

5.5.6 Lane Check Calculation

A lane BIP-23 field is carried in each Lane Check control codeword. This allows an
accurate and fast measure of the bit error ratio of a specific lane. This information is
used to update error counters; however, no state machines use this information.

Each Lane Check control codeword has two Bit Interleaved Parity (BIP) fields,
BIP-23 and iBIP-23. iBIP-23 is a bit-wise inversion of BIP-23 to simplify error
detection and to maintain a data field disparity value of 0. The BIP-23 field contains
the result of a BIP calculation. Each bit in the BIP-23 field is an even parity
calculation over a set of specified bits from each codeword on a given lane, as
specified in Table 5-5. The first codeword in the transmitters and receivers BIP
calculation shall be a Lane Check control codeword, modified such that the BIP field
is all 0. Note that the iBIP field of the Lane Check control codeword is kept
unchanged. The BIP calculation shall exclude Skip-Marker and Skip control
codewords. The BIP calculation shall be done on non-inverted codewords. On the
transmit side the codeword values in the BIP calculation shall not have selective
codeword inversion applied. On the receive side, the BIP calculation shall use the
uninverted, original values of codewords that had selective codeword inversion
applied for transmission.

The Lane Check control codeword is used to implement a parity check over intervals
of codewords that begin with a Lane Check control codeword, known as the 'start'
Lane Check, and end with the next Lane Check control codeword known as the
'finish' Lane Check. The 'finish' Lane Check for the preceding codeword sequence
is the 'start' Lane Check for the next codeword sequence. When a 'finish' Lane Check
control codeword is received, the BIP-23 value calculated by the receiver shall be
checked against the BIP-23 field of the 'finish' Lane Check control codeword. If the
two values are different, the receiver’s Lane n Status 0 CSRs “8b/10b decoding
errors” field shall be incremented by 1. Note that the receivers calculated BIP-23
value used in the comparison shall exclude the 'finish' Lane Check control
codeword. The checking procedure is sufficient to detect errors in the 'start' Lane
Check non-BIP-23 fields, the codeword sequence, and the 'finish' Lane Check
BIP-23 field. Bit errors in one 'start' to 'finish' Lane Check interval do not influence
bit error detection in subsequent 'start' to 'finish' Lane Check intervals.

Table 5-5 shows the contribution of the bits from the 67-bit codeword to each
BIP-23 bit. As an example, BIP-23 bit 1 is generated by XORing bits 0, 22, and 45
RapidIO.org 171

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
from all previous 67-bit codewords starting with the last Lane Check control
codeword. BIP-23 bit 0 and bit 22 include one less bit from each 67-bit codeword.

An example BIP calculation is displayed in Figure 5-15. Codewords starting from
the Lane Check control codeword up until the last codeword before a Skip-marker
are included in the BIP-23 calculation. The BIP-23 field of the 'start' Lane Check
control codeword is all zeros in the calculation.

Table 5-5. BIP-23 Calculation

BIP-23 bit number Assigned 67-bit word bits

0 21, 44

1 0, 22, 45

2 1, 23, 46

3 2, 24, 47

4 3, 25, 48

5 4, 26, 49

6 5, 27, 50

7 6, 28, 51

8 7, 29, 52

9 8, 30, 53

10 9, 31, 54

11 10, 32, 55

12 11, 33, 56

13 12, 34, 57

14 13, 35, 58

15 14, 36, 59

16 15, 37, 60

17 16, 38, 61

18 17, 39, 62

19 18, 40, 63

20 19, 41, 64

21 20, 42, 65

22 43, 66
172 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-15. Example of Calculation for Bit 1 of BIP-23

The BIP-23 is calculated over the fully encoded, scrambled, but not selectively
inverted codewords.

When calculating the BIP-23 value for the first Lane Check control codeword to be
transmitted on a link after silence the value does not matter and the BIP-23 can either
be set to a fixed value or be calculated over and an unspecified number of codewords
preceding the Skip ordered sequence containing the Lane Check control codeword.

0 iBIP-23

0 66
MSB LSB

0b
10 0'sLane Check

0b
00

11
00

0b
10

1
_1

01
0

0b
10

10
1

0
0b

10Skip-Marker 0x85E_2FA00x394D_E8D1

0b
00

10
11

0
0b

10Skip 0x537_A3440x2E17_8BE8

0b
00

11
10

0
0b

10Seed seed[30:57]seed[0:29]

0b
00

11
01

0
0b

10Seed seed[30:57]seed[0:29]

0b
00

11
01

0
0b

10Skip 0x537_A3440x2E17_8BE8

0b
00

11
10

0
0b

10Skip 0x537_A3440x2E17_8BE8

0b
00

11
10

0 iBIP-23

0b
10 BIP-23Lane Check

0b
00

11
00

0b
10

1
_1

01
0

0b
10

10
1

Codewords

22 45

0
0Codewords

.
RapidIO.org 173

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The BIP-23 value of the first error free received Lane Check control codeword that
is recognized by the receiver after achieving codeword lock shall be not be checked.

5.5.7 Transmission Order

The parallel 67-bit codeword output of the encoder shall be serialized and
transmitted with bit 0 transmitted first and a sequential bit ordering towards bit 66.
This is shown in Figure 5-16.

Figure 5-16 gives an overview of a set of characters passing through the encoding,
serializing, transmission, deserializing, and decoding processes. The left side of the
figure shows the transmit process of encoding a character stream using 64b/67b
encoding and the 67-bit serialization. The right side shows the reverse process of the
receiver deserializing and using 64b/67b decoding on the received codewords.

The dotted line shows the functional separation between the PCS, that provides
67-bit codewords, and the PMA Layer that serializes the codewords.

The drawing also shows on the receive side the bits of the type field containing the
pattern that is used by the receiver to establish 67-bit codeword boundary
synchronization.

Figure 5-16. Lane Encoding, Serialization, Deserialization, and Decoding Process

5.6 Packet Transmission Rules
The packet format as defined in Chapter 2, "Packets" shall be augmented by an
additional 32-bit link CRC-32 for transport over a link for which 64b/67b encoding
is employed. The link CRC-32 shall be generated by the transmitting port and shall

64B/67B
Encoder

PMA Layer

64 + control
Input to the

ENCODE function

...
0 63

MSB LSB

0

Output of the
ENCODE function

Lane bitstream
Bit 0 transmitted first

66

PCS Layer
64B/67B
Decoder

67

64 + control

0 63

MSB LSB

0 66

67

x 0 1 x … x x

Lane bitstream
Bit 0 received first

Output of the
DECODE function

Input to the
DECODE function

Aligned codewordx 1 0 x … x x

...
174 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
be used to check for packet corruption by the receiving port after which the link
CRC-32 shall be discarded. The link CRC-32 shall be computed over the packet
data, excluding the ackID field, including the CRC-16 and if present the additional
embedded CRC-16 and the 16-bit pad. The link CRC-32 shall use the polynomial
specified in IEEE 802.3 - 2008 (Section 1) clause 3.2.9. The link CRC-32 shall be
computed as described in Section 5.6.1.

The length of packets shall be an integer multiple of 8 bytes. The length includes the
link CRC-32. Packets that are not an integer multiple of 8 bytes in length shall be
padded with 4 bytes of 0x00 such that the padded length is an integer multiple of 8
bytes. The padding bytes of 0x00 shall be placed after the link CRC-32.

The padding bytes allow the CRC-32 check to be performed on an 8 byte boundary.
Corrupt padding bytes may or may not cause a CRC-32 error to be detected,
depending upon the implementation. Corruption of the 2 pad bytes inserted after the
final CRC-16 of a packet shall cause a CRC-32 error to be detected.

The maximum length of a packet shall be 288 bytes: the 280 byte maximum packet
length calculated in Section 2.5 plus 4 bytes for the additional CRC-32. (288 bytes
is an integer multiple of 8 bytes.)

Packets whose transmission is terminated before the end of the packet shall be
terminated at an 8 byte boundary relative to the beginning of the packet except in
error recovery cases. Receivers shall not assume that a packet whose transmission is
terminated before the end of the packet includes the link CRC-32.

5.6.1 Link CRC-32 Code

The IEEE 802.3 - 2008 (Section 1) clause 3.2.9 polynomial:

X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

shall be used to generate the link CRC-32 for packets. The value of the link CRC-32
shall be initialized to 0xFFFF_FFFF (all logic 1s) at the beginning of each packet.
For the link CRC-32 calculation, the six ackID bits are treated as logic 0s. As an
example, a 32-bit wide parallel calculation is described in the equations in Table 5-6.
Equivalent implementations of other widths can be employed.

Table 5-6. Parallel Link CRC-32 Equations

Check Bit
e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
5

e
0
6

e
0
7

e
0
8

e
0
9

e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
5

e
1
6

e
1
7

e
1
8

e
1
9

e
2
0

e
2
1

e
2
2

e
2
3

e
2
4

e
2
5

e
2
6

e
2
7

e
2
8

e
2
9

e
3
0

e
3
1

C00 x x x x x x x x x x x x x

C01 x x x x x x x x x x x x x

C02 x x x x x x x x x x x x x x

C03 x x x x x x x x x x x x x x

C04 x x x x x x x x x x x x x x

C05 x x x x x x x x x x x x x x x
RapidIO.org 175

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
where:

C00–C31 contents of the new check symbol

e00–e31 contents of the intermediate value symbol
e00 = d00 XOR c00
e01 = d01 XOR c01
through
e31 = d31 XOR c31

d00–d31 contents of the next 32 bits of the packet

c00–c31 contents of the previous check symbol

assuming the pipeline described in Figure 5-17

C06 x x x x x x x x x x x x x

C07 x x x x x x x x x x x x x

C08 x x x x x x x x x x x x x x

C09 x x x x x x x x x x x x x x

C10 x x x x x x x x x x x x

C11 x x x x x x x x x x x x

C12 x x x x x x x x x x x x

C13 x x x x x x x x x x x x x

C14 x x x x x x x x x x x x x x

C15 x x x x x x x x x x x x x x

C16 x x x x x x x x x x x x x x x

C17 x x x x x x x x x x x x x x x

C18 x x x x x x x x x x x x x x x x

C19 x x x x x x x x x x x x x x x x x

C20 x x x x x x x x x x x x x x x x x

C21 x x x x x x x x x x x x x

C22 x x x x x x x x x x x x

C23 x x x x x x x x x x x x x

C24 x x x x x x x x x x x x x x x x

C25 x x x x x x x x x x x x x x x

C26 x x x x x x x x x x x x x x x

C27 x x x x x x x x x x x x x x x x x

C28 x x x x x x x x x x x x x x x

C29 x x x x x x x x x x x x x x x x

C30 x x x x x x x x x x x x x

C31 x x x x x x x x x x x x x

Table 5-6. Parallel Link CRC-32 Equations (Continued)

Check Bit
e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
5

e
0
6

e
0
7

e
0
8

e
0
9

e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
5

e
1
6

e
1
7

e
1
8

e
1
9

e
2
0

e
2
1

e
2
2

e
2
3

e
2
4

e
2
5

e
2
6

e
2
7

e
2
8

e
2
9

e
3
0

e
3
1

176 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.7 Packet Delimiting and Alignment
Packets shall be delimited for transmission by two control symbols, a “start of
packet delimiter” and an “end of packet delimiter”. The control symbol containing
the start of packet delimiter shall immediately precede the first byte of the packet or
the first byte of an embedded control symbol. With one exception stated below, the
control symbol containing the end of packet delimiter shall immediately follow the
last byte of the packet or the last byte of an embedded control symbol.

5.7.1 Packet Start Delimiter

The beginning of packet shall be delimited by a start-of-packet control symbol.

After 64b/67b encoding, the last half of the start-of-packet control symbol shall
share a CSE control codeword with the first 4 data bytes of the packet, or a CSEB
control codeword with the first half of an embedded control symbol.

5.7.2 Packet Termination Delimiters

A packet shall be terminated in one of the following ways.

The end of a complete packet is delimited with

an end-of-packet control symbol or

a start-of-packet control symbol that also marks the beginning of the
next packet.

The packet is canceled by

a restart-from-retry control symbol,

Figure 5-17. Link CRC-32 Generation Pipeline

c XOR d

XOR

d00–d31

e00–e31

C00–C31

c00–c31

equations network
RapidIO.org 177

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
a stomp control symbol or

any link-request control symbol.

After 64b/67b encoding, and with one exception stated below, the first half of the
packet terminating delimiter control symbol shall share a CSB control codeword
with the last 4 data bytes of the packet, or a CSEB control codeword with the last
half of an embedded control symbol.

If a packet is canceled with a link-request control symbol, a Seed ordered sequence
shall be transmitted between the end of the packet and the link-request control
symbol on all lanes. Bytes of 0x00 shall be used to pad the space between the end of
the packet and the beginning of the Seed ordered sequence. The link-request control
symbol shall immediately follow the Seed ordered sequence. The link-request
control symbol shall begin transmission in Lane 0 of a multi-lane port. Since the
link-request control symbol also functions as the “restart-from-error” control
symbol, the transmission of the Seed ordered sequence is needed to allow the
receiver's descrambler(s) to recover synchronization with the input data stream(s) in
the case the receiving port has lost descrambler sync.

5.8 Control Symbol Transmission Rules
Links using the 64b/67b line code shall use Control Symbol 64 as defined in Section
3.3. Each control symbol shall be encoded using a pair of contiguous control
codewords such that half of the control symbol is in each of the two control
codewords. Isolated control symbols shall be encoded using a CSB control
codeword followed by a CSE control codeword. A sequence of n contiguous control
symbols shall be encoded with one CSB control codeword followed in order by n-1
CSEB control codewords and one CSE control codeword.

Control symbols embedded in a packet shall align to an 8-byte boundary relative to
the beginning of the packet.

5.9 Ordered Sequences
To facilitate error detection, the Seed, Status/Control, Lane Check, Skip Marker and
Skip control codewords shall be transmitted only in “ordered sequences”. Each
ordered sequence is comprised of a sequence of two or more control codewords with
fixed ordering and with sufficient known content and redundancy to detect
corruptions in a received ordered sequence.

When an ordered sequence is transmitted on a link direction operating in a
multi-lane mode, the ordered sequence shall be transmitted in parallel on all active
lanes with the sequence beginning in the same column on all active lanes and ending
in the same column on all active lanes. The result being that when transmitted, the
ordered sequence appears on the link as columns of codewords, one column for each
codeword in the sequence. Ordered sequences shall not be striped. While the same
178 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
ordered sequence of codewords is sent in parallel on all active lanes, the values
carried in the codewords of the sequence can differ from lane to lane.

The reception of an incorrectly formed or corrupted ordered sequence on any active
receive lane shall be handled by the receiver as an input error.

With one exception defined in Section 5.7.2, control codewords with a CC_type
value of 0 shall not be transmitted within delimited packets. Control codewords with
a CC_type value of 0 shall not interrupt control symbol transmission, as defined in
Section 5.8. Control codewords with a CC_type of 0 shall always be transmitted as
columns, where every codeword in the column has the same value in
data_field[32:35].

For forward compatibility and robustness, a column of control codewords with a
CC_type of 0 and data_field[32:35] value that the port does not understand shall be
handled as follows. A column of control codewords with a reserved
data_field[32:35] value shall not be processed further, and shall not cause an error
to be detected. A column of control codewords with an unsupported implementation
specific data_field[32:35] value shall not be processed further, and shall not cause
an error to be detected. A column of control codewords with a supported
implementation specific data_field[32:35] value shall not be processed further while
processing of implementation specific control codewords is disabled.

5.9.1 Seed Ordered Sequence

The Seed ordered sequence shall be comprised of two sequential Descrambler Seed
control codewords. Sending the seed in successive codewords allows the
descrambler to be initialized with the first codeword and then checked with the
second codeword. If either codeword is corrupted, the type or format bits of the
codewords will not match or the seed in the second codeword will not match the seed
generated by the descrambler from the seed in the first codeword and allowing the
corruption to be easily detected.

The Seed ordered sequence shall be transmitted before each link-request control
symbol. As part of the IDLE3 sequence the Seed ordered sequence shall be
transmitted at least once for every 52 codewords transmitted per lane. For more
information on the idle sequence, refer to Section 5.10, "Idle Sequence".

Table 5-7. Seed ordered sequence

Seed ordered sequence

Seed control codeword

Seed control codeword
RapidIO.org 179

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.9.2 Status/Control Ordered Sequence

The Status/Control ordered sequence shall be comprised of two sequential
Status/Control control codewords. The content of the two Status/Control control
codewords in a Status/Control ordered sequence transmitted on a specific lane shall
be identical. The sequential transmission of two identical Status/Control control
codewords per lane allows corruption in either of the two words to be easily detected
by simple comparison.

A Status/Control ordered sequence shall be considered valid only if the two
consecutive Status/Control control codewords are identical and the variable
lane_sync[k] is asserted, where k is the lane the codewords are received on.

When a link is operating in a multi-lane mode, the Status/Control ordered sequence
shall be used by the receiver to align the active lanes.

Before the output enables of the transmitter are deasserted, the IDLE3 sequence
shall be transmitted for a period of time which allows 8 Status/Control ordered
sequences to be sent with the “Port Entering Silence” and “Lane Entering Silence”
indications set according to what triggered the output enables to be deasserted. After
the first Status/Control ordered sequence that signals Entering Silence the
transmitter shall not be transmitting longer than a period of 512 codewords, which
is sufficient to transmit more than the required 8 Status/Control ordered sequences.
Implementations should complete packets which are currently in transmission
before starting transmission of the IDLE3 sequence. For more information on the
idle sequence, refer to Section 5.10, "Idle Sequence".

The Status/Control ordered sequence shall be transmitted at least once for every 256
codewords transmitted per lane when operating in asymmetric mode and the
variable xmt_sc_seq is set (See Section 5.19.1.3). As part of the IDLE3 sequence the
Status/Control ordered sequence shall be transmitted at least once for every 49
codewords transmitted per lane. Under no circumstances shall the Status/Control
ordered sequence be transmitted more often than once for every 18 codewords
transmitted per lane.

5.9.3 Skip Ordered Sequence

When transmitted, the Skip ordered sequence shall be comprised of a Skip-marker
control codeword immediately followed by three Skip control codewords, then
followed in order by a Lane Check control code and a Seed ordered sequence. The
transmitted Skip ordered sequence is shown in Table 5-9.

Table 5-8. Status/Control ordered sequence

Status/Control sequence

Status/Control control codeword

Status/Control control codeword
180 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When received, a Skip ordered sequence shall be comprised of a Skip-marker
control codeword followed in order by one or more Skip control codewords, a Lane
Check control codeword and a Seed ordered sequence. Any deviation from this
order indicates that an error has occurred. The Seed ordered sequence shall be used
to verify, and if necessary, to reset the descrambler synchronization.

The Skip ordered sequence is used for clock compensation. A retimer may add one
Skip control codeword or delete one Skip codeword from a Skip ordered sequence
to compensate for the difference between its input and output baud rates. If a retimer
adds a Skip codeword to the sequence, it shall add the codeword immediately after
the Skip-Marker codeword. On links operating in a multilane mode, Skip codewords
shall be added or deleted in columns.

A port shall transmit a Skip ordered sequence on each of its active output lanes at
least once for every 5000 codewords transmitted per lane by the port. Since a packet
or delimited control symbol may not be interrupted by an ordered sequence, it is
recommended that a port transmit a Skip ordered sequence on each of its active
output lanes at least once for every 4096 codewords transmitted per lane by the port.

5.10 Idle Sequence
The idle sequence defined for 64b/67b encoded links is referred to as IDLE3. The
IDLE3 sequence is a sequence of codewords transmitted by a LP-Serial port on each
of its active output lanes when the port is not initialized, and when the port is
initialized and there are no packets or control symbols to transmit. The IDLE3
sequence enables a LP-Serial receiver to acquire and retain bit, codeword and lane
alignment, as well as supporting clock compensation.

When idle is transmitted by a LP-Serial port, an idle sequence shall be transmitted
on each of the port’s active output lanes. Ports operating in Nx mode shall not stripe
the idle sequence across the active lanes; there is an idle sequence for each of the N
lanes.

Table 5-9. Skip ordered sequence

Skip ordered sequence

Skip-Marker control codeword

Skip control codeword

Skip control codeword

Skip control codeword

Lane Check control codeword

Seed control codeword

Seed control codeword
RapidIO.org 181

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
An uninitialized LP-Serial port (state variable port_initialized not asserted) shall
continuously transmit an idle sequence on all active output lanes. An initialized
LP-Serial port (state variable port_initialized asserted) shall transmit an idle
sequence on each of its active output lanes when there is nothing else to transmit. An
idle sequence may not be inserted in a packet or control symbol. An initialized
LP-Serial port that becomes uninitialized while transmitting a packet or control
symbol may transmit several codewords per lane of packet and/or control symbol
before beginning the transmission of an idle sequence.

On links operating in 1x mode, the first codeword of the idle sequence shall
immediately follow the last codeword of the preceding control symbol. When a link
is operating in Nx mode, the first column of N idle codewords shall immediately
follow the column containing the last codeword of the preceding control symbol.

5.10.1 Idle Sequence 3 (IDLE3)

The IDLE3 Sequence shall be a continuous sequence of “ordered sequences” and
data codewords containing pseudo-random data. Data codewords containing
pseudo-random data will be referred to as “pseudo-random data codewords”. The
exact sequence of “ordered sequences” and pseudo-random data codewords
comprising a specific IDLE3 sequence is implementation dependent.

The IDLE3 sequence shall be generated according to the following rules.

1. Pseudo-random data codewords shall be generated by first forming data
codewords filled with bytes of 0x00 and then scrambling those data
codewords with the transmitter’s per lane scrambler(s).

2. An ordered sequence, once begun, shall be transmitted in its entirety.

3. When IDLE3 sequence is being transmitted:

A Status/Control ordered sequence shall be transmitted once
every 18 to 53 codewords transmitted per lane.

A Seed ordered sequence shall be transmitted at least once
every 53 codewords transmitted per lane.

The Seed ordered sequences transmitted as part of Skip ordered
sequences can be counted as part of the Seed ordered sequences
that are transmitted to meet the minimum Seed ordered
sequence transmission rate.

The spacing between Status/Control ordered sequences should
be pseudo-random to minimize peaks in the spectrum of the
transmitted signal.

4. If a port is transmitting in 1x mode:
182 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The IDLE3 sequence may begin with a pseudo-random data
codeword or any ordered sequence.

An ordered sequence may begin at any codeword boundary
that is not interior to another ordered sequence.

The IDLE3 sequence may be terminated after the last
codeword of an ordered sequence or after any data codeword.

5. If a port is transmitting in a multi-lane mode:

The IDLE3 sequence begins at a column boundary

An IDLE3 sequence shall be transmitted in parallel on all
active lanes

The sequence of ordered sequences and pseudo-random data
codewords shall be exactly the same for all active lanes.

The IDLE3 sequence and each ordered sequence in the IDLE3
sequence shall begin in the same column for all active lanes and
shall end in the same column for all active lanes, i.e. the IDLE3
sequence and all ordered sequences in the IDLE3 sequence are
aligned across the active lanes.

The IDLE3 sequence may begin with a pseudo-random data
codeword or any ordered sequence, subject to the following
restriction on Status/Control ordered sequence spacing.

Status/Control ordered sequences shall be separated by at least
16 non-Status/Control codeword columns, regardless of
whether the last Status/Control ordered sequence was part of
this IDLE3 sequence or a previous IDLE3 sequence. (This
requirement is to ensure that Status/Control ordered sequence
columns that are used for lane alignment are separated by a
minimum of 16 codeword columns.)

An ordered sequence may begin at any codeword column
boundary that is not interior to another ordered sequence.

The IDLE3 sequence may be terminated after the last
codeword of an ordered sequence or after any pseudo-random
data codeword.

5.10.2 Idle Sequence 3 Generation

A primitive polynomial of at least 7th degree is recommended as the generating
polynomial for the pseudo-random sequence that is used in the generation of the idle
sequence. The polynomials x7 + x6 + 1 and x7 + x3 + 1 are examples of primitive 7th
RapidIO.org 183

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
degree polynomials which may be used as generator polynomials. The
pseudo-random sequence generator is clocked (generates a new pseudo-random
sequence value) once per idle sequence codeword (column). Five of the
pseudo-random sequence generator state bits may be selected to generate the
pseudo-random value for Status/Control ordered sequence spacing. The selection of
the state bits and their weighting has an impact on the distribution of values for
Status/Control ordered sequence spacing.

One way to achieve the random spacing requirements from Section 5.9.1 is to
repeatedly send one of the following sequences depending on the need to transmit
Skip ordered sequences:

1. Sequence starting with a Seed ordered sequence:

One Seed ordered sequence

A pseudo-random number between 14 and 45 of Data
codewords

A Status/Control ordered sequence

2. Sequence starting with a Skip ordered sequence:

One Skip ordered sequence

A pseudo-random number between 9 and 40 of Data
codewords

A Status/Control ordered sequence

The above sequences provide the required spacing of 16 to 47 codewords between
Status/Control ordered sequences. Transmission of Skip ordered sequences should
be minimized, as completion of the seven codeword Skip sequence delays the start
of packet transmission.

It should be kept in mind that transmitting Skip ordered sequences too often can
impact link efficiency if packets arrive for transmission when a Skip ordered
sequence is being transmitted. This is because the Skip ordered sequence is seven
codewords long and it has to be completed before packet transmission can start.

Figure 5-18 shows an example circuit illustrating how this may be done. The clock
ticks whenever a codeword or column is transmitted. Send_idle is asserted whenever
an idle sequence begins and stays asserted until the idle sequence ends. The
equations for start_sc, start_skip and start_seed indicate the states in which to start
the transmission of either Status/Control, Skip or Seed ordered sequences
respectively. The example circuit will provide a pseudo random number between 17
and 32 of codewords before the first Status/Control ordered sequence, and a
pseudo-random number between 16 and 47 of codeword between any of the
following Status/Control ordered sequences. Any equivalent method is acceptable.
184 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-18. Example of a Pseudo-Random Idle Codeword Generator

5.11 Adaptive Equalization
At baud rates of 10 Gbaud and higher, the transmission characteristics of channels
from a few centimeters to 1 meter long vary so much that per lane adaptive
equalization is required to achieve reliable communication over the full range of
channel lengths. Adaptive equalization can be located in the lane transmitter, the
lane receiver, or both. Channels whose length does not exceed a few tens of
centimeters may require only fixed or manually adjusted equalization for reliable
communication.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

pseudo random generator

Q Q Q Q Q QQ

D D D D DD

down counter
Q Q Q Q Q Q

eq_zero

LOAD

send_idle

start_sc

Q

Q
SET

CLR

Dstart_sc

Q

Q
SET

CLR

D start_seed_skip

start_skip = start_seed_skip & send_skip

start_seed = start_seed_skip & !send_skip

where send_skip is asserted when either a skip ordered sequence is
required to be transmitted or when it is determined to opportunistically
transmit a skip ordered sequence .
RapidIO.org 185

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Training of per lane adaptive receive equalization is controlled by the lane receiver.
Reliable training of adaptive receive equalization requires the transmission by the
connected lane transmitter of a signal suitable for training. The mechanism and
algorithms used to train the adaptive receive equalization are implementation
specific and beyond the scope of this specification.

Training of per lane adaptive transmit equalization is also controlled by the
connected lane receiver, or some mechanism that has access to measurements of the
quality of the signal received by the lane receiver after the signal has been processed
by any receive equalization present in the receiver and that has control of the
adaptive transmit equalizer settings. Control of the adaptive transmit equalizer
setting by the connected receiver requires a method for the lane receiver to send
adjustment commands to, and obtain status from, the adaptive equalization in the
connected lane transmitter. For LP-Serial links operating with IDLE3, the
adjustment commands and status are carried in-band in the per lane training signals
transmitted by the connected ports. For interoperability, the training signal, the
format of transmit equalizer training commands and status, and the transmit
equalizer structure, need to be standardized. The mechanism and algorithms used to
train the adaptive transmit equalization are implementation specific and beyond the
scope of this specification.

Note that similar standardization is defined for IDLE2 in Section 4.7.4.1.4, "IDLE2
CS Field Use".

5.11.1 Lane Training/Retraining

Two modes are specified for adjustment of per lane adaptive equalization, training
and retraining.

Training mode is used when a link is initially brought up (starting from the
Port_Initialization state machine SILENT state). It is also used when a port
encounters a problem from which it cannot easily recover and therefore attempts
recovery by completely reinitializing the link. In training mode, the per lane
adaptive equalization is trained with no assumed knowledge of the lane’s
characteristics.

Retraining mode is used when the adaptive equalization has been initially trained
and some equalization adjustment is needed to correct for unacceptable amounts of
drift over time in the characteristics of the lane transmitters, the channels, and/or the
lane receivers. This mode is provided to allow a port to “fine-tune” the adaptive
equalization settings of the lanes it is receiving in less time than would be required
to train the lanes from scratch. Retraining uses the IDLE signal as the training signal
and starts with the current equalizer settings.
186 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.11.2 Ports Operating at 10.3125 and 12.5 Gbaud

Two sets of electrical specifications are specified for LP-Serial links operating at
10.3125 and 12.5 Gbaud, a short run set and a long run set. LP-Serial ports that
support the long run electrical specification are referred to as “long run” ports.
LP-Serial ports that support only the short run electrical specification are referred to
as “short run” ports.

Long run ports shall support both long run and short run electrical specifications and
both long run training as specified in Section 5.11.2.1, and short run training as
specified in Section 5.11.2.2. Short run ports may support short run training. Ports
that support training shall support retraining.

5.11.2.1 Long run 10.3125 and 12.5 Gbaud training

Long run ports shall support adaptive equalizer training using the training frame
structure, DME encoding of the control channel and the protocol specified in
Clauses 72.6.10.1 through 72.6.10.2, and their sub-clauses, the Frame lock and
Coefficient update state machines specified in Clause 72.6.10.4, and the related
variables defined in Clause 72.6.10.3 and the transmitter output waveform and
waveform requirements specified in Clauses 72.7.1.10 and 72.7.1.11 of IEEE
Standard 802.3-2008 (Part 5) for 10GBASE-KR. Training using this training frame
structure and protocol, these state machines and transmitter output waveform
requirements is referred to as “DME training”.

The transmitter output waveform specified in Clause 72.1.1.11 requires a 3-tap
transversal transmit equalizer, or its equivalent, to meet the long-run transmitter
output waveform specifications. A 3-tap transversal filter is shown in Figure 72-11
of Clause 72.7.1.10 of IEEE Standard 802.3-2008 (Part 5). As specified in IEEE
Standard 302.3-2008, the training frame structure supports control of 3 transmit
equalizer taps. Using the same allocation of four bits per tap, two bits for command
and two bits for status, reserved bits in the training frame Control Channel allow
expansion to control a total of 7 transmit equalizer taps.

The DME training signal is mostly 10.3125 or 12.5 Gbaud pseudo-random data and
is suitable for training any adaptive receive equalization present in the receiver.

Implementations shall implement a timeout on DME transmit emphasis requests.
The timeout shall be controlled by Port n Link Timers Control CSRs Emphasis
Command Timeout field.

5.11.2.2 Short run 10.3125 and 12.5 Gbaud training

The short run electrical specification is taken from Annex 83A (XLAUI/CAUI) of
IEEE Standard 802.3-2008. It requires a 2-tap transversal transmit equalizer, or its
equivalent, to meet the short run transmitter output waveform specifications. But it
does not require that the short run transmit equalizer’s tap settings be adjustable –
RapidIO.org 187

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
there is no method specified for control of the transmit equalizer’s tap setting by the
connected lane receiver.

LP-Serial short run 10.3125 and 12.5 Gbaud lane transmitters may implement
adaptive transmit equalization. Short run ports that implement adaptive transmit
equalization shall support adjustment of each lane’s adaptive transmit equalizer’s
settings by the connected lane receiver.

The short run training signal shall be IDLE3. Since IDLE3 is composed of 64b/67b
data codewords containing pseudo-random data and ordered sequences, each
comprised of multiple 64b/67b control codewords, short run training is also referred
as “codeword training” or “CW training”.

CW training commands shall be carried in the “Transmit equalizer command” and
“Transmit equalizer tap” fields of Status/Control control codewords. The “CW
training” transmit equalizer commands are a super-set of the coefficient update
commands provided in the “Coefficient update” field of the long run DME training
frame with the exception that only one tap-specific coefficient update command can
be issued at a time. The super-set approach was done to ease the design on the
adaptive equalizer training mechanism by minimizing the differences between the
“DME” and “CW” coefficient update command sets.

When the “Transmit equalizer command” is tap specific, the tap number shall be
specified in the “Transmit equalizer tap” field; otherwise, the “Transmit equalizer
tap” field shall be set to 0x0 on transmission and ignored on reception. The Transmit
equalizer tap” fields support a total of 16 transmit equalizer taps (-8 to +7) to allow
the use of CW training at baud rates greater than 10.3125 and 12.5 Gbaud that may
require a transmit equalizer with more than three taps.

CW training command status shall be carried in the “Transmit equalizer status” field
of Status/Control control codewords. The CW training command status values are a
super-set of the coefficient update status values in the status report field on the DME
training frame again with the exception that the status for only one tap-specific
command can reported at a time. The super-set approach was done to ease the design
on the adaptive equalizer training mechanism by minimizing the differences
between the “DME” and “CW” coefficient update status sets.

CW training shall use the following handshake protocol:

1. A transmit equalizer command shall be considered asserted when the value
of the “Transmit equalizer command” field is different from “hold”;
otherwise, no transmit equalizer command is asserted.

2. The “Transmit equalizer tap” field shall be considered an extension of the
“Transmit equalizer command” field. The “Transmit equalizer tap” field shall
have the appropriate value and the value shall not change while a “Transmit
equalizer command” is asserted.

3. The assertion of a “Transmit equalizer command” shall occur only when the
value of “Transmit equalizer status” is “not_updated”.
188 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4. Once a “Transmit equalizer command” is asserted, it shall remain asserted
and unchanged in value until the value of “Transmit equalizer status” is
different from “not_updated” or the command has been asserted for the
timeout period configured in Port n Link Timers Control CSRs Emphasis
Command Timeout field. At that point, the command shall be de-asserted
within 5 usec of whichever of the two events occurred first. If the command
timed out, the command shall be deasserted for the timeout period configured
in the Emphasis Command Timeout field.

5. Once a “Transmit equalizer status” value other than “not_updated” is
asserted, it shall remain asserted until the value of “Transmit equalizer
command” returns to “hold”.

5.11.2.3 10.3125 and 12.5 Gbaud retraining

Retraining shall use the same mechanisms and protocol as specified in Section
5.11.2.2 for short run training.

The need for retraining a trained lane is indicated by the assertion of the lane’s
lane_degraded signal. The lane_degraded signal for lane k shall be generated by the
mechanism that controls the settings of the lane k adaptive equalization. It is
assumed that this mechanism can monitor the quality of the signal received by the
lane receiver after the signal has been processed by any receive equalization present
in the receiver. If no such metric is available during normal data reception, the
lane_degraded signals may be permanently de-asserted.

Retraining is enabled by the “10G Retraining enable” bit in the Port n Control 2
CSRs. Retraining shall occur only when the 10G Retraining enable bit is asserted
and one or more of the lanes asserting lane_trained are also asserting lane_degraded.
When this condition occurs, all lanes asserting lane_trained shall be retrained
regardless of whether or not they are asserting lane_degraded. Retraining all of the
trained lanes at once minimizes the number of times the link must be taken down for
retraining.

To avoid interaction between retraining and changing the transmission width of one
direction of a link when the link is operating in asymmetric mode, retraining and
transmission width changes shall be serialized so that only one such operation can
occur at a time.

5.12 LP-Serial Link Widths
LP-Serial links may have 1, 2, 4, 8, or 16 lanes per direction. All LP-Serial ports
shall support operation on links with one lane per direction (1x mode) and may
optionally support operation over links with 2, 4, 8 and/or 16 lanes per direction
(respectively 2x mode, 4x mode, 8x mode and 16x mode). For example, a port that
supports operation over 8 lanes per direction (8x mode) must also support operation
over one lane per direction (1x mode) and may optionally also support operation
RapidIO.org 189

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
over 2 and/or 4 lanes per direction (2x mode and/or 4x mode). The requirement that
all LP-Serial ports support 1x mode is to ensure that any pair of LP-Serial ports that
are capable of operating at the same baud rate also support a common link width
over which they can always communicate with each other.

LP-Serial ports that support operation over two or more lanes per direction shall
support 1x mode operation over two of those lanes, lane 0 and lane R (the
redundancy lane). If the port supports operation over at most two lanes per direction
(2x mode), lane R shall be lane 1. If the port supports operation over more than two
lanes, lane R shall be lane 2. Requiring ports that support operation over links with
two or more lanes per direction to also support 1x mode over two lanes per direction
provides a redundant fallback capability that allows communication over the link at
reduced bandwidth in the presence of lane failure, regardless of the lane that fails.

5.13 Transmission Rules

5.13.1 Order of Operation

The sequence of codewords containing packets and control symbols transmitted
over a 64b/67b encoded LP-Serial link shall be as if they had been 64b/67b encoded,
striped (if an Nx link), scrambled and selectively codeword inverted in that order
regardless of the order in which these operation were actually performed.

5.13.2 1x Ports

A 1x LP-Serial port shall 64b/67b encode and transmit the character stream of
control symbols and packets received from the upper layers in the order the
characters were received from the upper layers. When neither control symbols nor
packets are available from the upper layers for transmission, an idle sequence shall
be fed to the input of the 64b/67b encoder for encoding and transmission.

On reception, the codeword stream is 64b/67b decoded and the resulting character
stream of error-free control symbols and packets shall be passed to the upper layers
in the order the characters were received from the link.

The data stream shall be scrambled before transmission and descrambled after
reception as specified in Section 5.5.4.

Figure 5-19 shows an example of IDLE3 sequence, Control Symbol 64 and packet
transmission on a 1x LP-Serial link.
190 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-19. 1x Typical Data Flow with Control Symbol 64

5.13.3 Nx Ports Operating in 1x Mode

When a Nx port is operating in 1x mode, the character stream of control symbols and
packets received from the upper layers shall be fed in parallel to both lanes 0 and R
for encoding and transmission in the order the characters were received from the
upper layers. (The character stream is not striped across the lanes before encoding
as is done when operating in Nx mode.) When neither control symbols nor packets
are available from the upper layers for transmission, an idle sequence shall be fed in
parallel to both lane 0 and lane R for 64b/67b encoding and transmission on lanes 0
and R.

On reception, the codeword stream from either lane 0 or R shall be selected
according to the state of the 1x/Nx Port_Initialization state machine (Section
5.19.7), decoded and the error-free control symbols and packets passed to the upper
layers.

When a port that optionally supports and is enabled for both 2x mode and a wider
Nx mode is operating in 1x, the port shall support both lanes 1 and 2 as redundancy

Time

Lane Check

Pad/Control Symbol CSB Codeword

CS continued/Pad CSE Codeword

Data Codeword

Control Codeword

Status and Control Control Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Data Codeword

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Status and Control Control Codeword Skip Marker

Control CodewordSkip

Control CodewordSkip

Control CodewordSkip

Control Codeword

Seed Control Codeword

Seed Control Codeword

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Data Codeword

Data CodewordIDLE – All 0's

IDLE – All 0's

Pad/Start Of Packet CSB Codeword

CS continued/Data CSE Codeword

Data Data Codeword

Data Data Codeword

Data Data Codeword

Data/End Of Packet CSB Codeword

Control Symbol CSEB Codeword

CS continued/Pad CSE Codeword

Pad/Start Of Packet CSB Codeword

CS continued/Data CSE Codeword

Data Data Codeword

Data Data Codeword

Data/Control Symbol CSB Codeword

CS continued/Data CSE Codeword

Data Data Codeword

Data Data Codeword

Data/Start Of Packet CSB Codeword

CS continued/Data CSE Codeword

Data Data Codeword

Data Data Codeword

Data Data Codeword

Data Data Codeword
RapidIO.org 191

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
lanes. The port shall transmit the 1x mode data stream on lanes 0, 1 and 2 and
attempt to receive 1x mode data stream on lanes 0, 1 and 2. The port shall select
between using the data received on lane 0 or the data received on the redundancy
lane which may be either lane 1 or lane 2 depending on the connected port. Unless
forced to use the redundancy lane, the port shall use the data stream received on lane
0 if it is available. The 1x/2x/Nx Port_Initialization state machine specified in
Section 5.19.7.1 shall be used for a port supporting both 2x and a wider Nx mode to
comply with the above requirements.

Packet data characters shall be scrambled before transmission and descrambled after
reception as specified in Section 5.5.4.

Once a Nx port is initialized to a 1x mode, the port may elect to disable the output
driver of the lanes which was not selected for reception by the initialization state
machine of the connected port. Since the ports connected by the link may not be
receiving on the same lane (one port could be receiving on lane 0 and the other port
receiving on lane R), the information in the “Receive Width” field of received
Status/Control Control Codeword can be used to determine which lanes can be
output disabled. It is recommended that the mechanism for disabling the output
driver be under software control.

5.13.4 Kx Link Striping and Transmission Rules

Transmitters operating in Kx multi-lane mode shall stripe control symbols and
packets received from the upper layers across the K active output lanes in the order
the characters were received from the upper layers. Here Kx is used as the active
width of the transmitter as opposed to the Nx initial width of the port negotiated at
the time of link initialization. Each lane shall then 64b/67b encode and transmit the
codewords assigned to it. When neither control symbols nor packets are available
from the upper layers for transmission, an idle sequence shall be fed to each of the
K lanes for 64b/67b encoding and transmission.

Packets and control symbols shall be striped across the K active lanes beginning
with lane 0. The order of striping shall be lane 0 through K-1 in order of increasing
lane number and then repeating beginning again with lane 0.

If part way through a column, no more packets or control symbols are available for
transmission, the column shall be filled (padded) with data codewords containing
bytes of 0x00 until either a control symbol or packet becomes available for
transmission or the end of the column is reached. The data codewords of 0x00 bytes
become data codewords of pseudo-random data after scrambling by the transmitter’s
lane scrambler(s).

The first control symbol after an IDLE3 sequence shall start at the beginning of a
column.

After striping, each of the K streams of characters shall be independently 64b/67b
encoded and transmitted.
192 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
On reception, each lane shall be 64b/67b decoded.

Data characters shall be scrambled before transmission and descrambled after
reception as specified in Section 5.5.4.

After decoding, the K lanes shall be aligned. The Status/Control control codewords
transmitted as part of an idle sequence provide the information needed to perform
alignment. After alignment, the columns are destriped into a single character stream
and passed to the upper layers.

The lane alignment process eliminates the skew between lanes so that after
destriping, the ordering of characters in the received character stream is the same as
the ordering of characters before striping and transmission. Since the minimum
number of non Status/Control codewords between Status/Control control codewords
is 16, the maximum lane skew that can be unambiguously corrected is the time it
takes to transmit 7 codewords on a lane.

Figure 5-20 shows an example of IDLE3 sequence, Control Symbol 64 and packet
transmission on a 4x link.

Figure 5-20. Typical 4x Data Flow with Control Symbol 64

Time

Lane Check

Data

IDLE – All 0's

Skip Marker

Skip

Skip

Skip

Seed

Seed

IDLE – All 0's

Pad/Start Of Packet CS continued/Data Data

Data Data Data/End Of Packet Control Symbol

CS continued/Pad Pad/Start Of Packet CS continued/Data Data

Data Data/Control Symbol CS continued/Data Data

Data Data/Start Of Packet CS continued/Data

Data Data

Data

Data

Lane Check

IDLE – All 0's

Skip Marker

Skip

Skip

Skip

Seed

Seed

IDLE – All 0's

Lane Check

IDLE – All 0's

Skip Marker

Skip

Skip

Skip

Seed

Seed

IDLE – All 0's

Lane Check

IDLE – All 0's

Skip Marker

Skip

Skip

Skip

Seed

Seed

IDLE – All 0's

Data/End Of Packet

CS continued/Pad PAD – All 0's PAD – All 0's PAD – All 0's

IDLE – All 0's IDLE – All 0's IDLE – All 0's IDLE – All 0's

IDLE – All 0's IDLE – All 0's IDLE – All 0's IDLE – All 0's

Lane 0 Lane 1 Lane 2 Lane 3
RapidIO.org 193

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.14 Effect of Transmission Errors and Error Detection
Table 5-10 lists all possible codeword corruptions that can be caused by either single
bit errors or burst errors. The notation /X/ => /Y/ means that the codeword of type
/X/ has been corrupted by an error into the codeword of type Y. If the corruption
results in a codeword that has an invalid type field, the notation /X/ => /INVALID/
is used. The table provides the information required to detect all isolated
transmission errors on links operating with idle sequence 3.

Table 5-10. Codeword Corruption Caused by Bit Errors

Corruption Description Detection

/Control Codeword/,
/Data Codeword/ => /INVALID/

Codeword corruption resulting in
invalid type field

Detectable as an error when decoding the codeword.

/Descrambler Seed Control Codeword/,
/Status/Control Control Codeword/,
/Lane Check Control Codeword/,
/Skip-Marker Control Codeword/ or
/Skip Control Codeword/
=> /Different Control Codeword/

Non-Symbol Bearing control
codeword corrupted to different
control codeword

Detectable as an error when validating the ordered
sequence. If the errored codeword is the first of an
ordered sequence it may be detected as multiple
errors.

/Descrambler Seed Control Codeword/,
/Status/Control Control Codeword/,
/Lane Check Control Codeword/,
/Skip-Marker Control Codeword/ or
/Skip Control Codeword/
=> /Data Codeword/

Non-Symbol Bearing control
codeword corrupted to data
codeword.

Detectable as an error when validating the ordered
sequence. Additionally, it may be detectable by the
fact that the Data Codeword is not expected at this
position on the link.

/CSB Control Codeword/,
/CSEB Control Codeword/ or
/CSE Control Codeword/
=> /Different Control Codeword/

Symbol Bearing control codeword
corrupted to different control
codeword.

Detectable as an error when validating the sequence of
Control Codewords.

/CSB Control Codeword/,
/CSEB Control Codeword/ or
/CSE Control Codeword/
=> /Data Codeword/

Symbol Bearing control codeword
corrupted to data codeword.

Detectable as an error when validating the sequence of
Control Codewords.

/Data Codeword/
=> /CSB Control Codeword/,
/CSEB Control Codeword/ or
/CSE Control Codeword/

Data codeword corrupted to Symbol
Bearing control codeword.

Detectable as an error when validating the sequence of
Control Codewords.

/Data Codeword/
=> /Descrambler Seed Control
Codeword/,
/Status/Control Control Codeword/,
/Lane Check Control Codeword/,
/Skip-Marker Control Codeword/ or
/Skip Control Codeword/

Data codeword corrupted to
Non-Symbol Bearing control
codeword.

Detectable as an error when validating the ordered
sequence.
Additionally, this may be detectable as packet CRC
error if the Data Codeword is part of a packet.

/Control Codeword/,
/Data Codeword/
=> /Reserved Control Codeword/

Any codeword corrupted to a
reserved control codeword.

Detectable as an error when validating sequence of
Control Codewords, or detectable as an error when
validating an ordered sequence.
Additionally, this may be detectable as packet CRC
error if the Data Codeword is part of a packet.
194 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.15 Retimers and Repeaters
The LP-Serial Specification allows “retimers” and “repeaters”. Retimers amplify a
weakened signal, but do not transfer jitter to the next segment because they use a
local transmit clock. Repeaters also amplify a weakened signal, but transfer jitter to
the next segment because they use a transmit clock derived from the received data
stream. Retimers allow greater distances between end points at the cost of additional
latency. Repeaters support less distance between end points than retimers and only
add a small amount of latency.

5.15.1 Retimers

A retimer shall comply with all applicable AC specifications found in Chapter 12,
"Electrical Specification for 10.3125 and 12.5 Gbaud LP-Serial Links". Retimers
shall reset the jitter budget thus extending the transmission distance for the link. A
RapidIO link shall support a maximum of two retimers.

A retimer is aware of the PMA encoding of RapidIO. The retimer is not otherwise
required to be aware of the RapidIO protocol. The retimer has no registers that can
be accessed from RapidIO. A retimer shall perform codeword synchronization and
selective codeword inversion on the received bit stream, and shall repeat the
received codewords after serializing the bitstream and performing selective
codeword inversion again on transmission.

Retimers may use a transmit clock derived from a local reference. Retimers shall
perform clock tolerance compensation between the received bit stream and
transmitted bit stream. A retimer is aware of the Skip ordered sequence and the
function of Skip codeword insertion and removal. A retimer may insert up to one
Skip codeword immediately following a Skip Marker codeword, or remove one Skip
codeword that immediately follows a Skip Marker codeword. Insertion or removal
of a Skip codeword can affect the running disparity of the lane, so the retimer shall
implement selective codeword inversion. Any insertion or removal of Skip
codewords in a N-lane retimer shall be done on a full column.

A N-lane retimer shall perform lane synchronization and deskew, in exactly the
same way a RapidIO device implementing the LP-Serial Physical Layer does when
synchronizing inputs during initialization and startup. A Nx mode retimer shall
synchronize and align all lanes that are driven to it. Therefore, such a retimer shall
support the degradation of an input Nx link to a 1x link on either lane 0 or R. If any
link drops out, the retimer shall continue to pass the active links, monitoring for the
compensation sequence and otherwise passing through whatever codewords appear
on its inputs. A retimer may optionally not drive any outputs whose corresponding
inputs are not active.

A retimer shall only retime links operating at the same width (i.e. cannot connect a
link operating at 1x to a link operating at Nx). A retimer may connect a 1x link to a
Nx link that is operating in 1x mode.
RapidIO.org 195

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Retimers do not check for code violations. Codewords received on one port are
transmitted on the other regardless of code violations.

5.15.2 Repeaters

A repeater is used to amplify the signal, but does not retime the signal, and therefore
can add additional jitter to the signal. It does not compensate for clock rate variation.
The repeater repeats the received codewords as the bits are received by sampling the
incoming bits with a clock derived from the bit stream, and then retransmitting them
based on that clock. Repeaters may be used with Nx links but lane-to-lane skew may
be amplified. Repeaters do not interpret or alter the bit stream in any way.

5.16 Port Initialization
This section specifies the port initialization process. The process includes detecting
the presence of a partner at the other end of the link (a link partner), establishing bit
synchronization and codeword boundary alignment and if present, adjusting any
adaptive equalizers. The process also includes determining if the connected port
supports an Nx mode in addition to 1x mode and selecting 1x or Nx mode operation,
then, if 1x mode is selected, selecting lane 0 or lane R (the redundancy lane, lane 1
for 2x ports and lane 2 for 4x, 8x or 16x ports) for link reception.

Port initialization may optionally include baud rate discovery.

The initialization process is controlled by several state machines. The number and
type of state machines depends on whether the port supports only 1x mode (a 1x
port) or supports both 1x and one or more Nx modes (a 1x/Nx port). In either case,
there is a primary state machine and one or more secondary state machines. The use
of multiple state machines results in a simpler overall design. As might be expected,
the initialization process for a 1x port is simpler than and is a subset of the
initialization process for a 1x/Nx port.

The port initialization process supports an optional test mode that allows ports that
support more than one multi-lane mode of operation to enable and monitor the
operation of the inactive lanes when the port is operating at less than maximum
width. The performance of inactive lanes can be monitored only if the inactive lanes
are connected to and supported by the connected port and the test mode is
implemented and enabled in both ports. The test mode is enabled with the “Enable
inactive lanes” bit defined in Section 7.6.9. The initiation, implementation and
interpretation of tests conducted using this test mode are beyond the scope of this
specification.

The initialization process for 1x, 1x/Nx ports, and ports supporting 1x mode and
multiple Nx modes is both described in text and specified with state machine
diagrams. In the case of conflict between the text and a state machine diagram,
the state machine diagram takes precedence.
196 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.16.1 1x Mode Initialization

The initialization process for ports that support only 1x mode shall be controlled by
two state machines, 1x_Initialization and Lane_Synchronization. 1x_Initialization
is the primary state machine and Lane_Synchronization is the secondary state
machine. The operation of these state machines is described and specified in Section
5.19.7.1 and Section 5.19.4 respectively.

5.16.2 1x/Nx Mode Initialization

The initialization process for ports that support both 1x and a Nx mode is controlled
by a primary state machine and five or more secondary state machines. The primary
state machine is the 1x/Nx_Initialization state machine. Lane_Synchronization[0]
through Lane_Synchronization[N-1] (one for each of the N lanes),
Codeword_Lock[0] through Codeword_Lock [N-1], and Lane_Alignment (one for
each supported Nx mode) are the secondary state machines. The operation of the
secondary state machines is described in Section 5.19.4 through Section 5.19.6
respectively.

The 1x/Nx_Initialization state machine provides a degree of LP-Serial link width
auto-negotiation. The goal of the auto-negotiation is to ensure that any connected
combination of 1x, 1x/2x, 1x/4x, 1x/8x or 1x/16x LP-Serial ports that are configured
in some manner to operate at the same baud rate will automatically find a link width
over which they can communicate. For example if a 1x/4x port is connected to a
1x/8x port, they will auto-negotiate to operate in 1x mode. If however the 1x/8x port
optionally also supports 4x mode (making it a 1x/4x/8x port), then the ports will
auto-negotiate to operate in 4x mode.

In most configurations, the auto-negotiation also ensures that a pair of connected
multi-lane LP-Serial ports configured in some manner to operate at the same baud
rate will find a link width over which they can communicate in the presence of a lane
failure. For example, if two 1x/4x ports are connected and lane 0 is broken in one
direction, the ports will auto-negotiate to operate in 1x mode using lane 0 in the
direction that lane 0 is operational and lane 2 in the direction that lane 0 is broken.
This feature works only for pairs of ports that support the same redundancy lane. It
does not work when a 1x/2x port is connected to a 1x/4x or wider port.

5.16.3 Baud Rate Discovery

Baud rate discovery is optional. If implemented, baud rate discovery occurs during
the SEEK state of the Port Initialization state machine. Ports that implement baud
rate discovery shall use the following algorithm.

1. When the port enters the SEEK state, it begins transmitting an idle sequence
on lane 0 and, if the port supports a Nx mode, on lane R, the 1x mode
redundancy lane. The idle sequence shall be transmitted at the highest lane
baud rate that is supported by the port and that is enabled for use.
RapidIO.org 197

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2. The port shall then look for an inbound signal on lane 0 or lane R of the link
from a connected port. The method of detecting the presence of an inbound
signal from a connected port is implementation specific and outside the scope
of this specification.

3. Once an inbound signal is detected, the port shall determine the baud rate of
the signal. The method of detecting the baud rate of the signal is
implementation specific and outside the scope of this specification.

4. If the baud rate of the inbound signal is the same as the baud rate at which the
port is transmitting, the link shall operate at that per lane baud rate until the
port reenters the SEEK state and the baud rate discovery process is complete.

5. If the baud rate on the inbound signal is less than the baud rate of the idle
sequence being transmitted by the port, the port shall reduce the baud rate at
which it is transmitting to the next lowest baud rate that it supports and that
is enabled for use and go to step 2.

6. If the baud rate on the inbound signal is greater than the baud rate of the idle
sequence being transmitted by the port, the port shall continue transmitting at
the current baud rate go to step 2.

An informational state diagram for the Baudrate_Discovery state machine is shown
in Figure 5-21.

The techniques and algorithms used to compare the baud rates of the signals being
transmitted and received are implementation specific and beyond the scope of this
specification.
198 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-21. Baudrate_Discovery state machine (Informational)

5.17 Asymmetric Operation
“Asymmetric” operation of an LP-Serial link is when the link operates with
more lanes actively carrying control symbols and packets in one direction than
the other. Support for asymmetric operation is optional. Asymmetric operation
allows the directional bandwidth of a link and the power consumption of the
ports connected by the link to be tailored to the performance requirements for
the link.

All pairs of connected LP-Serial ports initialize to the widest symmetric lane
width that is enabled and operational in both of the connected ports. Once both
ports of a connected pair have completed port initialization (port_initialized
asserted in both ports), the ports shall enter asymmetric mode only if both ports
support asymmetric mode, asymmetric mode is enabled in both ports, and both
ports have initialized to the same multi-lane width. Ports that initialize to a 1x
mode shall not enter asymmetric mode.

WAIT

xmt_baudrate = max

seek_lanes_drvr_oe

COMPARE

DECREMENT

xmt_baudrate =

DONE

!seek_lanes_drvr_oe

next_lowest_baudrate

!seek_lanes_drvr_oe

seek_lanes_drvr_oe &
(rcv_baudrate >= xmt_baudrate) &
(lane_sync[0] | lane_sync[R]

seek_lanes_drvr_oe &
rcv_baudrate < xmt_baudrate
RapidIO.org 199

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When both ports connected by a link are in asymmetric mode, the link is referred
to as being in asymmetric mode. An LP-Serial link shall not operate
asymmetrically unless the link is in asymmetric mode. Once a link is in
asymmetric mode, the width of each direction of transmission can be changed
independently.

When in asymmetric mode, link directions shall operate only in width modes that
are enabled in both of the connected ports and shall not operate in width modes that
are wider than the symmetric width of the link at the time the connected ports
completed port initialization and entered asymmetric mode.

Being in asymmetric mode shall not prevent a link from operating symmetrically.
For example, consider an LP-Serial link connecting two 1x/4x ports with 4x mode
enabled in both ports. When in asymmetric mode, this link can operate in 4x mode
in both direction, 4x mode in one direction and 1x in the other direction, or 1x mode
in both directions.

5.17.1 Port Transmission Width

5.17.1.1 Port transmission width commands

When a link operating with IDLE3 is in asymmetric mode, the transmission width
for a specific direction of the link shall be under control of the port transmitting in
that direction. In asymmetric mode, the transmission width of a port is changed by
issuing a “transmit width port command” to the port.

There can be multiple sources for the transmit width port commands issued to a
specific port. If multiple sources are present, a mechanism shall be provided to
prioritize and serialize the transmit width port commands such that at most only one
command is active at a specific time. Such a mechanism is implementation specific
and beyond the scope of this specification.

A “transmit width port command” that is received by a port that is not in asymmetric
mode shall be negatively acknowledged (NACKed) and discarded.

A transmit width port command that directs the port to transmit at a width that is not
enabled in the port, or that is greater than the width to which the port initialized, shall
be negatively acknowledged (NACKed) and discarded.

The time limit of 250 usec used on the following sections shall be controlled by the
“Transmit Width Command Timeout” field from the Port n Link Timers Control 3
CSRs. Note that the two ports connected should use the same value in their
“Transmit Width Command Timer”.

5.17.1.1.1 Transmit width port command protocol

Transmit width port commands shall be presented to a port in a 3-bit “Transmit
width port command” field encoded as specified in Table 5-11. This command is
written into the Port n Power Management CSRs bits 16-18.
200 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A port shall respond to a transmit width port command through a 2-bit “Transmit
width port command status” field encoded as specified in Table 5-12. This response
can be read from the Port n Power Management CSRs bits 19-20.

Transmit width port commands shall be presented to and acknowledged by a port
using the following handshake protocol:

1. A transmit width port command shall be considered asserted if the Transmit
width port command field has a value other than “Hold”; otherwise, no
transmit width port command is asserted.

2. The assertion of a transmit width port command shall occur only when the
Transmit width port command status field has the value “no status”.

3. Once asserted, a transmit width port command shall remain asserted and
unchanged until either the command has been acknowledged (the value of the
Transmit width port command status field is “ACK” or “NACK”), or the
command has been asserted continuously for 250 usec. The command shall
then be de-asserted within 250 usec of whichever event occurs first.

4. A port shall respond to a transmit width port command by changing the value
of the Transmit width port command status field to “ACK” or “NACK”
within 250 usec of the assertion of the command.

Table 5-11. Transmit width port command

Transmit width port
command [0:2]

Definition

0b000 Hold - no command

0b001 Transmit in 1x mode

0b010 Transmit in 2x mode

0b011 Transmit in 4x mode

0b100 Transmit in 8x mode

0b101 Transmit in 16x mode

0b110 Reserved

b0111 Reserved

Table 5-12. Transmit width port command status

Transmit width port
command status [0:1]

Definition

0b00 No status

0b01 ACK - the command has been successfully
executed

0b10 NACK - the command has for some reason not
been executed and is rejected

0b11 Reserved
RapidIO.org 201

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5. A port shall return the value of the Transmit width command status field to
“no status” within 250 usec of the de-assertion of a transmit width port
command.

5.17.1.2 Port transmission width requests

Either port of an LP-Serial link operating in asymmetric mode with IDLE3 can
request that the connected port change its transmit width. “Transmission width
requests” shall be sent to the connected port in the “Transmit width request” field of
Status/Control control codewords transmitted by the port. “Transmit width requests”
shall be acknowledged using the “Transmit width request pending” bit in
Status/Control control codeword transmitted by the port receiving the request. “As
its name implies, a “Transmit width request” is just a request. It is not a command.
A port receiving a “Transmission width request” can either honor, or ignore and
discard, a request after acknowledging the request.

Transmit width requests and acknowledgements shall use the following handshake
protocol. The protocol applies to the “Transmit width request” field in
Status/Control control codewords transmitted by one port (the requesting port) of the
pair of ports connected by an LP-Serial link and the “Transmit width request
pending” bit in Status/Control control codewords transmitted by the other port (the
requested port) of the connected pair.

1. A transmit width request shall be considered asserted if the “Transmit width
request” field has a value other than “Hold”.

2. The assertion of a transmit width request shall occur only when the “Transmit
width request pending” bit is de-asserted.

3. Once asserted, a transmit width request shall remain asserted and unchanged
until either the request has been acknowledged (the “Transmit width request
pending” bit is asserted) or the request has been asserted continuously for
250 usec. At which point the request shall then be de-asserted within
250 usec of whichever event occurred first.

4. A port shall respond to a transmit width request by asserting the “Transmit
width request pending” bit within 250 usec of the assertion of the request.

5. The port receiving the transmit width request shall de-assert its “Transmit
width request pending” bit within 250 usec of the de-assertion of the request.
Up to this limit, the responding port can delay the de-assertion of the
Transmit width request pending bit to control the rate of transmit width
requests.

5.17.2 Port Receive Width

The receive width of a port operating in asymmetric mode with IDLE3 shall be
controlled by “receive width link commands” received by the port from the
connected port. Receive width link commands shall be transported across the link in
the “Receive width command” field of Status/Control control codewords. Receive
202 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
width acknowledgements shall be communicated using the “Receive width
command ACK” and “Receive width command NACK” bits of Status/Control
control codewords.

Receive width link commands shall be issued by a port to the connected port when
the port has received an executable “transmit width port command”. No more than
one receive width link command shall be active at a specific time.

When in asymmetric mode, a port shall receive only in width modes that are enabled
in the port and that are no wider that the symmetric width of the link at the time the
port completed port initialization and entered asymmetric mode. Receive width link
commands to receive in other width modes shall be negatively acknowledged
(NACKed) and discarded.

The time limit of 62.5 usec used on the following subsection shall be controlled by
the “Receive Width Command Timeout” field from the Port n Link Timers Control
3 CSRs. Note that the two ports connected should use the same value in their
“Receive Width Command Timer”.

5.17.2.1 Receive Width Link Command Protocol

Receive width link commands shall use the following handshake protocol:

1. A Receive width link command shall be considered asserted if the Receive
width link command field has a value other than “Hold”; otherwise, no
receive width link command is asserted.

2. The assertion of a receive width link command shall occur only when the
“Receive width command ACK” and the “Receive width command NACK”
bits are de-asserted.

3. Once asserted, a receive width link command shall remain asserted and
unchanged until either the command has been acknowledged (either
“Receive width command ACK” or “Receive width command NACK” is
asserted) or the command has been asserted continuously for 62.5 usec. The
command shall then be de-asserted within 62.5 usec of whichever event
occurred first.

4. A port shall respond to a receive width link command by asserting “Receive
width command ACK” or “Receive width command NACK” within
62.5 usec of the assertion of the command.

5. A port shall de-assert “Receive width command ACK” and “Receive width
command NACK” within 62.5 usec of either the de-assertion of a receive
width link command or the continuous assertion of “ACK” or “NACK” for
62.5 usec, whichever occurs first.
RapidIO.org 203

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.18 Structurally Asymmetric Links
Structurally asymmetric link (SAL) operation, as defined in section 4.13,
"Structurally Asymmetric Links", may be supported by 64b/67b encoded links.

Behavioral requirements for SAL RX Width and SAL TX Width field values in the
Port n SAL Control and Status CSR for 64b/67b encoded links are specified below
in terms of which lanes are enabled for transmission and reception, what data is
transmitted on each lane, and which lanes are enabled for reception. When SAL RX
Width or SAL TX Width values are non-zero, DME_mode[k] shall be deasserted for
all k lanes associated with the port, and retrain_en shall be deasserted.

Table 5-13. Structurally Asymmetric Link Tx/Rx Width Behaviors

SAL RX Width SAL TX Width Description

0b0000
(No Override)

0b0000
(No Override)

No effect on receive or transmit width.

0b0001
(1x, lane 0)

0b0001
(1x, lane 0.
Disable lanes 1, 2,
and 3)

Transmitter shall transmit a valid 1x IDLE3 bit stream on lane 0. Transmitter shall
ensure that the link partner cannot detect a valid bit stream on lanes 1, 2, and 3.

Receiver shall enable reception on lane 0 only.

Receiver and transmitter shall operate as a 1x port.

0b0010
(1x, lane 1)

0b0010
(1x, lane 1.
Disable lanes 0, 2,
and 3)

Transmitter shall transmit a valid 1x IDLE3 bit stream on lane 1. Transmitter shall
ensure that the link partner cannot detect a valid bit stream on lanes 0, 2, and 3.

Receiver shall enable reception on lane 1 only.

Receiver and transmitter shall operate as a 1x port.

0b0011
(1x, lane 2)

0b0011
(1x, lane 2.
Disable lanes 0, 1,
and 3)

Transmitter shall transmit a valid 1x IDLE3 bit stream on lane 2. Transmitter shall
ensure that the link partner cannot detect a valid bit stream on lanes 0, 1, and 3.

Receiver shall enable reception on lane 2 only.

Receiver and transmitter shall operate as a 1x port.

0b0100
(1x, lane 3)

0b0100
(1x, lane 3.
Transmit Lane 0
compliant data on
lane 3. Disable
lanes 0, 1, and 2)

Transmitter shall transmit a valid 1x lane 0 IDLE3 bit stream on lane 3. Transmitter
shall ensure that the link partner cannot detect a valid bit stream on lanes 0, 1, and 2.

Receiver shall behave as if data received on lane 3 was actually received on lane 0.

Receiver and transmitter shall operate as a 1x port.

0b0101
(2x, lanes 0 & 1.
Lanes 2 and 3 are
not used)

0b0101
(2x, lanes 0 & 1.
Disable lanes 2
and 3)

Transmitter shall send valid 2x mode IDLE3 bit streams on lanes 0 and 1. Transmitter
shall ensure that the link partner cannot detect a valid bit stream on lanes 2 and 3.
Transmitter shall operate as a 2x port.

Receiver shall operate as a 2x/1x port.
204 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
It is strongly recommended that devices which support structurally asymmetric links
operating at Baud Rate Class 3 speeds implement register control of the transmit
emphasis coefficient set.

5.19 State Machines
In the following sections, state machines are specified using state diagrams and
described using text. In the case of conflict(s) between the descriptive text and a state
machine diagram, the state machine diagram takes precedence.

While only the detailed state machine diagram for the 1x/2x/Nx state machine is
shown in Section 5.19.7, "Port Initialization State Machine", the initialization state
machine may alternatively support any of the combinations of widths as described
for lower data rates in Section 4.12.4.

5.19.1 State Machine Conventions, Functions and Variables

5.19.1.1 State Machine Conventions

The conventions used in state machine specification are as follows:

0b0110
(2x, lanes 2 & 3)

0b0110
(2x, lanes 2 & 3.
Transmit lane 0
and 1 2x compliant
data streams on
lanes 2 and 3.
Disable
transmission on
lanes 0 and 1.)

Transmitter shall send a valid 2x mode IDLE3 bit stream, as composed for lane 0, on
lane 2. Transmitter shall send a valid 2x mode IDLE3 bit stream, as composed for
lane 1, on lane 3. Transmitter shall ensure that the link partner cannot detect a valid bit
stream on lanes 0 and 1.
Transmitter shall operate as a 2x port.

Receiver shall behave as if the data received on lane 2 was actually received on lane 0,
and as if the data received on lane 3 was actually received on lane 1. Receiver shall
operate as a 2x/1x port.

0b0111
(4x, lanes 0-3)

0b0111
(4x, lanes 0-3)

Transmitter shall operate as a 4x port.

Receiver shall operate as a 4x/1x port.

0b1000
(8x, lanes 0-7)

0b1000
(8x, lanes 0-7)

Transmitter shall operate as an 8x port.

Receiver shall operate as an 8x/1x port.

0b1001
(16x)

0b1001
(16x)

Transmitter shall operate as a 16x port.

Receiver shall operate as a 16x port.

0b1010-
0b1011
(Implementation
specific)

0b1010-
0b1011
(Implementation
specific)

Implementation specific behavior.

0b1100-
0b1111
(Reserved)

0b1100-
0b1111
(Reserved)

Reserved.

Table 5-13. Structurally Asymmetric Link Tx/Rx Width Behaviors

SAL RX Width SAL TX Width Description
RapidIO.org 205

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A state machine state is persistent until an exit condition occurs. If no exit
conditions are specified, the exit is unconditional.

A state machine variable that is listed in the body of a state but is not part of
an assignment statement is asserted for the duration of that state only.

A state machine variable that is assigned a value in the body of a state retains
that value until assigned a new value in another state.

A state machine function that is listed in the body of a state is executed once
during the state.

A state machine variable is asserted when its value is 1 and de-asserted when
it value is 0.

Except when otherwise directed by parentheses, the order of precedence of
logic operations when evaluating a logic expression is, in order of decreasing
precedence, negation/compliment (!) followed by AND (&),
exclusive-OR (^) and OR (|).

Logic expressions within paired parentheses are evaluated before the rest of
a logic expression is evaluated with the operations within the innermost pair
of parentheses evaluated first.

5.19.1.2 State Machine Functions

State machine functions shall, with one exception, be executed to completion once
their execution has begun. The exception is that their execution shall be terminated
when an overriding condition such as “reset” or “reinitialize” is asserted.

The functions used in the state machines are defined as follows:

change(operand)

Asserted when the operand changes its state or value.

check_dscrmblr_sync()

This function checks the descrambler status based on the last received codeword. If
the last received codeword was Seed control codeword and the seed value matches
the current state of the descrambler then the dscrmblr_sync variable shall be asserted
and the dscrmblr_error shall be de-asserted. If the last received codeword was either
a Seed control codeword with a seed value that does not match the current state of
the descrambler, or it was not a Seed control codeword that terminated a Seed
ordered sequence unexpectedly (odd number of consecutive Seed control
codewords), then the dscrmblr_sync variable shall be de-asserted and the
dscrmblr_error shall be asserted. Both dscrmblr_sync and descrmblr_error shall
retain their value until the next Seed is received. Dscrmblr_sync and
descrmbler_error shall be deasserted on loss of lane synchronization.
206 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
clear(variable)

Clear a variable to its inactive state.

next_codeword()

Get the next 67-bit codeword for the lane when it becomes available.

next_Ncolumn()

Get the next column of N codewords from lanes 0 to N-1 when it becomes available.

set(variable)

Set a variable to its active state.

set_xmt_equalizer(k,coefficient set)

Set the port’s lane k transmit equalizer settings to the values specified for
“coefficient set”.

slip_codeword_alignment()

Move the serial to 67-bit parallel conversion boundaries one bit earlier or one bit
later, but always in the same direction in the input serial data stream.

transmit_sc_sequences(n)

Transmit n Status/Control ordered sequences while maintaining the minimum
specified separation of the sequences.

wait(wait_time)

Wait for a time equal to wait_time +/- 10%. The value of wait_time shall be
expressed as a number and a defined unit of time. For example, 100 UI, 18 training
frames, 37 codewords, and 22 msec are all acceptable values for wait_time.

5.19.1.3 State Machine Variables

The variables used in the state machines are defined as follows:

16_lanes_drvr_oe

When asserted, the drivers for lanes 0 through 15 shall be output enabled. When
de-asserted, shall have no effect on which lane drivers are output enabled.

2x_mode_enabled, 4x_mode_enabled,
8x_mode_enabled, 16x_mode_enabled

Each of these variable is asserted when operation in that particular mode is enabled;
otherwise, de-asserted.

2x_mode_supported, 4x_mode_supported,
RapidIO.org 207

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
8x_mode_supported, 16x_mode_supported

Each of these variable is asserted when operation in that particular mode is
supported by the implementation; otherwise, de-asserted.

4_lanes_drvr_oe

When asserted, the drivers for lanes 0 through 3 shall be output enabled. When
de-asserted, shall have no effect on which lane drivers are output enabled.

8_lanes_drvr_oe

When asserted, the drivers for lanes 0 through 7 shall be output enabled. When
de-asserted, shall have no effect on which lane drivers are output enabled.

Acounter

A counter used in the N_Lane_Alignment state machine to count received pairs of
consecutive columns that contain Status/Control control codewords in every row of
both columns.

asym_mode_en

The variable shall be asserted if any of the bits in the “Asymmetric modes enabled”
field of Port n Power Management CSRs is set; otherwise, de-asserted.

bad_rcv_width_cmd = !rcv_width_link_cmd_ack & !rcv_width_link_cmd_nack &
(!asym_mode & (from_sc_rcv_width_link_cmd != “hold”)
 | (from_sc_rcv_width_link_cmd = “2x mode”) &
 !asym_2x_mode_enabled
 | (from_sc_rcv_width_link_cmd = “4x mode”) &
 (!asym_4x_mode_enabled | (max_width < “4x”))
 | (from_sc_rcv_width_link_cmd = “8x mode”) &
 (!asym_8x_mode_enabled | (max_width < “8x”))
 | (from_sc_rcv_width_link_cmd = “16x mode”) &
 (!asym_16x_mode_enabled | (max_width < “16x”))
 | (from_sc_rcv_width_link_cmd = “reserved”)
)

bad_xmt_width_cmd = !xmt_width_port_cmd_ack & !xmt_width_port_cmd_nack &
 (!asym_mode & (xmt_width_port_cmd != “hold”)
 | (xmt_width_port_cmd = “2x mode”) &

!asym_2x_mode_enabled
 | (xmt_width_port_cmd = “4x mode”) &

(!asym_4x_mode_enabled | (max_width < “4x”))
 | (xmt_width_port_cmd = “8x mode”) &

(!asym_8x_mode_enabled | (max_width < “8x”))
 | (xmt_width_port_cmd = “16x mode”) &

(!asym_16x_mode_enabled | (max_width < “16x”))
 | (xmt_width_port_cmd = “reserved”)
)
208 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
codeword_lock[k]

Asserted when the lane k Codeword_Lock state machine determines that the lane k
receiver is in bit synchronization and 64b/67b codeword boundary alignment with
its input serial data stream. Otherwise, deasserted.

CWcounter[k]

Counter used in the lane k Codeword_Lock state machine to count the number of
codewords.

disc_tmr_done (discovery timer done)

Asserted when disc_tmr has run continuously asserted for the interval configured in
the Discovery Completion Timer field of the Port n Link Timers Control 2 CSRs for
the port. De-asserted when disc_tmr_en is de-asserted; otherwise, de-asserted.

disc_tmr_en (discovery timer enable)

When asserted, the disc_tmr runs continuously. When de-asserted, the disc_tmr
shall be reset to and retain its initial (default) value.

De-asserted automatically when the state machine exits the state in which the
disc_tmr was enabled (disc_tmr_en was asserted).

DME_mode[k]

When asserted, lane k shall generate DME training frames for transmission. When
de-asserted, lane k shall generate 64b/67b codewords for transmission.
DME_mode[k] is affected by structurally asymmetric link operation. For more
information, see Section "Structurally Asymmetric Links" on page -204.

dme_wait_tmr_done[k]

Asserted when the dme_wait_tmr[k] has run for a time equivalent to 252 DME
frames (or 4 times the value in the DME Wait Timer field of the Port n Link Timers
Control CSR).

dme_wait_tmr_en[k]

When asserted, allows the dme_wait_tmr to run. When de-asserted, the
dme_wait_tmr[k] shall be reset to and retain its initial (default) value. The
dme_wait_tmr_en[k] shall be de-asserted when either dme_wait_tmr_done[k] is
asserted or the state machine exits the state in which the dme_wait_tmr[k] was
enabled (dme_wait_tmr_en[k] was asserted), whichever occurs first.

drvr_oe[k]

Asserted when the lane k driver is output enabled; otherwise, de-asserted. When
de-asserted the transmitter shall enter Electrical IDLE as defined in Section 12.4.5.

The value is calculated based on the values of some or all of 4_lanes_drvr_oe,
8_lanes_drvr_oe, 16_lanes_drvr_oe, lane0_drvr_oe, lanes01_drvr_oe,
lanes02_drvr_oe and force_drvr_oe[k], dependent on the value of k.
RapidIO.org 209

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
DScounter[k]

Counter used in the lane k Lane_Synchronization state machine to count the number
of descrambler Seed control codewords with a seed value that match the current state
of the descrambler.

dscrmblr_error

Asserted if the last receive codeword was a Seed control codeword with a seed value
the does not match the current state of the descrambler, or if a sequence of an odd
number of consecutive Seed control codewords are received.

dscrmblr_sync

Asserted if the last receive codeword was a Seed control codeword with a seed value
that match the current state of the descrambler.

end_asym_mode

When asserted, causes the Port_Initialization state machine to exit the
ASYM_MODE state and enter the SILENT state.

force_1x_mode

Forces a port that supports one or more multilane modes to use 1x mode. When
asserted, all Nx (multi-lane) modes are disabled.

This variable is derived from the Port Width Override field of the Port n Control
CSRs.

force_drvr_oe[k] (force driver output enable for lane k)

When asserted, the output enable for the lane k driver shall be asserted. When
de-asserted, the state of the output enable for the lane k driver is controlled by other
variables.

force_laneR

When force_1x_mode is asserted, force_laneR controls whether lane 0 or lane R, the
redundancy lane, is preferred for 1x mode reception. If force_laneR is asserted, lane
R is the preferred lane. If force_laneR is de-asserted, lane 0 is the preferred lane. If
the preferred lane is functional, it is selected by the port initialization state machine
for 1x mode reception. If the preferred lane is not functional, the non-preferred lane,
if functional, is selected for 1x mode reception.

If force_1x_mode is not asserted, the state of force_laneR has no effect on the
initialization state machine.

This variable is derived from the Port Width Override field of the Port n Control
CSRs.
210 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
force_no_lock[k]

When asserted, forces the Codeword_Lock state machine to re-initialize. The signal
is set and cleared by the Lane_Synchronization state machine.

force_reinit

When asserted, forces the Port_Initialization state machines to re-initialize. The
signal is set under software control through the Port Width Override field of the Port
n Control CSRs and is cleared by the Port_Initialization state machine.

frame_lock[k]

The frame_lock variable is identical to the frame_lock variable defined in IEEE
802.3-2008 Section 72.6.10.3. The variable frame_lock[k] is frame-lock variable for
lane k.

from_dme_rcvr_ready[k]

The value of this variable is updated based on the value of the “Receiver ready” bit
in the most recent training frame received on lane k from its link partner. The
training frame is defined in IEEE 802.3 Section 72.6.10.2.

De-asserted in the UNTRAINED state of the lane training state machine. The value
of from_dme_rcvr_ready[k] shall not be set until no fewer than three consecutive
training frames have been received with the receiver ready bit asserted.
From_dme_rcvr_ready[k] shall be de-asserted if a single training frame has been
received with the receiver ready bit de-asserted.

from_sc_asym_mode_en

The variable shall have the same value as the “Asymmetric mode enabled” bit in the
most recent error-free Status/Control control codeword received on lane 0 from its
link partner.

from_sc_initialized (partner initialized)

The value of this variable shall be the value of the “Port initialized” bit in the most
recent error-free Status/Control control codeword received by the port from its link
partner.

from_sc_lane_ready[k] (link partner lane k ready)

The value this variable shall be the value of the “Receive lane ready” field in the
most recent error-free Status/Control control codeword received on lane k from its
link partner.

from_sc_lane_silence[k]

The variable shall have the same value as the “Lane Entering Silence” bit in the most
recent error-free Status/Control control codeword received on lane k from its link
partner.
RapidIO.org 211

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
from_sc_lane_trained[k] (link partner lane k receiver trained)

The value of this variable shall be the value of the “Lane trained” bit in the most
recent error-free Status/Control control codeword received on lane k from its link
partner.

from_sc_port_silence

The variable shall be asserted when receiving an error-free Status/Control ordered
sequence where any one of the “Port Entering Silence” bits from lanes less than
max_width is asserted, or de-asserted if none of the “Port Entering Silence” bits
from lanes less than max_width is asserted.

from_sc_rcv_lanes_ready (link partner receiver lanes ready)

The value this variable shall be the value of the “Receive lanes ready” field in the
most recent error-free Status/Control control codeword received by the port from its
link partner.

from_sc_rcv_width (link partner receive width)

The value this variable shall be the value of the “Receive width” field in the most
recent error-free Status/Control control codeword received by the port from its link
partner.

from_sc_rcv_width_link_cmd (received receive width link command)

Contains the value of the “Receive width command” field of the most recently
received error-free Status/Control control codeword received by the port from its
link partner. If the variables lane_sync[0] is de-asserted,
from_sc_rcv_width_link_cmd shall be set to the value “hold”.

from_sc_rcv_width_link_cmd_ack
(link partner receive width link command acknowledge)

The value this variable shall be the value of the “Receive width command ACK”
field in the most recent error-free Status/Control control codeword received by the
port from its link partner.

from_sc_rcv_width_link_cmd_nack
(link partner receive width link command negative acknowledge)

The value this variable shall be the value of the “Receive width command NACK”
field in the most recent error-free Status/Control control codeword received by the
port from its link partner.

from_sc_retrain_en (partner retraining enable)

The value of this variable shall be the value of the “Retraining enabled” bit in the
most recent error-free Status/Control control codeword received by the port from its
link partner.
212 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
from_sc_retrain_grnt (partner retrain grant)

The value of this variable shall be the value of the “Retrain grant” bit in the most
recent error-free Status/Control control codeword received by the port from its link
partner.

from_sc_retrain_ready (partner retrain ready)

The value of this variable shall be the value of the “Retrain ready” bit in the most
recent error-free Status/Control control codeword received by the port from its link
partner.

from_sc_retraining

The value of this variable shall be the same as the value of the “Retraining” bit in
the most recent error-free Status/Control control codeword received by the port from
the link.

from_sc_xmt_1x_mode (partner transmitting in 1x mode)

This variable shall have the same value and meaning as the “Transmit 1x mode” bit
in the most recent error-free Status/Control control codeword received by the port
from the link.

IVcounter[k]

Counter used in the lane k Codeword_Lock state machine to count the number of
invalid sync headers detected.

keep_alive

A periodic signal that has two timers associated with it. The first timer is the keep
alive period that determines how often keep_alive goes active, this timer is
programmable to values in the range of 10 msec to 10 sec. The second timer is the
keep alive active time that determines how long keep_alive is active before going
inactive, this timer is programmable to values in the range of 2 usec to 125 usec. The
signal is used to ensure that the transmitter of each trained lane is output enabled
periodically to allow the connected lane receiver to track changes due to temperature
drift and any other slow moving changes, and thereby keeping the lane receiver
sufficiently trained to be quickly operational when needed.

lane_degraded[k]

Asserted when the adaptive equalization for lane k has previously been successfully
trained (lane_trained[k] asserted) and subsequently the characteristics of lane k have
RapidIO.org 213

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
changed enough that it is determined that the transmission quality of the lane has
degraded to the point that the adaptive equalization needs to be retrained.

De-asserted when lane_trained[k] is de-asserted or when lane_trained[k] is asserted
and the retraining of the lane k adaptive equalization has been successfully
completed.

The criteria for determining when characteristics of a previously trained lane have
changed enough that the adaptive equalization requires retraining is implementation
specific and beyond the scope of this specification. A possible criteria for the
assertion of lane_degraded[k] is that the lane k BER has become greater than
1*10-12.

lane_ready[k]

lane_ready[k] = lane_sync[k] & lane_trained[k] & !lane_retraining[k]

lane_retraining[k]

Asserted when the adaptive equalization controlled by the lane k receiver is
retraining; otherwise, de-asserted.

lane_sync[k]

Asserted when the lane k Lane_Synchronization state machine determines that the
lane k receiver is in bit synchronization and 64b/67b codeword boundary alignment
with its input serial data stream; otherwise, de-asserted.

lane_trained[k]

De-asserted when the Port_Initialization state machine is in the SILENT state.

De-asserted if any of the adaptive equalization that is controlled by the lane k
receiver has not been successfully trained.

De-asserted if retraining of lane k fails.

Asserted in response to the train_lane[k] being asserted if the lane k receiver controls
no adaptive equalization, which includes any adaptive receive equalization in the
lane k receiver and any adaptive transmit equalization in the connected lane k
transmitter controlled by the lane k receiver.

Asserted when all of the adaptive equalization that is controlled by the lane k
receiver has been successfully trained. Once asserted, lane_trained[k] remains
asserted until one of the above de-assertion criteria is met.

lane0_drvr_oe

When asserted, the output driver for lane 0 shall be enabled

lanes01_drvr_oe

When asserted, the output drivers for lanes 0 and 1 shall be enabled.
214 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
lanes02_drvr_oe

When asserted, the output drivers for lanes 0 and 2 shall be enabled.

lost_valid_cs_reception

Asserted when receive_enable has been continuously asserted for the last 2048
columns and no valid control symbol or Status/Control Ordered Sequence has been
received during that time.

De-asserted when the Codeword Lock state machine enters the NO_LOCK state.

Note that this variable is asserted on a port based event and de-asserted on a lane
based event.

LR_initialize

Initial transmit emphasis coefficient set for Long Reach operation. The
LR_initialize coefficient set shall be compliant with IEEE Standard 802.3-2008
(Part 5), Clause 72.6.10.4.2 Training.

max_width

Indicates the symmetric width of the link when the port was initialized. It is also the
maximum width of either direction of the link when the link is operating in
asymmetric mode.

Mcounter

A counter used in the Lane_Alignment state machine to count received pairs of
consecutive columns received that contain a Status/Control control codeword in at
least one row of the first column, but that do not contain Status/Control control
codewords in every row of both columns.

N_lanes_aligned

Asserted by the Lane_Alignment state machine when it determines that lanes 0
through N-1 are in sync and aligned.

N_lanes_drvr_oe

When asserted, the output drivers for lanes 0 through N - 1 are enabled.

N_lanes_ready

N_lanes_ready = N_lanes_aligned & lane_ready[0] & ... & lane_ready[N-1]

N_lane_sync

Asserted when lanes 0 through N-1 of a receiver operating are in bit synchronization
and codeword boundary alignment; otherwise, de-asserted.

N_lane_sync = lane_sync[0] & ... & lane_sync[N-1]
RapidIO.org 215

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
no_sc_Ncolumn

Asserted if none of the codewords in the Ncolumn returned most recently by the
next_Ncolumn() function are Status/Control control codewords; otherwise,
de-asserted.

part_sc_Ncolumn

Asserted if some, but not all of the codewords in the Ncolumn returned most recently
by the next_Ncolumn() function are Status/Control control codewords; otherwise,
de-asserted.

port_initialized

Asserted when the port successfully completes the port initialization process and
remains asserted until the Port_Initialization state machine re-enters the SILENT
state; otherwise, de-asserted.

PIsm_state (Port_Initialization state machine state)

The current state of the port’s Port_Initialization state machine.

rcv_width (receive width)

A three bit field indicating the width mode at which the port is currently receiving
control symbols and packets from the link. Also the source of the value placed in the
“Receive width” field of Status/Control control codewords transmitted by the port.

The current receive width shall be encoded as follows:

0b000 - None; the port has not completed initialization
0b001 - 1x mode
0b010 - 2x mode
0b011 - 4x mode
0b100 - 8x mode
0b101 - 16x mode
0b110 - 1x mode, lane 1
0b111 - 1x mode, lane 2

The rcv_width variable shall retain the value it held prior to the Port Initialization
State Machine entering the 1x_RECOVERY, 2x_RECOVERY or Nx_RECOVERY
states for the duration of those recovery states.

rcv_width_link_cmd (receive width link command)

The variable contains the value placed in the “Receive width command” field of
Status/Control control codewords transmitted on the link by the port.

rcv_width_link_cmd_ack (receive width link command acknowledge)

When asserted, indicates that the current receive width link command was
successfully executed. De-asserted when the value “Receive width command” field
216 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
of Status/Control control codeword most recently received by the port is “hold”;
otherwise de-asserted.

The value of this bit is the value of the “Receive width command ACK” field of
Status/Control control codewords transmitted by the port.

rcv_width_link_cmd_nack (receive width link command negative acknowledge)

When asserted, indicates that the current receive width link command was not
executed and the receive width is unchanged. De-asserted when the value of the
“Receive width command” field in Status/Control control codeword most recently
received by the port is “hold”; otherwise de-asserted.

The value of this bit is the value of the “Receive width command NACK” field of
Status/Control control codewords transmitted by the port.

rcv_width_tmr_done (receive width timer done)

Asserted when the rcv_width_tmr has run for 62.5 usec +/- 34%. De-asserted when
the state machine exits the state in which rcv_width_tmr_en was asserted.

rcv_width_tmr_en (receive width timer enable)

When asserted, the rcv_width_tmr is enable to run. De-asserted when either the
rcv_width_tmr_done is asserted or the state machine exits the state in which
rcv_width_tmr_en was asserted. When de-asserted, the timer is set to and held at its
initial (default) value.

receive_enable

When asserted, and port_initialized and link_initialized are also asserted, the port
can accept control symbols and packets from the link. When de-asserted, control
symbols and packets received from the link shall be ignored and discarded.

Used to enable/disable the reception of control symbols and packets when
port_initialized and link_initialized are asserted.

receive_enable = receive_enable_pi & receive_enable_rw

receive_enable_pi

A local receive enable control used in the Port_Initialization state machine.

receive_enable_rw

A local receive enable control used in the Receive_Width state machine.

receive_lane1

Asserted when a port is operating in 1x mode and the port is either receiving the 1x
mode data stream from lane 1 or has entered the 1x_RECOVERY state from the
1x_MODE_LANE1 state; otherwise, de-asserted.
RapidIO.org 217

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
receive_lane2

Asserted when a port is operating in 1x mode and the port is either receiving the 1x
mode data stream from lane 2 or has entered the 1x_RECOVERY state from the
1x_MODE_LANE2 state; otherwise, de-asserted.

recovery_retrain

Variable used in the Port_Initialization state machine to prevent the recovery period
to be extended more than once when allowing for retraining.

recovery_tmr_done

Asserted when the recovery_tmr has run for 62.5 msec +/- 34%. De-asserted when
the recovery_tmr_en is de-asserted.

recovery_tmr_en (recovery timer enable)

When asserted, allows the recovery_tmr to run. When de-asserted, the recovery_tmr
shall be reset to and retain its initial (default) value.

recovery_tmr_en shall be de-asserted when either recovery_tmr_done is asserted or
the state machine exits the state in which the recovery_tmr was enabled
(recovery_tmr_en was asserted), whichever occurs first.

retrain

Controls when a pending retrain operation can be executed. When asserted, the
pending retraining operation is allowed to begin execution. When de-asserted, a
pending retrain operation shall wait.

retrain_en (retrain enable)

The variable shall have the same value and meaning as the Port n Control 2 CSRs
field “10G Retraining Enable” bit. Retrain_en is affected by structurally asymmetric
link operation. For more information, see Section "Structurally Asymmetric Links"
on page -204.

retrain_fail[k]

When asserted, indicates that an adaptive equalization retrain failure has occurred
on receive lane k; otherwise, de-asserted.

retrain_grnt (retrain grant)

An output of the Retrain/Transmit_Width_Control. Asserted when a pending
retraining request has won permission to proceed.

retrain_lane[k]

When asserted, the lane k adaptive equalization training mechanism shall attempt to
retrain all lane k adaptive equalization controlled by the lane k receiver. When
de-asserted, lane k retraining, if in progress, shall be terminated within 1 msec.
218 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
retrain_pending

retrain_pending = ((lane_degraded[0] | lane_degraded[1] | ... |
 lane_degraded[max_width-1]) & (max_width > 1) |
 (max_width = 1) &
 (lane_degraded[0] & (!receive_lane1 & !receive_lane2) |
 lane_degraded[1] & receive_lane1 |
 lane_degraded[2] & receive_lane2)) &
 retrain_en & from_sc_retrain_en &
 port_initializaed & from_sc_initialized

retrain_ready

Asserted when the port is ready to begin retraining; otherwise de-asserted.

retrain_tmr_done

Asserted when the retrain_tmr has run for 62.5 milliseconds +/- 34%. De-asserted
when the retrain_tmr_en is de-asserted.

retrain_tmr_en

When asserted, the retrain_tmr runs continuously. When de-asserted, the retrain_tmr
is reset to and maintains its initial (default) value.

retraining

Indicates when one or more of the port’s lanes are retraining.

retraining = (lane_retraining[0] | ... | lane_retraining[max_width-1]) &
 (max_width > 1) |
 (max_width =1) &
 (lane_retraining[0] |
 lane_retraining[1] |
 lane_retraining[2])

sc_Ncolumn

Asserted if all of the codewords in the Ncolumn returned most recently by the
next_Ncolumn() function are Status/Control control codewords; otherwise,
de-asserted.

seek_lanes_drvr_oe

The output enable for the lane 0 and the lane R output drivers of a 1x/Nx port.

SH_transition

Asserted when bits [1:2] (sync header) of the codeword being tested are
complements of one another.
RapidIO.org 219

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
signal_detect

Asserted when a lane receiver is enabled and a signal meeting an implementation
defined criteria is present at the input of the receiver. The use of signal_detect is
implementation dependent. It can be continuously asserted or used to require that
some implementation defined additional condition be met before the
Lane_Synchronization state machine is allowed to exit the NO_SYNC state.
Signal_detect might for example be used to ensure that the input signal to a lane
receiver meet some minimum AC input power requirement to prevent the receiver
from locking on to crosstalk.

silence_tmr_done

Asserted when silence_tmr_en has been continuously asserted for 120 +/- 40 usec
and the state machine is in the SILENT state. The assertion of silence_tmr_done
causes silence_tmr_en to be de-asserted. When the state machine is not in the
SILENT state, silence_tmr_done is de-asserted.

silence_tmr_en

When asserted, the silence_tmr runs. When de-asserted, the silence_tmr is reset to
and maintains its initial value.

train_lane[k]

When asserted, causes all adaptive equalization controlled by the lane k receiver to
be trained. When de-asserted, training of all adaptive equalization controlled by the
lane k receiver shall be terminated and the training mechanism returned to its idle
state within 1 msec.

train_tmr_done[k] (train timer done)

Asserted when the lane k train timer has run for the interval configured in the DME
Training Completion Timer field or the CW Training Completion Timer field of the
Port n Link Timers Control CSRs for the port, depending on what type of training is
active. De-asserted when train_tmr_en[k] is de-asserted.

train_tmr_en[k] (train timer enable)

When asserted, the lane k train timer shall run continuously. When de-asserted, train
timer shall reset to and maintain its initial (default) value.

training_fail[k]

When asserted, indicates that an adaptive equalization training failure has occurred
on receive lane k since the bit was last read; otherwise, de-asserted.

transmit_enable

When asserted, allows the port to transmit control symbols and packets. When
de-asserted, the transmission of control symbols and packet shall be terminated at a
220 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
natural control symbol/packet boundary and remain terminated until
transmit_enable is again asserted.

The value of transmit_enable is controlled by the Port_Initilization, Transmit_Width
and Retrain/Xmt_Width_Control state machines. If either one of the state machines
de-asserts their local transmit enable then the transmit_enable is de-asserted.

transmit_enable = transmit_enable_pi & transmit_enable_tw &
transmit_enable_rtwc

transmit_enable_pi

A local transmit enable control used in the Port_Initialization state machine.

transmit_enable_rtwc

A local transmit enable control used in the Retrain/Xmt_Width_Control state
machine.

transmit_enable_tw

A local transmit enable control used in the Transmit_Width state machine. Control
symbols and packets may be transmitted when transmit_enable_tw is asserted.
When transmit_enable_tw is deasserted, the port shall complete transmission of
packets or control symbols in progress and then stop transmitting further packets or
control symbols until transmit_enable_tw is asserted. Completion of in-progress
packet and control symbol transmission shall be signaled by the assertion of the
xmting_idle variable.

Vcounter[k]

Counter used in the lane k Codeword_Lock state machine to count the number of
valid sync headers detected.

xmt_sc_seq (transmit Status/Control ordered sequences)

When asserted, the port shall transmit a minimum of one Status/Control ordered
sequence per 256 codewords transmitted per lane. When de-asserted, the port and
the connected port shall transmit Status/Control ordered sequences at the rate(s)
required by other portions of this specification.

The value of xmt_sc_seq is replicated in the Transmit Status/Control ordered
sequences field of the Status/Control control codewords transmitted on the link by
the port.

xmt_width (transmit width)

Indicates the width mode at which the port is currently transmitting. The current
transmit width of the port can be encoded as follows:

0b000 - None
0b001 - 1x mode
0b010 - 2x mode
RapidIO.org 221

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
0b011 - 4x mode
0b100 - 8x mode
0b101 - 16x mod
0b110 - Reserved
0b111 - Reserved

xmt_width_grnt (transmit width grant)

Controls when a pending transmit width command can be executed. When asserted,
the pending transmit width command is allowed to begin execution; otherwise, a
pending transmit width command shall wait.

xmt_width_cmd_pending (transmit width command pending)

= 1x_mode_xmt_cmd | 2x_mode_xmt_cmd | 4x_mode_xmt_cmd |
 8x_mode_xmt_cmd | 16x_mode_xmt_cmd

xmt_width_port_cmd (transmit width port command)

A command issued to a port by software or some mechanism within the device
containing the port ordering the port to transmit in a specific width mode. The
variable has the value “hold” when no command is present. This variable is used in
conjunction with the variables xmt_width_port_cmd_ack and
xmt_width_port_cmd_nack to control the flow of transmit width port commands.

The value of xmt_width_port_cmd may change from “hold” to another value only
when xmt_width_port_cmd_ack and xmt_width_port_cmd_nack are both
de-asserted. When the value of xmt_width_port_cmd is other than “hold”, it shall
retain that value until either xmt_width_port_cmd_ack or
xmt_width_port_cmd_nack is asserted, at which point the value of
xmt_width_port_cmd shall change to “hold”.

When there are multiple sources of transmit width port commands, the prioritizing
and multiplexing of commands from the multiple sources is implementation specific
and beyond the scope of this specification.

xmt_width_port_cmd_ack (transmit width port command acknowledge)

Asserted when the pending xmt_width_port_cmd is different from “hold” and has
been executed. Once asserted, it remains asserted until the xmt_width_port_cmd is
set to “hold”, at which point the variable is de-asserted; otherwise, de-asserted.

xmt_width_port_cmd_nack (transmit width port command negative acknowledge)

Asserted when the pending xmt_width_port_cmd is different from “hold”, and has
for some reason, not been executed. Once asserted, it remains asserted until the
xmt_width_port_cmd is set to “hold”, at which point the variable is de-asserted;
otherwise, de-asserted.

The non-execution may be due to the requested mode not being enabled or an
execution failure.
222 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
xmt_width_tmr_done (transmit width timer done)

Asserted when the xmt_width_tmr has run continuously for 250 +/- 85 usec.
De-asserted when xmt_width_tmr_en is de-asserted.

xmt_width_tmr_en (transmit width timer enable)

When asserted the xmt_width_tmr runs continuously. When de-asserted, the
xmt_width_tmr is reset to and retains its initial (default) value.

xmting_idle (transmitting idle)

Asserted when the port has stopped transmitting control symbols and packets in
response to the deassertion of transmit_enable_tw. The port shall transmit only the
IDLE3 sequence when xmting_idle is asserted. Xmting_idle is deasserted when
transmit_enable_tw is asserted.

The variables that get set to a value based on the most recent error-free
Status/Control control codeword received by the port from its link partner shall be
reset to the values in table when the Port_Initialization state machine is in the
SILENT state. An Status/Control control codeword shall only be determined to be
error-free when it is part of a valid Status/Control ordered sequence received from
the link partner.

When lane_sync or codeword_lock is de-asserted, the value of the variables derived
from the Status/Control control codewords can no longer be determined accurately.
The values of those variables shall behave as defined in table Table 5-15 when

Table 5-14. Reset value for variable from Status/Control control codewords

Variable reset value

from_sc_asym_mode_en 0b0

from_sc_initialized 0b0

from_sc_lane_ready[k] 0b0

from_sc_lane_silence[k] 0b0

from_sc_lane_trained[k] 0b0

from_sc_port_silence 0b0

from_sc_rcv_lanes_ready 0b0

from_sc_rcv_width 0b000

from_sc_rcv_width_link_cmd 0b000

from_sc_rcv_width_link_cmd_ack 0b0

from_sc_rcv_width_link_cmd_nack 0b0

from_sc_retrain_en 0b0

from_sc_retrain_grnt 0b0

from_sc_retrain_ready 0b0

from_sc_retraining 0b0

from_sc_xmt_1x_mode 0b0
RapidIO.org 223

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
lane_sync or codeword_lock is de-asserted to ensure correct operation of state
machines.

In addition to the above, the value of Status/Control control codeword bit 34
(Transmit Status/Control ordered sequences) is used to control the transmission rate
of Status/Control ordered sequences within the IDLE3 sequence. When lane_sync
or codeword_lock is de-asserted, the lane shall continue to transmit Status/Control
ordered sequences at the rate requested in the last correctly received Status/Control
ordered sequence.

5.19.2 Frame_Lock State Machine

The recovery of DME training frame boundaries in a lane receiver shall be
controlled and monitored by the Frame_Lock state machine. There shall be one
Frame_Lock state machine for each lane receiver.

The Frame_Lock state machine shall be the Frame Lock state machine specified by
Clause 72.6.10.4.1 of IEEE 802.3 2008 Part 5.

5.19.3 Lane Training State Machines

Two Lane_Training state machines are defined, a long run Lane_Training state
machine for ports supporting the long run electrical specification (long run ports),

Table 5-15. Effects of lane_sync or codeword_lock de-assertion

Variable Reset

from_sc_asym_mode_en No

from_sc_initialized No

from_sc_lane_ready[k] Yes

from_sc_lane_silence[k] Yes

from_sc_lane_trained[k] Yes

from_sc_port_silence Yes

from_sc_rcv_lanes_ready No

from_sc_rcv_width No

from_sc_rcv_width_link_cmd No

from_sc_rcv_width_link_cmd_ack No

from_sc_rcv_width_link_cmd_nack No

from_sc_retrain_en No

from_sc_retrain_grnt No

from_sc_retrain_ready No

from_sc_retraining No

from_sc_xmt_1x_mode No
224 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
and a short run Lane_Training state machine for ports supporting only the short run
electrical specification (short run ports).

A Lane_Training state machine controls the training and retraining of all per lane
adaptive equalization that is controlled by the receive end of the lane. It does not
control the actual adjustment of adaptive equalizer settings which is done by
implementation specific mechanisms that are beyond the scope of this specification.

The Lane_Training state machines provide two “modes” of operation, “training”
mode and “retraining” mode as described in Section 5.11.1.

When the training state machines use i.e. set_xmt_equalizer(k,“LR_initialize”), it is
intended to indicate that a coefficient set in this case for long run initialization is
loaded into the transmitter equalizer settings. The coefficient set can be
implemented as a static set of values or a set of values that is controlled through
registers or by the adaptive equalization algorithm. Management of the coefficient
set is outside the scope of this specification.

5.19.3.1 Long run Lane_Training State Machine

The long run Lane_Training state machine is specified in Figure 5-22 through Figure
5-24. There shall be a long run Lane_Training state machine for each lane receiver
of a long run port.

The state machine supports both DME and CW training so that long run port can
train adaptive transmit equalization in either short run or long run ports.

The long run Lane_Training state machine is forced into the UNTRAINED state
when the Port Initialization state machine is in the SILENT state and prepares for
training in DME mode. The state machine for lane k then waits for lane k to be
output enabled and for either frame_lock[k] or lane_sync[k], but not both, to be
asserted. If lane k is output enabled and frame_lock[k] is asserted, the state machine
determines that it is connected to a long run port and training will be in DME mode.
If lane k is output enabled and lane_sync[k] is asserted, the state machine determines
that is connected to a short reach port and switches to CW training mode.

In both DME and CW mode, the state machine begins training by starting the
training timer (train_tmr_en[k] asserted). The training timer runs continuously
during both the DME and CW training processes so that if a failure occurs at any
stage of either processes, the failure can be detected and the state machine can
recover rather than becoming stuck due to the failure. If a failure occurs in either the
DME or CW training process, training_fail[k] is set and the lane k state machine
returns to the UNTRAINED state.

The state machine checks that lane_trained[k] is de-asserted, orders the training
mechanism to start training (train_lane[k] asserted) and waits for the training of lane
k to complete both locally (lane_trained[k] asserted) and in the connected port
(from_sc_lane_trained[k] asserted).
RapidIO.org 225

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Once training is complete in CW mode, the state machine enters the TRAINED
state. In DME mode, the port waits until the number of additional DME frames
specified in “DME Wait Timer” field of Port n Link Timers Control CSRs are
transmitted, to ensure that the link partner sees that the port has completed training
before entering the TRANIED state and switching from DME frame to codeword
transmission.

Once in the TRAINED state, the state machine periodically output enables lane k, if
the lane is not currently being output enabled due to the current asymmetric width,
so that the connected lane k receiver can track changes due to temperature drift and
any other slow moving changes, and thereby keeping the lane receiver sufficiently
trained to be quickly operational when needed. The on/off duty cycle is determined
by the duty cycle of keep_alive. A lane that is output enabled only by keep_alive
shall transmit the IDLE3 sequence.

Retraining occurs when the variable “retrain” is asserted by the
Retrain/Transmit_Width state machine. The state machine starts the retraining timer
(retrain_tmr_en asserted) and verifies that lane_retraining[k] is de-asserted. It then
orders the training mechanism to retrain the lane by asserting retrain_lane[k]. The
state machine then waits for the retraining of lane k to complete both locally and in
the connected receiver. At which point, retraining is completed and the state
machine returns to the TRAINED state.

The retrain timer runs continuously during the retraining processes so that if a failure
occurs at any stage of the processes, the failure can be detected and the state machine
can recover rather than becoming stuck due to the failure. If a failure occurs during
the retraining process, retrain_fail[k] is set and the lane k state machine stays in the
RETRAIN_FAIL state until it is forced into the UNTRAINED state by the Port
Initialization state machine entering SILENT state.
226 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-22. Long run Lane_Training state machine (lane k) Part 1 of 3

TRNDk

UNTRAINED

force_drvr_oe[k] = 0
DME_mode[k] = 1
set_xmt_equalizer(k,“LR_initialize”)
train_lane[k] = 0
retrain_lane[k] = 0
train_tmr_en[k] = 0

DME_TRAINING0

train_tmr_en[k] = 1

(PIsm_state = “SILENT”)

!train_tmr_done[k] &
drvr_oe[k] &
frame_lock[k] &
lane_trained[k] &
from_dme_rcvr_ready[k]

!train_tmr_done[k] &
!drvr_oe[k]

drvr_oe[k] & frame_lock[k] &
!lane_sync[k]

!train_tmr_done[k] &
!lane_trained[k]

train_tmr_done[k]

DME_TRAINING2

dme_wait_tmr_en[k] = 1
DME_TRAINING_FAIL

set(training_fail[k])

DME_TRAINING1

train_lane[k] = 1

drvr_oe[k] & lane_sync[k] &
!frame_lock[k]

CWTRk

train_tmr_done[k]

UNTRk

!from_dme_rcvr_ready[k]

dme_wait_tmr_done[k] &
from_dme_rcvr_ready[k]
RapidIO.org 227

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-23. Long run Lane_Training state machine (lane k) Part 2 of 3

CWTRk

CW_TRAINING_FAIL

set(training_fail[k])

CW_TRAINING1

train_lane[k] = 1

CW_TRAINING0

DME_mode[k] = 0
set_xmt_equalizer(k,“SR_initialize”)
train_tmr_en[k] = 1

!train_tmr_done[k] &
!lane_trained[k]

!train_tmr_done[k] &
drvr_oe[k] &
lane_sync[k] &
lane_trained[k] &
from_sc_lane_trained[k]

train_tmr_done[k]

TRNDk UNTRk

train_tmr_done[k]

!train_tmr_done[k] &
!drvr_oe[k]
228 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-24. Long run Lane_Training state machine (lane k) Part 3 of 3

TRNDk

retrain

TRAINED

force_drvr_oe[k] = 0
DME_mode[k] = 0
train_lane[k] = 0
retrain_lane[k] = 0
train_tmr_en[k] = 0

lane_ready[k] &
!lane_degraded[k] &
from_sc_lane_ready[k]

RETRAIN_FAIL

set(retrain_fail[k])
retrain_lane[k] = 0
force_drvr_oe[k] = 0
clear(lane_trained[k])

lane_retraining[k] &
!retrain_tmr_done

(retrain_tmr_done |
 !retrain_tmr_en) &
(!lane_ready[k] |
 lane_degraded[k] |
 !from_sc_lane_ready[k])

RETRAINING0

force_drvr_oe[k] = 1

!lane_retraining[k] &
!retrain_tmr_done

RETRAINING1

retrain_lane[k] = 1

RETRAINING2

retrain_tmr_done

retrain_tmr_done

KEEP_ALIVE

force_drvr_oe[k] = 1

keep_alive & !retrain

retrain !keep_alive & !retrain
RapidIO.org 229

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.19.3.2 Short run Lane_Training state machine

The short run Lane_Training state machine is specified in Figure 5-25 through
Figure 5-26. There shall be a short run Lane_Training state machine for each lane
receiver of a short run port.

The short run Lane_Training state machine is essentially the long run Lane_training
state machine with DME training removed.

Figure 5-25. Short run Lane_Training state machine for lane k Part 1 of 2

TRNDk

UNTRAINED

force_drvr_oe[k] = 0
DME_mode[k] = 0
set_xmt_equalizer(k,“SR_initialize”)
train_lane[k] = 0
retrain_lane[k] = 0
train_tmr_en[k] = 0

CW_TRAINING0

train_tmr_en[k] = 1

(PIsm_state = “SILENT”)

!train_tmr_done[k] &
drvr_oe[k] &
lane_sync[k] &
lane_trained[k] &
from_sc_lane_trained[k] !train_tmr_done[k] &

!drvr_oe[k]

drvr_oe[k] &lane_sync[k]

!train_tmr_done[k] &
!lane_trained[k]

train_tmr_done[k]

CW_TRAINING_FAIL

set(training_fail[k])

CW_TRAINING1

train_lane[k] = 1

train_tmr_done[k]

UNTRk
230 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-26. Short run Lane_Training state machine for lane k Part 2 of 2

TRNDk

retrain

TRAINED

force_drvr_oe[k] = 0
train_lane[k] = 0
retrain_lane[k] = 0
train_tmr_en[k] = 0

lane_ready[k] &
!lane_degraded[k] &
from_sc_lane_ready[k]

RETRAIN_FAIL

set(retrain_fail[k])
retrain_lane[k] = 0
force_drvr_oe[k] = 0
clear(lane_trained[k])

lane_retraining[k] &
!retrain_tmr_done

(retrain_tmr_done |
 !retrain_tmr_en) &
(!lane_ready[k] |
 lane_degraded[k] |
 !from_sc_lane_ready[k])

RETRAINING0

force_drvr_oe[k] = 1

!lane_retraining[k] &
!retrain_tmr_done

RETRAINING1

retrain_lane[k] = 1

RETRAINING2

retrain_tmr_done

retrain_tmr_done

KEEP_ALIVE

force_drvr_oe[k] = 1

keep_alive & !retrain

retrain !keep_alive & !retrain
RapidIO.org 231

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.19.4 Codeword Lock State Machine

Codeword boundary recovery in a lane receiver is controlled and monitored by the
Codeword_Lock state machine. There shall be one Codeword_Lock state machine
for each lane receiver.

Codeword boundary acquisition is based on locating the transition between
codeword bits [1:2] (“!type” and “type” bits) that occurs in every 64b/67b
codeword. For convenience, 64b/67b codeword bits [1:2] will be called the
codeword “sync header”. (This term is adopted from IEEE 802.3 - 2008 Clause 49
10GBASE-R in which the 2-bit field that marks the beginning of a 10GBASE-R
64B/66B codeword is called the “sync header”.)

The state machine begins the search for codeword boundaries in the lane receiver’s
input serial data stream by testing the output of the lane receiver’s serial to 67-bit
parallel converter for a valid sync header in consecutive 67-bit codewords.
Codeword boundary alignment is declared (codeword_lock asserted) if 64
consecutive codewords are found each containing a valid sync header. Codeword
misalignment is declared if a codeword containing an invalid sync header occurs
before 64 consecutive codewords are found each containing a valid sync header.
Each invalid sync header detected causes the count of consecutive codewords
containing valid sync headers to be restarted from zero.

If codeword misalignment is declared during the search for codeword boundary
alignment, the serial to 67-bit parallel conversion boundaries is moved one bit
earlier or one bit later in the input serial data stream, but always in the same
direction, and the new alignment tested. This process is repeated until correct
codeword boundary alignment is achieved.

Once codeword boundary alignment is achieved (codeword_lock is asserted), the
serial to 67-bit parallel conversion boundary is no longer adjusted. The occurrence
of IVmax codewords containing invalid sync headers before 64 codewords with
valid sync headers occurs causes the state machine to declare loss of codeword
boundary alignment (codeword_lock de-asserted). At which point, the search for
codeword boundary alignment begins again.

IVmax is an integer constant that specifies the value of the IVcounter at which the
state machine determines that the lane has lost codeword boundary synchronization
and de-asserts codeword_lock. The greater the value of IVmax, the longer it takes
for codeword_lock to be de-asserted after the loss of an input signal. IVmax shall
have a minimum value of 3. The recommended value of IVmax for normal operation
is 3. The value may be set higher when the lane’s adaptive equalization is being
trained or retrained.

The 64b/67b Codeword_Lock state machine for lane k is shown in Figure 5-27.
232 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-27. Lane k Codeword_Lock state machine

codeword_lock[k] =1
CWcounter[k] = 0
IVcounter[k]= 0

IVcounter[k] >= IVmax

IVcounter[k] < IVmax

LOCK

codeword_lock[k] = 0

NO_LOCK

next_codeword()

NO_LOCK2

Vcounter[k] > 63

Vcounter[k] < 64

next_codeword()

LOCK1

CWcounter[k] = CWcounter[k] + 1

LOCK3

CWcounter[k] = CWcounter[k] + 1
IVcounter[k] = IVcounter[k] + 1

LOCK2

reset | change(signal_detect[k]) |
force_no_lock |
lost_valid_cs_reception

SH_transition !SH_transition

!SH_transition SH_transition

CWcounter[k] < 64

CWcounter[k] > 63

Vcounter[k] = 0

NO_LOCK1

slip_codeword_alignment()

SLIP_ALIGNMENT

Vcounter[k] = Vcounter[k] + 1

NO_LOCK3
RapidIO.org 233

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.19.5 Lane Synchronization State Machine

After codeword boundary alignment is achieved it is needed to look at some protocol
specifics to determine that the lane if fully synchronized to the incoming signal and
that the incoming signal complies on a certain level to the protocol. The
Descrambler Seed control codewords is used for this purpose.

After the codeword_lock[k] variable gets asserted the state machine will look for 6
Descrambler Seed control codewords that all are matching up with the internal state
of the descrambler (the descrambler is in sync). When this is achieved the lane is
declared to be in sync by the assertion of the lane_sync[k] variable.

The 64b/67b Lane_Synchronization state machine for lane k is shown in Figure
5-28.
234 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-28. Lane k Lane_Synchronization state machine

5.19.5.1 Entering Silence

When a port or a lane is going to enter silence, meaning it is going to disable the
transmitter, it is desired to do this in a controlled fashion that informs the link partner
of the intent. To facilitate this there are allocated bits in the Status/Control control

lane_sync[k] =1

SYNC

lane_sync[k] = 0
force_no_lock[k] = 0

NO_SYNC

next_codeword()

NO_SYNC2

DScounter[k] > 6

!dscrmblr_sync &
!dscrmblr_error

wait(65,536 UI)

SYNC1

reset | !codeword_lock[k]

DScounter[k] = 0

NO_SYNC1

check_dscrmblr_sync()

NO_SYNC3

DScounter[k] = DScounter[k] + 1

NO_SYNC4

dscrmblr_sync

codeword_lock[k]

dscrmblr_error

DScounter[k] < 7

from_sc_port_silence |
from_sc_lane_silence[k]

force_no_lock[k] = 1

SYNC2
RapidIO.org 235

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
codeword to indicate each of these events, a lane is going to enter silence or a port
is going to enter silence.

It is expected that implementations will use the signals 4_lanes_drvr_oe,
8_lanes_drvr_oe, 16_lanes_drvr_oe, lane0_drvr_oe, lanes01_drvr_oe,
lanes02_drvr_oe and force_drvr_oe[k] to determine for each lane if the transmitter
shall be enabled or disabled. When it is determined that the transmitter is going to
be disabled it is recommended to follow the enter silence procedure described in the
following. It is expected that it’s not always possible to easily control the transition
to silence, i.e. a hard reset of a device can result in the transmitter being disabled
immediately instead of going through the described procedure.

5.19.5.1.1 Transmitter procedure

When a port detects that a lane or port is going to enter silence it is recommended to
use the following procedure when possible:

• Stop transmission of packets and control symbols to the lane(s) involved. This
could be done by narrowing the port width in asymmetric mode or by
stopping the flow of packets by the port via the transmit_enable signal, or by
using another similar mechanism.

• After the flow of packets are stopped, set the Lane Entering Silence bit and if
applicable the Port Entering Silence bit in the Status/Control control
codeword transmitted to the link partner.

• Continue to send the IDLE3 sequence until either a minimum of 8
Status/Control ordered sequences have been transmitted or a maximum of
512 codewords have been transmitted.

• Disable the transmitter, and clear the drvr_oe[k] variable for the affected lanes.

• If the procedure is for a port to enter silence then enter the SILENT state of the
Port Initialization state machine if its not already the current state.

5.19.5.1.2 Receiver procedure

When a lane receives the Lane Entering Silence or Port Entering Silence indication
from its link partner it is recommended to use the following procedure:

• Transition from the SYNC state to the SYNC1 state of the Lane
Synchronization state machine.

• If the received indicator was the Port Entering Silence then start the transmitter
procedure for the port that received the Port Entering Silence indication.

• Wait for 65,536 UI, then transition to the SYNC2 state of the Lane
Synchronization state machine, in which state the force_no_lock[k] variable
is asserted to force the Codeword Lock state machine into its NO_LOCK
state.
The wait period is set so that it is comfortable higher than the time for the link
236 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
partner to disable the transmitter when following the procedure described in
the previous section. This is to guarantee that there is not an active signal
being received when entering the NO_LOCK state.

5.19.6 Lane Alignment State Machine

For a number of reasons, the lanes of a multi-lane LP-Serial link will have different
propagation delays with the result that the lanes must be realigned in the receiver
before the lanes can be destriped. The Lane_Alignment state machine monitors the
alignment of the received lanes and determine whether the lanes are aligned. A
receiver shall have a Lane_Alignment state machine for each multi-lane link width
supported by the receiver as each Lane_Alignment state machine is width specific.
The Lane_Alignment state machine for Nx mode is specified in Figure 5-29 and
Figure 5-30. The method for achieving alignment of the N lanes is implementation
specific and outside the scope of this specification.

Status/Control ordered sequences, which are transmitted in columns when a port is
transmitting in a multi-lane mode, are used to acquire and monitor lane alignment in
the receiver. When received, the Status/Control ordered sequences may be
misaligned due to lane to lane differences in propagation delay. Status/Control
control codewords may be corrupted by transmission errors, and so may be received
as a different codeword. Similarly, other codewords may be corrupted by
transmission errors and become Status/Control control codewords.

The Lane_Alignment state machine looks for pairs of sequential columns, the first
of which contains at least one Status/Control control codeword. Once a column
containing at least one Status/Control control codeword is found, that column and
the immediately following column are examined as a pair for the pattern of
Status/Control control codewords they contain. To limit complexity, each column is
characterized as containing all, some or no Status/Control control codewords.

Using the above characterization of columns, it is at best difficult to distinguish
between some cases of misalignment and of codeword corruption by a transmission
error. Examination of multiple pairs of columns is used to distinguish between
misalignment and corruption. Misalignment indicators repeat in multiple pairs of
columns whereas corruption does not.

To simplify the handling of such ambiguity, the state machine uses different
algorithms for determining when the N lanes are aligned and when alignment is lost.
The state machine requires four error-free and correctly aligned Status/Control
ordered sequences to determine that the N lanes are aligned. However, once the state
machine has determined that the N lanes are aligned, it tolerates occasional
transmission errors by requiring four indications of misalignment in a short period
of time before determining that the N lanes are misaligned.
RapidIO.org 237

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The Lane_Alignment state machine is specified in Figure 5-29 and Figure 5-30.
There shall be one Lane_Alignment state machine for each multi-lane width
supported by the port.

Figure 5-29. N-lane Lane_Alignment State Machine (Part 1 of 2)

NOT_ALIGNED1

NOT_ALIGNED

next_Ncolumn()

N_lanes_aligned = 0
Acounter = 0

NOT_ALIGNED2

next_Ncolumn()

N_lane_sync

!sc_Ncolumn

Acounter < 4

sc_Ncolumn

NOT_ALIGNED3

Acounter = Acounter + 1

sc_Ncolumn !sc_Ncolumn & !part_sc_Ncolumn

Acounter > 3

(PIsm_state = “SILENT”) |
change(N_lane_sync)

ALGND

UNAL

part_sc_Ncolumn
238 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-30. N-lane Lane_Alignment State Machine (Part 2 of 2)

5.19.7 Port Initialization State Machine

The Port_Initialization state machine is the primary state machine that controls
bringing a port from reset to an operational state in which the port may transmit and
receive control symbols and packets. There shall be one Port_Initialization state
machine per port.

ALIGNED1

next_Ncolumn()

ALIGNED

N_lanes_aligned = 1
Mcounter = 0
next_Ncolumn()

no_sc_Ncolumnsc_Ncolumn

ALIGNED7

Acounter = Acounter + 1

sc_Ncolumn

ALIGNED3

Acounter = 0
Mcounter = Mcounter + 1

!sc_Ncolumn

part_sc_Ncolumn

ALIGNED4

next_Ncolumn()

Mcounter < 4Mcounter > 3

ALIGNED5

next_Ncolumn()

sc_Ncolumn no_sc_Ncolumn

!sc_Ncolumn

part_sc_Ncolumn

UNAL

ALGND

ALIGNED6

next_Ncolumn()

sc_Ncolumn

ALIGNED2

next_Ncolumn()

Acounter < 4 Acounter > 3
RapidIO.org 239

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The generalized Port_Initialization state machine for 64b/67b encoded links is a
modest modification of the Port_Initialization state machine for 8b/10b encoded
links. The modifications include support for asymmetric operation, separate
discovery and recovery timers, and delaying the entry into the 2x_MODE state to
make sure that the connected port is transmitting in 2x, not 1x mode on lanes 0 and 1.

Upon entering the ASYM_MODE state, the Port_Initialization state machine passes
control over transmit and receive widths to the Transmit_Width and Receive_Width
state machines, respectively. If there is a failure that the Transmit_Width and/or
Receive_Width state machines cannot handle, control is returned to the
Port_Initialization state machine and the port is reinitialized.

There are 16 variants of the Port_initialization state machine, one supporting only
1x mode, four supporting 1x mode and one multi-lane mode, six supporting 1x mode
and two multi-lane modes, four for 1x mode and 3 multi-lane modes, and one
supporting all five specified link widths. State machine diagrams are defined for
only the 1x/2x/Nx one of these variants. These state machine diagrams shall be used
as guidance for the construction of state machines for the remaining variants.

5.19.7.1 1x/2x/Nx Initialization State Machine

The Port_Initialization state machine for a 1x/2x/Nx mode port is shown in
Figure 5-31 through Figure 5-33.

The assertion of reset or force_reinit forces the state machine to enter the SILENT
state regardless of the state machines current state. In SILENT, the state machine
disables all lane transmitter outputs, initializes a number of variables and waits for
the “silent” period to end. The silent period is used to force the lane partner, when
present, to also reinitialize.

At the end of the “silent” period, the state machine enters the SEEK state and output
enables the drivers for lane 0 and lane 1 and/or lane 2, depending on which of the
multi-lanes modes supported by the port are enabled. This announces the port’s
presence on the link. The state machine then waits for the assertion of frame_lock or
lane_sync for lane 0, 1, or 2 announcing the presence of a link partner. When the
presence of a link partner is detected, the state machine enters the DISCOVERY
state.

In the DISCOVERY state, the state machine output enables all of the lanes required
for the enabled multi-lane modes and starts the discovery timer (disc_tmr_en
asserted). The state machine then monitors the lane_sync, lane_ready and the
number of lanes that are being received and that can be aligned. The state machine
chooses which width mode to enter based on the number of lanes being received and
that are aligned. With a few exceptions, this decision is made at the end of the
discovery period (disc_tmr_done asserted) to ensure that a decision is not made
before all lanes being received have had a chance to be trained and aligned.
240 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Once in a width mode, the port is declared initialized (port_initialized asserted),
lanes not used by the current width mode are output disabled, and several variables
characterized the width mode are set. If a lane needed for reception of the current
width mode goes “not ready” (lane_ready[x] de-asserted) but at least one of the
redundancy lanes (lane 0 or lane R) is still being received (lane-sync[0] or
lane_sync[R] asserted), the state machine enters the recovery state for that width
mode (for example, the state machine enters 2X_RECOVERY from 2X_MODE). If
lane_sync is lost (lane_sync de-asserted) on both of the redundancy lanes, the state
machine determines that the link partner is no longer active and enters the SILENT
state to attempt to reinitialize.

A state machine in the Kx_RECOVERY state disables reception of incoming traffic,
starts the recovery timer and attempts to recover to Kx_MODE. If the port has not
recovered to Kx_MODE by the time the recovery time is up, the state machine
attempts to recover to a narrower link width or another lane in 1x mode. If that fails
the state machine enters the SILENT state. And if at any time in the recovery state
lane_sync is lost on both of the redundancy lanes, the state machine immediately
enters the SILENT state.

When in a multi-lane width mode state, the state machine transitions to
ASYM_MODE if asymmetric mode is enabled in both ports and both ports are
initialized to the same port width.
RapidIO.org 241

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-31. 1x/2x/Nx Port_Initialization State Machine, Part 1 of 3

lane0_drvr_oe = 0
lanes01_drvr_oe = 0
lanes02_drvr_oe = 0
N_lanes_drvr_oe = 0
port_initialized = 0
receive_lane1 = 0
receive_lane2 = 0
force_reinit = 0
asym_mode = 0
silence_tmr_en = 1
receive_enable_pi = 0
transmit_enable_pi = 0
max_width = “0x”
recovery_retrain = 0

silence_tmr_done

reset | force_reinit

N_lanes_drvr_oe = Nx_mode_enabled
disc_tmr_en = 1

D
to

N
xM

D
to

2x
M

D
to

1x
M

0

D
to

1x
M

1

D
to

1x
M

2 DtoSL

lane0_drvr_oe =
!2x_mode_supported & !Nx_mode_supported

lanes01_drvr_oe =
2x_mode_enabled |
force_1x_mode & 2x_mode_supported

lanes02_drvr_oe =
Nx_mode_enabled |
force_1x_mode & Nx_mode_supported

SKtoD

SILENTASYM_MODE

SEEK

DISCOVERY

SLNT

1xM0

1xM1

1xM2

2xM

NxM

asym_mode = 1

end_asym_mode

ASYM
242 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-32. 1x/2x/Nx Port_Initialization state machine, Part 2 of 3

port_initialized = 1
receive_enable_pi = 1
transmit_enable_pi = 1
max_width = “1x”
recovery_retrain = 0
N_lanes_drvr_oe = 0

port_initialized = 1
receive_enable_pi = 1
transmit_enable_pi = 1
max_width = “1x”
recovery_retrain = 0
N_lanes_drvr_oe = 0
receive_lane2 = 0
receive_lane1 = 1

port_initialized = 1
receive_enable_pi = 1
transmit_enable_pi = 1
max_width = “1x”
recovery_retrain = 0
N_lanes_drvr_oe = 0
receive_lane2 = 1

receive_enable_pi = 0
transmit_enable_pi = 0
recovery_tmr_en = 1

1xRto1xM2

1xRtoSL1xRto1xM0

1xRto1xM1

1xM0toSL 1xM1toSL 1xM2toSL

1xM0to1xR 1xM1to1xR 1xM2to1xR

1x_RECOVERY

1x_MODE_LANE0 1x_MODE_LANE1 1x_MODE_LANE2

SLNT

1xM0 1xM1 1xM2

recovery_retrain = 1

1x_RETRAIN

1xRto1xRT
RapidIO.org 243

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-33. 1x/2x/Nx Port_Initialization state machine, Part 3 of 3

port_initialized = 1
receive_enable_pi = 1
transmit_enable_pi = 1
max_width = “2x”
recovery_retrain = 0
lanes02_drvr_oe = 0
N_lanes_drvr_oe = 0

N
xM

to
S

L

receive_enable_pi = 0
transmit_enable_pi = 0
recovery_tmr_en = 1

receive_enable_pi = 0
transmit_enable_pi = 0
recovery_tmr_en = 1

NxMtoNxR

port_initialized = 1
receive_enable_pi = 1
transmit_enable_pi = 1
max_width = “Nx”
recovery_retrain = 0

N
xR

to
N

xM

N
xR

to
2x

M

N
xR

to
1x

M
0

N
xR

to
1x

M
1

N
xR

to
1x

M
2

2xMto2xR

2x
R

to
2x

M

N
xR

to
S

L

2x
R

to
S

L

2x
R

to
1x

M
0

2x
R

to
1x

M
1

2x
M

to
S

L

N
xM

to
A

M

2x
M

to
A

M

ASYM

SLNT

2xM

Nx_RECOVERY 2x_RECOVERY

Nx_MODE 2x_MODE

NxM

1xM21xM0

1xM1

recovery_retrain = 1

Nx_RETRAIN

N
xR

to
N

xR
T

recovery_retrain = 1

2x_RETRAIN

2x
R

to
2x

R
T

244 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The equations for the state transition conditions for the 1x/2x/Nx Port_Initialization
state machine are as follows:

1xM0to1xR = !lane_ready[0] & lane_sync[0]

1xM0toSL = !lane_sync[0]

1xM1to1xR = !lane_ready[1] & lane_sync[1]

1xM1toSL = !lane_sync[1]

1xM2to1xR = !lane_ready[2] & (lane_sync[1] | lane_sync[2])

1xM2toSL = !lane_sync[2] & !lane_sync[1]

1xRto1xM0 = !recovery_tmr_done & !receive_lane1 & !receive_lane2 &
lane_ready[0] & (!retrain | recovery_retrain)

1xRto1xM1 = !recovery_tmr_done &
(receive_lane1 |
 receive_lane2 & !lane_ready[2] &
 (2x_mode_enabled | force_1x_mode & 2x_mode_supported)) &
lane_ready[1] & (!retrain | recovery_retrain)

1xRto1xM2 = !recovery_tmr_done & receive_lane2 & lane_ready[2] &
(!retrain | recovery_retrain)

1xRto1xRT = retrain & !recovery_retrain

1xRtoSL = !lane_sync[0] &
!(lane_sync[1] & 2x_mode_supported) &
!(lane_sync[2] & 4x_mode_supported) | recovery_tmr_done

2xMtoAM = asym_mode_en & from_sc_asym_mode_en &
port_initialized & from_sc_initialized &
(from_sc_rcv_width = “2x mode”) &
2_lanes_ready & !from_sc_xmt_1x_mode

2xMto2xR = !2_lanes_ready & (lane_sync[0] | lane_sync[1])
| 2_lanes_ready & from_sc_xmt_1x_mode

2xMtoSL = !lane_sync[0] & !lane_sync[1]

2xRto1xM0 = (recovery_tmr_done & !2_lanes_ready & lane_ready[0] |
 2_lanes_ready & from_sc_xmt_1x_mode) &
xmting_idle & (!retrain | recovery_retrain)

2xRto1xM1 = (recovery_tmr_done & !2_lanes_ready & !lane_ready[0] &
 lane_ready[1]) &
xmting_idle & (!retrain | recovery_retrain)

2xRto2xM = 2_lanes_ready & !from_sc_xmt_1x_mode &
(!retrain | recovery_retrain)

2xRto2xRT = retrain & !recovery_retrain
RapidIO.org 245

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2xRtoSL = !lane_sync[0] & !lane_sync[1] |
recovery_tmr_done & !lane_ready[0] & !lane_ready[1]

Dto1xM0 = lane_ready[0] &
(force_1x_mode &
 (!force_laneR |
 force_laneR & disc_tmr_done &
 !(lane_ready[1] & 2x_mode_supported) &
 !(lane_ready[2] & Nx_mode_supported)
) |
 !force_1x_mode & disc_tmr_done &
 !(Nx_mode_enabled & N_lanes_ready) &
 (!(2x_mode_enabled & 2_lanes_ready) |
 2_lanes_ready & from_sc_xmt_1x_mode
) |
 !2x_mode_supported & !Nx_mode_supported
)

Dto1xM1 = lane_ready[1] &
(force_1x_mode & 2x_mode_supported &
 !(Nx_mode_supported & lane_ready[2]) &
 (force_laneR & (!Nx_mode_supported | disc_tmr_done & !lane_ready[2]) |
 !force_laneR & disc_tmr_done & !lane_ready[0] &
 !(Nx_mode_supported & lane_ready[2])) |
 !force_1x_mode & 2x_mode_enabled &
 !(Nx_mode_enabled & lane_ready[2]) &
 disc_tmr_done & !lane_ready[0]
)

Dto1xM2 = lane_ready[2] &
(force_1x_mode & Nx_mode_supported &
 (force_laneR | !force_laneR & disc_tmr_done & !lane_ready[0]) |
 !force_1x_mode & Nx_mode_enabled &
 disc_tmr_done & !lane_ready[0]
)

Dto2xM = 2x_mode_enabled & 2_lanes_ready &
(disc_tmr_done | !Nx_mode_enabled) &
!from_sc_xmt_1x_mode & !(Nx_mode_enabled & N_lanes_ready)

DtoNxM = Nx_mode_enabled & N_lanes_ready

DtoSL = disc_tmr_done & !lane_ready[0] &
!(lane_ready[1] &
 (2x_mode_enabled | force_1x_mode & 2x_mode_supported)
) &
!(lane_ready[2] &
 (Nx_mode_enabled | force_1x_mode & Nx_mode_supported)
)

NxMtoAM = asym_mode_en & from_sc_asym_mode_en &
port_initialized & from_sc_initialized &
(from_sc_rcv_width = “Nx mode”) &
N_lanes_ready
246 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
NxMtoNxR = !N_lanes_ready & (lane_sync[0] |
(lane_sync[1] & 2x_mode_enabled) | lane_sync[2])

NxMtoSL = !lane_sync[0] &
!(lane_sync[1] & 2x_mode_enabled) &
!lane_sync[2]

NxRto1xM0 = recovery_tmr_done & lane_ready[0] & !N_lanes_ready &
(!(2x_mode_enabled & 2_lanes_ready) |
 2_lanes_ready & from_sc_xmt_1x_mode
) & xmting_idle & (!retrain | recovery_retrain)

NxRto1xM1 = recovery_tmr_done & !lane_ready[2] & !lane_ready[0] &
lane_ready[1] & 2x_mode_enabled & xmting_idle &
(!retrain | recovery_retrain)

NxRto1xM2 = recovery_tmr_done & lane_ready[2] & !lane_ready[0] & xmting_idle &
(!retrain | recovery_retrain)

NxRto2xM = 2x_mode_enabled & 2_lanes_ready & recovery_tmr_done &
!from_sc_xmt_1x_mode & !N_lanes_ready & xmting_idle &
(!retrain | recovery_retrain)

NxRtoNxM = N_lanes_ready & (!retrain | recovery_retrain)

NxRtoNxRT = retrain & !recovery_retrain

NxRtoSL = !lane_sync[0] & !lane_sync[2] &
!(lane_sync[1] & 2x_mode_enabled) |
recovery_tmr_done & !lane_ready[0] & !lane_ready[2] &
!(lane_ready[1] & 2x_mode_enabled)

SKtoD = frame_lock[0] ^ lane_sync[0] |
(2x_mode_enabled | force_1x_mode & 2x_mode_supported) &
 frame_lock[1] ^ lane_sync[1] |
(Nx_mode_enabled | force_1x_mode & Nx_mode_supported) &
 frame_lock[2] ^ lane_sync[2]

5.19.8 Retrain/Transmit_Width_Control State Machine

The Retrain/Transmit_Width_Control state machine provides two functions:

• It serializes link retraining and transmit width change operations on a link
operating in asymmetric mode to avoid any interaction between the two
operations.

• It ensures that control symbol and packet transmission is suspended in both link
directions while any of the link’s lanes are being retrained.

These functions are combined into a single machine to minimize the total number of
states required.

Retraining and transmit width change operations are serialized by requiring pending
retraining and transmit width change operations to arbitrate for permission to
RapidIO.org 247

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
execute, and once an operation has been granted permission to execute, not
conducting another arbitration until the current operation completes execution.

Ensuring that control symbol and packet transmission is suspended in both link
directions during retraining is achieved as follows:

1. The port initiating the retraining signals the connected port that it is has
granted retraining permission to execute.

2. The initiating port then waits for the connected port to signal that it also
granted retraining permission to execute.

3. The initiating port suspends control symbols and packets transmission and
signals the connected port that it is ready to retrain.

4. The initiating port waits for the connected port to signal that its has also
suspended control symbol and packet transmission and is also ready to
retrain.

5. Both ports then retrain.

Once both ports have indicated they are ready to retrain, the state machine verifies
that no port is currently retraining (retraining is de-asserted), orders all trained lanes
to retrain (retrain asserted), verifies that retraining has begun (retraining asserted),
and waits for both the port and the link partner to complete retraining. At which
point, the state machine returns to the IDLE state.

Unlike the lane training operation which has a dead man timer for each lane,
retraining shares a single retraining dead man timer (retrain_tmr) across all lanes.
The timer is used to prevent a failure at any stage of the retraining process from
hanging the state machine in some intermediate state.

All lanes that are used by the port when it achieves port_initialized status (indicated
by max_width) participate in retraining. The failure of any of the lanes participating
in retraining to retrain successfully within the retraining time will cause the port to
downgrade the port width.

The signaling between the connected ports is through dedicated bits in the
Status/Control control codewords transmitted in Status/Control ordered sequences
by the ports.

The Retrain/Xmt_Width_Control state machine is specified in Figure 5-34. Each
port shall have a Retrain/Xmt_Width_Control state machine.
248 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-34. Retrain/Xmt_Width_Control state machine

IDLE

retrain = 0
retrain_grnt = 0
retrain_ready = 0
retrain_tmr_en = 0
xmt_width_grnt = 0
transmit_enable_rtwc = 1

(retrain_pending |
 from_sc_retrain_grnt & retrain_en) &
port_initialized

RETRAIN0

retrain_grnt = 1
retrain_tmr_en = 1
transmit_enable_rtwc =1

!retraining &
!from_sc_retraining &
!from_sc_retrain_ready &
receive_enable

!xmt_width_cmd_pending

(PIsm_state = SILENT)

xmt_width_cmd_pending &
!((retrain_pending |
 from_sc_retrain_grnt & retrain_en) &
 port_initialized)

XMT_WIDTH

xmt_width_grnt = 1

RETRAIN_TIMEOUT

retrain = 0
retrain_grnt = 0
retrain_ready = 0

from_sc_retrain_grnt &
!retrain_tmr_done

RETRAIN5

retrain = 0
retrain_ready = 0

xmting_idle &
!retrain_tmr_done

from_sc_retrain_ready &
!retrain_tmr_done

retrain_tmr_done

retrain_tmr_done

(retraining | from_sc_retraining |
 from_sc_retrain_ready |
 !receive_enable) &
retrain_tmr_done

retrain_tmr_done

RETRAIN1

RETRAIN2

retrain_ready = 1

RETRAIN4

retrain = 1

retraining &
!retrain_tmr_done

retrain_tmr_done

retrain_tmr_done

RETRAIN3

retrain_grnt = 0

!retraining &
!retrain_tmr_done &
!from_sc_retrain_grnt

receive_enable
RapidIO.org 249

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.19.9 Transmit Width State Machines

Transmit width commands are received by a port from possibly multiple and
unspecified sources and transmit width command acknowledgements are returned
to those sources. The handling of transmit width commands received by a port is
shared between the Transmit_Width and the Transmit_Width_Cmd state machines.
The Transmit_Width state machine handles the transmit width command if it is
executable. The Transmit_Width_Cmd state machine handles the command if it is
not executable and handles the final stages of the command/acknowledgement
protocol for all transmit width commands.

There shall be one Transmit_Width_Cmd state machine and one Transmit_Width
state machine per port.

5.19.9.1 Transmit_Width_Cmd State Machine

The Transmit_Width_Cmd state machine checks each transmit width port command
received by a port for executability. A transmit width port command is not
executable if the port is not in asymmetric mode, the requested width is not enabled
or the requested width is greater than the maximum symmetric width of the link at
the time the port was last initialized. If the command is not executable
(bad_xmt_width_cmd asserted), the state machine negatively acknowledges
(NACKS) the command. Regardless of whether or not a transmit width command is
executable, the state machine enforces the final stages of the transmit width port
command/acknowledgement protocol by keeping xmt_width_link_cmd_ack (ACK)
or xmt_width_link_cmd_nack (NACK) asserted until the transmit width port
command is de-asserted.

The Transmit_Width_Cmd state machine is specified in Figure 5-35.
250 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-35. Transmit_Width_Cmd state machine

5.19.9.2 Transmit_Width state machine

Control of a port’s transmit width is transferred from the Port_Initialization state
machine to the port’s Transmit_Width state machine when the Port_Initialization
state machine enters ASYM_MODE (asym_mode asserted).

When an executable transmit width port command is received by a port, the
Transmit_Width state machine attempts to switch to the requested transmit width.
The state machine begins by starting the transmit width timer (xmt_width_tmr_en
asserted) and output enabling the drivers for the lanes needed for requested width.
When transitioning from a narrower to a wider width, 64b/67b compliant data
sufficient to allow the link partner to achieve frame lock and lane alignment shall be
sent on the newly enabled lanes. Some examples of 64b/67b compliant data are the
IDLE3 sequence, and the data pattern sent on lane 0 of the port.

The transmit width timer runs during the entire transmit width change process. If any
stage of the process fails to complete before the transmit width timer times out, the
transmit width port command is NACKed and the state machine either restores the
port to its current transmit width or, if that does not appear to be possible, it forces
the port to reinitialize (end_asym_mode is asserted). The transmit width timer is
used to prevent the Transmit_Width state machine from becoming stuck part way
though a transmit width change operation.

When the lanes needed for the new width become ready, the state machine halts the
transmission of control symbols and packets by deasserting transmit_enable_tw and

XMT_WIDTH_CMD3

xmt_width_port_cmd_ack = 0
xmt_width_port_cmd_nack = 0

XMT_WIDTH_CMD2

XMT_WIDTH_CMD1

xmt_width_port_cmd_nack = 1

XMT_WIDTH_CMD_IDLE

(xmt_width_port_cmd != “hold”) &
(xmt_width_port_cmd_ack
 | xmt_width_port_cmd_nack)

bad_xmt_width_cmd

xmt_width_port_cmd = “hold”

(PIsm_state = “SILENT”)
RapidIO.org 251

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
waiting for control symbol and packet transmission to end as indicated by
xmting_idle.

When the transmission of control symbols and packets end, a receive width link
command is sent in the “Receive width command” field of Status/Control control
codewords send to the connected port to switch to the new receive width.

If the connected port ACKs the receive width link command and the receive width
it reports in the “Receive width” of Status/Control control codewords that it
transmits matches the requested receive width, the state machine switches to the new
transmit width, changes the receive width link command to “hold”, ACKs the
transmit width port command, output disables any lanes not needed for the new
transmit width, and re-enables control symbol and packet transmission
(transmit_enable_tw asserted).

If the connected port NACKs the receive width link command, and the receive width
it reports in the “Receive width” field of Status/Control control codewords that it
transmits matches the current transmit width, the state machine output disables the
lanes that were output enabled for the requested transmit width, NACKs the transmit
width port command, and re-enables control symbol and packet transmission at the
current transmit width.

The Transmit_Width state machine is specified in Figure 5-36 through Figure 5-39.
The portion of the state machine that is specific to a given receive width shall be
implemented only if that width mode is supported by the port. For example, if a port
supports only 1x and 4x modes, only width specific portions of the Receive_Width
state machine for 1x and 4x modes shall be implemented. The width specific
portions for 2x, 8x, and 16x modes shall not be implemented.

Additional variables that are local to the Transmit_Width state machine are defined
as follows:

1x_mode_xmt_cmd = asym_mode & (xmt_width_port_cmd = “1x mode”) &
 !xmt_width_port_cmd_ack & !xmt_width_port_cmd_nack

2x_mode_xmt_cmd = asym_mode & (xmt_width_port_cmd = “2x mode”) &
 asym_2x_mode_enabled & !xmt_width_port_cmd_ack &
 !xmt_width_port_cmd_nack

4x_mode_xmt_cmd = asym_mode & (xmt_width_port_cmd = “4x mode”) &
 asym_4x_mode_enabled & (max_width >= “4x”) &
 !xmt_width_port_cmd_ack & !xmt_width_port_cmd_nack

8x_mode_xmt_cmd = asym_mode & (xmt_width_port_cmd = “8x mode”) &
 asym_8x_mode_enabled & (max_width >= “8x”) &
 !xmt_width_port_cmd_ack & !xmt_width_port_cmd_nack

16x_mode_xmt_cmd = asym_mode & (xmt_width_port_cmd = “16x mode”) &
 asym_16x_mode_enabled & (max_width >= “16x”) &
 !xmt_width_port_cmd_ack & !xmt_width_port_cmd_nack
252 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-36. Transmit Width (XMT_Width) State Machine Part 1 of 4

end_asym_mode = 0
rcv_width_link_cmd = “hold”
xmt_width_tmr_en = 0
xmt_width = max_width
xmt_sc_seq = 0
transmit_enable_tw = 1

ASYM_XMT_IDLE

2xMX

4xMX

8xMX

16xMX

(PIsm_state = “SILENT”) |
!asym_mode

as
ym

_m
od

e
&

 (m
ax

_w
id

th
 =

 “
2x

”)

XWN

(x
m

t_
w

id
th

 =
 “

1x
”)

1xMX

2xMX

4xMX

8xMX

16xMX

rcv_width_link_cmd = “hold”
xmt_sc_seq = 0
xmt_width_port_cmd_nack = 1

XMT_WIDTH_NACK

(x
m

t_
w

id
th

 =
 “

2x
”)

(x
m

t_
w

id
th

 =
 “

4x
”)

(x
m

t_
w

id
th

 =
 “

8x
”)

(x
m

t_
w

id
th

 =
 “

16
x”

)

xmt_width_port_cmd_nack = 1
xmt_sc_seq = 0
end_asym_mode = 1

ASYM_XMT_EXIT

AXE

!asym_mode

as
ym

_m
od

e
&

 (m
ax

_w
id

th
 =

 “
4x

”)

as
ym

_m
od

e
&

 (m
ax

_w
id

th
 =

 “
8x

”)

as
ym

_m
od

e
&

 (
m

ax
_w

id
th

 =
 “

16
x”

)

RapidIO.org 253

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-37. Transmit Width (XMT_Width) State Machine Part 2 of 4

xmt_width_tmr_en = 0
lanes01_drvr_oe = 0
lanes02_drve_oe = 0
4_lanes_drvr_oe= 0
8_lanes_drvr_oe = 0
16_lanes_drvr_oe = 0
xmt_width = “1x”
transmit_sc_sequences(4)
xmt_sc_seq = 0
transmit_enable_tw = 1

transmit_enable_tw = 0

rcv_width_link_cmd = “hold”
xmt_width_port_cmd_ack = 1

1x
_m

od
e_

xm
t_

cm
d

&
xm

t_
w

id
th

_g
rn

t

1xMX
S1xMX

XWN

lane0_drvr_oe = 1
xmt_sc_seq = 1
xmt_width_tmr_en = 1
prev_xmt_width = xmt_width

xmting_idle

lane0_drvr_oe = 0
xmt_width = prev_xmt_width

AXE

1x_MODE_XMT

1x_MODE_XMT_ACK

SEEK_1x_MODE_XMT

SEEK_1x_MODE_XMT1

SEEK_1x_MODE_XMT3

xmt_width = “1x”
rcv_width_link_cmd = “1x”

SEEK_1x_MODE_XMT2

!xmt_width_tmr_done &
from_sc_rcv_width_link_cmd_ack &
(from_sc_rcv_width = “1x”)

(from_sc_rcv_lanes_ready >= “1 lanes”)

!x
m

t_
w

id
th

_t
m

r_
do

ne
 &

fr
om

_s
c_

rc
v_

w
id

th
_l

in
k_

cm
d_

na
ck

 &
(f

ro
m

_s
c_

rc
v_

w
id

th
 =

 x
m

t_
w

id
th

)

xm
t_

w
id

th
_t

m
r_

do
ne

 &
 (

fr
om

_s
c_

rc
v_

la
ne

s_
re

ad
y

<
 “

1
la

ne
”)

xm
t_

w
id

th
_t

m
r_

do
ne

S2xMX

S4xMX

S8xMX

S16xMX

2x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

4x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

8x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

16
x_

m
od

e_
xm

t_
cm

d
&

xm

t_
w

id
th

_g
rn

t

xm
t_

w
id

th
_t

m
r_

do
ne

 &
 !

xm
ti

ng
_i

dl
e

254 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-38. Transmit Width (XMT_Width) State Machine Part 3 of 4

xmt_width_tmr_en = 0
lanes02_drvr_oe = 0
4_lanes_drvr_oe= 0
8_lanes_drvr_oe = 0
16_lanes_drvr_oe = 0
xmt_width = “2x”
transmit_sc_sequences(4)
xmt_sc_seq = 0
transmit_enable_tw = 1

transmit_enable_tw = 0

rcv_width_link_cmd = “hold”
xmt_width_port_cmd_ack = 1

2xMX
S2xMX

XWN

lanes01_drvr_oe = 1
xmt_sc_seq = 1
xmt_width_tmr_en = 1
prev_xmt_width = xmt_width

xmting_idle

lanes01_drvr_oe = 0
xmt_width = prev_xmt_width

AXE

2x_MODE_XMT

2x_MODE_XMT_ACK

SEEK_2x_MODE_XMT

SEEK_2x_MODE_XMT1

SEEK_2x_MODE_XMT3

xmt_width = “2x”
rcv_width_link_cmd = “2x”

SEEK_2x_MODE_XMT2

!xmt_width_tmr_done &
from_sc_rcv_width_link_cmd_ack &
(from_sc_rcv_width = “2x”)

(from_sc_rcv_lanes_ready >= “2 lanes”)

!x
m

t_
w

id
th

_t
m

r_
do

ne
 &

fr
om

_s
c_

rc
v_

w
id

th
_l

in
k_

cm
d_

na
ck

 &
(f

ro
m

_s
c_

rc
v_

w
id

th
 =

 x
m

t_
w

id
th

)

xm
t_

w
id

th
_t

m
r_

do
ne

 &
 (

fr
om

_s
c_

rc
v_

la
ne

s_
re

ad
y

<
 “

2
la

ne
s”

)

xm
t_

w
id

th
_t

m
r_

do
ne

S1xMX

S4xMX

S8xMX

S16xMX

2x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

1x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

4x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

8x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

16
x_

m
od

e_
xm

t_
cm

d
&

xm

t_
w

id
th

_g
rn

t

xm
t_

w
id

th
_t

m
r_

do
ne

 &
 !

xm
ti

ng
_i

dl
e

RapidIO.org 255

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-39. Transmit Width (XMT_Width) State Machine Part 4 of 4, K, L, N 4

xmt_width_tmr_en = 0
lanes01_drvr_oe = 0
lanes02_drve_oe = 0
K_lanes_drvr_oe= 0
L_lanes_drvr_oe = 0
xmt_width = “Nx”
transmit_sc_sequences(4)
xmt_sc_seq = 0
transmit_enable_tw = 1

transmit_enable_tw = 0

rcv_width_link_cmd = “hold”
xmt_width_port_cmd_ack = 1

NxMX

SNxMX

XWN

N_lanes_drvr_oe = 1
xmt_sc_seq = 1
xmt_width_tmr_en = 1
prev_xmt_width = xmt_width

xmting_idle

N_lanes_drvr_oe = 0
xmt_width = prev_xmt_width

AXE

Nx_MODE_XMT

Nx_MODE_XMT_ACK

SEEK_Nx_MODE_XMT

SEEK_Nx_MODE_XMT1

SEEK_Nx_MODE_XMT3

xmt_width = “Nx”
rcv_width_link_cmd = “Nx”

SEEK_Nx_MODE_XMT2

!xmt_width_tmr_done &
from_sc_rcv_width_link_cmd_ack &
(from_sc_rcv_width = “Nx”)

(from_sc_rcv_lanes_ready >= “N lanes”)

!x
m

t_
w

id
th

_t
m

r_
do

ne
 &

fr
om

_s
c_

rc
v_

w
id

th
_l

in
k_

cm
d_

na
ck

 &
(f

ro
m

_s
c_

rc
v_

w
id

th
 =

 x
m

t_
w

id
th

)

xm
t_

w
id

th
_t

m
r_

do
ne

 &
 (

fr
om

_s
c_

rc
v_

la
ne

s_
re

ad
y

<
 “

N
 la

ne
s”

)

xm
t_

w
id

th
_t

m
r_

do
ne

1x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

S1xMX

S2xMX

SKxMX

SLxMX

N
x_

m
od

e_
xm

t_
cm

d
&

xm

t_
w

id
th

_g
rn

t

2x
_m

od
e_

xm
t_

cm
d

&

xm
t_

w
id

th
_g

rn
t

K
x_

m
od

e_
xm

t_
cm

d
&

xm

t_
w

id
th

_g
rn

t

L
x_

m
od

e_
xm

t_
cm

d
&

xm

t_
w

id
th

_g
rn

t

xm
t_

w
id

th
_t

m
r_

do
ne

 &
 !

xm
ti

ng
_i

dl
e

256 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.19.10 Receive Width State Machines

Receive width link commands are received by a port in Status/Control ordered
sequences transmitted by the connected port, and receive width command
acknowledgements are returned in Status/Control ordered sequences. The handling
of receive width link commands received by a port is shared between the
Receive_Width and the Receive_Width_Cmd state machines. The Receive_Width
state machine handles the receive width command if it is executable. The
Receive_Width_Cmd state machine handles the command if it is not executable and
handles the final stages of the command/acknowledgement protocol for all receive
width link commands.

There shall be one Receive_Width_Cmd state machine and one Receive_Width state
machine per port.

5.19.10.1 Receive_Width_Cmd State Machine

The Receive_Width_Cmd state machine checks each receive width link command
received by a port for executability. A receive width link command is not executable
if the port is not in asymmetric mode or the requested width is not enabled. If the
command is not executable (bad_rcv_width_cmd asserted), the state machine
negatively acknowledges (NACKS) the command. Regardless of whether a receive
width command is executable, the state machine enforces the final stages of the
receive width link command/acknowledgement protocol by keeping
rcv_width_link_cmd_ack (ACK) or rcv_width_link_cmd_nack (NACK) asserted
until the receiver width link command is de-asserted.

The Receive_Width_Cmd state machine is shown in Figure 5-40.

Figure 5-40. Receive_Width_Cmd state machine

RCV_WIDTH_CMD3

rcv_width_link_cmd_ack = 0
rcv_width_link_cmd_nack = 0

RCV_WIDTH_CMD2

RCV_WIDTH_CMD1

rcv_width_link_cmd_nack = 1

RCV_WIDTH_CMD_IDLE

(from_sc_rcv_width_link_cmd != “hold”) &
(rcv_width_link_cmd_ack
 | rcv_width_link_cmd_nack)

bad_rcv_width_cmd

from_sc_rcv_width_link_cmd = “hold”

(PIsm_state = “SILENT”)
RapidIO.org 257

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5.19.10.2 Receive_Width State Machine

Control of a port’s receive width is transferred from the Port_Initialization state
machine to the Receive_Width state machine when the Port_Initialization state
machine enters ASYM_MODE (asym_mode asserted).

When an executable receive width link command is received by a port, the
Receive_Width state machine attempts to switch to the requested receive width. The
state machine begins by starting the rcv_width_tmr (rcv_width_tmr_en asserted),
stopping the reception of control symbols and packets (receive_enable de-asserted)
and waits for N lanes to become ready and aligned (N_lanes_ready asserted), where
N is the receive width requested in the receive width link command.

The receive width timer runs during the entire receive width change process. If any
stage of the process fails to complete before the receive width timer times out, the
receive width link command is NACKed and the state machine either restores the
port to its current receive width or, if that does not appear to be possible, it forces the
port to reinitialize (end_asym_mode is asserted). The receive width timer is used to
prevent the Receive_Width state machine from becoming stuck part way though a
receive width change operation.

When N lanes are ready and aligned, the state machine switches the port to the new
receive width, ACKs the receive width link command, and re-enables control
symbol and packet reception.

The Receive_Width state machine is specified in Figure 5-41 through Figure 5-44.
The portion of the state machine specific to a given receive width shall be
implemented only if that width mode is supported by the port. For example, if a port
supports only 1x and 4x modes, only width specific portions of the Receive_Width
state machine for 1x and 4x modes shall be implemented. The width specific
portions for 2x, 8x, and 16x modes shall not be implemented.

Additional variables that are local to the Receive_Width state machine are as
follows:

1x_mode_rcv_cmd = asym_mode & (from_sc_rcv_width_link_cmd = “1x mode”) &
!rcv_width_link_cmd_ack & !rcv_width_link_cmd_nack

2x_mode_rcv_cmd = asym_mode & (from_sc_rcv_width_link_cmd = “2x mode”) &
asym_2x_mode_enabled & !rcv_width_link_cmd_ack &
!rcv_width_link_cmd_nack

4x_mode_rcv_cmd = asym_mode & (from_sc_rcv_width_link_cmd = “4x mode”) &
asym_4x_mode_enabled & (max_width >= “4x”) &
!rcv_width_link_cmd_ack & !rcv_width_link_cmd_nack

8x_mode_rcv_cmd = asym_mode & (from_sc_rcv_width_link_cmd = “8x mode”) &
asym_8x_mode_enabled & (max_width >= “8x”) &
!rcv_width_link_cmd_ack & !rcv_width_link_cmd_nack
258 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
16x_mode_rcv_cmd = asym_mode & (from_sc_rcv_width_link_cmd = “16x mode”) &
asym_16x_mode_enabled & (max_width >= “16x”) &
!rcv_width_link_cmd_ack & !rcv_width_link_cmd_nack

Figure 5-41. Receive_Width (RCV_Width) State Machine, Part 1 of 4

end_asym_mode = 0
rcv_width = max_width
receive_enable_rw = 1
recovery_retrain = 0

ASYM_RCV_IDLE

2xMR

4xMR

8xMR

16xMR

(PIsm_state = “SILENT”) |
!asym_mode

as
ym

_m
od

e
&

 (
m

ax
_w

id
th

 =
 “

2x
”)

RWN

(r
cv

_w
id

th
 =

 “
1x

”)

1xR

2xR

4xR

8xR

16xR

rcv_width_link_cmd_nack = 1

RCV_WIDTH_NACK

(r
cv

_w
id

th
 =

 “
2x

”)

(r
cv

_w
id

th
 =

 “
4x

”)

(r
cv

_w
id

th
 =

 “
8x

”)

(r
cv

_w
id

th
 =

 “
16

x”
)

end_asym_mode = 1

ASYM_RCV_EXIT

ARE

!asym_mode

as
ym

_m
od

e
&

 (
m

ax
_w

id
th

 =
 “

4x
”)

as
ym

_m
od

e
&

 (
m

ax
_w

id
th

 =
 “

8x
”)

as
ym

_m
od

e
&

 (
m

ax
_w

id
th

 =
 “

16
x”

)

RapidIO.org 259

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-42. Receive_Width (RCV_Width) State Machine, Part 2 of 4

receive_enable_rw = 0
recovery_tmr_en = 1

1x_RECOVERY

rcv_width = “1x”
receive_enable_rw = 1
recovery_retrain = 0

1x_MODE_RCV

receive_enable_rw = 0
rcv_width_tmr_en = 1

SEEK_1x_MODE_RCV

rcv_width = “1x”
rcv_width_link_cmd_ack = 1

1x_MODE_RCV_ACK

!lane_sync[0]

!l
an

e_
re

ad
y[

0]
 &

 la
ne

_s
yn

c[
0]

2x
_m

od
e_

rc
v_

cm
d

&
la

ne
_r

ea
dy

[0
]

4x
_m

od
e_

rc
v_

cm
d

&
la

ne
_r

ea
dy

[0
]

8x
_m

od
e_

rc
v_

cm
d

&
la

ne
_r

ea
dy

[0
]

16
x_

m
od

e_
rc

v_
cm

d
&

la
ne

_r
ea

dy
[0

]

1x
_m

od
e_

rc
v_

cm
d

&
la

ne
_r

ea
dy

[0
]

S1xMR

ARE

RWN

lane_ready[0] &
(!retrain |
 recovery_retrain)

S2xMR

S4xMR

S8xMR

S16xMR

recovery_tmr_done &
!lane_ready[0] &
(!retrain | recovery_retrain)

rc
v_

w
id

th
_t

m
r_

do
ne

 &
 !

la
ne

_r
ea

dy
[0

]
&

la
ne

_s
yn

c[
0] !l

an
e_

sy
nc

[0
]

lane_ready[0]

1xR

recovery_retrain = 1

1x_RETRAIN

retrain &
!recovery_retrain
260 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-43. Receive_Width (RCV_Width) State Machine, Part 3 of 4

receive_enable_rw = 0
recovery_tmr_en = 1

2x_RECOVERY

rcv_width = “2x”
receive_enable_rw = 1
recovery_retrain = 0

2x_MODE_RCV

receive_enable_rw = 0
rcv_width_tmr_en = 1

SEEK_2x_MODE_RCV

rcv_width = “2x”
rcv_width_link_cmd_ack = 1

2x_MODE_RCV_ACK

!lane_sync[0] & !lane_sync[1]

!2
_l

an
es

_r
ea

dy
 &

 (
la

ne
_s

yn
c[

0]
 |

la
ne

_s
yn

c[
1]

)

1x
_m

od
e_

rc
v_

cm
d

&
2_

la
ne

s_
re

ad
y

4x
_m

od
e_

rc
v_

cm
d

&
2_

la
ne

s_
re

ad
y

8x
_m

od
e_

rc
v_

cm
d

&
2_

la
ne

s_
re

ad
y

16
x_

m
od

e_
rc

v_
cm

d
&

2_
la

ne
s_

re
ad

y

2x
_m

od
e_

rc
v_

cm
d

&
2_

la
ne

s_
re

ad
y

2xMRS2xMR

ARE

RWN

2_lanes_ready &
(!retrain |
 recovery_retrain)

S1xMR

S4xMR

S8xMR

S16xMR

recovery_tmr_done &
!2_lanes_ready &
(!retrain | recovery_retrain)

rc
v_

w
id

th
_t

m
r_

do
ne

 &
 !

2_
la

ne
s_

re
ad

y
&

(l
an

e_
sy

nc
[0

]
| l

an
e_

sy
nc

[1
])

!l
an

e_
sy

nc
[0

]
&

 !
la

ne
_s

yn
c[

1]

2_lanes_ready

2xR

recovery_retrain = 1

2x_RETRAIN

retrain &
!recovery_retrain
RapidIO.org 261

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 5-44. Receive_Width (RCV_Width) State Machine, Part 4 of 4, K, L, N 4

5.20 Pseudo Random Binary Sequence Testing
PRBS testing is supported for Baud Rate Class 3 operation, using the programming
model described in section 4.14, "Pseudo Random Binary Sequence Testing".

receive_enable_rw = 0
recovery_tmr_en = 1

Nx_RECOVERY

rcv_width = “Nx”
receive_enable_rw = 1
recovery_retrain = 0

Nx_MODE_RCV

receive_enable_rw = 0
rcv_width_tmr_en = 1

SEEK_Nx_MODE_RCV

rcv_width = “Nx”
rcv_width_link_cmd_ack = 1

Nx_MODE_RCV_ACK

!lane_sync[0] & !lane_sync[2]

!N
_l

an
es

_r
ea

dy
 &

 (
la

ne
_s

yn
c[

0]
 |

la
ne

_s
yn

c[
2]

)

1x
_m

od
e_

rc
v_

cm
d

&
N

_l
an

es
_r

ea
dy

2x
_m

od
e_

rc
v_

cm
d

&
N

_l
an

es
_r

ea
dy

K
x_

m
od

e_
rc

v_
cm

d
&

N
_l

an
es

_r
ea

dy

L
x_

m
od

e_
rc

v_
cm

d
&

N
_l

an
es

_r
ea

dy

N
x_

m
od

e_
rc

v_
cm

d
&

N
_l

an
es

_r
ea

dy

NxMRSNxMR

ARE

RWN

N_lanes_ready &
(!retrain |
 recovery_retrain)

S1xMR

S2xMR

SKxMR

SLxMR

recovery_tmr_done &
!N_lanes_ready &
(!retrain | recovery_retrain)

rc
v_

w
id

th
_t

m
r_

do
ne

 &
 !

N
_l

an
es

_r
ea

dy
 &

(l
an

e_
sy

nc
[0

]
| l

an
e_

sy
nc

[2
])

!l
an

e_
sy

nc
[0

]
&

 !
la

ne
_s

yn
c[

2]

N_lanes_ready

NxR

recovery_retrain = 1

Nx_RETRAIN

retrain &
!recovery_retrain
262 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
While PRBS Active is set, all receive lanes for the port shall ensure that frame lock
and codeword lock are deasserted. A design shall not assume that the data received
from the link partner prevents frame lock and codeword lock assertion.
RapidIO.org 263

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
264 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 6 LP-Serial Protocol

6.1 Introduction
This chapter specifies the LP-serial protocol which is the link level protocol for
LP-serial links. The chapter covers traffic types, virtual channels (VCs), virtual
channel queue management, packet priority, the mapping of transaction request
flows onto packet priority, buffer management, and the use of control symbols in
managing the delivery of packets between two devices connected by a LP-Serial
link.

The protocol defines two types of traffic and provides a method for exchanging
packets of each traffic type. The first type of traffic, called “reliable traffic” (RT), is
the type of traffic RapidIO was originally designed to support. RT mode provides
reliable delivery of packets between two devices that are connected by a RapidIO
LP-Serial link. The second type of traffic, called “continuous traffic” (CT), provides
unreliable delivery of packets that are “time sensitive”.

The protocol supports up to nine (9) virtual channels (VC0-VC8). Virtual Channel
0 (VC0) is always active and always operates in reliable traffic mode. It provides
backward compatibility with Revision 1.3 RapidIO LP-Serial links. When only VC0
is active, a link is said to be operating in single VC mode. VCs 1-8 are optional, and
if implemented, may be disabled for backward compatibility with Rev. 1.3 LP-Serial
links.

6.2 Packet Exchange Protocol
As originally designed, the LP-Serial specification defines a protocol for devices
connected by a LP-Serial link in which each packet transmitted by one device is
acknowledged by control symbols transmitted by the other device. If a packet cannot
be accepted for any reason, an acknowledgment control symbol indicates the reason
and that the original packet and any transmitted subsequent packets must be resent.
This behavior provides a flow control and error control mechanism between
connected processing elements. This is the protocol for reliable traffic (RT).

Figure 6-1 shows an example of transporting a RT request and response packet pair
across an interconnect fabric with acknowledgments between the link
transmitter/receiver pairs along the way. This allows flow control and error handling
to be managed between each electrically connected device pair rather than between
the original source and final target of the packet. An end point device shall transmit
RapidIO.org 265

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
an acknowledgment control symbol for a request packet before transmitting the
response packet corresponding to that request.

The protocol for continuous traffic (CT) is very similar to the protocol for reliable
traffic (RT). The primary differences are that some CT packets are not
acknowledged and therefore CT packets are subject to loss due to errors or
insufficient buffer resources at the receiver.

6.3 Traffic types
The LP-Serial protocol provides support for transporting two types of traffic,
“reliable traffic” (RT) and “continuous traffic” (CT). Reliable Traffic is guaranteed
to be lossless by using packet retransmission whenever packet corruption is detected
or receiver buffer resources are overrun. Continuous Traffic is subject to packet loss
when packet corruption is detected or receiver buffer resources are overrun, but does
not incur any additional latency, by continuing its packet flow without
retransmission of unacknowledged packets.

Figure 6-1. Example Transaction with Acknowledgment

Acknowledgment
Control Symbol

Initiator (Source)

Operation
Issued By

Master

Request
Packet Issued

Data
Returned

Fabric

Acknowledgment
Control Symbol

Request
Packet Forwarded

Operation
Completed for

Master

Acknowledgment
Control Symbol

Acknowledgment
Control Symbol

Target
Completes
Operation

Response
Packet Issued

Target (Destination)

Response
Packet Forwarded
266 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
6.4 Virtual Channels
Virtual channels provides a mechanism that allows the bandwidth of a link to be
allocated amongst various unrelated “streams” and types of traffic in a manner that
ensures that each stream, or group of streams, receives a guaranteed minimum
fraction of the link bandwidth. This is done by allocating one or more streams of a
given traffic type to each VC and then allocating each VC a specified fraction of the
link bandwidth.

The LP-Serial protocol supports up to nine (9) virtual channels (VC0-VC8).

6.4.1 Virtual channel 0 (VC0)

VC0 shall be supported by all LP-Serial ports. VC0 shall always be active, operate
in RT mode and support the packet priority rules as described in Section 6.6.3, as
well as supporting the packet delivery ordering rules described in Section 6.11. VC0
provides the packet transport service specified in Rev. 1.3 of this specification and
is backward compatible with Rev. 1.3.

6.4.2 Virtual Channels 1-8 (VC1-8)

Support for VC1 through VC8 by LP-Serial ports is optional. Any of VC1 through
VC8 that are implemented shall support operation in RT mode and may optionally
support and be configured for operation in CT mode. CT VCs operate independent
of each other. RT VCs operate as a “RT Group”. That is to say, when the error
recovery protocol is used to recover a damaged packet, the unacknowledged packets
for all VCs in RT mode are retransmitted. See Section 6.13, "Error Detection and
Recovery" for more on the error recovery process of RT and CT VCs.

The number of VCs implemented is up to the implementer. VC0 is always
implemented. The number of channels for VCs 1-8 may be 0, 1, 2, 4, or 8. The binary
configuration allows traffic to be combined (by ignoring bits in the VC field) in a
predictable manner. Implementations with fewer than the full number of VCs should
ignore, but must not modify, any ignored VC bits. That way traffic can fan back out
into a larger set of VCs on subsequent links. The hierarchy for combining VCs is as
follows:
RapidIO.org 267

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
In systems implementing one or more of VCs 1 through 8 and in which the number
of VCs 1 through 8 that are implemented varies from one LP-Serial link to another,
care needs to exercised in assignment of VC numbers so that the desired RT or CT
characteristic of a virtual channel is maintained as the channel passes from one link
to another link that implements fewer virtual channels.

6.4.3 Virtual Channel Utilization

Packets are transmitted from one or more virtual channels according to the weighted
distribution of bandwidth for each channel. The weighting is such that under
demand for full utilization of the link’s bandwidth, each active VC is guaranteed a
certain portion of that bandwidth. This is the minimum that each VC can achieve.
When the demand for bandwidth is less than the allocation for any VC, the extra
bandwidth may be distributed among the other VCs giving them more than their
allotment. The algorithm for scheduling traffic is up to the implementer as long as
the rules (see Section 6.11, "Transaction and Packet Delivery Ordering Rules") are
met.

Processing elements shall not assume any packet ordering guarantees between VCs.
Packets within a VC in VCs 1 - 8 are equally weighted and must be kept in order.
Only packets within VC0 have additional ordering rules based on priority.

6.5 Control Symbols
Control Symbols are the message elements used by ports connected by a LP-Serial
link to manage all aspects of LP-Serial link operation. They are used for link
maintenance, packet delimiting, packet acknowledgment, error reporting, and error
recovery.

6.5.1 Control Symbol Selection

For a LP-Serial link running at Baud Rate Class 1 the control symbol type used on
the link is determined by the idle sequence being used on the link. Idle sequence

Table 6-1. Additional VC Combinations

8 VCs 4 VCs 2 VCs 1 VC

VC1 VC1 VC1 VC1

VC2

VC3 VC3

VC4

VC5 VC5 VC5

VC6

VC7 VC7

VC8
268 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
selection occurs during the port initialization process. If the link is operating with
IDLE1, the Control Symbol 24 shall be used. If the link is operating with IDLE2, the
Control Symbol 48 shall be used.

A LP-Serial link running at Baud Rate Class 2 shall support Control Symbol 48 and
IDLE2.

A LP-Serial link running at Baud Rate Class 3 shall support Control Symbol 64 and
IDLE3.

6.5.2 Control Symbol Delimiting

LP-Serial control symbols (Control Symbol 24 and Control Symbol 48) on 8b/10b
encoded links are delimited for transmission by 8b/10b special characters. For
64b/67b encoded link no such delimiting exists for Control Symbol 64.

Control Symbol 24 are delimited by a single 8b/10b special character that marks the
beginning of the control symbol and immediately precedes the first character of the
control symbol. Since control symbol length is constant and known, an end
delimiters is neither needed nor provided.

Control Symbol 48 are delimited by two 8b/10b special characters. The first special
character marks the beginning of the control symbol (the start delimiter) and
immediately precedes the first character of the control symbol. The second special
character marks the end of the control symbol (the end delimiter) and immediately
follows the last character of the control symbol. The end delimiter special character
replicates the value of the start delimiter special character. The end delimiter is
provided for error detection in a burst error environment.

One of two special characters is used to delimit a control symbol. If the control
symbol contains a packet delimiter, the special character PD (K28.3) is used. If the
control symbol does not contain a packet delimiter, the special character SC (K28.0)
is used. This use of different special characters provides the receiver with an “early
warning” of the content of the control symbol.

The control symbol delimiting special character(s) shall be added to the control
symbol before the control symbol is passed to the PCS sublayer for 8b/10b encoding
and, if applicable, lane striping.

The combination of a control symbol and its delimiting special character(s) is
referred to as a “delimited control symbol”.

6.5.3 Control Symbol Use

6.5.3.1 Link Initialization

An LP-Serial port needs be initialized and the link to which it is connected also
needs be initialized before the port may begin the normal transmission of packets
RapidIO.org 269

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
and control symbols. The port is initialized when the port’s Initialization state
machine variable port_initialized is asserted. The link is initialized after the port has
successfully completed the following link initialization process and entered the
link_initialized state (link_initialized variable asserted).

When a port is in the port_initialized state, but not in the link_initialized state, and
for ports operating with IDLE3 transmit_enable is asserted, the port shall transmit
only idle sequences, status, VC-status, link-request and link-response control
symbols and, if IDLE2 is the idle sequence in use on the link, SYNC sequences.

After a LP-Serial port is initialized, the port shall complete the following sequence
of actions to enter the link_initialized state (normal operational state).

1. The initialized port shall transmit idle sequence and at least one status control
symbol per 1024 code-groups or codewords transmitted per lane until the
port has received an error free status control symbol from the connected port.
The transmission of status control symbols indicates to the connected port
that the port has completed initialization. The transmission of an idle
sequence is required for the connected port to complete initialization.

2. After the initialized port has received an error free status control symbol from
the connected port, the port shall transmit idle sequence and at least 15
additional status control symbols. This group of control symbols may be sent
more rapidly than the minimum rate of one status control symbol every 1024
code-groups or codewords transmitted per lane.

3. After the initialized port has received an error free status control symbol, the
port shall wait until it has received a total of seven error free status control
symbols with no intervening errors. This requirement provides a degree of
link verification before packets and other control symbols are transmitted.

4. If any VC other than VC0 is implemented and enabled, the port shall transmit
a single VC_Status control symbol for each such VC. This initializes the flow
control status for each implemented and enabled VC other than VC0.

5. The port enters the link_initialized state.

Once a port is in the link_initialized state, loss of port initialization (port_initialized
variable deasserted) shall cause the port to exit the link_initialized state
(link_initialized variable deasserted). The link is then uninitialized from the point of
view of that port. Once the port has exited the link_initialized state, the port shall not
resume the normal transmission of packets and control symbols until the port has
re-entered both the port_initialized and link_initialized states.

A port that is not in the port_initialized state, or a port operating with IDLE3 in the
port_initialized state when receive_enable is deasserted, shall ignore and discard
any packet or control symbol that it receives from the connected port. A port that is
in the port_initialized state but not in the link_initialized state shall ignore and
discard any packet or any control symbol, other than status, VC-status, link-request
or link-response control symbols, that it receives from the connected port.
270 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A LP-Serial port shall not enter the Input error-stopped state or the Output
error-stopped state unless the port is in the link_initialized state and, for ports
operating with IDLE3, receive_enable is asserted. The loss of link initialization (the
state machine link_initialized variable is deasserted) shall not cause a port already
in the Input error-stopped state or the Output error-stopped state to exit either of
those states.

6.5.3.2 Buffer Status Maintenance

When a LP-Serial port is in the normal operational state, it shall transmit a control
symbol containing the buf_status field for VC0 at least once every 1024 code-groups
or codewords transmitted per lane. To comply with this requirement, the port shall
transmit a status control symbol if no other control symbol containing the buf_status
field for VC0 is available for transmission.

NOTE:Note: Status Control Symbol Transmission Rates

If device X compliant to revision 2.1 or later is connected to a device
Y which is compliant to a specification revision earlier than 2.1, the
rate at which device X and device Y receive buffer status information
will be different. This difference does not create any interoperability
issues. The rate of buf_status updates shall not be checked.

When a LP-Serial port is in the normal operational state and any VC other than VC0
is active (VCs 1-8), the port shall transmit a control symbol containing the
buf_status field for each active VC at least once every VC refresh period. To comply
with this requirement, the port shall transmit a VC_status control symbol for each
active VC, other than VC0, if no other control symbol containing the buf_status field
for that VC is available for transmission during the VC refresh interval. VC_status
may be transmitted at any time, triggered by changes in VC conditions according to
implementation specific algorithms.

The VC refresh period can be configured through the VC Refresh Interval register
field defined in Chapter 7, "LP-Serial Registers". The shortest VC refresh period is
1024 code-groups or codewords, and the longest VC refresh period required to be
implemented is 1024 x 16 = 16K code-groups or codewords.

NOTE:VC Refresh Period

The VC Refresh Interval register field contains space for up to 8 bits
to be used, so based on implementation, the maximum refresh period
may be 256K code-groups or codewords (see Section 7.8.2.2).

6.5.3.3 Embedded Control Symbols

Any control symbol that does not contain a packet delimiter may be embedded in a
packet. An embedded control symbol may contain any defined encoding of stype0
and a stype1 encoding of “Timing” or “NOP”. Control symbols with stype1
RapidIO.org 271

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
encodings of start-of-packet, end-of-packet, stomp, restart-from-retry, or
link-request cannot be embedded as they would terminate the packet.

When a Control Symbol 24 or Control Symbol 48 is embedded in a packet, the
delimited control symbol shall begin on a 4-character boundary of the packet. That
is, the number of packet characters between the end of the delimited start-of-packet
control symbol and the start of the embedded delimited control symbol shall be a
non-negative integer multiple of 4.

When a Control Symbol 64 is embedded in a packet, the control symbol shall begin
on a 8-byte boundary of the packet. That is, the number of packet bytes between the
end of the start-of-packet control symbol and the start of the embedded control
symbol shall be a non-negative integer multiple of 8. This requirement is
automatically fulfilled by the codeword encoding defined in Section 5.5.

The manner and degree to which control symbol embedding is used on a link
impacts both link and system performance. For example, embedding
multicast-event control symbols allows their propagation delay and delay variation
through switch processing elements to be minimized and is highly desirable for
some multicast-event applications. Embedding packet acknowledgment control
symbols reduces the delay in freeing packet buffers in the transmitting port which
can increase packet throughput and reduce packet propagation delay in some
situations, which can be desirable. On the other hand, embedding all packet
acknowledgment control symbols rather than combining as many of them as
possible with packet delimiter control symbols reduces the link bandwidth available
for packet transmission and may be undesirable.

6.5.3.4 Timing Control Symbols

Timing control symbols are related to communication of events and time within a
system. Unlike other control symbols, timing control symbols can trigger activity on
other links of a device.

6.5.3.4.1 Multicast-Event Control Symbols

Multicast-Event Control Symbols and Secondary Multicast Event Control Symbols
provide a mechanism for notifying end points that system defined events have
occurred. These events can be selectively multicast through the system. For the
format of the multicast-event control symbols, see Section 3.5.6. Multicast-Event
Control Symbols and Secondary Multicast Event Control Symbols are generically
referred to as (S)MECS.

When a switch processing element receives an MECS, the switch shall forward the
MECS by issuing an identical MECS on each port that is designated by the port's
Port n Control CSRs “Multicast-event Participant” field as a Multicast-Event output
port. When a switch processing element receives an SMECS, the switch shall
forward the SMECS by issuing an identical SMECS on each port that is designated
by the port’s Port n SMECS Control CSR “Secondary Multicast-event Participant”
272 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
field as a Secondary Multicast-Event output port. A switch port shall never forward
an (S)MECS back to the device from which it received the (S)MECS, regardless of
whether the port is designated a (Secondary) Multicast-Event Participant output port
or not.

It is intended that at any given time, MECS will be sourced by a single device and
SMECS will be sourced by a different device; however, the source device of each
can change (in case of failover, for example). In the event that two or more (S)MECS
of the same type are received by a switch processing element close enough in time
that more than one is present in the switch at the same time, at least one of the
(S)MECS shall be forwarded. The others may be forwarded or discarded (device
dependent). Multicast-Event Control Symbols and Secondary Multicast-Event
Control Symbols shall not be combined with each other.

The system defined event whose occurrence Multicast-Event gives notice of has no
required temporal characteristics. It may occur randomly, periodically, or anything
in between. For instance, Multicast-Event may be used for a heartbeat function or
for a clock synchronization function in a multiprocessor system.

In an application such as clock synchronization in a multiprocessor system, both the
propagation time of the notification through the system and the variation in
propagation time from Multicast-Event to Multicast-Event are of concern. For these
reasons and the need to multicast, control symbols are used to convey
Multicast-Events as control symbols have the highest priority for transmission on a
link and can be embedded in packets.

While this specification places no limits on Multicast-Event forwarding delay or
forwarding delay variation, switch functions should be designed to minimize these
characteristics. In addition, switch functions shall include in their specifications the
maximum value of Multicast-Event forwarding delay (the maximum value of
Multicast-Event forwarding delay through the switch) and the maximum value of
Multicast-Event forwarding delay variation (the maximum value of Multicast-Event
forwarding delay through the switch minus the minimum value of Multicast-Event
forwarding delay through the switch). The transmission delay of Multicast-Event
control symbols can be increased dramatically by Skip ordered sequences,
asymmetric transmit width change and retraining. The latency impact for
asymmetric transmit width change can range in the 10’s to 100’s of usec, and
retraining can range in the 10’s of msec.

6.5.3.4.2 Loop-Timing Request

Support for transmission and reception of the Loop-Timing Request control symbol
is optional. A processing element shall be capable of transmitting a Loop-Timing
Request control symbol if the Timestamp Master Support bit of the Timestamp CAR
is 1. A processing element shall be capable of receiving a Loop-Timing Request
control symbol if the Timestamp Slave Support bit is 1 in the Timestamp CAR.
RapidIO.org 273

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When a processing element transmits a Loop-Timing Request control symbol, the
value of its Timestamp Generator shall be latched in the Port n Timestamp 0 MSW
CSR and Port n Timestamp 0 LSW CSR. When a processing element receives a
Loop-Timing Request control symbol, the processing element shall transmit a
loop-response control symbol.

6.5.3.5 Time Synchronization Protocol

Support for time synchronization is optional. Time synchronization is the method of
synchronizing the “sense of time” between RapidIO processing elements. The
“sense of time” is embodied in a Time Stamp Generator (TSG) for each node.

A TSG consists of a single 64-bit nanosecond granularity counter. The timestamp
generator is divided between two 32-bit registers:

• The Timestamp Generator LSW CSR register contains the least significant
32 bits of the TSG.

• The Timestamp Generator MSW CSR register contains the most significant
32 bits of the TSG.

A timestamp is a 64-bit value, consisting of the MSW register in the most significant
bits and the LSW register in the least significant bits.

The TSG counter increments regularly using a multiple of the period of the clock
that drives the TSG counter. The reference clock period chosen is implementation
specific. For example, assume that the TSG counter is driven by a 312.5 MHz clock
with a period of 3.2 nanoseconds. The TSG counter could increment by 16, every 16
nanoseconds. It is also valid for the counter to increment in the following pattern
over a period of 16 nanoseconds: 3, 3, 3, 3, 4.

Synchronization of TSGs is supported with varying degrees of accuracy. For
example:

• Synchronization of TSGs with microseconds of accuracy is required. TSGs are
synchronized between link partners using specific control symbols. TSGs
advance at the same frequency, +/- 100 PPM.

• Synchronization of TSGs within less than a microsecond is required. TSGs are
synchronized between link partners using specific control symbols. The
difference in frequency between link partners is calibrated and compensated
for. Timestamp Generator master devices regularly update Timestamp
Generator Slave devices.

• Synchronization of TSGs within 100 nanoseconds or less is required. All TSGs
use the same clock frequency to control the rate at which time advances. The
delay between link partners is calibrated using control symbols to ensure
maximum accuracy. TSGs are synchronized between link partners regularly,
adjusting for the delay between link partners.
274 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The following sections discuss mechanisms that implement the above
synchronization. These mechanisms may use either maintenance reads/writes or
control symbols.

Table 6-2 summarizes the control symbol support required to implement the
timestamp synchronization protocol based on the values of the Timestamp CAR
fields. Note that for devices that can be both a TSG Master and Slave, Slave control
symbol support is required in TSG Slave mode, and Master control symbol support
is required when in TSG Master mode, where the TSG mode is determined by the
Port Operating Mode field of the Port n Timestamp Generator Synchronization
CSR.

6.5.3.5.1 Setting and Reading a Timestamp Generator

To set the TSG registers using Maintenance Writes, first write the TSG LSW register
and then write the TSG MSW register. Software may elect to delay updating the
TSG when the TSG LSW register is close to rolling over to avoid incrementing the
TSG MSW register.

To read the TSG registers using Maintenance Reads, first read the TSG MSW
register, then the TSG LSW register, and then the TSG MSW register again. If the
value of the TSG MSW register has not changed, then the timestamp value has been
read successfully. If the value of the MSW register has changed, the TSG LSW
register shall be read again to compose an accurate timestamp.

Devices can support 8-byte register reads and writes, which allow the MSW and
LSW registers to be read and updated simultaneously.

The TSG of a link partner can also be set using sequences of Timestamp control
symbols. Support for transmission and reception of a sequence of timestamp control
symbols is optional. A processing element shall support transmitting a sequence of
timestamp control symbols when the Timestamp Master Supported bit of the
Timestamp CAR is 1. A processing element shall support receiving a sequence of
timestamp control symbols when the Timestamp Slave Supported bit of the
Timestamp CAR is 1.

When links are operating with Control Symbol 24, a sequence of 8 Control Symbol
24 timestamp control symbols is sent to set the link partner’s timestamp generator
value. Each Control Symbol 24 timestamp control symbol in the sequence contains

Table 6-2. Control Symbol Support for TSG Master and Slave Devices

Control Symbol
Timestamp Master/

Slave Supported
Both = 0

Timestamp Slave
Supported = 1

Timestamp Master
Supported = 1

Loop-Timing Request None Receive Transmit

Loop-Response None Transmit Receive

Timestamp Sequence None Receive Transmit
RapidIO.org 275

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
two flags and eight bits of the 64-bit timestamp generator value, as shown in
Table 6-3.

When links are operating with Control Symbol 48, a sequence of 8 Control Symbol
48 timestamp control symbols is sent to set the link partner’s timestamp generator
value. The format and contents of each Control Symbol 48 timestamp control
symbol in the timestamp sequence is defined in Table 6-4.

When links are operating with Control Symbol 64, a sequence of 4 Control Symbol
64 timestamp control symbols is sent to set the link partner’s timestamp generator
value. A sequence number is used to ensure the integrity of the Timestamp control
symbol sequence. The format and contents of each Control Symbol 64 timestamp
control symbol in the timestamp sequence is defined in Table 6-5.

Table 6-3. Sequence and Format of Control Symbol 24 Timestamp Control Symbols

Control Symbol
Sequence

Parameter 0 Bit 0
“Start Flag”

Parameter 0 Bit 1
“End Flag”

Parameter 0
Bits 2-4

Parameter 1
Bits 0-4

0 1 0 Timestamp [0:2] Timestamp[3:7]

1 0 0 Timestamp [8:10] Timestamp[11:15]

2 0 0 Timestamp [16:18] Timestamp[19:23]

3 0 0 Timestamp [24:26] Timestamp[27:31]

4 0 0 Timestamp [32:34] Timestamp[35:39]

5 0 0 Timestamp [40:42] Timestamp[43:47]

6 0 0 Timestamp [48:50] Timestamp[51:55]

7 0 1 Timestamp [56:58] Timestamp[59:63]

Table 6-4. Sequence and Format of Control Symbol 48 Timestamp Control Symbols

Control Symbol
Sequence

Parameter 0
Bit 0

Parameter 0
Bit 1

“Start Flag”

Parameter 0
Bit 2

“End Flag”

Parameter 0
Bits 3-5

Parameter 1
Bit 0

Parameter 1
Bits 1-5

0 0b0 1 0 Timestamp [0:2] 0b0 Timestamp[3:7]

1 0b0 0 0 Timestamp [8:10] 0b0 Timestamp[11:15]

2 0b0 0 0 Timestamp [16:18] 0b0 Timestamp[19:23]

3 0b0 0 0 Timestamp [24:26] 0b0 Timestamp[27:31]

4 0b0 0 0 Timestamp [32:34] 0b0 Timestamp[35:39]

5 0b0 0 0 Timestamp [40:42] 0b0 Timestamp[43:47]

6 0b0 0 0 Timestamp [48:50] 0b0 Timestamp[51:55]

7 0b0 0 1 Timestamp [56:58] 0b0 Timestamp[59:63]
276 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The timestamp value in the sequence of Timestamp control symbols shall be sent as
if all 64 bits were captured when the first Timestamp control symbol was
formulated. The timestamp value sent may have a nanoseconds offset added to it
before transmission to account for transmission delay. The offset is a programmable
value found in the Port n Timestamp Offset CSRs.

A sequence of Timestamp control symbols shall not be interrupted by any other
control symbols or an IDLE sequence.

If all the Timestamp control symbols in a sequence are not received correctly,
without interruption, the receiver’s TSG shall not be updated.

The receiver can adjust the timestamp value, if necessary, to reflect transmission
delay due to control symbol alignment and/or the time required to receive the full
sequence of Timestamp control symbols.

A timestamp generator shall immediately change its value to 0 when programmed
to do so. A timestamp generator shall immediately change its value when
programmed to a value larger than the current TSG value.

When either control symbols or maintenance packets are used to change a TSG to a
value that is less than the current TSG value, the TSG value shall be held constant
for the difference in time between the current TSG value and the time that was
programmed. This has the effect of halting time until the new time value is reached.
Implementations shall allow the current time value to be held constant for a period
of 65535 nanoseconds. Setting a timestamp value more than 65535 nanoseconds in
the past results in implementation specific behavior.

Table 6-5. Sequence and Format of Control Symbol 64 Timestamp Control Symbols

Control Symbol
Sequence

Parameter 0
Bits 0-2

Parameter 0
Bits 3-4

Parameter 0
Bits 5-7

Parameter 0
Bits 8-11

Parameter 1
Bits 0-11

0 Reserved 0b00 Reserved Timestamp [0:3] Timestamp[4:15]

1 Reserved 0b01 Reserved Timestamp [16:19] Timestamp[20-31]

2 Reserved 0b10 Reserved Timestamp [32:35] Timestamp[36:47]

3 Reserved 0b11 Reserved Timestamp [48:51] Timestamp[52:63]
RapidIO.org 277

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
6.5.3.5.2 Calibrating Transmission Delay

The procedure for calibrating the transmission delay between the Master and Slave
is shown in the Figure 6-2 message sequence chart.

Figure 6-2. Time Synchronization with Synchronous Link Partners

The steps are defined as follows:

1. Send Loop-Timing Request: The TSG Master sends a Loop-Timing Request
control symbol to the TSG Slave by writing 0x00000003 to the Port n
Timestamp Synchronization Command CSR. This latches the current TSG
Master TSG value in the Port n Timestamp 0 MSW CSR and Port n
Timestamp 0 LSW CSR.

2. Process Loop-Response: The TSG Master receives a Loop-response, which
contains the Delay amount in the TSG Slave, for the Loop-Timing Request
control symbol. This also causes the current TSG Master TSG value to be
latched in the Port n Timestamp 1 MSW CSR and Port n Timestamp 1 LSW
CSR.

3. Compute Loop Delay: The TSG Master computes the loop timing delay as
described at the end of this section.

4. Set Timestamp Offset: The TSG Master programs its Port n Timestamp Offset
register value to the Loop Delay computed in Step 3.

5. Set Slave TSG: The TSG Master sets the TSG Slaves Timestamp Generator
value by writing 0x00000010 to the Port n Timestamp Synchronization
Command CSR.

TSG Master TSG Slave

Send Loop-Timing Request

Process Loop-Response

Loop-Timing Request

Loop-Response
With Delay

Delay

Send Timestamp
Control Symbols

Set Slave TSG

Compute Loop Delay

Set Timestamp Offset
278 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A loop-response for a loop-timing request must be received within the link response
timeout period. If the loop-response is not received within the timeout period, then
the loop-timing request shall be treated as completed. A loop-timing request shall
not be retransmitted in the event of a timeout.

Computing loop delay is complicated by the need to account for transmit and receive
asymmetries in the transmitter and receiver of the TSG Slave and TSG Master.
These asymmetries are displayed in Figure 6-3.

Figure 6-3. Asymmetry Computation

The following computation uses the notation “(Condition)?Val1:Val2” to describe a
function that returns “Val1” if “Condition” is true, and “Val2” if “Condition” is false.

The term “Master Tx Asymmetry” below is computed using fields in the TSG
Master’s Port n Timestamp Generator Synchronization CSRs fields.

The term “Slave Rx Asymmetry” below is computed using fields in the TSG Slave’s
Port n Timestamp Generator Synchronization CSRs fields.

Total Delay = Timestamp 1 - Timestamp 0 - Delay

Master Tx Asymmetry = (Asymmetry / 2) * ((Tx Has Lower Latency = 1)?-1:1)

Slave Rx Asymmetry = (Asymmetry / 2) * ((Tx Has Lower Latency = 1)?1:-1);

Transmission Delay = (Total Delay / 2) + Master Tx Asymmetry + Slave Rx
Asymmetry

TSG Master
Loop-Timing
Creation

TSG Master
Transmission Pins

TSG Slave
Loop-Timing
Request
Processing

TSG Slave
loop-response
Creation

TSG Slave
Transmission Pins

TSG Slave
Receive Pins

TSG Master
Receive Pins

TSG Slave
loop-response
Processing

Master Tx Latency

Slave Rx Latency

Master Rx Latency

Slave Tx Latency

Delay

R
eception D

elay
T

ra
ns

m
is

si
on

 D
el

ay

Tx Line Delay Rx Line Delay
RapidIO.org 279

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Note that it is not possible for the TSG Master to measure the actual transmission
delay. The transmission delay computed is still inaccurate by half the difference
between Tx Line Delay and Rx Line Delay. Solutions that require highly accurate
TSG synchronization can minimize asymmetry between Tx Line Delay and Rx Line
Delay through physical design constraints.

When links are operating with Control Symbol 24 or Control Symbol 48, a
loop-response shall consist of a single Timestamp control symbol transmitted in
response to a loop-timing request (Section 3.5.6.3). For Control Symbol 24 and
Control Symbol 48 formats, the Timestamp carries a single Delay value that
represents the number of nanoseconds between the time the loop-timing request was
received by the link partner, and the time the loop-response was generated. The
Delay field is 12 bits for Control Symbol 48 and Control Symbol 64, but for Control
Symbol 24 a 10 bit delay field is sufficient to address the delay value. A Delay value
of all 1s (0x3FF for Control Symbol 24, 0xFFF for Control Symbol 48 and Control
Symbol 64) indicates that the amount of delay is too large to be encoded.

When links are operating with Control Symbol 64, a loop-response shall consist of
a single Control Symbol 64 Loop-Response control symbol format defined in
Section 3.4.8.

When a loop-response is received while a loop-timing request is outstanding, the
current value of the Timestamp Generator shall be captured in the Port n Timestamp
1 MSW CSRs and Port n Timestamp 1 LSW CSRs, and the delay value of the
loop-response control symbol shall be captured in the Port n Timestamp
Synchronization Status CSRs.

A processing element shall support receiving a loop-response when the Timestamp
Master Supported bit of the Timestamp CAR is 1. A processing element shall
support transmitting a loop-response when the Timestamp Slave Supported bit of the
Timestamp CAR is 1.

6.5.3.5.3 Regular Timestamp Generator Re-synchronization

It may be necessary to regularly update TSG values throughout the RapidIO fabric;
for example, when endpoints in the system do not support Common Frequency. Two
methods of automatic re-synchronization are possible:

• If a device supports both a TSG Slave port that receives timestamp updates, and
TSG Master ports that transmit timestamp updates, it is easiest to
automatically update the TSG Master ports link partners whenever the TSG
Slave port is updated.

• If a device is the TSG Master for the entire system, the device can be configured
to regularly update its link partner’s sense of time.

A TSG Master port can be configured to update its link partner whenever the TSG
is updated by setting the “Auto-update Link Partner Timestamp Generators” field to
1 in the Port n Timestamp Generator Synchronization CSRs.
280 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A TSG Master port can be configured to periodically update its link partner. The
period is programmed by setting the Update Period field of the Port n Auto Update
Counter CSRs. Periodic updates are enabled by setting the Update Period field to a
non-zero value in the Port n Auto Update Counter CSRs.

The rate of timestamp updates is controlled by the Port n Auto Update Counter
CSRs. Timestamp updates must be sent at a rate which bounds the absolute time
difference between the master timestamp generator and the slave timestamp
generator. For example, assume the system requires the timestamp generators to be
synchronized within 100 nanoseconds of each other, and the reference clocks for the
timestamp generators can differ by 200 PPM. A frequency difference of 200 PPM
will create a difference of 100 nanoseconds within 500 microseconds. Therefore, the
Port n Auto Update Counter CSRs may be programmed to a value of 488 (500,000
nsec/1024 nanoseconds) to ensure timestamp updates are sent at the minimum rate
required for timestamp generator synchronization.

Transmission errors may corrupt a timestamp update. Timestamp updates should be
sent faster than the minimum rate to ensure that the slave timestamp generator will
meet system requirements when a bit error corrupts a timestamp update. The actual
rate of timestamp updates depends upon the bit error rate of the system and the
systems tolerance to failure.

Extending the previous example, assume the timestamp updates are sent using a 4x
IDLE3 link with a bit error rate of 10-12. If the Port n Auto Update Counter CSRs is
programmed to 162 (triple the minimum rate) and three consecutive timestamp
updates are corrupted, the slave timestamp generator could have drifted more than
100 nanoseconds from the master timestamp generator. Conservatively assuming
each timestamp update requires 335 bits, corruption of three consecutive timestamp
updates will happen approximately once every 20 million years. The details of these
computations are found in a spreadsheet available to RapidIO.org members.

Note that the slave timestamp generator is resynchronized by the next timestamp
update. At that time, the slave timestamp generator could have drifted from the
master by up to 133 nanoseconds.

6.5.3.5.4 Timestamp Generator Synchronization Control Symbol Jitter

The accuracy of TSG synchronization depends on the consistency with which
frequency differences and loop delay can be measured. To ensure maximum
accuracy, the following points should be considered with respect to TSG Slave and
TSG Master support.

The point in the design where “Loop-Timing Request”, “Loop-Response for
Loop-Timing Request”, and “Timestamp” control symbols are generated should
have identical latency with respect to the Timestamp Generator from the time the
control symbol is formulated to the time the control symbol is transmitted.
RapidIO.org 281

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The point in the design where “Loop-Timing Request”, “Loop-Response for
Loop-Timing Request”, and “Timestamp” control symbols are processed should
have identical latency with respect to the Timestamp Generator from the time the
control symbol is received by the SerDes to the time the control symbol is processed.

These two points ensure that measurements can be applied consistently to frequency
offset calculations and loop delay calculations.

6.5.3.6 MECS Time Synchronization Protocol

The MECS Time Synchronization Protocol is a low cost mechanism for
implementing time synchronization within a system. The MECS Time
Synchronization Protocol makes the following simplifying assumptions regarding
system operation:

• It is possible to know, or ignore, the latency of propagating (S)MECS from a
source to every endpoint that must know time in the system.

• (S)MECS can be sent periodically to update time on all endpoints. The amount
of time between successive (S)MECS transmissions is known as the “tick
interval”.

• The starting value for a timestamp generator can be set using maintenance write
packets with a request transmit-until-receive latency that is less than the “tick
interval”.

Typically, these assumptions are only valid in systems with either static or well
known configurations.

MECS Time Synchronization Protocol assumes that there is at least one source of
MECS within the system, known as the “MECS Master”. A source of SMECS may
also exist, known as the “SMECS Master”. Nodes that update their time based on
received MECS/SMECS are known as “MECS Slaves”. The MECS and SMECS
Masters are responsible for periodically transmitting MECS/SMECS that will be
distributed through the RapidIO fabric to all of the MECS Slaves.

6.5.3.6.1 (S)MECS Master Operation

The MECS and SMECS Masters may be endpoints or switches. The (S)MECS
Masters generate (S)MECS periodically, through mechanisms defined within the
standard or by some other means.

The (S)MECS Master registers are programmed as follows to periodically transmit
(S)MECS:

• The Timestamp Generator MSW CSR and Timestamp Generator LSW CSR
are written with the current time. The Timestamp Generator begins
incrementing.

• The MECS Next Timestamp MSW CSR and MECS Next Timestamp LSW
CSR are written with the time of the first MECS transmission.
282 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• The MECS Tick Interval CSR is written with the period for transmitting
MECS. This register must be written before the Timestamp Generator
timestamp value exceeds the MECS Next Timestamp timestamp value. Note
that the MECS Time Synchronization Role bit shall be set to 1 on the MECS
Master. If the device supports SMECS, the SMECS selection field shall be
set appropriately.

The value chosen for the MECS Tick Interval CSR should be an exact multiple of
the clock period for the Timestamp Generator in order to minimize transmission
jitter. The “tick interval” should also be an exact multiple of the clock periods of
each of the MECS Slaves.

The MECS Master compares the Timestamp Generator timestamp value with the
MECS Next Timestamp timestamp value. If the Timestamp Generator timestamp
value is equal to or greater than the MECS Next Timestamp value, the MECS Master
shall:

• Transmit an (S)MECS

• Increment the (S)MECS Next Timestamp timestamp value by the value of the
MECS Tick Interval CSR Tick Interval field.

Devices that support MECS Master operation shall be capable of transmitting
MECS. Devices that support SMECS Master operation shall be capable of
transmitting SMECS.

It is strongly encouraged to minimize (S)MECS transmission jitter in (S)MECS
Master devices.

6.5.3.6.2 MECS Slave Operation

To begin tracking time on an MECS Slave, the MECS Slave registers are
programmed as follows:

• The Timestamp Generator MSW CSR and Timestamp Generator LSW CSR
are cleared to 0.

• The MECS Next Timestamp MSW CSR and MECS Next Timestamp LSW
CSR are programmed with the timestamp value that shall be set when the
next MECS is received by the MECS Slave.

• The MECS Tick Interval CSR is programmed with the “tick interval” value.
Note that the MECS Time Synchronization Role bit shall be cleared to 0 on
the MECS Slave. If the device supports SMECS, the SMECS selection field
shall be set appropriately. This register must be written before the first MECS
is received.

Once the registers have been programmed, reception of an MECS shall cause the
following two actions to be performed by an MECS Slave:

The timestamp value contained in the MECS Next Timestamp MSW CSR and
MECS Next Timestamp LSW CSR is used to update the Timestamp Generator
RapidIO.org 283

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
MSW CSR and Timestamp Generator LSW CSR. The rules for updating time
described in section 6.5.3.5.1, "Setting and Reading a Timestamp Generator" shall
be followed to prevent time from going backwards.

The tick interval found in the MECS Tick Interval CSR shall be added to the
timestamp value found in the MECS Next Timestamp MSW CSR and MECS Next
Timestamp LSW CSR, and written to the MECS Next Timestamp MSW CSR and
MECS Next Timestamp LSW CSR.

Just as with the timestamp update protocol defined in 6.5.3.5.3, "Regular Timestamp
Generator Re-synchronization", control symbols may be corrupted due to
transmission errors. The implication is that an MECS may be lost, and MECS Slave
time will be out of sync with the MECS Master to a degree that exceeds system
specifications. For this reason, MECS Slave implementations may need to detect
that an MECS has been lost. The mechanisms for detecting and correcting MECS
loss are implementation specific and outside the scope of this specification.

Devices that support MECS Time Synchronization MECS Slave operation shall
support reception of Multicast Event Control Symbols. It is strongly encouraged to
minimize MECS reception jitter.

MECS routing in a system is controlled by the Port n Control CSRs
“Multicast-Event Participant” bit field. MECS must be configured using a tree
topology to avoid reception of multiple copies of the same original MECS.

SMECS propagation is controlled by a similar bit, with similar toplogy
requirements, defined in the Port n SMECS Control CSR.

Note that Annex G, “MECS Time Synchronization (Informative)" discusses
operational and implementation aspects of (S)MECS time synchronization.

6.6 Packets

6.6.1 Packet Delimiting

LP-Serial packets are delimited for transmission by control symbols. Since packet
length is variable, both start-of-packet and end-of-packet delimiters are required.
The start-of-packet delimiter immediately precedes the first character of the packet
or an embedded delimited control symbol. With the exception stated in Section
6.6.1.2, the control symbol marking the end of a packet (packet termination)
immediately follows the last character of the packet or the end of an embedded
delimited control symbol.

The following control symbols are used to delimit packets.

• Start-of-packet

• End-of-packet

• Stomp
284 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Restart-from-retry

• Any link-request

6.6.1.1 Packet Start

The beginning of a packet (packet start) shall be marked by a start-of-packet control
symbol.

6.6.1.2 Packet Termination

A packet shall be terminated in one of the following ways:

• The end of a packet is marked with an end-of-packet control symbol.

• The end of a packet is marked with a start-of-packet control symbol that also
marks the beginning of a new packet.

• The packet is canceled by a restart-from-retry or stomp control symbol.

• The packet is canceled by any link-request control symbol. The cancellation of
a packet by a link-request control symbol is subject to the requirement of
Section 4.8.2 that every link-request control symbol transmitted on a link
operating with IDLE2 be immediately preceded by a SYNC sequence, or
subject to the requirements of Section 5.5.4.2 that every link-request control
symbol transmitted on a link operating with IDLE3 be immediately preceded
by a Seed ordered sequence.

If a link-request control symbol terminates a packet on a link that is operating with
IDLE2, the SYNC sequence is required to precede the link-request control symbol.
The SYNC sequence does not terminate the packet. If a link-request control symbol
terminates a packet on a link that is operating with IDLE3, the Seed ordered
sequence is required to precede the link-request control symbol. The Seed ordered
sequence does not terminate the packet. The rules for marking the link-request
control symbol as packet delimiting do not change. If the link-request control
symbol is canceling a possibly truncated packet and the link is operating in 1x mode,
the first character of the SYNC sequence shall immediately follow the last character
of the canceled packet or of an embedded control symbol. If the link is operating in
Nx Mode, the rules for Nx striping and padding shall be followed as stated in Section
4.10 for links operating with IDLE1 or IDLE2, or as stated in Section 5.13 for links
operating with IDLE3.

6.6.2 Acknowledgment Identifier

Each packet requires an identifier to uniquely identify its acknowledgment
control symbol. This identifier, the ackID, is 5 bits long when using Control Symbol
24, 6 bits when using Control Symbol 48, and 12 bits when using Control Symbol
64. This allows up to 2N outstanding unacknowledged request and/or response
packets where N is the number of bits in the ackID field. To eliminate the ambiguity
RapidIO.org 285

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
between 0 and 2N outstanding packets, a maximum of 2N-1 outstanding
unacknowledged packets shall be allowed at any one time.

The value of ackID assigned to the first packet transmitted after a reset shall be 0.
The values of ackID assigned to subsequent packets shall be in increasing
numerical order, wrapping back to 0 on overflow. The ackID assigned to a
packet indicates the order of the packet transmission and is independent of the
virtual channel assignment of the packet.

The acknowledgment control symbols are defined in Chapter 3, "Control Symbols".
When acknowledgement control symbols are received containing VC specific
information (e.g., buf_status), the transmitter side of the port must re-associate that
information with the correct VC based on the returned ackID.

Devices that support Control Symbol 64 shall support configuration values whereby
Packet Accepted controls symbols sent and/or received acknowledge multiple
packets. The configuration shall be controlled by the Port n Latency Optimization
CSRs. When transmitting control symbols, devices operating with Control Symbol
24 or Control Symbol 48 shall support a default configuration in which they send
one Packet Accepted control symbol for each received packet. Devices operating
with Control Symbol 24 or Control Symbol 48 may optionally support a
configuration in which they may transmit one Packet Accepted control symbol for
multiple received packets. Devices operating with Control Symbol 64 may transmit
one Packet Accepted control symbol for multiple received packets.

Devices operating with Control Symbol 24 or Control Symbol 48 may optionally
support reception of Packet Accepted control symbols which acknowledge all
outstanding packets up to and including the packet ackID. Devices operating with
Control Symbol 64 shall support reception of Packet Accepted control symbols
which acknowledge all outstanding packets up to and including the packet ackID. It
shall be possible to configure devices operating with Control Symbol 64 to transmit
a Packet Accepted control symbol for each received packet.

6.6.3 Packet Priority and Transaction Request Flows

Within VC0 each packet has a priority, and optionally a critical request flow, that is
assigned by the end point processing element that is the source of (initiates) the
packet. The priority is carried in the prio field of the packet and has four possible
values: 0, 1, 2, or 3. Packet priority increases with the priority value with 0 being the
lowest priority and 3 being the highest. Packet priority is used in RapidIO for several
purposes which include transaction ordering and deadlock prevention. The critical
request flow is carried in the CRF bit. It allows a flow to be designated as a critical
or preferred flow with respect to other flows of the same priority. Support for critical
request flows is strongly encouraged.

When a transaction is encapsulated in a packet for transmission, the transaction
request flow indicator (flowID) of the transaction is mapped into the prio field (and
286 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
optionally the CRF bit) of the packet. If the CRF bit is not supported, transaction
request flows A and B are mapped to priorities 0 and 1 respectively and transaction
request flows C and above are mapped to priority 2 as specified in Table below.

Table 6-6. VC0 Transaction Request Flow to Priority Mapping

If the CRF bit is supported, the transaction request flows are mapped similarly as
specified in Table 6-7. Endpoints that do not support the CRF bit treat it as reserved,
setting it to logic 0 on transmit and ignoring it on receive.

Table 6-7. VC0 Transaction Request Flow to Priority and Critical Request Flow Mapping

The mapping of transaction request flows allows a RapidIO transport fabric to
maintain transaction request flow ordering without the fabric having any knowledge
of transaction types or their interdependencies. This allows a RapidIO fabric to be
forward compatible as the types and functions of transactions evolve. A fabric can
maintain transaction request flow ordering by simply maintaining the order of
packets with the same priority and critical request flow for each path through the
fabric and can maintain transaction request flow priority by never allowing a lower
priority packet to pass a higher priority packet taking the same path through the
fabric. In the case of congestion or some other restriction, a set CRF bit indicates that
a flow of a priority can pass a flow of the same priority without the CRF bit set.

For VC0, flows identified as A - F (or higher) are synonymous with 0A - 0F, etc.
Flows for VCs 1-8 (A and higher) are identified as 1A, 2A,...8A. All traffic in flows
1A-8A are transaction requests which do not require a response. Transaction
requests that require responses, and their corresponding responses, must use VC0
with the appropriate priority.

Flow System Priority
Request

Packet Priority
Response

Packet Priority

C or higher Highest 2 3

B Next 1 2 or 3

A Lowest 0 1, 2, or 3

Flow System Priority
Request CRF Bit

Setting
Request

Packet Priority
Response CRF Bit

Setting
Response

Packet Priority

F or higher Highest 1 2 1 3

E Higher than A, B, C,
D

0 2 0 3

D Higher than A, B, C 1 1 1 2 or 3

C Higher than A, B 0 1 0 2 or 3

B Higher than A 1 0 1 1, 2, or 3

A Lowest 0 0 0 1, 2, or 3
RapidIO.org 287

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
6.7 Link Maintenance Protocol
The link maintenance protocol involves a request and response pair between ports
connected by a LP-Serial link. For software management, the request is generated
through ports in the configuration space of the sending device. An external host
write of a command to the link-request register with an I/O logical specification
maintenance write transaction causes a link-request control symbol to be issued onto
the output port of the device, but only one link-request can be outstanding on a link
at a time.

The device that is linked to the sending device shall respond with a link-response
control symbol if the link-request command required it to do so. The external host
retrieves the link-response by polling the link-response register with I/O logical
maintenance read transactions. A device with multiple RapidIO interfaces has a
link-request and a link-response register pair for each corresponding RapidIO
interface.

The automatic error recovery mechanism relies on the hardware generating
packet-not-accepted and link-request/port-status control symbols under the
transmission error conditions described in Section 6.13.2.1, "Recoverable Errors",
and using the corresponding link-response information to attempt recovery.

Due to the undefined reliability of system designs, it is necessary to put a safety
lockout on the reset function of the link-request/reset-device and
link-request/reset-port control symbols. A device receiving a
link-request/reset-device or a link-request/reset-port control symbol shall not
perform the reset function unless it has received four link-request/reset-device or
four link-request/reset-port control symbols in a row without any intervening
packets or other control symbols, except status control symbols. This will prevent
spurious reset commands inadvertently resetting a device. The
link-request/reset-device and link-request/reset-port control symbols does not
require a response.

The port-status command of the link-request/port-status control symbol is used by
the hardware to recover from transmission errors. If the input port had stopped due
to a transmission error that generated a packet-not-accepted control symbol back to
the sender, the link-request/port-status control symbol acts as a
link-request/restart-from-error control symbol, and the receiver is re-enabled to

Table 6-8. Flow IDs for VCs

Transaction Request Flow VC Transaction Request Flow VC

1A and higher VC1 5A and higher VC5

2A and higher VC2 6A and higher VC6

3A and higher VC3 7A and higher VC7

4A and higher VC4 8A and higher VC8
288 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
receive new packets after generating the link-response control symbol. The
link-request/port-status control symbol can also be used to restart the receiving
device if it is waiting for a restart-from-retry control symbol after retrying a packet.
This situation can occur if transmission errors are encountered while trying to
resynchronize the sending and receiving devices after the retry.

The link-request/port-status control symbol requires a response. A port receiving a
link-request/port-status control symbol returns a link-response control symbol
containing two pieces of information:

• port_status

• ackID_status

The port_status indicators are described in Table 3-14 for Control Symbol 24 and
Control Symbol 48 operation and in Table 3-15 for Control Symbol 64 operation.

The retry-stopped state indicates that the port has retried a packet and is waiting to
be restarted. This state is cleared when a restart-from-retry (or a
link-request/port-status) control symbol is received. The error-stopped state
indicates that the port has encountered a transmission error and is waiting to be
restarted. This state is cleared when a link-request/port-status control symbol is
received.

6.8 Packet Transmission Protocol
The LP-Serial protocol for packet transmission provides link level flow and error
detection and recovery.

The protocol uses control symbols to delimit packets when they are transmitted
across a LP-Serial link as specified in Section 6.6.1, "Packet Delimiting".

The link protocol uses acknowledgment to monitor packet transmission. With two
exceptions, each packet transmitted across a LP-Serial link shall be acknowledged
by the receiving port with a packet acknowledgment control symbol. Packets shall
be acknowledged in the order in which they were transmitted (ackID order). The
first exception occurs when a single packet-acknowledge control symbol
acknowledges multiple packets. The second exception is when an event has
occurred that caused a port to enter the Input Error-stopped state. CT mode packets
accepted by a port after the port entered the Input Error-stopped state and before the
port receives a link-request/port-status control symbol shall not be acknowledged.

To associate packet acknowledgment control symbols with transmitted packets,
each packet shall be assigned an ackID value according to the rules of Section 6.6.2,
"Acknowledgment Identifier" that is carried in the ackID field of the packet and the
packet_ackID field of the associated acknowledgment control symbol. The ackID
value carried by a packet indicates its order of transmission and the order in which
it is acknowledged.
RapidIO.org 289

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The LP-Serial link RT protocol uses retransmission to recover from packet
transmission errors or a lack of receive buffer resources. To enable packet
retransmission, a copy of each RT packet transmitted across a LP-Serial link shall
be kept by the sending port until either a packet-accepted control symbol is received
for the packet or the sending port determines that the packet has encountered an
unrecoverable error condition.

The LP-Serial link CT protocol does not use packet retransmission. CT mode
packets that are corrupted by transmission errors or that are not accepted because of
a lack of receive buffer resources are discarded and lost. Therefore, a port need not
retain a copy of a CT mode packet whose transmission has been completed.

The LP-Serial link protocol uses the ackID value carried in each packet to ensure
that no RT mode packets are lost due to transmission errors. With one exception, a
port shall accept packets from a LP-Serial link only in sequential ackID order, i.e. if
the ackID value of the last packet accepted was N, the ackID value of the next packet
that is accepted must be (N+1) modulo2n where n is the number of bits in the ackID
field. The exception is when an event has occurred that caused a port to enter the
Input Error-stopped state. A CT mode packet received by a port after the port entered
the Input Error-stopped state, and before the port receives a link-request/port-status
control symbol, shall be accepted by the port without regard to the value of the
packet’s ackID field if the packet is otherwise error free and there are adequate
receive buffer resources to accept the packet. The value that is maintained by the
port of the ackID expected in the next packet shall not be changed by the acceptance
of CT packets during this period.

A LP-Serial port accepts or rejects each error free packet that it receives with the
expected ackID depending on whether the port has input buffer space available for
the VC and/or priority level of the packet. The use of the packet-accepted,
packet-retry, packet-not-accepted and restart-from-retry control symbols and the
buf_status field in packet acknowledgment control symbols to control the flow of
packets across a LP-Serial link is covered in Section 6.9, "Flow Control".

The LP-Serial link protocol allows a packet that is being transmitted to be canceled
at any point during its transmission. Packet cancellation is covered in Section 6.10,
"Canceling Packets".

The LP-Serial link protocol provides detection and recovery processes for both
transmission errors and protocol violations. The enumeration of detectable errors,
the detection of errors and the associated error recovery processes are covered in
Section 6.13, "Error Detection and Recovery".

In order to prevent switch processing element internal errors, such as SRAM soft bit
errors, from silently corrupting a packet and the system, switch processing elements
shall maintain packet error detection coverage while a packet is passing through the
switch. The simplest method for maintaining packet error detection coverage is to
pass the packet CRC through the switch as part of the packet. This works well for
290 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
all non-maintenance packets whose CRC does not change as the packets are
transported from source to destination through the fabric. Maintaining error
detection coverage is more complicated for maintenance packets as their hop_count
and CRC change every time they pass through a switch. However, passing the
packet CRC through the switch as part of the packet does not prevent packet loss due
to soft errors within the switch. Recovery from soft errors within a switch requires
that each packet passing through the switch be covered by some type of error
correction of adequate strength.

In order to support transaction ordering requirements of the Logical Layer
Specifications, the LP-Serial protocol imposes packet delivery ordering
requirements within the Physical Layer and transaction delivery ordering
requirements between the Physical Layer and the Transport Layer in end point
processing elements. These requirements are covered in Section 6.11, "Transaction
and Packet Delivery Ordering Rules".

In order to prevent deadlock, the LP-Serial protocol imposes a set of deadlock
prevention rules. These rules are covered in Section 6.12, "Deadlock Avoidance".

This specification provides both bandwidth reservation and priority based channels.
Priority scheduling may or may not be included in the reservation of bandwidth.
Whatever allocation of bandwidth is used for priority traffic, higher level flows will
reduce the bandwidth available for lower level flows. It is possible that traffic
associated with higher flow levels can starve traffic associated with lower flow
levels. It is important to use the available flows properly for the transaction type, to
insure the rules in Section 6.11, "Transaction and Packet Delivery Ordering Rules"
and Section 6.12, "Deadlock Avoidance" are met. The actual mechanisms used to
schedule traffic are beyond the scope of this specification.

6.9 Flow Control
This section defines RapidIO LP-Serial link level flow control. The flow control
operates between each pair of ports connected by a LP-Serial link. The purpose of
link level flow control is to prevent the loss of packets due to a lack of buffer space
in a link receiver.

The LP-Serial protocol defines two methods or modes of flow control. These are
named receiver-controlled flow control and transmitter-controlled flow control.
Every RapidIO LP-Serial port shall support receiver-controlled flow control.
LP-Serial ports may optionally support transmitter-controlled flow control.

6.9.1 Receiver-Controlled Flow Control

Receiver-controlled flow control is the simplest and basic method of flow control.
In this method, the input side of a port controls the flow of packets from its link
partner by accepting or rejecting packets on a packet by packet basis. The receiving
RapidIO.org 291

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
port provides no information to its link partner about the amount of buffer space it
has available for packet reception.

As a result, its link partner transmits packets with no a priori expectation as to
whether a given packet will be accepted or rejected. A port signals its link partner
that it is operating in receiver-controlled flow control mode by setting the buf_status
field to all 1’s in every control symbol containing the field that the port transmits.
This method is named receiver-controlled flow control because the receiver makes
all of the decisions about how buffers in the receiver are allocated for packet
reception.

A port operating in receiver-controlled flow control mode accepts or rejects each
inbound error free packet based on whether the receiving port has enough buffer
space available for the VC and the priority level of the packet. If there is enough
buffer space available, the port accepts the packet and transmits a packet-accepted
control symbol to its link partner that contains the ackID of the accepted packet in
its packet_ackID field. The port optionally acknowledges multiple packets with a
single packet-accepted control symbol. Transmission of a packet-accepted control
symbol informs the port’s link partner that the packet (or packets) has been received
without detected errors and that it has been accepted by the port. On receiving the
packet-accepted control symbol, the link partner discards its copy of the accepted
packet (or packets) freeing buffer space in the partner.

The remaining behavior is a function of the mode of the VC.

6.9.1.1 Reliable Traffic VC Receivers

If buffer space is not available, the port rejects the packet. If multiple VCs are active,
and the VC is in reliable traffic mode, the rejected packet shall be acknowledged
with the packet-not-accepted control symbol. The cause field of the control symbol
should be set to “packet not accepted due to lack of resources”. The “arbitrary, or
ackID_Status” field of the packet-not-accepted control symbol can be set to the
ackID of the retried packet. In this case, the packets associated with ackIDs up to,
but not including, the retried ackID are acknowledged by the packet-not-accepted
control symbol. For information about control of the “arbitrary, or ackID_Status”
field refer to Section 7.6.15, "Port n Latency Optimization CSRs". Reception of the
packet-not-accepted control symbol causes the entire “RT Group” to go through the
same process used in error recovery to resequence and retransmit the RT packets.
See Section 6.13, "Error Detection and Recovery" for details.

If the port is operating in single VC mode, the port may use the Packet Retry
protocol described in Section 6.9.1.3, "Single VC Retry Protocol", or it may
continue to use the packet-not-accepted protocol described above.

6.9.1.2 Continuous Traffic VC Receivers

If buffer space is not available, and the VC is in CT mode, the packet is
acknowledged as accepted, and the packet is discarded. This preserves the order of
292 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
the normal link response and does not impact performance. Receiver based flow
control for CT channels will result in packet loss due to receiver overruns depending
on bandwidth and buffering conditions. See Section 6.9.2, "Transmitter-Controlled
Flow Control" for transmitter based flow control options.

6.9.1.3 Single VC Retry Protocol

When operating with a single VC (VC0), the receiver may use the retry protocol for
handling receiver overruns. It is a requirement that implementers include this
functionality in the channel design to be backward compatible with existing
RapidIO interfaces.

When a port rejects a packet, it immediately enters the Input Retry-stopped state and
follows the Input Retry-stopped recovery process specified in Section 6.9.1.4,
"Input Retry-Stopped Recovery Process". As part of the Input Retry-stopped
recovery process, the port sends a packet-retry control symbol to its link partner
indicating that the packet whose ackID is in the packet_ackID field of the control
symbol and all packets subsequently transmitted by the port have been discarded by
the link partner and must all be retransmitted. When the ability to acknowledge
multiple packets with a single control symbol is enabled, the packet-retry control
symbol shall acknowledge all packets up to, but not including, the ackID in the retry
control symbol. The control symbol also indicates that the link partner is temporarily
out of buffers for packets of priority less than or equal to the priority of the retried
packet.

Devices may optionally support configuration values whereby Retry control
symbols sent and/or received acknowledge multiple packets. The configuration shall
be controlled by the Port n Latency Optimization CSRs. When transmitting control
symbols, devices operating with Control Symbol 24 or Control Symbol 48 shall
support a default configuration in which the Retry control symbol does not
acknowledge packets. Devices operating with Control Symbol 24 or Control
Symbol 48 may optionally support a configuration in which Retry control symbols
acknowledge all packets up to, but not including, the ackID_status in the Retry
control symbol. Devices operating with Control Symbol 64 shall support a default
configuration whereby a transmitted Retry control symbol acknowledges all packets
up to, but not including, the ackID_status in the Retry control symbol.

Devices operating with Control Symbol 24 or Control Symbol 48 may optionally
support reception of Retry control symbols that acknowledge all outstanding packets
up to, but not including, the ackID_status. Devices operating with Control Symbol
64 shall support reception of Retry control symbols that acknowledge all
outstanding packets up to, but not including, the ackID_status. It shall be possible to
configure devices operating with Control Symbol 64 to transmit a Retry control
symbol only when all packets up to the Retried packet have been acknowledged.

A port that receives a packet-retry control symbol immediately enters the Output
Retry-stopped state and follows the Output Retry-stopped recovery process
RapidIO.org 293

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
specified in Section 6.9.1.5, "Output Retry-Stopped Recovery Process". As part of
the Output Retry-stopped recovery process, the port receiving the packet-retry
control symbol sends a restart-from-retry control symbol which causes its link
partner to exit the Input Retry-stopped state and resume packet reception. The ackID
assigned to that first packet transmitted after the restart-from-retry control symbol is
the ackID of the packet that was retried.

Figure 6-4 shows an example of single VC receiver-controlled flow control
operation. In this example the transmitter is capable of sending packets faster than
the receiver is able to absorb them. Once the transmitter has received a retry for a
packet, the transmitter may elect to cancel any packet that is presently being
transmitted since it will be discarded anyway. This makes bandwidth available for
any higher priority packets that may be pending transmission.

Figure 6-4. Single VC Mode Receiver-Controlled Flow Control

6.9.1.4 Input Retry-Stopped Recovery Process

When the input side of a port operating with only VC0 active (single VC mode)
retries a packet, it immediately enters the Input Retry-stopped state. To recover from
this state, the input side of the port takes the following actions.

• Discards the rejected or canceled packet without reporting a packet error and
ignores all subsequently received packets while the port is in the Input
Retry-stopped state.

Time Write 0

Write 1 Ack 0

Write 2
Ack 1

Rtry 2

Write 3

Write 4

Write 5

Write 2
Ack 2Write 3

Write 4

Write 5 Ack 3

Ack 4

Ack 5

Transmitter Receiver
294 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Causes the output side of the port to issue a packet-retry control symbol
containing the ackID value of the retried packet in the packet_ackID field of
the control symbol. (The packet-retry control symbol causes the output side
of the link partner to enter the Output Retry-stopped state and send a
restart-from-retry control symbol.)

• When a restart-from-retry control symbol is received, exit the Input
Retry-stopped state and resume packet reception.

An example state machine with the behavior described in this section is included in
Section C.2, "Packet Retry Mechanism".

6.9.1.5 Output Retry-Stopped Recovery Process

To recover from the Output Retry-stopped state, the output side of a port takes the
following actions.

• Immediately stops transmitting new packets.

• Resets the link packet acknowledgment timers for all transmitted but
unacknowledged packets. (This prevents the generation of spurious timeout
errors.)

• Transmits a restart-from-retry control symbol.

• Backs up to the first unaccepted packet (the retried packet) which is the packet
whose ackID value is specified by the packet_ackID value contained in the
packet-retry control symbol. (The packet_ackID value is also the value of
ackID field the port retrying the packet expects in the first packet it receives
after receiving the restart-from-retry control symbol.)

• Exits the Output Retry-stopped state and resumes transmission with either the
retried packet or a higher priority packet which is assigned the ackID value
contained in the packet_ackID field of the packet-retry control symbol.

An example state machine with the behavior described in this section is included in
Section C.2, "Packet Retry Mechanism".

6.9.2 Transmitter-Controlled Flow Control

In transmitter-controlled flow control, the receiving port provides information to its
link partner about the amount of buffer space it has available for packet reception.
With this information, the sending port can allocate the use of the receiving port’s
receive buffers according to the number and priority of packets that the sending port
has waiting for transmission without concern that one or more of the packets shall
be forced to retry.

A port signals its link partner that it is operating in transmitter-controlled flow
control mode by setting the buf_status field to a value different from all 1’s in every
control symbol containing the field that the port transmits. This method is named
RapidIO.org 295

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
transmitter-controlled flow control because the transmitter makes almost all of the
decisions about how the buffers in the receiver are allocated for packet reception.

The number of free buffers that a port has available for packet reception is conveyed
to its link partner by the value of the buf_status field in the control symbols that the
port transmits. The value conveyed by the buf_status field is the number of
maximum length packet buffers currently available for packet reception up to the
limit that can be reported in the field. If a port has more buffers available than the
maximum value that can be reported in the buf_status field, the port sets the field to
that maximum value. A port may report a smaller number of buffers than it actually
has available, but it shall not report a greater number.

A port informs its link partner when the number of free buffers available for packet
reception changes. The new value of buf_status is conveyed in the buf_status field
of a packet-accepted, packet-retry, status, or VC_status control symbol. Each change
in the number of free buffers a port has available for packet reception need not be
conveyed to the link partner. However, a port shall send a control symbol containing
the buf_status field to its link partner no less often than the minimum rate specified
in Section 6.5.3.2, "Buffer Status Maintenance".

When a port implements more than VC0, the value of buf_status is kept on a per VC
basis by the receiving port. When a packet-accepted symbol is returned, the
buf_status field is filled with the status for the specific VC that the packet was sent
to. When sending buf_status asynchronously (not in response to any specific
packet), the status control symbol is used for VC0, and the VC_status control
symbol is used for VC’s 1-8.

A port whose link partner is operating in transmitter-control flow control mode
should never receive a packet-not-accepted (or packet-retry control symbol if
operating in single VC mode) from its link partner unless the port has transmitted
more packets than its link partner has receive buffers, has violated the rules that all
input buffers may not be filled with low priority packets or there is some fault
condition. A receiver overrun is handled according to the rules in 6.9.1,
"Receiver-Controlled Flow Control".

If a port, operating in single VC mode, for whose link partner is operating in
transmitter-control flow control mode, receives a packet-retry control symbol, the
output side of the port immediately enters the Output Retry-stopped state and
follows the Output Retry-stopped recovery process specified in Section 6.9.1.5,
"Output Retry-Stopped Recovery Process".

A simple example of single VC transmitter-controlled flow control is shown in
Figure 6-5.
296 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 6-5. Single VC Mode Transmitter-Controlled Flow Control

6.9.2.1 Receive Buffer Management

In transmitter-controlled flow control, the transmitter manages the packet receive
buffers in the receiver. This may be done in a number of ways, but the selected
method shall not violate the rules in Section 6.12, "Deadlock Avoidance"
concerning the acceptance of packets by ports.

For VC0, it is important to manage buffers in a way that reserves room for high
priority packets. One possible implementation to organize the buffers is to establish
watermarks and use them to progressively limit the packet priorities that can be
transmitted as the effective number of free VC0 buffers in the receiver decreases.
For example, VC0 has four priority levels. Three non-zero watermarks are needed
to progressively limit the packet priorities that may be transmitted as the effective
number of free VC0 buffers decreases. Designate the three watermarks as WM0,
WM1, and WM2 where WM0 > WM1 > WM2 > 0 and employ the following rules.

If free_buffer_count0 >= WM0, all priority packets may be transmitted.

If WM0 > free_buffer_count0 >= WM1, only priority 1, 2, and 3 packets may
be transmitted.

If WM1 > free_buffer_count0 >= WM2, only priority 2 and 3 packets may
be transmitted.

If WM2 > free_buffer_count0, only priority 3 packets may be transmitted.

If this method is implemented, the initial values of the watermarks may be set by the
hardware at reset as follows.

Time Write 0

Write 1
Ack 0, 2 buffers avail

Write 2

Ack 1, 1 buffer avail

Write 3

Write 4

Write 5

Ack 2, 0 buffers avail

Ack 3, 3 buffers avail

Ack 4, 2 buffers avail

Ack 5, 1 buffers avail

Transmitter Receiver

Idle, 0 buffers avail

Idle, 0 buffers avail

Idle, 2 buffers avail
RapidIO.org 297

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
WM0 = 4

WM1 = 3

WM2 = 2

These initial values may be modified by hardware or software. The modified
watermark values shall be based on the number of free buffers reported in the
buf_status field of status control symbols received by the port following link
initialization and before the start of packet transmission.

The three watermark values and the number of free buffers reported in the buf_status
field of status control symbols received by the port following link initialization and
before the start of packet transmission may be stored in a CSR. Since the maximum
value of each of these four items is 4094 when using Control Symbol 64, each will
fit in an 12-bit field and all four will not fit in a single 32-bit CSR. If the watermarks
are software setable, the three watermark fields in the CSRs should be writable. For
the greatest flexibility, a set of watermark registers should be provided for each port
on a device.

For VCs 1-8, packets within the same VC are equal in priority and always kept in
order. The free buffers in the receiver can be partitioned between VCs in any number
of ways: they can be equally divided among the VCs, they can be statically
partitioned based on the bandwidth allocation percentages, or they may be
dynamically allocated from a larger pool. The only requirement is that once a given
amount of buffers is reported by the receiver to the transmitter those buffers shall
remain available for packets for that VC. Buffers may be deallocated once they are
used, by removing the data, but not reporting the buffer available to that VC. At that
time, the buffer may be reallocated to another VC. The specific method of buffer
allocation is beyond the scope of this specification.

6.9.2.2 Effective Number of Free Receive Buffers

The number of buffers available in a link partner for packet reception on a given VC
is typically less than the value of the buf_status field most recently received for that
VC from the link partner. The value in the buf_status field does not account for
packets that have been transmitted by the VC but not acknowledged by its link
partner. The variable free_buffer_countN is defined to be the effective number of
free buffers available in the link partner for packet reception on VC N. The
recommended way for a port to compute and maintain these “free buffer counts” is
to implement the following rules.

1. Each active VC maintains a variable “free_buffer_countVC” whose value
shall be the effective number of free buffers available to that VC in the link
partner for packet reception.

2. Each active VC maintains a variable “outstanding_packet_countVC” whose
value is number of packets that have been transmitted on that VC, but that
have not been acknowledged by its link partner.
298 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
3. After link initialization and before the start of packet transmission,

If {[(control_symbol = cs24) & (received_buf_status < 31)] |
[(control_symbol = cs48) & (received_buf_status < 63)] |
[(control_symbol = cs64) & (received_buf_status < 4095)]}

{
flow_control_mode = transmitter;
free_buffer_count0 = received_buf_status0;
outstanding_packet_count0 = 0;
for VC 1 through 8 {

free_buffer_countVC =
received_VC_buffer_statusVC

outstanding_packet_countVC = 0
}

}
else

flow_control_mode = receiver;

4. When a status or VC_Status control symbol is received by the port,

free_buffer_countVC =
received_buf_statusVC - outstanding_packet_countVC;

5. When a packet is transmitted by the VC,

outstanding_packet_count VC=
outstanding_packet_countVC + 1

free_buffer_countVC = free_buffer_countVC - 1

6. When a packet-accepted control symbol is received by the port indicating
that a packet has been accepted by the link partner, the buf_status field of the
control symbol is re-associated with the originating VC:

Outstanding_packet_countVC =
Outstanding_packet_countVC - 1;

free_buffer_countVC =
received_buf_statusVC - outstanding_packet_countVC;

7. When a packet-retry control symbol is received by the port indicating that a
packet has been forced by the link partner to retry,

Outstanding_packet_count0 = 0;
free_buffer_count0 = received_buf_status0;

8. When a packet-not-accepted control symbol is received by the port indicating
that a packet has been rejected by the link partner because of one or more
detected errors or a lack of buffer resources,
RapidIO.org 299

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Outstanding_packet_countVC = 0;
free_buffer_countVC = free_buffer_count VC (remains unchanged);

9. When a link-response control symbol is received,

free_buffer_count0 = received_buf_status;

6.9.2.3 Speculative Packet Transmission

A port whose link partner is operating in transmitter-controlled flow control mode
may send more packets on a given VC than the number of free buffers indicated by
the link partner as being available for that VC. Packets transmitted in excess of the
free_buffer_count are transmitted on a speculative basis and are subject to retry by
the link partner. The link partner accepts or rejects these packets on a packet by
packet basis in exactly the same way it would if operating in receiver-controlled
flow control mode. A port may use such speculative transmission in an attempt to
maximize the utilization of the link. However, speculative transmission that results
in a significant number of retries and discarded packets can reduce the effective
bandwidth of the link.

When the link has multiple operating VCs, speculative packet transmission may
increase the CT packet loss rate and how frequently the link runs the error-recovery
process.

6.9.3 Flow Control Mode Negotiation

Immediately following the initialization of a link, each port begins sending status
control symbols to its link partner. The value of the buf_status field in these control
symbols indicates to the link partner the flow control mode supported by the sending
port.

The flow control mode negotiation rule is as follows:

If the port and its link partner both support transmitter-controlled flow
control, then both ports shall use transmitter-controlled flow control.
Otherwise, both ports shall use receiver-controlled flow control.

If multiple VCs are used, then a port shall have either all channels in receiver based
flow control or all channels in transmitter based flow control. All status and
VC_status control symbols shall be consistent in their buf_status reporting in this
regard.

6.10 Canceling Packets
When a port becomes aware of some condition that will require the packet it is
currently transmitting to be retransmitted, the port may cancel the packet. This
allows the port to avoid wasting bandwidth by not completing the transmission of a
packet that the port knows must be retransmitted. Alternatively, the sending port
may choose to complete transmission of the packet normally.
300 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A port may cancel a packet if the port detects a problem with the packet as it is being
transmitted or if the port receives a packet-retry or packet-not-accepted control
symbol for a packet that is still being transmitted or that was previously transmitted.
A packet-retry or packet-not-accepted control symbol can be transmitted by a port
for a packet at any time after the port begins receiving the packet.

The sending device shall use the stomp control symbol, the restart-from-retry
control symbol (in response to a packet-retry control symbol), or any link request
control symbol to cancel a packet.

A port receiving a canceled packet shall drop the packet. The cancellation of a
packet shall not result in the generation or report of any errors. If the packet was
canceled because the sender received a packet-not-accepted control symbol, the
error that caused the packet-not-accepted to be sent shall be reported in the normal
manner.

The behavior of a port that receives a canceled packet depends on the control symbol
that canceled the packet. A port that is not in an input stopped state (Retry-stopped
or Error-stopped) while receiving the canceled packet and has not previously
acknowledged the packet shall have the following behavior.

If the packet is canceled by a link-request/port-status control symbol,
the port shall drop the packet without reporting a packet error.

If the packet is canceled by a restart-from-retry control symbol a
protocol error has occurred and the port shall immediately enter the
Input Error-stopped state and follows the Input Error-stopped
recovery process specified in Section 6.13.2.6, "Input Error-Stopped
Recovery Process".

If the packet was canceled by other than a restart-from-retry or
link-request/port-status control symbol and the port is operating in
single VC mode (only VC0 is active), the port shall immediately enter
the Input Retry-Stopped state and follow the Input Retry-Stopped
recovery process specified in Section 6.9.1.4, "Input Retry-Stopped
Recovery Process". If the packet was canceled before the packet
ackID field was received by the port, the packet_ackID field of the
associated packet-retry control symbol acknowledging the packet
shall be set to the ackID the port expected in the canceled packet

If the packet was canceled by other than a restart-from-retry or
link-request/port-status control symbol and the port is operating in
multiple VC mode (at least one of VC1-8 is active), the port shall
immediately enter the Input Error-Stopped state and follow the Input
Error-Stopped recovery process specified in Section 6.13.2.6, "Input
Error-Stopped Recovery Process".
RapidIO.org 301

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A packet whose transmission is canceled shall be considered to be an untransmitted
packet.

6.11 Transaction and Packet Delivery Ordering Rules
The rules specified in this section are required for the Physical Layer to support the
transaction ordering rules specified in the Logical Layer Specifications.

Transaction Delivery Ordering Rules:

1. The Physical Layer of an end point processing element port
shall encapsulate in packets and forward to the RapidIO fabric
transactions comprising a given transaction request flow in the
same order that the transactions were received from the
Transport Layer of the processing element.

2.The Physical Layer of an end point processing element port shall
ensure that a higher priority request transaction that it
receives from the Transport Layer of the processing element
before a lower priority request transaction with the same
sourceID and the same destinationID is forwarded to the fabric
before the lower priority transaction.

3. The Physical Layer of an end point processing element port
shall deliver transactions to the Transport Layer of the
processing element in the same order that the packetized
transactions were received by the port.

Packet Delivery Ordering Rules:

1. A packet initiated by a processing element shall not be
considered committed to the RapidIO fabric and does not
participate in the packet delivery ordering rules until the
packet has been accepted by the device at the other end of the
link. (RapidIO does not have the concept of delayed or deferred
transactions. Once a packet is accepted into the fabric, it is
committed.)

2. A switch shall not alter the priority, critical request flow or VC
of a packet.

3. Packet forwarding decisions made by a switch processing
element shall provide a consistent output port selection which
is based solely on the value of the destinationID field carried in
the packet.

4. A switch processing element shall not change the order of
packets comprising a transaction request flow (packets with
the same sourceID, the same destinationID, the same priority,
same critical request flow, same VC bit, and ftype != 8) as the
packets pass through the switch.

5. A switch processing element shall not allow lower priority
non-maintenance packets (ftype != 8) to pass higher priority
302 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
non-maintenance packets with the same sourceID and
destinationID as the packets pass through the switch.

6. A switch processing element shall not allow a priority N
maintenance packet (ftype = 8) to pass another maintenance
packet of priority N or greater that takes the same path
through the switch (same switch input port and same switch
output port).

Rules for Scheduling Among VCs:

The whole link bandwidth is evenly divided into ‘N’ portions and each
portion is 1/N of the whole link bandwidth. Each VC is configured to have
guaranteed bandwidth. The method among VCs is also vendor dependent, as
long as it satisfies the following three rules:

1.If the total guaranteed bandwidth for all the supported VCs is more
than 100%, then the received bandwidth for each supported VC
cannot be guaranteed.

2.If the total guaranteed bandwidth for all the supported VCs is less
than or equal to 100%, demand for more than its guaranteed
bandwidth shall not cause any other VCs to receive less than their
guaranteed bandwidth.

3.If one VC demands less bandwidth than its guaranteed bandwidth,
the extra bandwidth may be distributed among other VCs.

If VC0 participates in the bandwidth reservation process, then all VCs will receive
their expected minimum bandwidth. However, VC0 may be treated as a special case.
VC0 may be treated with strict priority, getting whatever bandwidth is required
when it has traffic to transport. In this condition, the remaining VCs will divide up
whatever portion of bandwidth remains. If VC0’s utilization is significant, compared
with the traffic on the other VCs, then the other VCs bandwidth will still be
proportional to each other, but will vary as the available bandwidth is modified by
VC0.

The implementer may also choose to implement some priorities within VC0 with
strict priority, and schedule the rest with reserved bandwidth. This specification does
not require any particular treatment as there are application cases for any of the
above. Chapter 7, "LP-Serial Registers" defines a standard control register should
the implementer decide to make this a programmable feature.

6.12 Deadlock Avoidance
Request transactions requiring responses shall only use VC0. The response packet
shall only use VC0. The following requirements apply to prioritized traffic within
VC0.

To allow a RapidIO protocol to evolve without changing the switching fabric, switch
processing elements are not required, with the sole exception of ftype 8 maintenance
RapidIO.org 303

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
transactions, to discern between packet types, their functions or their
interdependencies. Switches, for instance, are not required to discern between
packets carrying request transactions and packets carrying response transactions. As
a result, it is possible for two end points, A and B to each fill all of their output
buffers, the fabric connecting them and the other end point’s input buffers with read
requests. This would result in an input to output dependency loop in each end point
in which there would be no buffer space to hold the responses necessary to complete
any of the outstanding read requests.

To break input to output dependencies, end point processing elements must have the
ability to issue outbound response packets even if outbound request packets
awaiting transmission are congestion blocked by the connected device. Two
techniques are provided to break input to output dependencies. First, a response
packet (a packet carrying a response transaction) is always assigned an initial
priority one priority level greater than the priority of the associated request packet
(the packet carrying the associated request transaction).

This requirement is specified in Table 6-6 and Table 6-7. It breaks the dependency
cycle at the request flow level. Second, the end point processing element that is the
source of the response packet may additionally raise the priority of the response
packet to a priority higher than the minimum required by Table 6-6 and Table 6-7 if
necessary for the packet to be accepted by the connected device. This additional
increase in response packet priority above the minimum required by Table 6-6 and
Table 6-7 is called promotion. An end point processing element may promote a
response packet only to the degree necessary for the packet to be accepted by the
connected device.

The following rules define the deadlock prevention mechanism:

Deadlock Prevention Rules:

1. A RapidIO fabric shall be dependency cycle free for all
operations that do not require a response. (This rule is
necessary as there are no mechanisms provided in the fabric to
break dependency cycles for operations not requiring
responses.)

2. A packet carrying a request transaction that requires a
response shall not be issued at the highest priority. (This rule
ensures that an end point processing element can issue a
response packet at a priority higher than the priority of the
associated request. This rule in combination with rule 3 are
basis for the priority assignments in Table 6-6 and Table 6-7)

3. A packet carrying a response shall have a priority at least one
priority level higher than the priority of the associated request.
(This rule in combination with rule 2 are basis for the priority
assignments in Table 6-6 and Table 6-7)

4. A switch processing element port shall accept an error-free
packet of priority N if there is no packet of priority greater
304 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
than or equal to N that was previously received by the port and
is still waiting in the switch to be forwarded. (This rule has
multiple implications which include but are not limited to the
following. First, a switch processing element port must have at
least as many maximum length packet input buffers as there
are priority levels. Second, a minimum of one maximum length
packet input buffer must be reserved for each priority level. A
input buffer reserved for priority N might be restricted to only
priority N packets or might be allowed to hold packets of
priority greater than or equal to N, either approach complies
with the rule.)

5. A switch processing element port that transmits a priority N
packet that is forced to retry by the connected device shall
select a packet of priority greater than N, if one is available, for
transmission. (This guarantees that packets of a given priority
will not block higher priority packets.)

6. An end point processing element port shall accept an error-free
packet of priority N if the port has enough space for the packet
in the input buffer space of the port allocated for packets of
priority N. (Lack of input buffer space is the only reason an end
point may retry a packet.)

7. The decision of an end point processing element to accept or
retry an error-free packet of priority N shall not depend on the
ability of the end point to issue request packets of priority less
than or equal to N from any of its ports. (This rule works in
conjunction with rule 6. It prohibits a device’s inability to issue
packets of priority less than or equal to N, due to congestion in
the connected device, from resulting in a lack of buffers to
receive inbound packets of priority greater than or equal to N
which in turn would result in packets of priority greater than
or equal to N being forced to retry. The implications and some
ways of complying with this rule are presented in the following
paragraphs.)

One implication of Rule 7 is that a port may not fill all of its buffers that can be used
to hold packets awaiting transmission with packets carrying request transactions. If
this situation was allowed to occur and the output was blocked due to congestion in
the connected device, read transactions could not be processed (no place to put the
response packet), input buffer space would become filled and all subsequent
inbound request packets would be forced to retry violating Rule 7.

Another implication is that a port must have a way of preventing output blockage at
priority less than or equal to N, due to congestion in the connected device, from
resulting in a lack of input buffer space for inbound packets of priority greater than
or equal to N. There are multiple ways of doing this.

One way is to provide a port with input buffer space for at least four maximum
length packets and reserve input buffer space for higher priority packets in a manner
similar to that required by Rule 4 for switches. In this case, output port blockage at
RapidIO.org 305

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
priority less than or equal to N will not result in blocking inbound packets of priority
greater than or equal to N as any responses packets they generate will be of priority
greater than N which is not congestion blocked. The port must however have the
ability to select packets of priority greater than N for transmission from the packets
awaiting transmission. This approach does not require the use of response packet
priority promotion.

A port can use the promotion mechanism to increase the priority of response packets
until they are accepted by the connected device. This allows output buffer space
containing response packets to be freed even though all request packets awaiting
transmission are congestion blocked.

As an example, suppose an end point processing element has a blocked input port
because all available resources are being used for a response packet that the
processing element is trying to send. If the response packet is retried by the
downstream processing element, raising the priority of the response packet until it
is accepted allows the processing element’s input port to unblock so the system can
make forward progress.

It should be noted that implementing response priority promotion in a device may
help with its link partner’s input buffer congestion, not its own input buffer
congestion. It should also be noted that response priority promotion may not be able
to guarantee forward progress in the system unless the link partner has implemented
priority based input buffer reservation.

6.13 Error Detection and Recovery
Error detection and recovery is becoming a more important issue for many systems.
The LP-Serial specification provides extensive error detection and recovery by
combining retry protocols with cyclic redundancy codes, the selection of delimiter
special characters and response timers.

One feature of the error protection strategy is that with the sole exception of
maintenance packets, the CRC value carried in a packet remains unchanged as the
packet moves through the fabric. The CRC carried in a maintenance packet must be
regenerated at each switch as the hop count changes.

6.13.1 Lost Packet Detection

Some types of errors, such as a lost request or response packet or a lost
acknowledgment, result in a system with hung resources. To detect this type of error
there shall be timeout counters that expire when sufficient time has elapsed without
receiving the expected response from the system. Because the expiration of one of
these timers should indicate to the system that there is a problem, this time interval
should be set long enough so that a false timeout is not signaled. The response to this
error condition is implementation dependent.
306 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The RapidIO specifications require timeout counters for the Physical Layer, the port
link timeout counters, and counters for the Logical Layer, the port response timeout
counters. The interpretation of the counter values is implementation dependent,
based on a number of factors including link clock rate, the internal clock rate of the
device, and the desired system behavior.

The Physical Layer timeout occurs between the transmission of a packet and the
receipt of an acknowledgment control symbol. This timeout interval is likely to be
comparatively short because the packet and acknowledgment pair must only
traverse a single link.

The Logical Layer timeout occurs between the issuance of a request packet that
requires a response packet and the receipt of that response packet. This timeout is
counted from the time that the Logical Layer issues the packet to the Physical Layer
to the time that the associated response packet is delivered from the Physical Layer
to the Logical Layer. Should the Physical Layer fail to complete the delivery of the
packet, the Logical Layer timeout will occur. This timeout interval is likely to be
comparatively long because the packet and response pair have to traverse the fabric
at least twice and be processed by the target. Error handling for a response timeout
is implementation dependent.

Certain GSM operations may require two response transactions, and both must be
received for the operation to be considered complete. In the case of a device
implementation with multiple links, one response packet may be returned on the
same link where the operation was initiated and the other response packet may be
returned on a different link. If this behavior is supported by the issuing processing
element, the port response timeout implementation must look for both responses,
regardless on which links they are returned.

Link reinitialization, port width changes, and link retraining can temporarily
interrupt the flow of packets and control symbols in one or both directions on a link,
unexpectedly increasing the time required to receive responses. For this reason, it is
recommended that the port link timeout counters and the port response timeout
counters should not advance when link_initialized is deasserted. For ports operating
with IDLE3, port link timeout counters and the port response timeout counters
should not advance if either receive_enable or transmit_enable are deasserted.

6.13.2 Link Behavior Under Error

The LP-Serial link uses error detection and retransmission to protect RT packets
against loss or corruption due to transmission errors. Transmission error detection is
done at the input port, and all transmission error recovery is also initiated at the input
port.

The packet transmission protocol requires that each RT packet transmitted by a port
be acknowledged by the receiving port and that a port retain a copy of each RT
packet that it transmits until the port receives a packet-accepted control symbol
RapidIO.org 307

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
acknowledgment for the packet or the sending port determines that the packet has
encountered an unrecoverable error. If the receiving port detects a transmission error
in a packet, the port sends a packet-not-accepted control symbol acknowledgment
back to the sender indicating that the packet was corrupted as received. After a
link-request/port-status and link-response control symbol exchange, the sender
begins retransmission with the next packet according to the priority/bandwidth
scheduling rules. The RT VCs retransmit all packets that were unacknowledged at
the time of the error. CT VCs continue with the next untransmitted packet.

All RT packets corrupted in transmission are retransmitted. The number of times a
packet can be retransmitted before the sending port determines that the packet has
encountered an unrecoverable condition is implementation dependent.

The primary mechanism for informing the link partner of a detected error is the
Packet Not Accepted control symbol. Devices may optionally support a
configuration in which they transmit Packet Not Accepted control symbols that
contain an ackID_status, and support resumption of packet transmission using the
next expected ackID found in received Packet Not Accepted control symbols.
Packet Not Accepted control symbols that contain the ackID_status shall be
interpreted as acknowledging all ackIDs up to, but not including, the ackID_status
value. The configuration shall be controlled by the Port n Latency Optimization
CSRs.

6.13.2.1 Recoverable Errors

The following five basic types of errors are detected by a LP-Serial port:

• An idle sequence error

• A control symbol error

• A packet error

• A column padding error

• A timeout waiting for an acknowledgment or link-response control symbol

6.13.2.2 Idle Sequence Errors

The detectable idle sequence errors depend on the idle sequence being used on the
link. Links operating with Control Symbol 24 use the IDLE1 sequence. Links
operating with Control Symbol 48 use the IDLE2 sequence. Links operating with
Control Symbol 64 use the IDLE3 sequence.

To limit input port complexity, the port is not required to determine the specific error
that resulted in an idle sequence error.

6.13.2.2.1 IDLE1 Sequence Errors

The IDLE1 sequence is comprised of A, K, and R (8b/10b special) characters. If an
input port detects an invalid character or any valid character other then A, K, or R in
an IDLE1 sequence and the port is not in the Input Error-stopped state, the port shall
308 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
immediately enter the Input Error-stopped state and follow the Input Error-stopped
recovery process specified in Section 6.13.2.6, "Input Error-Stopped Recovery
Process".

Following are several examples of idle sequence errors.

• A single bit transmission error can change an /A/, /K/, or /R/ code-group into a
/Dx.y/ (data) code-group which is illegal in an idle sequence.

• A single bit transmission error can change an /A/, /K/, or /R/ code-group into
an invalid code-group.

• A single bit transmission error can change an /SP/ or /PD/ (control symbol
delimiters) into an invalid code-group.

6.13.2.2.2 IDLE2 Sequence Errors

The IDLE2 sequence is comprised of A, K, M and R special characters and data
characters. If an input port detects any of the following errors in an IDLE2 sequence
and the port is not in the Input Error-stopped state, the port shall immediately enter
the Input Error-stopped state and follow the Input Error-stopped recovery process
specified in Section 6.13.2.6, "Input Error-Stopped Recovery Process".

• An invalid character or any special character other than A, K, M or R

• After lane alignment is achieved,

a column that contains an A, but is not all As,

a column that contains a K, but is not all Ks,

a column that contains a M, but is not all Ms,

a column that contains a R, but is not all Rs or

a column that contains a data character, but is not all data characters.

6.13.2.2.3 IDLE3 Sequence Errors

The IDLE3 sequence is comprised of control codewords and data codewords. If an
input port detects any of the following errors in an IDLE3 sequence when
receive_enable is asserted and the port is not in the Input Error-stopped state, the
port shall immediately enter the Input Error-stopped state and follow the Input
Error-stopped recovery process specified in Section 6.13.2.6, "Input Error-Stopped
Recovery Process".

• An invalid codeword

• After lane alignment is achieved,

a column that contains a control codeword, but is not all control codewords,

a column that contains a control codeword, but is not all the same control codeword
type,

a column that contains a data codeword, but is not all data codewords.

Incomplete or otherwise corrupted Ordered Sequences, see Table 5-10 for some
possible scenarios
RapidIO.org 309

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
6.13.2.3 Control Symbol Errors

There are two types of detectable control symbol errors

• An uncorrupted control symbol that violates the link protocol

• A corrupted control symbol

6.13.2.3.1 Link Protocol Violations

The reception of a control symbol with no detected corruption that violates the link
protocol shall cause the receiving port to immediately enter the appropriate
Error-stopped state. Stype1 control symbol protocol errors shall cause the receiving
port to immediately enter the Input Error-stopped state if not already in the Input
Error-stopped state and follow the Input Error-stopped recovery process specified in
Section 6.13.2.6, "Input Error-Stopped Recovery Process". Stype0 control symbol
protocol errors shall cause the receiving port to immediately enter the Output
Error-stopped state if not already in the Output Error-stopped state and follow the
Output Error-stopped recovery process specified in Section 6.13.2.7, "Output
Error-Stopped Recovery Process". If both stype0 and stype1 control symbols
contain protocol errors, then the receiving port shall enter both Error-stopped states
and follow both error recovery processes.

Link protocol violations include the following:

• Unexpected packet-accepted, packet-retry, or packet-not-accepted control symbol

• Packet acknowledgment control symbol with an unexpected packet_ackID value

• Link timeout while waiting for an acknowledgment or link-response control
symbol

• Receipt of a packet-retry symbol when operating in multi-VC mode

• Receipt of an unsolicited Timestamp Control Symbol when the device is a
timestamp Master

• Receipt of a sequence of Timestamp Control Symbols that do not conform to
the sequences described in Table 6-3, Table 6-4 or Table 6-5.

The following does not constitute a protocol violation:

• Receipt of a VC_status symbol when operating in single VC mode. Unexpected
VC_status symbols are discarded.

The following is an example of a link protocol violation and recovery when the
Multiple Acknowledges Enabled bit in the Port n Latency Optimization CSRs is
deasserted. A sender transmits RT mode packets labeled ackID 2, 3, 4, and 5. It
receives acknowledgments for packets 2, 4, and 5, indicating a probable error
associated with ackID 3. The sender then stops transmitting new packets and sends
a link-request/port-status (restart-from-error) control symbol to the receiver. The
receiver then returns a link- response control symbol indicating which packets it has
received properly. These are the possible responses and the sender’s resulting
behavior:
310 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• expecting ackID = 3 - sender must retransmit packets 3, 4, and 5

• expecting ackID = 4 - sender must retransmit packets 4 and 5

• expecting ackID = 5 - sender must retransmit packet 5

• expecting ackID = 6 - receiver got all packets, resume operation

• expecting ackID = anything else - fatal (non-recoverable) error

6.13.2.3.2 Corrupted Control symbols

The reception of a control symbol with detected corruption shall cause the receiving
port to immediately enter the Input Error-stopped state if not already in the Input
Error-stopped state and follow the Input Error-stopped recovery process specified in
Section 6.13.2.6, "Input Error-Stopped Recovery Process".

Input ports detect the following types of control symbol corruption:

• A Control Symbol 24 or Control Symbol 48 containing invalid characters or
valid but non-data characters

• A Control Symbol 64 containing invalid codewords

• A control symbol with an incorrect CRC value

• A Control Symbol 24 or Control Symbol 48 whose start delimiter (SC or PD)
occurs in a lane whose lane_number mod4 != 0

• A Control Symbol 48 that does not have a end delimiter in the seventh character
position after its start delimiter and with the same value as the start delimiter

• A Control Symbol 64 control codeword out of sequence or incomplete
sequence of Control Symbol 64 control codewords

6.13.2.4 Packet Errors

Each packet received by a port shall be checked for the following types of errors:

• Packet with an unexpected ackID value

• Packet with an incorrect CRC value

• Packet containing invalid characters or valid non-data characters

• Packet that exceeds the maximum packet size.

With one exception, the reception of a packet with any of the above errors shall
cause the receiving port to immediately enter the Input Error-stopped state if not
already in the Input Error-stopped state and follow the Input Error-stopped recovery
process specified in Section 6.13.2.6, "Input Error-Stopped Recovery Process". The
exception occurs when the link to which the port is connected is operating with the
IDLE2 or IDLE3 idle sequence, the packet in which one or more errors were
detected was canceled by a link-request control symbol, and the only errors detected
in the packet were the presence of one or more M special characters for IDLE2 or
one or more Descrambler Seed control codewords and may cause excessive packet
RapidIO.org 311

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
length. In this case, the errors detected in the packet shall be ignored and the packet
handled as a canceled packet as specified in Section 6.10, "Canceling Packets".

6.13.2.5 Link Timeout

A link timeout while waiting for an acknowledgment or link-response control
symbol is handled as a link protocol violation as described in Section 6.13.2.3.1,
"Link Protocol Violations".

6.13.2.6 Input Error-Stopped Recovery Process

When the input side of a port detects a transmission error, it immediately enters the
Input Error-stopped state. To recover from this state, the input side of the port takes
the following actions:

• Record the condition(s) that caused the port to enter the Input Error-stopped
state.

• If an error(s) was detected in a control symbol or packet, ignore and discard the
corrupted control symbol or packet.

• Cause the output side of the port to issue a packet-not-accepted control symbol.
(The packet-not-accepted control symbol causes the output side of the
receiving port to enter the Output Error-stopped state and send a
link-request/port-status control symbol.) If the packet-not-accepted control
symbol contains the next expected ackID and transmitter based flow control
is in use on the link, cause the output side of the port to transmit Status and
VC_Status control symbols for all active VCs. Transmission of Status and
VC_Status control symbols is optional when receiver based flow control is in
use, and when the packet-not-accepted control symbol does not contain the
next expected ackID. Transmission of the Status and VC_Status control
symbols is subject to the following:

– The packet-not-accepted control symbol shall be transmitted either before or
after all of the status and VC-status control symbols are transmitted.

– The status and VC-status control symbols that are transmitted shall be
transmitted in the following order. If a status control symbol is transmitted it
shall be transmitted first before any of the VC-status control symbols. Any
VC-status control symbols that are transmitted shall be transmitted after the
status control symbol and in order of increasing VCID.

The buffer status found in the status and VC-status control
symbols shall reflect buffer status up to, but not including, the
packet associated with the ackID in the packet-not-accepted
control symbol.

• Subsequent to the event that caused the port to enter the Input Error-stopped
state and prior to the reception of a link-request/port-status control symbol,

– discard without acknowledgement or error report all packets that are received for
VCs operating in RT mode,
312 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
– accept without acknowledgement (accept silently) all error free packets that are
received for VCs operating in CT mode for which the VC specified in the packet
has buffer space available and

– discard without acknowledgement all packets that are received for VCs
operating in CT mode which are not error free or for which the VC specified in
the packet does not have buffer space available.

• When a link-request/port-status control symbol is received from the connected
port, cause the output side of the port to transmit a link-response control
symbol and if the transmitter-controlled flow control is in use on the link, to
also transmit a VC_Status control symbol for each of VC1-8 that is active.
The transmission of a VC_Status control symbol for each of VC1-8 that is
active is optional if receiver-controlled flow control in use on the link. The
input side of the port should also cause the output side of the port to transmit
a status control symbol (for VC0). The input side of the port then exits the
Input Error-stopped state and resumes normal packet reception. The actual
transmission of the link-response, VC-status, and status control symbols may
occur after the input side of the port exits the Input Error-stopped state and
resumes normal packet reception.

• The transmission of the link-response, status and VC-status control symbols is
subject to the following requirements.

– The link-response control symbol shall be transmitted either before any of the
status and VC-status control symbols are transmitted or after all of the status and
VC-status control symbols are transmitted.

– The status and VC-status control symbols that are transmitted shall be
transmitted in the following order. If a status control symbol is transmitted it
shall be transmitted first before any of the VC-status control symbols. Any
VC-status control symbols that are transmitted shall be transmitted after the
status control symbol and in order of increasing VCID.

– The link-response control symbol shall not be transmitted until the input side of
the port is ready to resume packet reception and either the buffer consumption of
all packets received by the port before the link-request/port-status control
symbol has been determined or the port can maintain the distinction after packet
reception resumes between packets received before the reception of the
link-request/port-status control symbol and packets received after the reception
of the link-request/port-status control symbol (as the processing of packets
received before the link-request/port-status control symbol differs from the
processing of packets received after the link-request/port-status control symbol).

– The status or VC-status control symbol for a VC operating in RT mode shall
indicate the number of receive buffers available for that VC inclusive of the
buffer consumption of all packets received and accepted by the port for that VC
before the event that caused the port to enter the Input Error-stopped state.

– The VC-status control symbol for a VC operating in CT mode shall indicate the
number of receive buffers available for that VC inclusive of the buffer
RapidIO.org 313

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
consumption of all packets received and accepted by the port for that VC before
the link-request/port-status control symbol was received.

– The status and VC-status control symbols shall be transmitted before any packet
acknowledgment control symbols are transmitted for packets received after the
link-request/port-status control symbol was received.

An example state machine with the behavior described in this section is included in
Section C.3, "Error Recovery".

6.13.2.7 Output Error-Stopped Recovery Process

To recover from the Output Error-stopped state, the output side of a port takes the
following actions.

• Immediately stops transmitting new packets.

• Resets the link packet acknowledgment timers for all transmitted but
unacknowledged packets. (This prevents the generation of spurious timeout
errors.)

• Transmits a link-request/port-status (restart-from-error) control symbol. (The
link-request/port-status control symbol causes the connected port to transmit
a link-response control symbol that contains the port_status and ackID_status
of the input side of the port. The ackID_status field contains the ackID value
that is expected in the next packet that the connected port receives.)

• If the optional ability to perform error recovery with the ackID in the
packet-not-accepted control symbol is enabled, and receipt of a Packet Not
Accepted control symbol was the cause of entering the Output Error-Stopped
state, then the port exits the output error-stopped state. VCs operating in RT
mode back up to the first unaccepted packet in each VC. VCs operating in CT
mode silently assume the unacknowledged packets were accepted and adjust
their state accordingly.

• If the optional ability to perform error recovery with the ackID in the
packet-not-accepted control symbol is disabled, or the port entered the
Output Error-Stopped state for a reason other than receipt of a packet not
accepted control symbol, the port waits until the link-response is received,
VCs operating in RT mode back up to the first unaccepted packet in each VC.
VCs operating in CT mode silently assume the unacknowledged packets
were accepted and adjust their state accordingly.

• The port exits the Output Error-stopped state and resumes transmission with the
next RT or CT packet according to the bandwidth allocation algorithm using
the ackID value contained in the link-response control symbol.

• If the ability to perform error recovery using the ackID in the
packet-not-accepted control symbol is enabled, and receipt of a Packet Not
Accepted control symbol was the cause of previously entering the Output
Error-Stopped state, then receipt of a link-response shall complete the
314 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
outstanding link-request/port-status control symbol, allowing another
link-request/port-status control symbol to be transmitted. The contents of the
link-response control symbol shall be treated as informational in this case.

An example state machine with the behavior described in this section is included in
Section C.3, "Error Recovery".

6.14 Power Management
Power management is currently beyond the scope of this specification and is
implementation dependent. A device that supports power management features can
make these features accessible to the rest of the system using the device’s local
configuration registers.
RapidIO.org 315

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
316 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 7 LP-Serial Registers

7.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this Physical Layer Specification. This chapter only describes
registers or register bits defined by this specification. Refer to the other RapidIO
Logical, Transport, and Physical specifications of interest to determine a complete
list of registers and bit definitions.

There are four types of LP-Serial devices, an endpoint device, an endpoint device
with additional software recovery registers, an endpoint free (or switch) device, and
an endpoint free device with additional software recovery registers. Each has a
different set of CSRs, specified in Section 7.5.1, Section 7.5.2, Section 7.5.3, and
Section 7.5.4, respectively. All four device types have the same CARs, specified in
Section 7.4.

Devices supporting Virtual Channels contain an additional register block for
configuring VC support for each port. That block is added on after the above register
block using a separate EF_PTR, as described in Section 7.8.

7.2 Register Map
These registers utilize the Extended Features blocks and can be accessed using
RapidIO Part 1: Input/Output Logical Specification maintenance operations. Any
register offsets not defined are considered reserved for this specification unless
otherwise stated. Other registers required for a processing element are defined in
other applicable RapidIO specifications and by the requirements of the specific
device and are beyond the scope of this specification. Read and write accesses to
reserved register offsets shall terminate normally and not cause an error condition in
the target device.

The Extended Features pointer (EF_PTR) defined in the RapidIO logical
specifications contains the offset of the first Extended Features block in the
Extended Features data structure for a device. The LP-Serial physical features block
may exist in any position in the Extended Features data structure and may exist in
any portion of the Extended Features Space in the register address map for the
device.
RapidIO.org 317

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

7.3 Reserved Register, Bit and Bit Field Value Behavior
Table 7-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

Table 7-1. LP-Serial Register Map

Configuration
Space Byte

Offset
Register Name

0x0-F Reserved

0x10-13 Processing Element Features CAR

0x14-0xFF Reserved

0x100–
FFFF

Extended Features Space

0x10000–
FFFFFF

Implementation-defined Space

Table 7-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3F Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FF Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored
318 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When a writable bit field is set to a reserved value, device behavior is
implementation specific.

0x100–
FFFF

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFF

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 7-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO.org 319

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 7-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

7.4.1 Processing Element Features CAR
(Configuration Space Offset 0x10)

The processing element features CAR identifies the major functionality provided by
the processing element. The bit settings are shown in Table 7-3.

Table 7-3. Bit Settings for Processing Element Features CAR

Bits Name Description

0–3 — Reserved

4 Multiport This bit shall be implemented by devices that support Baud Rate Class 2 or Baud
Rate Class 3, but is optional for devices that do not support those baud rate classes.
If this bit is not implemented it is Reserved.

If this bit is implemented, the Switch Port Information CAR at Configuration Space
Offset 0x14 (see RapidIO Part 1: I/O Logical Specification) shall be implemented
regardless of the state of bit 3 of the Processing Element Features CAR.

Indicates whether the PE implements multiple external RapidIO ports
0b0 - PE does not implement multiple external RapidIO ports
0b1 - PE implements multiple external RapidIO ports

5–24 — Reserved

25 Implementation-defined Implementation-defined

26 CRF Support PE supports the Critical Request Flow (CRF) indicator
0b0 - Critical Request Flow is not supported
0b1 - Critical Request Flow is supported

27–31 — Reserved
320 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.5 LP-Serial Extended Feature Blocks
This section describes the LP-Serial Extended Features Blocks. There is a separate
Extended Features block for each of the following types of processing elements.

Generic endpoint devices

Generic endpoint devices, software assisted error recovery option

Generic endpoint free devices

Generic endpoint free devices, software assisted error recovery option

All registers in the LP-Serial Extended Feature Blocks are 32 bits in length and
aligned to 32 bit boundaries. The details of the registers used are specified in Section
7.6.

7.5.1 Generic Endpoint Devices

This section specifies the LP-Serial registers comprising the LP-Serial Extended
Features Block for a generic endpoint device. This Extended Features register block
is assigned Extended Features block ID=0x0001 for devices using Register Map - I,
and Extended Features block ID=0x0011 for devices using Register Map - II.

Table 7-4 and Table 7-5 show the register maps of the RapidIO LP-Serial Extended
Features Block for different device classes. The register maps specify the registers
that comprise these Extended Features Blocks.

7.5.2 Generic Endpoint Devices, Software-assisted Error
Recovery Option

This section specifies the LP-Serial registers comprising the LP-Serial Extended
Features Block for a generic endpoint device that supports software assisted error
recovery. This is most useful for devices that for whatever reason do not want to
implement error recovery in hardware and to allow software to generate link-request
control symbols and see the results of the responses and for device debug. This
Extended Features register block is assigned Extended Features block ID=0x0002
for devices using Register Map - I, and Extended Features block ID=0x0012 for
devices using Register Map - II.

Table 7-4 and Table 7-5 show the register maps of the RapidIO LP-Serial Extended
Features Block for different device classes. The register maps specify the registers
that comprise these Extended Features Blocks.

7.5.3 Generic Endpoint Free Devices

This section specifies the LP-Serial registers comprising the LP-Serial Extended
Features Block for a generic device that does not contain endpoint functionality (i.e.
RapidIO.org 321

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
switches). This Extended Features register block uses extended features block
ID=0x0003 for devices using Register Map - I, and Extended Features block
ID=0x0013 for devices using Register Map - II.

Table 7-4 and Table 7-5 show the register maps of the RapidIO LP-Serial Extended
Features Block for different device classes. The register maps specify the registers
that comprise these Extended Features Blocks.

7.5.4 Generic Endpoint Free Devices, Software-assisted Error
Recovery Option

This section specifies the LP-Serial registers comprising the LP-Serial Extended
Features Block for a generic device that does not contain endpoint functionality but
that does support software assisted error recovery. Typically these devices are
switches. This is most useful for devices that for whatever reason do not want to
implement error recovery in hardware and to allow software to generate link-request
control symbols and see the results of the responses and for device debug. This
Extended Features register block is assigned Extended Features block ID=0x0009
for devices using Register Map - I, and Extended Features block ID=0x0019 for
devices using Register Map - II.

Table 7-4 and Table 7-5 show the register maps of the RapidIO LP-Serial Extended
Features Block for different device classes. The register maps specify the registers
that comprise these Extended Features Blocks.

7.5.5 Register Map - I

Table 7-4 defines the register maps that may be used for devices which only support
IDLE1 or IDLE2 operation. An “X” in a column indicates that the register shall be
implemented for the indicated Extended Features Block ID. An “O” in a column
indicates that the register may optionally be implemented for the indicated Extended
Features Block ID.

The Extended Features Block IDs 0x0001, 0x0002, 0x0003, and 0x0009 are
deprecated in favor of Register Map - II defined for IDLE3 devices defined in
“Section 7.5.6, Register Map - II” on page 324.

The structure and use of the individual registers comprising Register Map - I is
specified in Section 7.6.

The required behavior for accesses to reserved registers and register bits is specified
in Table 7-2.

The Block Byte Offset is the offset relative to the 16-bit Extended Features Pointer
(EF_PTR) that points to the beginning of the block. The address of a byte in the
block is calculated by adding the block byte offset to EF_PTR that points to the
beginning of the block. This is denoted as [EF_PTR+xx], where xx is the block byte
322 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
offset in hexadecimal.

This register map is currently only defined for devices with up to 16 RapidIO ports,
but can be extended or shortened as required for a device. For example, a device with
four RapidIO ports is only required to use register map space corresponding to
offsets [EF_PTR + 0x00] through [EF_PTR + 0xBC]. Register map offset [EF_PTR
+ 0xC0] can be used for another Extended Features block.

Table 7-4. LP-Serial Register Map - I

Block
Byte

Offset
Register Name

Extended Features Block ID

Endpoint Endpoint Free

0x0001 0x0002 0x0003 0x0009

G
en

er
al

0x0 LP-Serial Register Block Header X X X X

0x4–1C Reserved -

0x20 Port Link Timeout Control CSR X X X X

0x24 Port Response Timeout Control CSR X X - -

0x28–38 Reserved -

0x3C Port General Control CSR X X X X

P
or

t 0

0x40 Port 0 Link Maintenance Request CSR - X - X

0x44 Port 0 Link Maintenance Response CSR - X - X

0x48 Port 0 Local ackID Status CSR - X - X

0x4C Port 0 Initialization Status CSR O O O O

0x50 Reserved -

0x54 Port 0 Control 2 CSR X X X X

0x58 Port 0 Error and Status CSR X X X X

0x5C Port 0 Control CSR X X X X

P
or

t 1

0x60 Port 1 Link Maintenance Request CSR - X - X

0x64 Port 1 Link Maintenance Response CSR - X - X

0x68 Port 1 Local ackID Status CSR - X - X

0x6C Port 1 Initialization Status CSR O O O O

0x70 Reserved -

0x74 Port 1 Control 2 CSR X X X X

0x78 Port 1 Error and Status CSR X X X X

0x7C Port 1 Control CSR X X X X

P
or

ts
 2

-1
4

0x80–218 Assigned to Port 2-14 CSRs
RapidIO.org 323

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.5.6 Register Map - II

Table 7-5 defines the register maps that shall be used for devices which support
IDLE3 operation. These register maps may be used for devices which only support
IDLE1 and/or IDLE2 operation. The four right-most columns indicate register
implementation requirements for the Extended Features Block IDs. An “X” in a
column indicates that the register shall be implemented for the indicated Extended
Features Block ID. An “O” in a column indicates that the register may optionally be
implemented for the indicated Extended Features Block ID.

The structure and use of the individual registers comprising Register Map - II is
specified in Section 7.6.

The required behavior for accesses to reserved registers and register bits is specified
in Table 7-2.

The Block Byte Offset is the offset relative to the 16-bit Extended Features Pointer
(EF_PTR) that points to the beginning of the block. The address of a byte in the
block is calculated by adding the block byte offset to EF_PTR that points to the
beginning of the block. This is denoted as [EF_PTR+xx], where xx is the block byte
offset in hexadecimal.

This register map is currently only defined for devices with up to 16 RapidIO ports,
but can be extended or shortened as required for a device. For example, a device with
four RapidIO ports is only required to use register map space corresponding to
offsets [EF_PTR + 0x00] through [EF_PTR + 0x13C]. Register map offset
[EF_PTR + 0x140] can be used for another Extended Features block.

P
or

t 1
5

0x220 Port 15 Link Maintenance Request CSR - X - X

0x224 Port 15 Link Maintenance Response CSR - X - X

0x228 Port 15 Local ackID Status CSR - X - X

0x22C Port 15 Initialization Status CSR O O O O

0x230 Reserved -

0x234 Port 15 Control 2 CSR X X X X

0x238 Port 15 Error and Status CSR X X X X

0x23C Port 15 Control CSR X X X X

Table 7-4. LP-Serial Register Map (Continued)- I

Block
Byte

Offset
Register Name

Extended Features Block ID

Endpoint Endpoint Free

0x0001 0x0002 0x0003 0x0009
324 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table 7-5. LP-Serial Register Map - II

Block Byte
Offset

Register Name

Extended Features Header ID

Endpoint Endpoint Free

0x0011 0x0012 0x0013 0x0019

G
en

er
al

0x0 LP-Serial Register Block Header X X X X

0x4–1C Reserved -

0x20 Port Link Timeout Control CSR X X X X

0x24 Port Response Timeout Control CSR X X - -

0x28–38 Reserved -

0x3C Port General Control CSR X X X X

P
or

t 0

0x40 Port 0 Link Maintenance Request CSR - X - X

0x44 Port 0 Link Maintenance Response CSR - X - X

0x48 Reserved

0x4C Port 0 Initialization Status CSR O O O O

0x50 Reserved -

0x54 Port 0 Control 2 CSR X X X X

0x58 Port 0 Error and Status CSR X X X X

0x5C Port 0 Control CSR X X X X

0x60 Port 0 Outbound ackID CSR - X - X

0x64 Port 0 Inbound ackID CSR - X - X

0x68 Port 0 Power Management CSR1 O O O O

0x6C Port 0 Latency Optimization CSR X X X X

0x70 Port 0 Link Timers Control CSR X X X X

0x74 Port 0 Link Timers Control 2 CSR X X X X

0x78 Port 0 Link Timers Control 3 CSR1 X X X X

0x7C Reserved -
RapidIO.org 325

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
P
or

t 1

0x80 Port 1 Link Maintenance Request CSR - X - X

0x84 Port 1 Link Maintenance Response CSR - X - X

0x88 Reserved -

0x8C Port 1 Initialization Status CSR O O O O

0x90 Reserved -

0x94 Port 1 Control 2 CSR X X X X

0x98 Port 1 Error and Status CSR X X X X

0x9C Port 1 Control CSR X X X X

0xA0 Port 1 Outbound ackID CSR - X - X

0xA4 Port 1 Inbound ackID CSR - X - X

0xA8 Port 1 Power Management CSR1 O O O O

0xAC Port 1 Latency Optimization CSR X X X X

0xB0 Port 1 Link Timers Control CSR X X X X

0xB4 Port 1 Link Timers Control 2 CSR X X X X

0xB8 Port 1 Link Timers Control 3 CSR1 X X X X

0xBC Reserved -

P
or

ts
 2

-1
4

0xC0–3FC Assigned to Port 2-14 CSRs

Table 7-5. LP-Serial Register Map - II

Block Byte
Offset

Register Name

Extended Features Header ID

Endpoint Endpoint Free

0x0011 0x0012 0x0013 0x0019
326 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
P
or

t 1
5

0x400 Port 15 Link Maintenance Request CSR - X - X

0x404 Port 15 Link Maintenance Response CSR - X - X

0x408 Reserved -

0x40C Port 15 Initialization Status CSR O O O O

0x410 Reserved -

0x414 Port 15 Control 2 CSR X X X X

0x418 Port 15 Error and Status CSR X X X X

0x41C Port 15 Control CSR X X X X

0x420 Port 15 Outbound ackID CSR - X - X

0x424 Port 15 Inbound ackID CSR - X - X

0x428 Port 15 Power Management CSR1 O O O O

0x42C Port 15 Latency Optimization CSR X X X X

0x430 Port 15 Link Timers Control CSR X X X X

0x434 Port 15 Link Timers Control 2 CSR X X X X

0x438 Port 15 Link Timers Control 3 CSR1 X X X X

0x43C Reserved -

1These registers are reserved and not in use for devices that only support IDLE1 and/or IDLE2 operation.

Table 7-5. LP-Serial Register Map - II

Block Byte
Offset

Register Name

Extended Features Header ID

Endpoint Endpoint Free

0x0011 0x0012 0x0013 0x0019
RapidIO.org 327

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6 LP-Serial Command and Status Registers (CSRs)
All Command and Status registers are 32 bits in length and are aligned to 32 bit
boundaries. All CSRs are accessed as 4 byte entities. CSRs are big endian with bit 0
the most significant bit.

Refer to Table 7-2 for the required behavior for accesses to reserved register bits.

For each register the Block Offset is listed, some registers have a different offset or
spacing between offsets. Block Offsets that are applicable for Register Map - I are
prefixed with “RM-I”, and Block Offsets that are applicable for Register Map - II
are prefixed with “RM-II”. If no prefix is used the Block Offset is the same for all
Baud Rate Classes.

7.6.1 LP-Serial Register Block Header
(Block Offset 0x0)

The LP-Serial register block header register contains the EF_PTR to the next
extended features block and the EF_ID that identifies LP-Serial Extended Feature
Block for which this is the register block header.

Table 7-6. Bit Settings for LP-Serial Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID Hard wired Extended Features Block ID
328 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.2 Port Link Timeout Control CSR
(Block Offset 0x20)

The port link timeout control register contains the timeout timer value for all ports
on a device. This timeout is for link events such as sending a packet to receiving the
corresponding acknowledge and sending a link-request to receiving the
corresponding link-response. The reset value is the maximum timeout interval, and
represents between 3 and 6 seconds.

Table 7-7. Bit Settings for Port Link Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout value All 1s timeout interval value

24-31 — Reserved
RapidIO.org 329

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.3 Port Response Timeout Control CSR
(Block Offset 0x24)

The port response timeout control register contains the timeout timer count for all
ports on a device. This timeout is for sending a request packet to receiving the
corresponding response packet. The reset value is the maximum timeout interval,
and represents between 3 and 6 seconds.

Table 7-8. Bit Settings for Port Response Timeout Control CSR

Bit Name
Reset
Value

Description

0–23 timeout value All 1s timeout interval value

24-31 — Reserved
330 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.4 Port General Control CSR
(Block Offset 0x3C)

The bits accessible through the Port General Control CSR are bits that apply to all
ports in a device. There is a single copy of each such bit per device. These bits are
also accessible through the Port General Control CSR of any other Physical Layers
implemented on a device.

The structure and bit definitions of the Port General Control CSR depend on whether
or not the device contains an endpoint. The register bit definitions for a generic
endpoint device with or without the software assisted error recovery option are
specified in Table 7-9.

The register bit definitions for a generic endpoint free device with or without the
software assisted error recovery option are specified in Table 7-10.

Table 7-10. Bit Settings for General Port Control CSR, Generic Endpoint Free Device

Table 7-9. Bit Settings for Port General Control CSR, Generic Endpoint Devices

Bit Name
Reset
Value

Description

0 Host see
footnote1

1The Host reset value is implementation dependent

A Host device is a device that is responsible for system exploration,
initialization, and maintenance. Agent or slave devices are initialized by
Host devices.
0b0 - agent or slave device
0b1 - host device

1 Master Enable see
footnote2

2The Master Enable reset value is implementation dependent

The Master Enable bit controls whether or not a device is allowed to issue
requests into the system. If the Master Enable is not set, the device may
only respond to requests.
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests

2 Discovered see
footnote3

3The Discovered reset value is implementation dependent

This device has been located by the processing element responsible for
system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing element

3-31 — Reserved

Bit Name
Reset
Value

Description

0-1 — Reserved

2 Discovered see
footnote1

1The Discovered reset value is implementation dependent

This device has been located by the processing element responsible for
system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing element

3-31 — Reserved
RapidIO.org 331

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.5 Port n Link Maintenance Request CSRs
(RM-I Block Offsets 0x40, 60, ... , 220)
(RM-II Block Offsets 0x40, 80, ... , 400)

The port link maintenance request registers are accessible both by a local processor
and an external device. A write to one of these registers generates a link-request
control symbol on the corresponding RapidIO port interface.

Table 7-11. Bit Settings for Port n Link Maintenance Request CSRs

Bit Name
Reset
Value

Description

0–28 — Reserved

29-31 Command 0b000 This field controls the contents of the cmd field sent in the link-request
control symbol for Control Symbol 24 and Control Symbol 48. This field
controls the least significant 3 bits of the link-request Stype1 field for Control
Symbol 64.
If read this field returns the last written value.
332 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.6 Port n Link Maintenance Response CSRs
(RM-I Block Offsets 0x44, 64, ... , 224)
(RM-II Block Offsets 0x44, 84, ... , 404)

The port link maintenance response registers are accessible both by a local processor
and an external device. A read to this register returns the status received in a
link-response control symbol. The ackID_status, port_status, and port_status_cs64
fields are defined in Table 3-4, Table 3-14, and Table 3-15, respectively. This
register is read-only.

Table 7-12. Bit Settings for Port n Link Maintenance Response CSRs

Bit Name Reset Value Description

0 response_valid 0b0 If the link-request causes a link-response, this bit indicates that the
link-response has been received and the status fields are valid.
If the link-request does not cause a link-response, this bit indicates that the
link-request has been transmitted.
This bit automatically clears on read.

1–2 — Reserved

3-14 port_status_cs64 0x000 Reserved for Control Symbol 24 and Control Symbol 48
Port status field from Control Symbol 64

15-26 ackID_status 0x000 ackID status field from the link-response control symbol. Bits 22 to 26 are
valid for Control Symbol 24. Bits 21 to 26 are valid for Control Symbol 48.
All bits are valid for Control Symbol 64.

27-31 port_status 0b00000 Reserved for Control Symbol 64
port_status field from the link-response control symbol, Control Symbol 24
and Control Symbol 48.
RapidIO.org 333

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.7 Port n Local ackID CSRs
(RM-I Block Offsets 0x48, 68, ... , 228)

The port link local ackID status registers are accessible both by a local processor and
an external device. A read to this register returns the local ackID status for both the
output and input sides of the ports.

This register is only applicable for Control Symbol 24 and Control Symbol 48.
Equivalent functionality is provided for Control Symbol 64 through the Port n
Outbound ackID CSRs and the Port n Inbound ackID CSRs

Table 7-13. Bit Settings for Port n Local ackID Status CSRs

Bit Name
Reset
Value

Description

0 Clr_outstanding_ackIDs 0b0 Writing 0b1 to this bit causes all outstanding unacknowledged packets to be
discarded. This bit should only be written when trying to recover a failed
link. This bit is always logic 0 when read.

1 — Reserved

2-7 Inbound_ackID 0b000000 Input port next expected ackID value. Bit 2 is only valid for Control Symbol
48.

8-17 — Reserved

18-23 Outstanding_ackID 0b000000 Output port unacknowledged ackID status. Next expected acknowledge
control symbol ackID field that indicates the ackID value expected in the
next received acknowledge control symbol. Bit 18 is only valid for Control
Symbol 48.

24-25 — Reserved

26-31 Outbound_ackID 0b000000 Output port next transmitted ackID value. Software writing this value can
force retransmission of outstanding unacknowledged packets in order to
manually implement error recovery. Bit 26 is only valid for Control Symbol
48.
334 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.8 Port n Initialization Status CSRs
(RM-I Block Offsets 0x4C, 6C, ... , 22C)
(RM-II Block Offsets 0x4C, 8C, ... , 40C)

The Port n Initialization Status CSRs are used to inform software of the progress of
various state machines for all baud rates. Implementation of these registers shall be
optional. All bits and bit fields in these register shall be as defined in Table 7-14.
Unless otherwise specified, the bits and bit fields of these registers shall be read
only.

Table 7-14. Bit Settings for Port n Initialization Status CSRs

Bit Name
Reset
Value

Description

0-4 Lane Alignment Impl. Spec. State of the lane alignment state machine. This field shall be 0 if the port can
only operate in 1x mode.
The encoding of this value is implementation specific.

5 — Reserved

6-9 1x/2x Mode Detection Impl. Spec. State of the 1x/2x Mode Detection state machine. This field shall be 0 if the
port can only operate in the 1x mode.
The encoding of this value is implementation specific.

10 — Reserved

11-15 Port Initialization State
Machine

Impl. Spec. State of the 1x/2x/4x/8x/16x port initialization state machine.
This field shall be 0 if the port can only operate in 1x mode.
The encoding of this value is implementation specific.

16-19 Received status control
symbols

0b0000 Count of the number of consecutive error-free Status control symbols
received.
This counter shall not increment once the “link initialized” state has been
achieved.

20 — Reserved

21-27 Transmitted status
control symbols

0b0000000 Count of the number of Status control symbols transmitted.
This counter shall continue to increment until the “link initialized” state has
been achieved.
If the port can determine the status of the link partner through the contents of
the IDLE2 or IDLE3 sequence, this counter shall also continue to increment
until the link partner indicates that it has achieved the “port initialized” state.

28-31 — Reserved
RapidIO.org 335

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.9 Port n Control 2 CSRs
(RM-I Block Offset 0x54, 74, ... , 234)
(RM-II Block Offset 0x54, 94, ... , 414)

These registers are accessed when a local processor or an external device wishes to
examine the port baudrate information.

Table 7-15. Bit Settings for Port n Control 2 CSRs

Bit Name
Reset
Value

Description

0-3 Selected Baudrate 0b0000 Indicates the baudrate at which the initialized port is operating. (read only)
0b0000 - no rate selected
0b0001 - 1.25 Gbaud
0b0010 - 2.5 Gbaud
0b0011 - 3.125 Gbaud
0b0100 - 5.0 Gbaud
0b0101 - 6.25 Gbaud
0b0110 - 10.3125 Gbaud
0b0111 - 12.5 Gbaud
0b0111–0b1111 - Reserved

4 Baudrate Discovery
Support

see
footnote1

Indicates whether automatic baudrate discovery is supported (read-only)
0b0 - Automatic baudrate discovery not supported
0b1 - Automatic baudrate discovery supported

5 Baudrate Discovery
Enable

see
footnote2

Controls whether automatic baudrate discovery is enabled
0b0 - Automatic baudrate discovery disabled
0b1 - Automatic baudrate discovery enable
The port shall not allow this bit to be set unless it supports baudrate
discovery.

6 1.25 Gbaud Support see
footnote1

Indicates whether port operation at 1.25 Gbaud is supported (read only)
0b0 - 1.25 Gbaud operation not supported
0b1 - 1.25 Gbaud operation supported

7 1.25 Gbaud Enable see
footnote2

Controls whether port operation at 1.25 Gbaud is enabled
0b0 - 1.25 Gbaud operation disabled
0b1 - 1.25 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 1.25 Gbaud.

8 2.5 Gbaud Support see
footnote1

Indicates whether port operation at 2.5 Gbaud is supported (read only)
0b0 - 2.5 Gbaud operation not supported
0b1 - 2.5 Gbaud operation supported

9 2.5 Gbaud Enable see
footnote2

Controls whether port operation at 2.5 Gbaud is enabled
0b0 - 2.5 Gbaud operation disabled
0b1 - 2.5 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 2.5 Gbaud.

10 3.125 Gbaud Support see
footnote1

Indicates whether port operation at 3.125 Gbaud is supported (read only)
0b0 - 3.125 Gbaud operation not supported
0b1 - 3.125 Gbaud operation supported

11 3.125 Gbaud Enable see
footnote2

Controls whether port operation at 3.125 Gbaud is enabled
0b0 - 3.125 Gbaud operation disabled
0b1 - 3.125 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 3.125 Gbaud.
336 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
12 5.0 Gbaud Support see
footnote1

Indicates whether port operation at 5.0 Gbaud is supported (read only)
0b0 - 5.0 Gbaud operation not supported
0b1 - 5.0 Gbaud operation supported

13 5.0 Gbaud Enable see
footnote2

Controls whether port operation at 5.0 Gbaud is enabled
0b0 - 5.0 Gbaud operation disabled
0b1 - 5.0 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 5.0 Gbaud.

14 6.25 Gbaud Support see
footnote1

Indicates whether port operation at 6.25 Gbaud is supported (read only)
0b0 - 6.25 Gbaud operation not supported
0b1 - 6.25 Gbaud operation supported

15 6.25 Gbaud Enable see
footnote2

Controls whether port operation at 6.25 Gbaud is enabled
0b0 - 6.25 Gbaud operation disabled
0b1 - 6.25 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 6.25 Gbaud

16 10.3125 Gbaud Support see
footnote1

Indicates whether port operation at 10.3125 Gbaud is supported (read
only)
0b0 - 10.3125 Gbaud operation not supported
0b1 - 10.3125 Gbaud operation supported

17 10.3125 Gbaud Enable see
footnote2

Controls whether port operation at 10.3125 Gbaud is enabled
0b0 - 10.3125 Gbaud operation disabled
0b1 - 10.3125 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 10.3125 Gbaud.

18 12.5 Gbaud Support see
footnote1

Indicates whether port operation at 12.5 Gbaud is supported (read only)
0b0 - 12.5 Gbaud operation not supported
0b1 - 12.5 Gbaud operation supported

19 12.5 Gbaud Enable see
footnote2

Controls whether port operation at 12.5 Gbaud is enabled
0b0 - 12.5 Gbaud operation disabled
0b1 - 12.5 Gbaud operation enabled
The port shall not allow this bit to be set unless it supports 12.5 Gbaud.

20-26 — Reserved

27 10G Retraining Enable see
footnote2

Controls the behavior for lane retraining for a port:
0b0 - Lane retraining is disabled
0b1 - Retrain all lanes if any have “degraded” status

Table 7-15. Bit Settings for Port n Control 2 CSRs

Bit Name
Reset
Value

Description
RapidIO.org 337

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
28 Enable Inactive Lanes 0b0 Use of the test mode enabled by the implementation of this bit to monitor
the behavior of the inactive lanes requires that this bit must be set in both
ports and that all link width modes wider than the desired Mx mode must
be disabled in the Port n Control CSR of both ports. Failure to meet these
requirements will result in unspecified link behavior. (Modes wider than
the desired Mx mode must be disabled so that the Initialization state
machine ignores the asserted lane_sync signals from the lanes with forced
output enables and does not attempt to enter a mode wider than Mx).

When a 1x/Nx or 1x/Mx/Nx port is operating in 1x mode where 1<M<N
and N = 4, 8 or 16, lanes 0 and 2 are the active lanes and lane 1 and lanes 3
through N-1 are the inactive lanes. Note that, to be consistent with the
previous paragraph, a 1x/2x/Nx port operating in 1x mode must have 2x
mode disabled.

When a 1x/Mx/Nx port is operating in Mx mode where 1<M<N and N = 4,
8 or 16, lanes 0 through M-1 are the active lanes and lanes M through N-1
are the inactive lanes.

The test mode enabled by the implementation of this bit only allows the
testing of the inactive lanes that are supported by both of the connected
ports. For example, if a 1x/4x/8x port is connected to a 1x/4x/16x port and
the link is operating in 4x mode, only lanes 4 though 7 can be monitored
using this test mode.

The implementation of this bit is optional. When implemented, this bit
allows software to force the lanes of the port that are not currently being
used to carry traffic, the “inactive lanes”, to be enabled for testing while
the “active lanes” continue to carry traffic. If this bit is not implemented it
is reserved.

If implemented, this bit shall not be asserted when the port is connected to
a link that includes retimers as defined in Section 4.11.1, "Retimers".

0b0: The output enables of all of the lanes controlled by the port are
controlled solely by the port’s Initialization state machine
0b1: The port’s receivers for the inactive lanes are enabled. The port’s
drivers for the inactive lanes are output enabled if and only if the port’s
Initialization state machine is not in the SILENT or SEEK state. A
continuous IDLE sequence of the same type as is in use on the active lanes
shall be transmitted on the inactive lanes when their transmitters are output
enabled. The IDLE sequences transmitted on the inactive lanes shall
comply with all rules for that type of IDLE sequence including alignment
across the inactive lanes, but they are not required to use the same bit
sequences or be aligned in any way relative to the IDLE sequences
transmitted on the active lanes. If IDLE2 is being used on the active lanes
of the port, the inactive lanes of the port shall report their lane number and
port width in the CS Field Marker and handle commands carried in the CS
Field as if they were active lanes. If IDLE3 is being used on the active
lanes of the port, the inactive lanes of the port shall report their lane
number and port width in the Status/Control Ordered Sequence and handle
commands carried in the Status/Control Ordered Sequence as if they were
active lanes.

Table 7-15. Bit Settings for Port n Control 2 CSRs

Bit Name
Reset
Value

Description
338 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
29 Data scrambling disable 0b0 Read-write
0b0: transmit scrambler and receive descrambler are enabled.
0b1: The transmit scrambler and receive descrambler are disabled for
control symbol and packet data characters. Control symbol and packet data
characters are neither scrambled in the transmitter before transmission nor
descrambled in the receiver upon reception. The transmit scrambler
remains enabled for the generation of pseudo-random data characters for
the IDLE2 random data field.
This bit is for test use only and shall not be asserted during normal
operation.
For IDLE3 links, a transition of this bit from 0 to 1 shall cause the
transmitter to set the link partner’s descrambler seed to 0, and set the local
transmitter’s scrambler seed to 0, for all lanes.
For IDLE3 links, a transition of this bit from 1 to 0 shall cause the
transmitter to set the link partner’s descrambler seed to a random value for
each lane, and set the local transmitter’s scrambler seed to match what the
link partner was set to. The random value shall not be 0 for any lane. An
example set of IDLE3 scrambler values is presented in Table 5-4.
It shall be noted that there is a fundamental difference between IDLE2
scrambler disable and IDLE3 scrambler disable,. The disabling of the
IDLE2 scrambler need to be configured in both ports of a link and affects
both directions together, whereas for IDLE3 the disabling the scrambler is
controlled independently in each direction from the transmitters port.

30 Remote Transmit
Emphasis Control
Support

see
footnote3

Indicates whether the port is able to transmit commands to control the
transmit emphasis in the connected port
0b0 - The port does not support transmit emphasis adjustment in the
connected port
0b1 - The port supports transmit emphasis adjustment in the connected
port

31 Remote Transmit
Emphasis Control Enable

see
footnote4

Controls whether the port may adjust the transmit emphasis in the
connected port
0b0 - Remote transmit emphasis control is disabled
0b1 - Remote transmit emphasis control is enabled
The port shall not let this bit be set unless remote transmit emphasis
control is supported and the link to which the port is connected is using
IDLE2 or IDLE3.

1The reset value is implementation dependent
2The reset value is 0b1 if feature is supported, otherwise 0b0
3The Remote Transmit Emphasis Control Support reset value is implementation dependent
4The Remote Transmit Emphasis Control Enable reset value is implementation dependent

Table 7-15. Bit Settings for Port n Control 2 CSRs

Bit Name
Reset
Value

Description
RapidIO.org 339

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.10 Port n Error and Status CSRs
(RM-I Block Offset 0x58, 78, ... , 238)
(RM-II Block Offset 0x58, 98, ... , 418)

These registers are accessed when a local processor or an external device wishes to
examine the port error and status information.

Table 7-16. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description

0 Idle Sequence 2 Support see
footnote1

Indicates whether the port supports idle sequence 2 for Baud Rate Class 1.
0b0 - idle sequence 2 not supported for Baud Rate Class 1.
0b1 - idle sequence 2 supported for Baud Rate Class 1.

1 Idle Sequence 2 Enable see
footnote2

Controls whether idle sequence 2 is enabled for Baud Rate Class 1.
0b0 - idle sequence 2 disabled for Baud Rate Class 1.
0b1 - idle sequence 2 enabled for Baud Rate Class 1.
The port shall not allow this bit to be set unless idle sequence 2 is
supported and shall not allow this bit to be cleared if only idle sequence 2
is supported.

2-3 Idle Sequence see
footnote1

Indicates which IDLE sequence is active.
0b00 - idle sequence 1 is active.
0b01 - reserved.
0b10 - idle sequence 2 is active.
0b11 - idle sequence 3 is active.

4 Flow Control Mode 0b0 Indicates which flow control mode is active (read only).
0b0 - receiver-controlled flow control is active.
0b1 - transmitter-controlled flow control is active.

5-10 — Reserved

11 Output
Retry-encountered

0b0 Output port has encountered a retry condition.This bit is set when bit 13 is
set. Once set, remains set until written with a logic 1 to clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not make
forward progress. This bit is set when bit 13 is set and is cleared when a
packet-accepted or a packet-not-accepted control symbol is received
(read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the
“output retry-stopped” state (read-only).

14 Output
Error-encountered

0b0 Output port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 15 is set. Once set, remains set until written
with a logic 1 to clear.

15 Output Error-stopped 0b0 Output is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-encountered 0b0 Input port has encountered (and possibly recovered from) a transmission
error. This bit is set when bit 23 is set. Once set, remains set until written
with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only).

24-25 — Reserved
340 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
26 Port-write Disabled 0b0 The port-write disable field shall control whether the port can trigger
port-write transmission and interrupt assertion for the device.
0b0 - Events for this port shall trigger port-write transmission and interrupt
assertion for as long as the port-write pending bit is set.
0b1 - Events for this port shall not trigger port-write transmission and
interrupt assertion regardless of the state of the port-write pending bit.

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a
Maintenance Port-write operation. This bit is only valid if the device is
capable of issuing a maintenance port-write transaction. Once set remains
set until written with a logic 1 to clear.

28 Port Unavailable see
footnote3

Indicates whether or not the port is available (read only). The port’s
resources may have been merged with another port to support wider links.
0b0 - The port is available for use.
0b1 - The port is not available for use.

29 Port Error 0b0 Input or output port has encountered an error from which hardware was
unable to recover. Once set, remains set until written with a logic 1 to clear.

30 Port OK 0b0 The input and output ports are initialized and the port is exchanging
error-free control symbols with the attached device (read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized. This bit and bit 30 are mutually
exclusive (read-only).

1The reset value is implementation dependent
2The reset value is 0b1 if feature is supported, otherwise 0b0
3The Port Unavailable reset value is implementation dependent

Table 7-16. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description
RapidIO.org 341

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.11 Port n Control CSRs
(RM-I Block Offsets 0x5C, 7C, ... , 23C)
(RM-II Block Offsets 0x5C, 9C, ... , 41C)

The port n control registers contain control register bits for individual ports on a
processing element.

Table 7-17. Bit Settings for Port n Control CSRs

Bit Name
Reset
Value

Description

0-1 Port Width Support see
footnote1

Indicates port width modes supported by the port (read-only). This field is
used in conjunction with the Extended Port Width Support field of this
register. The bits of these two fields collectively indicate the port width
modes supported by the port in addition to 1x mode which is supported by
all ports

Bit 0:
0b0 - 2x mode not supported
0b1 - 2x mode supported

Bit 1:
0b0 - 4x mode not supported
0b1 - 4x mode supported

2-4 Initialized Port Width see
footnote2

Indicates the width of the link after port initialization when the port
is operating in symmetric mode. When the port is operating in
asymmetric mode, indicates the maximum width of the link after
port initialization. (read only)

0b000 - 1 lane (1x mode)
0b001 - 1 lane (1x mode) receiving on lane R
0b010 - 4 lanes (4x mode)
0b011 - 2 lanes (2x mode)
0b100 - 8 lanes (8x mode)
0b101 - 16 lanes (16x mode)
0b110 - 0b111 - Reserved
342 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5 - 7 Port Width Override 0b000 Soft port configuration to control the width modes available for port
initialization. The bits in this field are used and defined in conjunction with
the bits of the Extended Port Width Override field (bits 16-17).

When bit [5] = 0b0, bits 16-17 are Reserved

When bit [5] = 0b1,
bit 6 controls the enabling of 4x mode,
bit 7 controls the enabling of 2x mode,
bit 16 controls the enabling of 8x mode and
bit 17 controls the enabling of 16x mode.

Port n Control CSR bits [5-7,16-17]

0b000xx - All lanes widths supported by the port are enabled
0b001xx - Reserved
0b010xx - Force 1x mode, lane R not forced
0b011xx - Force 1x mode, force lane R

0b10000 - Implementation specific behavior
0b10001 - 16x mode enabled; 2x, 4x and 8x modes disabled
0b10010 - 8x mode enabled; 2x, 4x and 16x modes disabled
0b10011 - 8x and 16x modes enabled; 2x and 4x modes disabled

0b10100 - 2x mode enabled; 4x, 8x and 16x modes disabled
0b10101 - 2x and 16x modes enabled; 4x and 8x modes disabled
0b10110 - 2x and 8x modes enabled; 4x and 16x modes disabled
0b10111 - 2x, 8x and 16x modes enabled; 4x mode disabled

0b11000 - 4x mode enabled; 2x, 8x and 16x modes disabled
0b11001 - 4x and 16x modes enabled; 2x and 8x modes disabled
0b11010 - 4x and 8x modes enabled; 2x and 16x modes disabled
0b11011 - 4x, 8x and 16x modes enabled; 2x mode disabled

0b11100 - 2x and 4x modes enabled; 8x and 16x modes disabled
0b11101- 2x, 4x and 16x modes enabled; 8x mode disabled
0b11110 - 2x, 4x and 8x modes enabled; 16x mode disabled
0b11111- 2x, 4x, 8x and 16 x modes enabled

The port shall not allow the enabling of a link width mode that is not
supported by the port.

A change in the value of the Port Width Override or Extended Port Width
Override field shall cause the port to re-initialize using the new field
value(s).

8 Port Disable 0b0 Port disable:
0b0 - port receivers/drivers are enabled
0b1 - port receivers/drivers are disabled and are unable to receive/transmit
any packets or control symbols

9 Output Port Enable see
footnote3

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to route
or respond to I/O logical MAINTENANCE packets. Control symbols are
not affected and are sent normally. This is the recommended state after
device reset.
0b1 - port is enabled to issue any packets

Bit Name
Reset
Value

Description
RapidIO.org 343

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10 Input Port Enable see
footnote4

Input port receive enable:
0b0 - port is stopped and only enabled to route or respond I/O logical
MAINTENANCE packets. Other packets generate packet-not-accepted
control symbols to force an error condition to be signaled by the sending
device. Control symbols are not affected and are received and handled
normally. This is the recommended state after device reset.
0b1 - port is enabled to respond to any packet

11 Error Checking Disable 0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and an error
condition occurs is undefined

12 Multicast-event
Participant

see
footnote5

Send incoming Multicast-event control symbols to this port (multiple port
devices only)

13 — Reserved

14 Enumeration Boundary see
footnote6

An enumeration boundary aware system enumeration algorithm shall
honor this flag. The algorithm, on either the ingress or the egress port, shall
not enumerate past a port with this bit set. This provides for software
enforced enumeration domains within the RapidIO fabric.

15 — Reserved

16-17 Extended Port Width
Override

0b00 Extended soft port configuration to control the width modes available for
port initialization. The bits in this field are used and defined in conjunction
with the bits in the Port Width Override field. See the Description of the
Port Width Override field for the specification of these bits.

18-19 Extended Port Width
Support

see
footnote7

Indicates additional port width modes supported by the port (read-only).
This field is used in conjunction with the Port Width Support field of this
register. The bits of these two fields collectively indicate the port width
modes supported by the port in addition to 1x mode which is supported by
all ports

Bit 18:
0b0 - 8x mode not supported
0b1 - 8x mode supported

Bit 19:
0b0 - 16x mode not supported
0b1 - 16x mode supported

20-27 Implementation-defined Implementation-defined

28-30 — Reserved

31 Port Type This indicates the port type (read only)
0b0 - Reserved
0b1 - Serial port

1The Port Width reset value is implementation dependent
2The Initialized Port Width reset value is implementation dependent
3The Output Port Enable reset value is implementation dependent
4The Input Port Enable reset value is implementation dependent
5The Multicast-event Participant reset value is implementation dependent
6The Enumeration Boundary reset value is implementation dependent; provision shall be made to allow the

reset value to be configurable if this feature is supported
7The Extended Port Width Support reset value is implementation dependent

Bit Name
Reset
Value

Description
344 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.12 Port n Outbound ackID CSRs
(RM-II Block Offsets 0x60, 0xA0, ... , 0x420)

The port link local ackID status registers are accessible both by a local processor and
an external device. A read to this register returns the local ackID status for the output
side of the port at the time the read was initiated, and before a maintenance response,
if any, was generated.

Table 7-18. Bit Settings for Port n Outbound ackID Status CSRs

Bit Name
Reset
Value

Description

0 Clr_outstanding_ackIDs 0b0 Writing 0b1 to this bit causes all outstanding unacknowledged packets to be
discarded. This bit should only be written when trying to recover a failed
link. This bit is always logic 0 when read.

1-7 — All 0’s Reserved

8-19 Outstanding_ackID 0x000 Output port unacknowledged ackID status. Next expected acknowledge
control symbol ackID field that indicates the ackID value expected in the
next received acknowledge control symbol. Bits 15-19 are valid for Control
Symbol 24. Bits 14-19 are valid for Control Symbol 48. All bits are valid for
Control Symbol 64.

20-31 Outbound_ackID 0x000 Output port next transmitted ackID value. Software writing this value can
force retransmission of outstanding unacknowledged packets in order to
manually implement error recovery. Bits 27-31 are valid for Control Symbol
24. Bits 26-31 are valid for Control Symbol 48. All bits are valid for Control
Symbol 64.
RapidIO.org 345

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.13 Port n Inbound ackID CSRs
(RM-II Block Offsets 0x64, 0xA4, ... , 0x424)

The port link local Inbound ackID status registers are accessible both by a local
processor and an external device. These registers are required for devices that
support Control Symbol 64. A read to these registers returns the local inbound ackID
status for the input side for Control Symbol 64 at the time the read was initiated.

Table 7-19. Bit Settings for Port n Inbound ackID CSRs

Bit Name
Reset
Value

Description

0-19 — All 0’s Reserved

20-31 Inbound_ackID 0x000 Input port next expected ackID value. Bits 27-31 are valid for Control
Symbol 24. Bits 26-31 are valid for Control Symbol 48. All bits are valid for
Control Symbol 64.
346 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.14 Port n Power Management CSRs
(RM-II Block Offsets 0x68, A8, ... , 428)

The Port n Power Management CSRs are used to control power management
through the use of asymmetric links. Unless otherwise specified, the reset values of
all fields are implementation specific. All bits and bit fields in this register shall be
as defined in Table 7-20. Unless otherwise specified, the bits and bit fields of this
register shall be read/write.

The fields in this register is used to control the asymmetric width from software,
refer to the description of asymmetric mode operation described in Section 5.17,
"Asymmetric Operation".

This register shall be implemented for devices which support asymmetric operation.

Table 7-20. Bit Settings for Port n Power Management CSRs

Bit Name
Reset
Value

Description

0-4 Asymmetric modes
supported

Impl. Spec Indicates the asymmetric widths that are supported by a port.
0b1xxxx - 1x mode receive and transmit
0bx1xxx - 2x mode receive and transmit
0bxx1xx - 4x mode receive and transmit
0bxxx1x - 8x mode receive and transmit
0bxxxx1 - 16x mode receive and transmit
This field shall be 0b00000 for ports that only support 1x operation.
This field shall indicate support for port widths that are supported and
enabled according to the Port n Control CSR bit fields.
This field is read-only.

5-9 Asymmetric modes
enabled

Impl. Spec. Indicates the asymmetric widths that are enabled for a port.
0b1xxxx - 1x mode receive and transmit
0bx1xxx - 2x mode receive and transmit
0bxx1xx - 4x mode receive and transmit
0bxxx1x - 8x mode receive and transmit
0bxxxx1 - 16x mode receive and transmit
Implementations shall only allow bits in this field to be set if the
corresponding bit in the “Asymmetric Modes Supported” field is set.

10-12 Transmit width status 0b000 Indicates the operating width of the transmitter.
0b000 - none
0b001 - 1x mode transmit
0b010 - 2x mode transmit
0b011 - 4x mode transmit
0b100 - 8x mode transmit
0b101 - 16x mode transmit
0b110 - 0b111 - Reserved
When Receive asymmetric mode status is 0b000, the Transmit asymmetric
mode status shall be 0b000.
This field is read-only.
RapidIO.org 347

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
13-15 Receive width status 0b000 Indicates the operating width of the receiver.
0b000 - none.
0b001 - 1x mode receive
0b010 - 2x mode receive
0b011 - 4x mode receive
0b100 - 8x mode receive
0b101 - 16x mode receive
0b110–0b111 - Reserved
When Transmit asymmetric mode status is 0b000, the receive asymmetric
mode status shall be 0b000.
This field is read-only.

16-18 Change my transmit
width

0b000 This is a request to change the local transmitter asymmetric mode.
0b000 - No change
0b001 - 1x mode transmit
0b010 - 2x mode transmit
0b011 - 4x mode transmit
0b100 - 8x mode transmit
0b101 - 16x mode transmit
0b110–0b111 - Reserved
The value of this field shall always be 0b000 when read.
Writing this field with a value other than zero while the Status of My
Transmit Width Change field is 0b01 shall result in implementation specific
behavior.
Requesting a transmitter width that is not supported or disabled in the local
transmitter shall result in implementation specific behavior.

19-20 Status of My Transmit
Width Change

0b00 This field gives the status of the last requested change to the local transmitter
width.
0b00 - No status
0b01 - ACK - the command has been successfully executed
0b10 - NACK - the command has for some reason not been executed and is
rejected
0b11 - Reserved
This field is read-only.

21-23 Change Link Partner
Transmit Width

0b000 This is a request to change the link partners transmitter asymmetric mode.
0b000 - No change
0b001 - 1x mode transmit
0b010 - 2x mode transmit
0b011 - 4x mode transmit
0b100 - 8x mode transmit
0b101 - 16x mode transmit
0b110–0b111 - Reserved
The value of this field shall always be 0b000 when read.
Writing this field with a value other than zero while the Status of Link
Partner Transmit Width Change field is 0b01 shall result in implementation
specific behavior.

24-25 Status of Link Partner
Transmit Width Change

0b00 This field gives the status of the last requested change to the link partner’s
transmitter width.
0b00 - No request outstanding/request completed
0b01 - In progress
0b10 - Failed due to timeout
0b11 - Reserved
This field is read-only.

26-31 — Reserved

Table 7-20. Bit Settings for Port n Power Management CSRs (Continued)

Bit Name
Reset
Value

Description
348 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.15 Port n Latency Optimization CSRs
(RM-II Block Offset 0x6C, AC, ... , 42C)

These registers indicate the capabilities of a device to reduce latency through
optional protocol enhancements, and control whether these capabilities are enabled.
All bits and bit fields in these registers shall be as defined in Table 7-21. Unless
otherwise specified, the bits and bit fields of these registers shall be read/write.

Table 7-21. Bit Settings for Port n Latency Optimization CSRs

Bit Name
Reset
Value

Description

0 Multiple Acknowledges
Supported

see
footnote1

Indicates whether the port supports reception of Packet Accepted, Packet
Not Accepted, and Retry control symbols which acknowledge multiple
outstanding ackIDs.
0b0 - A control symbol shall always acknowledge one ackID
0b1 - A control symbol shall acknowledge multiple outstanding ackIDs.
This bit shall be read-only.

1 Error Recovery with
ackID in PNA Supported

see
footnote1

Indicates whether the port can use the ackID value optionally found in a
Packet Not Accepted control symbol to start transmitting packets before
receipt of a link-response control symbol.
0b0 - The port cannot use the ackID value in a Packet Not Accepted
control symbol
0b1 - The port can use the ackID value in a Packet Not Accepted control
symbol
This bit shall be read-only.

2 TX AckID_Status in
PNA Supported

see
footnote1

Indicates whether the port places the ackID of the next expected packet in
the “arbitrary, or ackID_status” field of a Packet Not Accepted control
symbol. If transmitter based flow control is in use on the link and this bit is
set, the port also transmits Status and VC_Status control symbols when a
Packet Not Accepted control symbol is sent.
0b0 - The Packet Not Accepted “arbitrary/ackID_status” field contains
arbitrary values.
0b1 - The Packet Not Accepted “arbitrary/ackID_status” field contains the
ackID of the next expected packet.
This bit shall be set if the “Error Recovery with ackID in PNA Supported”
field is set.
This bit shall be read-only.

3-7 — Reserved

8 Multiple Acknowledges
Enabled

see
footnote2

Controls whether the port shall accept and optionally transmit Packet
Accepted, Packet Not Accepted, and Retry control symbols which
acknowledge multiple ackIDs.
0b0 - A Packet Accepted control symbol shall always acknowledge one
ackID
0b1 - A Packet Accepted control symbol shall acknowledge all ackIDs up
to and including the ackID found in the Packet Accepted control symbol.
If the Multiple Acknowledges Supported field is clear, this field shall be
reserved.
When this bit is set, the port may transmit Packet Accepted, Packet Not
Accepted and Retry control symbols which acknowledge multiple ackIDs.
RapidIO.org 349

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9 Error Recovery with
ackID in PNA Enabled

see
footnote2

Controls when the port shall use the ackID value found in a Packet Not
Accepted control symbol to start transmitting packets before receipt of a
link-response control symbol.
0b0 - The port shall not use the ackID value in a Packet Not Accepted
control symbol
0b1 - The port shall use the ackID value in received Packet Not Accepted
control symbols. The port shall transmit the ackID value in a Packet Not
Accepted control symbol.
If the Error Recovery with ackID in PNA Supported field is clear, this field
shall be reserved.

10-31 — Reserved

1The value of this field shall be1 for links operating with Control Symbol 64. The value of this field is
implementation specific for ports which are operating with Control Symbol 24 or Control Symbol 48.

2The reset value shall be 1 for links operating with Control Symbol 64. The reset value shall be 0 for links
operating with Control Symbol 24 or Control Symbol 48.

Table 7-21. Bit Settings for Port n Latency Optimization CSRs

Bit Name
Reset
Value

Description
350 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.16 Port n Link Timers Control CSRs
(RM-II Block Offsets 0x70, 0xB0, ... , 0x430)

The Port n Link Timers Control CSRs are used to control timers related to link
training operation. All bit fields in this register shall be as defined in Table 7-22.
Unless otherwise specified, the bits of this register shall be readable and writable.

Table 7-22. Bit Settings for Port n Link Timers Control CSRs

Bit Name
Reset
Value

Description

0-7 DME Training
Completion Timer

See
Description

Controls the length of time allowed for DME training to complete.
The Maximum Period for this timeout shall be one second +/- 34%.
The programmed period for this timeout is computed by:
(DME Training Completion Timer) * (Maximum Period/256).
For purposes of interoperability, the default timeout period must be more
accurate than one second +/- 34%. The reset value of this timer is the
implementation specific value which results in a DME Training Completion
timeout period that is:
- at least 500 milliseconds and
- is as close to 500 milliseconds as possible
A value of 0 shall disable this timer.

NOTE: The Maximum Period of this timeout is specified loosely (+/- 34%)
to allow implementation flexibility and innovation. The reset value of the
timeout is specified more tightly (+ 0 to 1/256%) to ensure consistent,
interoperable behavior during link initialization.

This register field is reserved when the port is operating with IDLE1 or
IDLE2.

8-15 DME Wait_Timer 0x3F Controls the number of DME training frames transmitted after the link
partner has indicated that its receiver is trained.
This value is encoded as the number of training frames to send, divided by 4.
The default value shall cause transmission of 252 training frames.
The maximum value shall cause transmission of 1020 training frames.
A value of 0 shall cause DME training frames to be transmitted continuously
until the DME Training Completion Timer expires.

This register field is reserved when the port is operating with IDLE1 or
IDLE2.
RapidIO.org 351

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
16-23 CW Training Completion
Timer

See
Description

Controls the length of time allowed for training to complete for codeword
training when operating with IDLE3 and CS Field training when operating
with IDLE2.
This timer shall have the same Maximum Period and reset value as the DME
Training Completion Timer when operating with IDLE3. The Maximum
Period and reset value of this field shall be implementation specific when
operating with IDLE2 as such a values have not been defined in the standard.
The programmed period for this timeout is computed by:
(CW Training Completion Timer) * (Maximum Period/256).
A value of 0 shall disable this timer.

This register field is reserved when the port is operating with IDLE1.

24-31 Emphasis Command
Timeout

0xFF Controls the length of time allowed for transmit emphasis command to be
acknowledged during DME training, CW training, CS Field training, and
retraining.
The Maximum Period for this timeout shall be 256 microseconds +/- 34%.
The programmed period for this timeout is computed by:
(Emphasis Command Timeout) * (Maximum Period/256).
A value of 0 shall disable this timer.

The reset value of this timer is the implementation specific value which
results in a Emphasis Command timeout period that is:
- at least 100 microseconds and
- is as close to 100 microseconds as possible
A value of 0 shall disable this timer.

NOTE: The Maximum Period of this timeout is specified loosely (+/- 34%)
to allow implementation flexibility and innovation. The reset value of the
timeout is specified more tightly (+ 0 to 1/256%) to ensure consistent,
interoperable behavior during link initialization.

This register field is reserved when the port is operating with IDLE1.

Table 7-22. Bit Settings for Port n Link Timers Control CSRs

Bit Name
Reset
Value

Description
352 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.17 Port n Link Timers Control 2 CSRs
(RM-II Block Offsets 0x74, 0xB4, ... , 0x434)

The Port n Link Timers Control 2 CSRs are used to control timers related to link
retraining operation and link initialization. All bit fields in this register shall be as
defined in Table 7-23. Unless otherwise specified, the bits of this register shall be
readable and writable.

Table 7-23. Bit Settings for Port n Link Timers Control 2 CSRs

Bit Name
Reset
Value

Description

0-7 Retraining Completion
Timer

0xFE Controls the length of time allowed for retraining a lane once the lane is
determined to be operating in a degraded state.
The Maximum Period for this timeout is 62.5 milliseconds, +/- 34%.
The programmed period for this timeout is computed by:
(Retraining Completion Timer) * (Maximum Period/256).
A value of 0 shall disable this timer.
The value of this timer shall be programmed to be less than the Recovery
Timer.

This register field is reserved when the port is operating with IDLE1 or
IDLE2.

8-15 Discovery Completion
Timer

See
Description

Controls the length of time allowed for Discovery for multi-lane ports.
This timer shall have the same Maximum Period as the DME Training
Completion Timer.
The programmed period for this timeout is computed by:
(Discovery Completion Timer) * (Maximum Period/256).
When operation with IDLE3 the reset value of this field shall be computed by
adding 1 to the reset value of the DME Training Completion Timer. When
operating with IDLE2 that implements the CW Training Completion Timer
the reset value of this field shall be computed by adding 1 to the reset value
of the CW Training Completion Timer. When operating with IDLE1 or with
IDLE2 that does not implement the CW Training Completion Timer, the reset
value shall be matching the requirement of a 28 +/- 4 msec discovery time.
A value of 0 shall disable this timer.
The value of this timer shall be programmed to be larger than both the DME
Training Completion Timer and the CW Training Completion Timer when
operating with IDLE3 or with IDLE2 that implements the CW Training
Completion Timer.

16-23 Recovery Timer See
Description

Controls the length of time the Port_Initialization state machines and the
Receive_Width state machine are allowed to remain in the 1x_RECOVERY,
2x_RECOVERY, or Nx_RECOVERY states.
The Maximum Period for this timeout is 62.5 milliseconds, +/- 34%.
The programmed period for this timeout is computed by:
(Recovery Timer) * (Maximum Period/256).
When operating with IDLE3 the reset value shall be 0xFF. When operating
with IDLE1 or IDLE2 the reset value shall match the requirement of a 28 +/-
4 msec recovery time.
A value of 0 shall disable this timer.

24-31 — Reserved
RapidIO.org 353

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.6.18 Port n Link Timers Control 3 CSRs
(RM-II Block Offsets 0x78, 0xB8, ... , 0x438)

The Port n Link Timers Control 3 CSRs are used to control timers related to IDLE3
asymmetric mode operation. All bit fields in this register shall be as defined in Table
7-24. Unless otherwise specified, the bits of this register shall be readable and
writable.

This register shall be implemented for devices which support asymmetric operation.

Table 7-24. Bit Settings for Port n Link Timers Control 3 CSRs

Bit Name
Reset
Value

Description

0-7 Transmit Width
Command Timeout

0xFF Controls the length of time allowed for a Transmit Width Command change
to complete.
The Maximum Period for this timeout is 250 microseconds, +/- 34%.
The programmed period for this timeout is computed by:
(Transmit Width Command Timeout) * (Maximum Period/256).
A value of 0 shall disable this timer.

8-15 Receive Width
Command Timeout

0x40 Controls the length of time allowed for a Receive Width Command change to
complete.
The Maximum Period for this timeout is 250 microseconds, +/- 34%.
The programmed period for this timeout is computed by:
(Receive Width Command Timeout) * (Maximum Period/256).
A value of 0 shall disable this timer.

16-21 Keep-alive Transmission
Period

0x01 Controls the length of time a lane shall transmit to keep the link partner
SerDes alive on lanes that are not in use in asymmetric mode.
The Maximum Period for transmission is 125 microseconds, +/- 34%.
The programmed period for transmission is computed by:
(Keep-alive Transmission Period) * (Maximum Period/64).
A value of 0 results in implementation specific behavior.

22-31 Keep-alive Transmission
Interval

0x3FF Controls the length of time between Keep-alive Transmission Periods for
lanes that are not in use when a port is operating in asymmetric mode.
The Maximum Period for this timeout is 10 seconds, +/- 34%.
The programmed period for this timeout is computed by:
(Keep-alive Transmission Interval) * (Maximum Period/1024).
A value of 0 shall disable this timeout.
When the timeout is disabled, no Keep-Alive transmissions are performed.
354 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7 LP-Serial Lane Extended Features Block
This section specifies the LP-Serial Lane Extended Features Block. All registers in
this block are 32 bits in length, aligned to a 32-bit (4-byte) boundary and accessed
as 4 byte entities, although some processing elements may optionally allow larger
accesses. This Extended Features register block is assigned Extended Features block
ID=0x000D.

7.7.1 Register Map

Table 7-25 shows the register map of the RapidIO LP-Serial Lane Extended
Features Block. The register map specifies the registers that comprise this Extended
Features Block.

The Block Offset is the offset relative to the 16-bit Extended Features Pointer
(EF_PTR) that points to the beginning of the block. The address of a byte in the
block is calculated by adding the block byte offset to EF_PTR that points to the
beginning of the block. This is denoted as [EF_PTR+xx] where xx is the block byte
offset in hexadecimal.

This register map is currently only defined for devices with up to 32 LP-Serial lanes,
but can be extended or shortened if more or less lane definitions are required for a
device. For example, a device with four LP-Serial lanes is only required to use
register map space corresponding to offsets [EF_PTR + 0x00] through [EF_PTR +
0x8C]. Register map offset [EF_PTR + 0x90] can be used for another Extended
Features block.

Table 7-25. LP-Serial Lane Register Map

Block Byte
Offset

Register Name

G
en

er
al 0x0 LP-Serial Lane Register Block Header

0x4–C Reserved

L
an

e
0

0x10 Lane 0 Status 0 CSR

0x14 Lane 0 Status 1 CSR

0x18 Lane 0 Status 2 CSR

0x1C Lane 0 Status 3 CSR

0x20 Lane 0 Status 4 CSR

0x24 Lane 0 Status 5 CSR

0x28 Lane 0 Status 6 CSR

0x2C Lane 0 Status 7 CSR
RapidIO.org 355

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The structure and use of the registers comprising the LP-Serial Lane Extended
Features Block is specified in Section 7.7.2.

The required behavior for accesses to reserved registers and register bits is specified
in Table 7-2.

L
an

e
1

0x30 Lane 1 Status 0 CSR

0x34 Lane 1 Status 1 CSR

0x38 Lane 1 Status 2 CSR

0x3C Lane 1 Status 3 CSR

0x40 Lane 1 Status 4 CSR

0x44 Lane 1 Status 5 CSR

0x48 Lane 1 Status 6 CSR

0x4C Lane 1 Status 7 CSR

L
an

es
 2

-3
0

0x50–3EC Registers for lanes 2-30

L
an

e
31

0x3F0 Lane 31 Status 0 CSR

0x3F4 Lane 31 Status 1 CSR

0x3F8 Lane 31 Status 2 CSR

0x3FC Lane 31 Status 3 CSR

0x400 Lane 31 Status 4 CSR

0x404 Lane 31 Status 5 CSR

0x408 Lane 31 Status 6 CSR

0x40C Lane 31 Status 7 CSR

Table 7-25. LP-Serial Lane Register Map

Block Byte
Offset

Register Name
356 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2 LP-Serial Lane Command and Status Registers (CSRs)

7.7.2.1 LP-Serial Register Block Header
(Block Offset 0x0)

The LP-Serial register block header register contains the EF_PTR to the next
extended features block and the EF_ID that identifies LP-Serial Lane Extended
Feature Block for which this is the register block header.

L

Table 7-26. Bit Settings for LP-Serial Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x000D Hard wired Extended Features Block ID
RapidIO.org 357

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2.2 Lane n Status 0 CSRs
(Block Offsets 0x10, 30, ... , 3F0)

This register shall always be implemented. It contains status information about the
local lane transceiver, i.e. the lane n transceiver in the device implementing this
register. Unless otherwise specified, all bits in this register are read-only.

Table 7-27. Bit Settings for Lane n Status 0 CSRs

Bit Name
Reset
Value

Description

0-7 Port Number The number of the port within the device to which the lane is assigned

8-11 Lane Number The number of the lane within the port to which the lane is assigned

12 Transmitter type Transmitter type
0b0 - short run
0b1 - long run

13 Transmitter mode Transmitter operating mode
0b0 - short run
0b1 - long run

14-15 Receiver type Receiver type
0b00 - short run
0b01 - medium run
0b10 - long run
0b11 - Reserved
The encoding for medium run shall be reserved when operating at Baud
Rate Class 3.

16 Receiver input inverted This bit indicates whether the lane receiver has detected that the polarity of
its input signal is inverted and has inverted its receiver input to correct the
polarity.
0b0 - receiver input not inverted
0b1 - receiver input inverted

17 Receiver trained When the lane receiver controls any transmit or receive adaptive
equalization, this bit indicates whether or not all adaptive equalizers
controlled by the lane receiver are trained. If the lane supports the IDLE2
sequence, the value of this bit shall be the same as the value in the
“Receiver trained” bit in the CS Field transmitted by the lane.
0b0 - One or more adaptive equalizers are controlled by the lane receiver
and at least one of those adaptive equalizers is not trained
0b1 - The lane receiver controls no adaptive equalizers or all of the
adaptive equalizers controlled by the lane receiver are trained

18 Receiver lane sync This bit indicates the state of the lane’s lane_sync signal.
0b0: lane_sync FALSE
0b1: lane_sync TRUE

19 Receiver lane ready This bit indicates the state of the lane’s lane_ready signal
0b0 - lane_ready FALSE
0b1 - lane_ready TRUE
358 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
20-23 8b/10b decoding errors 0x0 For Baud Rate Class 1 and 2 operation, this field shall indicate the number
of 8b/10b decoding errors that have been detected for this lane since this
register was last read.
For Baud Rate Class 3 operation, this field shall indicate the number of bit
interleaved parity (lane check) failures.
The field shall be reset to 0x0 when the register is read.
0x0: No 8b/10b decoding errors have been detected since this register was
last read.
0x1: One 8b/10b decoding error has been detected since this register was
last read.
0x2: Two 8b/10b decoding errors have been detected since this register
was last read.
...
0xD: Thirteen 8b/10b decoding errors have been detected since this
register was last read.
0xE: Fourteen 8b/10b decoding errors have been detected since this
register was last read.
0xF: At least fifteen 8b/10b decoding errors have been detected since this
register was last read.

24 Lane_sync state change 0b0 Indicates whether the lane_sync signal for this lane has changed state since
the bit was last read. This bit is reset to 0b0 when the register is read. This
bit provides an indication of the burstiness of the transmission errors
detected by the lane receiver.
0b0 - The state of lane_sync has not changed since this register was last
read
0b1 - The state of lane_sync has changed since this register was last read

25 lane_trained state change 0b0 Indicates whether the lane_trained signal for this lane has changed state
since the bit was last read. This bit is reset to 0b0 when the register is read.
A change in state of lane_trained indicates that the training state of the
adaptive equalization under the control of this receiver has changed.
Frequent changes of the training state suggest a problem with the lane.
0b0 - The state of lane_trained has not changed since this register was last
read
0b1 - The state of lane_trained has changed since this register was last read

26-27 — Reserved

28 Status 1 CSR
implemented

This bit indicates whether or not the Status 1 CSR is implemented for this
lane
0b0 - The Status 1 CSR is not implemented for this lane
0b1 - The Status 1 CSR is implemented for this lane
This field shall be 0b1 when Baud Rate Class 3 is supported.

29-31 Status 2-7 CSRs
implemented

This field indicates the number of implementation specific Status 2-7
CSRs that are implemented for this lane
0b000 - None of the Status 2-7 CSRs are implemented for this lane
0b001 - The Status 2 CSR is implemented for this lane
0b010 - The Status 2 and 3 CSRs are implemented for this lane
0b011 - The Status 2 through 4 CSRs are implemented for this lane
0b100 - The Status 2 through 5 CSRs are implemented for this lane
0b101 - The Status 2 through 6 CSRs are implemented for this lane
0b110 - The Status 2 through 7 CSRs are implemented for this lane
0b111 - Reserved
This field shall have a value of 0b010 or greater when Baud Rate Class 3 is
supported.

Bit Name
Reset
Value

Description
RapidIO.org 359

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2.3 Lane n Status 1 CSRs
(Block Offsets 0x14, 34, ... , 3F4)

The Lane n Status 1 CSRs shall be implemented if the lane supports the IDLE2 or
IDLE3 sequence.

When the lane is operating with IDLE2, this register contains information about the
connected port that is collected from the CS markers and CS fields of the IDLE2
sequence received by the local lane n receiver. Only information from error free CS
markers and CS fields shall be reported in this register.

When the lane is operating with IDLE3, this register contains information regarding
the lanes’ initialization and electrical status. For fields which rely on information
from received Status/Control ordered sequence, their value shall only be updated
based on error-free Status/Control ordered sequences.

Unless otherwise specified, all bits in these registers are read-only.

Table 7-28. Bit Settings for Lane n Status 1 CSRs

Bit Name
Reset
Value

Description

0 IDLE received 0b0 This bit indicates whether valid information has been received by the lane
since the bit was last reset. Information is accepted from a IDLE2 Control
and Status Field or Field Marker, or a valid IDLE3 Status/Control Ordered
Sequence. The bit is R/W. This bit can be reset by writing the bit with the
value 0b1. Writing the bit with the value 0b0 does not change the value of
the bit.
0b0 - No information has been received since the bit was last reset
0b1 - An information has been received at some time since the bit was last
reset

1 IDLE information
current

0b0 This bit indicates whether the information in this register that is collected
from the received IDLE sequence is current. When asserted, this bit
indicates that the information is from the last IDLE2 CS Marker and CS
Field, or from an IDLE3 Status Control Ordered Sequence that were
received by the lane without detected errors, and that the lane’s lane_sync
signal has remained asserted since the last information was received.
0b0 - The IDLE information is not current
0b1 - The IDLE information is current

2 Values changed 0b1 When the lane is operating using IDLE2, this bit indicates whether the
values of any of the other 31 bits in this register have changed since the
register was last read.
When the lane is operating using IDLE3, this bit indicates whether the
values of the IDLE3 fields in this register, or if any fields in the Lane n
Status 2 CSR and the Lane n Status 3 CSR have changed.
This bit is reset when the register is read.
0b0 - The values have not changed
0b1 - One or more values have changed

3 Implementation defined Implementation defined

4 IDLE2 connected port
lane receiver trained

IDLE2 connected port lane receiver trained
0b0 - Receiver not trained
0b1 - Receiver trained
Captured from the IDLE2 Command and Status Field “Receiver Trained”
field.
360 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5-7 IDLE2 received port
width

IDLE2 received port width
0b000 - 1 lane
0b001 - 2 lanes
0b010 - 4 lanes
0b011 - 8 lanes
0b100 - 16 lanes
0b101-0b111 - Reserved
Captured from the IDLE2 Command and Status Marker “Active Port
Width” field.

8-11 IDLE2 lane number in
connected port

The number of the lane (0-15) within the connected port
0b0000 - Lane 0
0b0001 - Lane 1
...
0b1111 - Lane 15
Captured from the IDLE2 Command and Status Marker “Lane Number”
field.

12-13 IDLE2 connected port
transmit emphasis
Tap(-1) status

Tap(-1) status
0b00 - Tap(-1) not implemented
0b01 - Tap(-1) at minimum emphasis
0b10 - Tap(-1) at maximum emphasis
0b11 - Tap(-1) at intermediate emphasis setting
Captured from the IDLE2 Command and Status Field “Tap(-1) Status”
field.

14-15 IDLE2 connected port
transmit emphasis
Tap(+1) status

Tap(+1) status
0b00 - Tap(+1) not implemented
0b01 - Tap(+1) at minimum emphasis
0b10 - Tap(+1) at maximum emphasis
0b11 - Tap(+1) at intermediate emphasis setting
Captured from the IDLE2 Command and Status Field “Tap(+1) Status”
field.

16 IDLE2 connected port
scrambling/descrambling
enabled

IDLE2 connected port scrambling/descrambling
0b0 - Scrambling/descrambling not enabled
0b1 - Scrambling/descrambling enabled
Captured from the IDLE2 Command and Status Field “Data
scrambling/descrambling enabled” field.

17 IDLE3 Loss of Signal This bit shall be set when at least one of the following has occurred since
the last time this register was read:

• Receive_enable has been continuously asserted for 2048 columns and
no control symbols have been received

• The “signal_detected” indication is de-asserted
• A Status/Control codeword was received that indicates the link

partner’s transmitter is entering the silent state, or that the transmitter
for this lane is disabled

• Lane synchronization was lost
0b0 - The lane is receiving valid data or control codewords
b01 - The lane is not receiving valid data or control codewords
This field shall be reset to 0x0 when the register is read

Bit Name
Reset
Value

Description
RapidIO.org 361

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
18-20 Training Type 0b000 This field is reserved for IDLE1 links.

This field indicates the type of lane training currently being performed by
the lane when operating with IDLE3. The field shall be encoded as
follows:
0b000 = Lane_training state machine is in the UNTRAINED state
0b001 = Long run Lane_training state machine is in a state whose name
begins with “DME”.
0b010 = Lane_training state machine is in a state whose name begins with
“CW_TRAIN”.
0b011 = Lane_training state machine is in a state whose name begins with
“RETRAIN”.
0b100 = Lane_training state machine is in the TRAINED or
KEEP_ALIVE state
0b101-0b111 are Reserved

This field may be used to indicate the type of lane training currently being
performed when operating with IDLE2. When used for IDLE2, this field
shall be encoded as follows:
0b000 = No signal is being received from the link partner.
0b001 = Reserved
0b010 = The link is currently in a state where training is being performed
or in a training error state
0b011 = The link is currently in a state where retraining is being performed
or in a retraining error state
0b100 = The link has trained successfully and is not currently in a training
or retraining state
0b101-0b111 = Reserved

21 IDLE3 DME Training
Failed

0b0 For IDLE1 and IDLE2 operation, this field is reserved.
For IDLE3 operation, this field shall indicate whether DME training has
failed for this lane since this register was last read. This field shall be
encoded as follows:
0b0 - No failure seen.
0b1 - DME training has failed since this register was last read.
This bit shall be set when the Long Run Lane_Training State Machine
enters the DME_TRAINING_FAIL state. This bit may be set for other
implementation specific reasons.
This field is read only. This bit is cleared when this register is read.

22 IDLE3 DME Training
Completed

0b0 This field is reserved for IDLE1 and IDLE2 links.
For IDLE3 operation, this field shall indicate whether DME training has
completed for this lane since this register was last read. This field shall be
encoded as follows:
0b0 - DME training has not completed.
0b1 - DME training has completed since this register was last read.
This bit shall be set when the Long Run Lane_Training State Machine
transitions from DME_TRAINING2 to the TRAINED state.
This field is read only. This bit is cleared when this register is read.

Bit Name
Reset
Value

Description
362 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
23 CW Training Failed 0b0 This field is reserved for IDLE1 links.
For IDLE3 operation, this field shall indicate whether CW training has
failed for this lane since this register was last read. This field shall be
encoded as follows:
0b0 - No failure seen.
0b1 - CW training has failed since this register was last read.
This bit shall be set when the Long Run or Short Run Lane_Training State
Machine enters the CW_TRAINING_FAIL state. This bit may be set for
other implementation specific reasons.
This field may be used to indicate lane training failure when operating
with IDLE2.
This field is read only. This bit is cleared when this register is read.

24 CW Training Completed 0b0 This field is reserved for IDLE1 links.
For IDLE3 operation, this field shall indicate whether CW
training has completed for this lane since this register was last read. This
field shall be encoded as follows:
0b0 - CW training has not completed.
0b1 - CW training has completed since this register was last read.
This bit shall be set when the Long Run or Short Run Lane_Training State
transitions from CW_TRAINING1 to the TRAINED state.
This field may be used to indicate lane training completion when operating
with IDLE2.
This field is read only. This bit is cleared when this register is read.

25 CW Retraining Failed 0b0 This field is reserved for IDLE1 links.
For IDLE3 operation, this field shall indicate whether CW retraining has
failed for this lane since this register was last read. This field shall be
encoded as follows:
0b0 - No failure seen.
0b1 - CW retraining has failed since this register was last read.
This bit shall be set when the Long Run or Short Run Lane_Training State
Machine enters the RETRAIN_FAIL state. This bit may be set for other
implementation specific reasons.
This field may be used to indicate lane retraining failure when operating
with IDLE2.
This field is read only. This bit is cleared when this register is read.

26 CW Retraining
Completed

0b0 This field is reserved for IDLE1 links.
For IDLE3 operation, this field shall indicate whether CW retraining has
completed for this lane since this register was last read. This field shall be
encoded as follows:
0b0 - CW retraining has not completed.
0b1 - CW retraining has completed since this register was last read.
This bit shall be set when the Long Run or Short Run Lane_Training State
Machine transitions from RETRAINING2 to the TRAINED state.
This field may be used to indicate lane retraining completion when
operating with IDLE2.
This field is read only. This bit is cleared when this register is read.

27-31 — Reserved

Bit Name
Reset
Value

Description
RapidIO.org 363

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2.4 Lane n Status 2 CSRs
(Block Offsets 0x18, 38, ... , 3F8)

These registers shall be implemented if the lane supports IDLE3. These registers
contain information from received Status/Control ordered sequences. The bits and
bit fields of these registers shall be as defined in Table 7-29. Only information from
error-free Status/Control ordered sequences, shall be reported in these registers.
Unless otherwise specified, all bits in these registers are read-only.

Table 7-29. Bit Settings for Lane n Status 2 CSRs

Bit Name
Reset
Value

Description

0-7 LP Port Number All 0’s Number of the link partner’s port that is connected to this lane. It should
match what is in the Lane n Status 0 CSR [Port Number] field on the link
partner.
Captured from the Status/Control control codeword field “Port number”.

8-11 LP Lane Number All 0’s Number of the link partner’s lane connected to this lane. It should match
what is in the Lane n Status 0 CSR [Lane Number] field on the link
partner.
Captured from the Status/Control control codeword field “Lane number”.

12 LP Remote training
support

0b0 Captured from the Status/Control control codeword field “Remote training
support”.

13 LP Retraining enabled 0b0 Captured from the Status/Control control codeword field “Retraining
enabled”.

14 LP Asymmetric mode
enabled

0b0 The status of support for Asymmetric Operation in the link partner.
0b0 - Asymmetric mode disabled
0b1 - Asymmetric mode enabled

15 LP Port Initialized 0b0 Indicates whether the link partner’s port has completed initialization.
Matches the port_initialized state machine signal.
0b0 - Port in not initialized
0b1 - Port is initialized

16 LP Transmit 1x mode 0b0 Indicates when the link partner’s port is transmitting in 1x symmetric
mode.
0b0 - The port is not transmitting in 1x mode. The state machine variable
max_width != 1x.
0b1 - The port is transmitting in 1x symmetric mode. The state machine
variable max_width = 1x.

17-19 LP Receive width 0b000 The width at which the Link Partner port is currently receiving control
symbols and packets.
0b000 - none
0b001 - 1x mode
0b010 - 2x mode
0b011 - 4x mode
0b100 - 8x mode
0b101 - 16x mode
0b110 - 1x mode, lane 1
0b111 - 1x mode, lane 2
364 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
20-22 LP Receive lanes ready 0b000 Indicates the lanes being received by the port for which lane_ready is
asserted.
0b000 - No lanes ready
0b001 - lane_ready[0]
0b010 - lane_ready[0] & lane_ready[1]
0b011 - lane_ready[0] & lane_ready[1] &... & lane_ready[3]
0b100 - lane_ready[0] & lane_ready[1] &... & lane_ready[7]
0b101 - lane_ready[0] & lane_ready[1] &... & lane_ready[15]
0b110–0b111 - reserved

23 LP Receive lane ready 0b0 The value and meaning of this bit on lane k shall be the same as that of the
link partner’s lane state machine variable lane_ready[k]

24 LP Lane trained 0b0 Indicates the training status of the link partner’s lane.
The value and meaning of this bit on lane k shall be the same as that of the
link partner’s port state machine variable lane_trained[k]

25-27 LP Change receiver
width command

0b000 The port receiving the command shall attempt to switch to the receive
width specified in the command.
0b000 - hold current receive width
0b001 - receive in 1x mode
0b010 - receive in 2x mode
0b011 - receive in 4x mode
0b100 - receive in 8x mode
0b101 - receive in 16x mode
0b110–0b111 - reserved

28 LP change receiver width
command acknowledge

Receive width command ACK
0b0 - No command status
0b1 - Command executed

29 LP change receiver width
command negative
acknowledge

Receive width command NACK
0b0 - No command status
0b1 - Command not executed

30-31 — Reserved

Bit Name
Reset
Value

Description
RapidIO.org 365

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2.5 Lane n Status 3 CSRs
(Block Offsets 0x1C, 3C, ... , 3FC)

These registers shall be implemented if the lane supports the IDLE3 sequence.
These registers contain information from received Status/Control ordered
sequences. The bits and bit fields of these registers shall be as defined in Table 7-30.
Only information from error free Status/Control ordered sequences shall be reported
in these registers. Unless otherwise specified, all bits in these registers are read-only.

Table 7-30. Bit Settings for Lane n Status 3 CSRs

Bit Name
Reset
Value

Description

0-2 LP Transmit width
request

A request that the port receiving this field change its transmit width to the
width specified in the request.
0b000 - no request (hold current transmit width)
0b001 - request transmit 1x mode
0b010 - request transmit 2x mode
0b011 - request transmit 4x mode
0b100 - request transmit 8x mode
0b101 - request transmit 16x mode
0b110–0b111 - reserved

3 LP Transmit width
request pending

0b0 Indicates that the link partner has received the transmitter width request
sent by this device and is processing it.
0b0 - No request pending
0b1 - Request pending

4 LP Transmit
SC-sequences

0b0 Request to transmit SC-sequence at least every 256 codewords per lane.
0b0 - no additional SC-sequence transmission rate requirement
0b1 - required minimum SC-sequences transmission rate is once every 256
codewords per lane.

5-8 LP Transmit equalizer
tap

0b0000 When the transmit equalizer command is tap specific, this field contains
the number of the equalizer tap to which the tap specific command shall be
applied. The tap number is encoded as a signed 2’s complement 4-bit
integer.
0b0000 - Tap 0
0b0001 - Tap +1
0b0010 - Tap +2
0b0011 - Tap +3
0b0100 - Tap +4
0b0101 - Tap +5
0b0110 - Tap +6
0b0111 - Tap +7
0b1000 - Tap -8
0b1001 - Tap -7
0b1010 - Tap -6
0b1011 - Tap -5
0b1100 - Tap -8
0b1101 - Tap -3
0b1110 - Tap -2
0b1111 - Tap -1
When the transmit equalizer update command is not tap specific, the field
shall have the value 0b0000 and shall be ignored.
366 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9-11 LP Transmit equalizer
command

0b000 0b000 - Hold/No command
0b001 - Decrement (make more negative by one step) the coefficient of the
specified tap.
0b010 - Increment (make more positive by one step) the coefficient of the
specified tap.
0b011-0b100 - Reserved
0b101- Initialize - Set the tap coefficients to their INITIALIZE state as
defined Clause 72.6.10.4.2 of IEEE Standard 802.3-2008 (part 5).
0b110 - Preset coefficients - Set the coefficient of tap 0 to its maximum
value and the coefficients of all other taps to 0 as specified in Clause
72.6.10.4.1 of IEEE Standard 802.3-2008 (part 5).
0b111 - Indicate specified tap implementation status.
When Transmit equalizer command are 0b001, 0b010 or 0b111; the
Transmit equalizer tap value shall contain the value of the Tap; for other
commands the Transmit equalizer tap value shall be 0b0000

12-14 LP Transmit equalizer
status

0b000 0b000 - Not updated - No command is pending or the status of the current
command has not been determined.
0b001 - Updated - The tap specific command has been executed and the
tap is at neither its minimum nor maximum value.
0b010 - Minimum - Either the tap specified tap decrement command has
been executed and the tap is now at its minimum value or the specified tap
was already at its minimum value.
0b011 - Maximum - Either the tap specific tap increment command has
been executed and the tap is now at its maximum value or the specified tap
was already at it maximum value.
0b100 - Preset or Initialize command executed.
0b101 - Reserved.
0b110 - Specified tap not implemented.
0b111 - Specified tap implemented.

15 LP Retrain grant 0b0 The value of this bit shall be the same as the value of the link partner’s port
state machine variable retrain_grnt.

16 LP Retrain ready 0b0 The value of this bit shall be the same as the value of the link partner’s port
state machine variable retrain_ready.

17 LP Retraining 0b0 The value of this bit shall be the same as the value of the link partner’s port
state machine variable retraining.

18 LP Port Entering Silence 0b0 0b0 - The link partner’s port is transmitting normally.
0b1 - All lanes of the link partner’s port are going to enter the Silence state.

19 LP Lane Entering
Silence

0b0 0b0 - The link partner’s lane is transmitting normally.
0b1 - The link partners’s lane is going to enter the Silence state based on
asymmetric mode operation or based on port width downgrade in
symmetric mode.

20-27 LP State control reserved 0x00 Captures bit 50-57 of the Status_control field that currently are defined as
reserved.

28-31 — Reserved

Bit Name
Reset
Value

Description
RapidIO.org 367

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.7.2.6 Implementation Specific CSRs

7.7.2.6.1 Lane n Status 2 CSR
(Block Offsets 0x18, 38, ..., 3F8)

7.7.2.6.2 Lane n Status 3 CSR
(Block Offsets 0x1C, 3C, ..., 3FC)

7.7.2.6.3 Lane n Status 4 CSR
(Block Offsets 0x20, 40, ..., 400)

7.7.2.6.4 Lane n Status 5 CSR
(Block Offsets 0x24, 44, ..., 404)

7.7.2.6.5 Lane n Status 6 CSR
(Block Offsets 0x28, 48, ..., 408)

7.7.2.6.6 Lane n Status 7 CSR
(Block Offsets 0x2C, 4C, ..., 40C)

The implementation of these registers is optional for IDLE1 and IDLE2 and when
implemented their contents and format are implementation specific. The
implementation of the Lane n Status 4, 5, 6 and 7 CSRs is optional for IDLE3. The
registers shall be implemented in increasing numerical order beginning with the
Lane n Status 2 CSR. For example, if only one of the registers is implemented it shall
be the Status 2 CSR. If three registers are implemented they shall be the Status 2
through 4 CSRs, and if five of the registers are implemented, they shall be the Status
2 through 6 CSRs.
368 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.8 Virtual Channel Extended Features Block
This section describes the registers for RapidIO LP-Serial devices supporting virtual
channels. This Extended Features register block is assigned Extended Features
block EF_ID=0x000A.

7.8.1 Register Map

Table 7-31 shows the virtual channel register map for RapidIO LP-Serial devices.
The Block Offset is the offset relative to the 16-bit Extended Features Pointer
(EF_PTR) that points to the beginning of the block.

The address of a byte in the block is calculated by adding the block byte offset to
EF_PTR that points to the beginning of the block. This is denoted as [EF_PTR+xx]
where xx is the block byte offset in hexadecimal.

The registers are paired according to the VCs as they are implemented. In the second
example, with VCs Supported 0x01, the upper portion (VC5 portion) of the register
would be non-functioning.

NOTE:

There are no provisions in this specification to provide for dynamic

Table 7-31. Virtual Channel Registers

Block Byte Offset Register Name

G
en

er
al 0x0 VC Register Block Header

0x4-1C Reserved

P
or

t 0

0x20 Port 0 VC Control and Status Register

0x24 Port 0 VC0 BW Allocation Register

0x28 Port 0 VC 5, VC 1 BW Allocation Register

0x2C Port 0 VC 7, VC 3 BW Allocation Register

0x30 Port 0 VC 6, VC 2 BW Allocation Register

0x34 Port 0 VC 8, VC 4 BW Allocation Register

0x38-3C Reserved

P
or

t 1

0x40 Port 1 VC Control and Status Register

0x44 Port 1 VC0 BW Allocation Register

0x48 Port 1 VC 5, VC 1 BW Allocation Register

0x4C Port 1 VC 7, VC 3 BW Allocation Register

0x50 Port 1 VC 6, VC 2 BW Allocation Register

0x54 Port 1 VC 8, VC 4 BW Allocation Register

0x58-5C Reserved

P
or

t n

[(0x20 * (n + 1)]
to
[0x20 * (n + 1) + 0x1C]

Additional Port Registers
RapidIO.org 369

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
reconfiguration of the VCs. A vendor is not prohibited from
implementing dynamic reconfiguration, it is just beyond the scope of
this specification. Both ends of the channel need to be configured
alike, or unexpected behavior may result, also beyond the scope of this
specification. The default method is to configure VC operation when
the channel is quiescent either by protocol, or by holding the master
enable in the disabled state.

7.8.2 Virtual Channel Control Block Registers

This section contains register descriptions that define the bandwidth allocation
configuration for the virtual channels.

7.8.2.1 VC Register Block Header
(Block Offset 0x0)

The LP-Serial VC register block header register contains the EF_PTR to the next
extended features block and the EF_ID that identifies this as the Virtual Channel
Extended Features Block.

Table 7-32. Bit Settings for VC Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x000A Hard wired Extended Features Block ID
370 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.8.2.2 Port n VC Control and Status Registers
(Block Offset ((port number) + 1) * 0x20))

This register is used by each port to set up VC operation.

Table 7-33. Port n VC Control and Status Registers

Bit Name
Reset
Value

Description

0 - 7 VC Refresh Interval 0x00 The number of 1024 code-group or codeword intervals over which the VC
status must be refreshed.
Refresh Interval:
0x0 - 1K code-groups or codewords, 0xF - 16K code-groups or
codewords, 0xFF - 256K codegroups or codewords

Implementers are required to support a maximum VC refreshing period of
at least 1024 x 16 = 16K code-groups or codewords in size. The maximum
possible VC refreshing period that can be supported is 1024 x 256 = 256K
code-groups or codewords. Writing to this field with a value greater than
the maximum supported value by the port will set the field to the
maximum value supported by the port

8 - 15 CT Mode 0x00 Enables VCs to operate in CT mode beginning with VC8:
0x00 - all VCs in RT mode

For 8 VCs:
0x01 - VC8 in CT mode
0x03 - VC8, VC7 in CT mode
0x07 - VC8, VC7, VC6, VC 5 in CT mode
0x0F - VC8 - VC1 in CT mode

For 4 VCs:
0x01 - VC7 in CT mode
0x03 - VC7, VC5 in CT mode
0x07 - VC7, VC5, VC3, VC1 in CT mode

For 2 VCs:
0x01 - VC5 in CT mode
0x03 - VC5, VC1 in CT mode

For 1 VC:
0x01 - VC1 in CT mode

Implementers may support CT mode on a portion of the available VCs. CT
mode must be implemented in the highest VCs first to allow this simplified
programming model.

VCs not supporting CT operation are indicated by not allowing the
programmed bits to set. Example: 8VCs enabled, VC8 and VC7 only
support CT mode. Writing a 0x07 would result in a register value of 0x03
when read back.
RapidIO.org 371

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
16 - 23 VCs Support see
footnote1

Number of Virtual Channels Supported (Read Only)
0x00 - Only VC0 is supported
0x01 - VC0, VC1 Supported
0x02 - VC0, VC1, VC5 supported
0x04 - VC0, VC1, VC3, VC5, VC7 supported
0x08 - VC0, VC1-VC8

24 - 31 VCs Enable 0x00 0x00 - Enable Only VC0
0x01 - Enable VC0, VC1
0x02 - Enable VC0, VC1, VC5
0x04 - Enable VC0, VC1, VC3, VC5, VC7
0x08 - Enable VC0, VC1-VC8
Note: Bits 24-27, and any bits associated with unimplemented VCs need
not be writable, but must return 0 when read. Setting this field to a value
larger than the number of VCs supported as indicated in bits 16-23 shall
result in only VC0 being enabled.

1The VCs Supported reset value is implementation dependent

Table 7-33. Port n VC Control and Status Registers

Bit Name
Reset
Value

Description
372 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.8.2.3 Port n VC0 BW Allocation Registers
(Block Offset (((port number) + 1) * 0x20) + 0x04))

This register is used to enable and configure VC0’s participation in the bandwidth
reservation scheduling.

VC0 may or may not participate in the bandwidth reservation scheduling for the
link. The required implementation is for VC0 to be strict priority. Traffic on VC0 is
serviced before any of the other VCs in this mode. The remaining bandwidth is then
divided according to the percentages in the bandwidth allocations. This will result
in the bandwidth allocations being variable if VC0’s utilization is significant when
compared with the activity on the other VCs.

Optionally, VC0 may be included in the bandwidth reservation scheduling. In this
case, the priorities within VC0 are serviced when VC0 is allocated bandwidth on the
link. VC0 activity cannot cause the other VCs to receive less than their allocation of

Table 7-34. Port n VC0 BW Allocation CSRs

Bit Name
Reset
Value

Description

0 VC0 Bandwidth
Reservation Capable

see
footnote1

1 The VC0 Bandwidth Reservation Capable reset value is implementation dependent

0b0 - VC0 is strict priority, and has priority over the other VCs. It will
utilize bandwidth without regard to bandwidth reservation. The
bandwidth reservation algorithm will divide up what bandwidth is
remaining after VC0 has no outstanding requests.

0b1 - VC0 is capable of being allocated bandwidth
This bit is read only

1 VC0 BW Res Enable 0b0 0b0 - VC0 is strict priority, does not participate in bandwidth reservation
0b1 - VC0 will be allocated bandwidth according to BW Allocation
Registers

2 - 7 — Reserved

8 - 15 Bandwidth Reservation
Precision

see
footnote2

2 The Bandwidth Reservation Precision reset value is implementation dependent

Indicates the number of bits used in the bandwidth reservation precision
for all VCs in this port. (read only)
0x00 - 8 bits
0x01 - 9 bits
0x02 - 10 bits
0x04 - 11 bits
0x08 - 12 bits
0x10 - 13 bits
0x20 - 14 bits
0x40 - 15 bits
0x80 - 16 bits

16-31 Bandwidth Allocation 0x00 The contents of this register determines the minimum bandwidth reserved
for this VC (see below)

The bandwidth allocation value is left justified based on precision. Bits,
are ignored based on the precision value:
0bnnnn_nnnn_xxxx_xxxx (8 bit precision) where ‘x’ represents ignored
bits
0bnnnn_nnnn_nxxx_xxxx (9 bit precision)
0bnnnn_nnnn_nnnn_xxxx (12 bit precision), etc.
RapidIO.org 373

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
bandwidth.

The Bandwidth Reservation Precision field is used to indicate the granularity of
bandwidth scheduling for the port. The value in this register applies to the
subsequent BW Allocation Registers as well.

The value programmed in the BW Allocation Registers is a binary fraction based on
the percentage of the overall total bandwidth. 100% bandwidth is represented by a
value of 1.000:

Example: 33% bandwidth is allocated as:

33/100 = 0.0101010101010101b, so the BW allocation register value is:
0101010101010101b, and would be rounded down to:
01010101xxxxxxxxb if 8 bit precision is being used.

The value may be programmed as is into the left justified register, with the unused
bits being ignored, but that might cause some precision errors. Also, if the
percentage results in a value smaller than the precision, a value of 0 could result in
a VC getting no service. The precision value allows the bandwidth allocation
algorithm to round up or down based on the dividing point, and to detect and round
up a zero value to allocate at least a minimal increment of bandwidth.

The total of all the allocations should not exceed 100%. The result, by definition,
will not be as programmed. The actual behavior will depend on the method used to
schedule the activity. The implementation of the scheduler, and thus its behavior
when not programmed correctly is outside the scope of this specification.

Table 7-35. BW Allocation Register Bit Values

Bit / Value

0 1 2 3 4 5 6 7

2 -1 2 -2 2 -3 2 -4 2 -5 2 -6 2 -7 2 -8

Bit / Value

8 9 10 11 12 13 14 15

2 -9 2 -10 2 -11 2 -12 2 -13 2 -14 2 -15 2 -16
374 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.8.2.4 Port n VCx BW Allocation Registers
(Block Offset ((((port number) + 1) * 0x20) + (offset based on
VC #, see Table 7-31)))

This register is used to enable and program VCs 1-8 participation in the bandwidth
reservation scheduling. Each register supports 2 VCs, ordered as described in
Section 7.8.1, "Register Map".

In the instance where VC1 is supported, but VC5 is not, bits 0 - 15 are reserved.

The Bandwidth Allocation is as described previously for VC0.

A value of ‘0’ for bandwidth allocation results in no service being given to that VC.
VCs initialize with a value of zero and remain inactive until allocated bandwidth. It
is recommended that the bandwidth allocations be made before enabling the VCs,
but the actual implementation is beyond the scope of this specification.

Table 7-36. Port n VCx BW Allocation CSRs

Bit Name
Reset
Value

Description

0 - 15 Bandwidth Allocation 0x0000 The contents of this register determines the minimum bandwidth reserved for
this VC (see below)

The bandwidth allocation value is left justified based on precision. Bits, are
ignored based on the precision value:
0bnnnn_nnnn_xxxx_xxxx (8 bit precision) where ‘x’ represents ignored bits
0bnnnn_nnnn_nxxx_xxxx (9 bit precision)
0bnnnn_nnnn_nnnn_xxxx (12 bit precision), etc.

16-31 Bandwidth Allocation 0x0000 The contents of this register determines the minimum bandwidth reserved for
this VC (see below)

The bandwidth allocation value is left justified based on precision. Bits, are
ignored based on the precision value:
0bnnnn_nnnn_xxxx_xxxx (8 bit precision) where ‘x’ represents ignored bits
0bnnnn_nnnn_nxxx_xxxx (9 bit precision)
0bnnnn_nnnn_nnnn_xxxx (12 bit precision), etc.
RapidIO.org 375

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9 Timestamp Generation Extension Block
The Timestamp Generation Extension Block is optional. The block contains
different registers depending on the Timestamp CAR field values as defined in
Table 7-37. The “General” column indicates registers that shall be implemented
regardless of the values of the Timestamp CAR.

The “MECS” column indicates which registers shall be implemented when the
“MECS Master Supported” or “MECS Slave Supported” bit is 1. The “Time Slave”
column indicates which registers shall be implemented when the “Timestamp Slave
Supported” bit is 1. The “Time Master” column indicates which registers shall be
implemented when the “Timestamp Master Supported” bit is 1. In all cases, an “X”
in a column means that the register shall be implemented.

If the “MECS Master Supported and MECS Slave Supported”, “Timestamp Slave
Supported” and “Time Master” bits are 0, then only General registers shall be
implemented.

Table 7-37. Timestamp Generation Extension Block

Block Byte
Offset

Register Name General MECS
Time
Slave

Time
Master

G
en

er
al

0x00 Timestamp Generation Extension Block Header X X X X

0x04 Timestamp CAR X X X X

0x08 Timestamp Generator Status CSR X X X X

0x0C MECS Tick Interval CSR - X - -

0x10 Reserved - - - -

0x14 MECS Next Timestamp MSW CSR - X - -

0x18 MECS Next Timestamp LSW CSR - X - -

0x0C-1C Reserved - - - -

0x20-2C Implementation Specific - - - -

0x30 Reserved - - - -

0x34 Timestamp Generator MSW CSR X X X X

0x38 Timestamp Generator LSW CSR X X X X

0x3C Reserved - - - -
376 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
P
or

t 0
0x40 Reserved - - - -

0x44 Port 0 Timestamp 0 MSW CSR - - - X

0x48 Port 0 Timestamp 0 LSW CSR - - - X

0x4C-50 Reserved - - - -

0x54 Port 0 Timestamp 1 MSW CSR - - - X

0x58 Port 0 Timestamp 1 LSW CSR - - - X

0x5C Reserved - - - -

0x60 Port 0 Timestamp Generator Synchronization CSR - - X X

0x64 Port 0 Auto Update Counter CSR - - - X

0x68 Port 0 Timestamp Synchronization Command CSR - - - X

0x6C Port 0 Timestamp Synchronization Status CSR - - - X

0x70 Port 0 Timestamp Offset CSR - - - X

0x74-7C Implementation Specific - - - -

P
or

ts
 1

-1
4

0x80–3FC Assigned to Port 1-14 CSRs

P
or

t 1
5

0x400 Reserved - - - -

0x404 Port 15 Timestamp 0 MSW CSR X

0x408 Port 15 Timestamp 0 LSW CSR X

0x40C-410 Reserved - - - -

0x414 Port 15 Timestamp 1 MSW CSR X

0x418 Port 15 Timestamp 1 LSW CSR X

0x41C Reserved - - - -

0x420 Port 15 Timestamp Generator Synchronization CSR - - X X

0x424 Port 15 Auto Update Counter CSR - - - X

0x428 Port 15 Timestamp Synchronization Command CSR - - - X

0x42C Port 15 Timestamp Synchronization Status CSR - - - X

0x430 Port 15 Timestamp Offset CSR - - - X

0x434-43C Implementation Specific - - - -

Table 7-37. Timestamp Generation Extension Block

Block Byte
Offset

Register Name General MECS
Time
Slave

Time
Master
RapidIO.org 377

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.1 Timestamp Generation Extension Block Header
(Block Offset 0x0)

The Timestamp Generation Extension Block Header register contains the EF_PTR
to the next EF_BLK and the EF_ID that identifies this as the Timestamp Generation
Extension Block Header. The use and meaning of the bits and bit fields of this
register shall be as specified in Table 7-38. The register is read-only.

Table 7-38. Bit Settings for Timestamp Generation Extension Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x000F Hard wired Extended Features ID
378 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.2 Timestamp CAR
(Block Offset 0x04)

This register indicates which Timestamp Synchronization capabilities the device
supports. The use and meaning of the bits and bit fields of this register shall be as
specified in Table 7-39. The bits and bit fields in this register are read only.

1

1 The reset value of this field is implementation specific.

Table 7-39. Bit Settings for Timestamp CAR

Bit Name
Reset
Value

Description

0 Timestamp Slave
Supported

See
Footnote
1

Indicates whether the device supports operation as a Timestamp Slave
0b0 - Device does not support operation as a Timestamp Slave
0b1 - Device supports operation as a Timestamp Slave

1 Timestamp Master
Supported

See
Footnote
1

Indicates whether the device supports operation as a Timestamp Master
0b0 - Device does not support operation as a Timestamp Master
0b1 - Device supports operation as a Timestamp Master

2 Common Clock
Frequency Supported

See
Footnote
1

Indicates whether the device supports use of a common clock frequency
0b0 - Device does not support common clock frequency
0b1 - Device supports common clock frequency

3 MECS Slave Supported See
Footnote
1

Indicates whether the device supports the MECS Time Synchronization
Protocol as a slave
0b0 - Device does not support reception of MECS for time updates
0b1 - Device supports reception of MECS for time updates

4 MECS Master Supported See
Footnote
1

Indicates whether the device supports transmission of MECS as a MECS
Master for MECS Time Synchronization Protocol.
0b0 - Device does not support transmission of MECS for time updates
0b1 - Device supports transmission of MECS for time updates

5 SMECS Support See
Footnote
1

Indicates whether the device supports transmission and reception of SMECS.
0b0 - Device does not support transmission or reception of SMECS
0b1 - Device supports transmission and reception of SMECS
This bit shall only be set if at least one of the “MECS Slave Support” and
“MECS Maser Support” bits is set.

6-31 --- 0x00 Reserved
RapidIO.org 379

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.3 Timestamp Generator Status CSR
(Block Offset 0x08)

This register indicates the current status of the Timestamp Generator. Note that
Table 7-40 contains two columns, “All” and “Common Freq”. An “X” in the “All”
column indicates bits which shall be implemented in this register. An “X” in the
“Common Freq” column indicates bits which shall be implemented if the
Timestamp CAR Common Clock Frequency Support bit field is 0b1.

The use and meaning of the bits and bit fields of this register shall be as specified in
Table 7-40. The bits and bit fields in this register are read only unless otherwise
specified.

1 The reset value of this field is implementation specific.

Table 7-40. Bit Settings for Timestamp Generator Status CSR

Bit Name
Reset
Value

Description All
Common

Freq

0 Timestamp Generator
Clock Locked

See
Footnote
1

Indicates whether the Timestamp Generator counter is
operating from a good clock source.
0b0 - Timestamp Generator is not operating with a good
clock source.
0b1 - Timestamp Generator is operating with a good
clock source.

X -

1 Timestamp Generator
Common Clock

See
Footnote
1

Indicates whether the Timestamp Generator counter is
operating based on a clock frequency which is the same
as that of the link partners.
0b0 - Timestamp Generator is not operating with a
common clock frequency.
0b1 - Timestamp Generator is operating with a common
clock frequency.

- X

2 Timestamp Generator
Stopped

See
Footnote
1

Indicates if the Timestamp Generator counter is not
advancing because it is being set to an earlier time.
0b0 - Timestamp Generator is advancing
0b1 - Timestamp Generator is temporarily not advancing

X -

3 Timestamp Generator
Was Stopped

See
Footnote
1

Indicates if the Timestamp Generator counter has not
advanced because it has been set to an earlier time.
0b0 - Timestamp Generator has advanced continuously
since this bit was last cleared
0b1 - Timestamp Generator has temporarily stopped
advancing at least once since this bit was last cleared.
This bit may be cleared by writing “1” to it.

X -

4-31 --- 0x00 Reserved - -
380 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.4 MECS Tick Interval CSR
(Block Offset 0x10)

On an (S)MECS Master, this register controls the amount of time between
transmission of one (S)MECS and the next. On an (S)MECS Slave, this register
controls the number of nanoseconds added to the MECS Next Timestamp MSW
CSR when an (S)MECS is received. The use and meaning of the bit fields in this
register shall be as specified in Table 7-41. The bit fields in this register are
read/write.

1

Table 7-41. Bit Settings for MECS Tick Interval CSR

Bit Name
Reset
Value

Description

0 MECS Time
Synchronization Role

See
Footnote 1

Controls whether a device operates as a MECS Master or MECS Slave.
0 - The device is operating as an MECS Slave
1 - The device is operating as an MECS Master

If the Timestamp CAR “MECS Slave Supported” and “MECS Master
Supported” bits are both set, this field shall be read/write. Otherwise, this
field shall be read only.

1 SMECS Selection See
Footnote 2

Controls whether a device is using MECS or SMECS for its MECS Time
Synchronization Role
0 - The device uses MECS
1 - The device uses SMECS

If the Timestamp CAR “SMECS Support” bit is set, this field shall be
read/write. Otherwise, this field shall be read only and have a value of 0.

2-3 Lost TSG Sync Error
Threshold

See
Footnote3

Controls the number of MECS/SMECS “ticks” that must be lost before
declaring the timestamp generator to be out of sync. The selection of
MECS or SMECS arrival tracking is controlled by SMECS Selection. The
criteria for detecting lost MECS/SMECS is implementation specific.
This field is encoded as follows:
0b00 - Lost Tick Error Threshold is disabled
0b01 - If one tick is lost, declare the timestamp generator out of sync
0b10 - If two ticks are lost, declare the timestamp generator out of sync
0b11 - If three ticks are lost, declare the timestamp generator out of sync

4 Lost Tick Error Status 0 This field indicates if the device has detected at least one lost tick.
0 - A Lost Tick Error has not been detected
1 - A Lost Tick Error has been detected
This bit must be written with 1 to be cleared.
Reporting and control of reporting of this event is defined in Part 8.

5 Lost TSG Sync Error
Status

0 This field indicates that the device has detected at least “Lost TSG Sync
Error Threshold” consecutive ticks have been lost.
0 - A Lost TSG Sync Error has not been detected
1 - A Lost TSG Sync Error has been detected
This bit must be written with 1 to be cleared.
Reporting and control of reporting of this event is defined in Part 8.
RapidIO.org 381

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.5 MECS Next Timestamp MSW CSR
(Block Offset 0x18)

On an (S)MECS Master, this register contains the time when the next (S)MECS shall
be transmitted. On an (S)MECS Slave, this register contains the timestamp value
used to update the Timestamp Generator MSW CSR when the next (S)MECS is
received. This register is updated whenever an (S)MECS is received by an MECS
Slave, or when an (S)MECS is transmitted by an (S)MECS Master. For more
information on the use and operation of this register, refer to Section 6.5.3.6,
"MECS Time Synchronization Protocol". The use and meaning of the bit fields of
this register shall be as specified in Table 7-42. The bit fields in this register are
read/write.

1

1The reset value of this field is implementation specific.

6-7 --- 0x00 Reserved

8-31 Tick Interval 0x000000 For an (S)MECS Master, an (S)MECS shall be sent when time has
advanced by this many nanoseconds.

For an MECS Slave, time has advanced by this many nanoseconds
whenever an (S)MECS is received.

(S)MECS transmission, and (S)MECS timestamp synchronization for
received MECS, is disabled when this register is 0.

1 The reset value of this field is implementation specific.
2 The reset value of this field is implementation specific.
3 The reset value of this field is implementation specific.

Table 7-42. Bit Settings for MECS Next Timestamp MSW CSR

Bit Name Reset Value Description

0-31 MSW Bits 0x00000000 Most significant 32 bits for the timestamp value used to update the
Timestamp Generator MSW CSR when a Multicast Event Control
Symbol is received by an MECS Slave.
Most significant 32 bits of the timestamp value compared with the
Timestamp Generator value to determine when a Multicast Event
Control Symbol must be transmitted by an MECS Master.

Table 7-41. Bit Settings for MECS Tick Interval CSR

Bit Name
Reset
Value

Description
382 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.6 MECS Next Timestamp LSW CSR
(Block Offset 0x1C)

On an (S)MECS Master, this register contains the time when the next (S)MECS shall
be transmitted. On an (S)MECS Slave, this register contains the timestamp value
used to update the Timestamp Generator LSW CSR when the next (S)MECS is
received. This register is updated whenever an (S)MECS is received by an (S)MECS
Slave, or when an (S)MECS is transmitted by an (S)MECS Master.

For more information on the use of this register, refer to Section 6.5.3.6, "MECS
Time Synchronization Protocol". The use and meaning of the bit fields of this
register shall be as specified in Table 7-43. The bit fields in this register are
read/write.

Table 7-43. Bit Settings for MECS Next Timestamp LSW CSR

Bit Name Reset Value Description

0-31 LSW Bits 0x00000000 Least significant 32 bits for the timestamp value used to update the
Timestamp Generator LSW CSR when a Multicast Event Control
Symbol is received by an MECS Slave.
Least significant 32 bits of the timestamp value compared with the
Timestamp Generator value to determine when a Multicast Event
Control Symbol shall be transmitted by an MECS Master.
RapidIO.org 383

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.7 Timestamp Generator MSW CSR
(Block Offset 0x034)

This register indicates the most significant 32 bits of the Timestamp Generator. The
use and meaning of the bits and bit fields of this register shall be as specified in Table
7-44. The bits and bit fields in this register are read/write.

7.9.8 Timestamp Generator LSW CSR
(Block Offset 0x038)

This register indicates the least significant 32 bits for the Timestamp Generator. The
use and meaning of the bits and bit fields of this register shall be as specified in Table
7-45. The bits and bit fields in this register are read/write.

Table 7-44. Bit Settings for Timestamp Generator MSW CSR

Bit Name Reset Value Description

0-31 MSW Bits 0x00000000 Most significant 32 bits for the timestamp generator.

Table 7-45. Bit Settings for Timestamp Generator LSW CSR

Bit Name Reset Value Description

0-31 LSW Bits 0x00000000 Least significant 32 bits for the timestamp generator.
384 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.9 Port n Timestamp 0 MSW CSRs
(Block Offsets 0x44, 0x84, ..., 0x404)

These registers contain the value of the Timestamp Generator MSW CSR when a
Loop-Timing-Request control symbol is transmitted. The use and meaning of the
bits and bit fields of these registers shall be as specified in Table 7-46. The bits and
bit fields in these registers are read only.

7.9.10 Port n Timestamp 0 LSW CSRs
(Block Offsets 0x48, 0x88, ..., 0x408)

These registers contain the value of the Timestamp Generator LSW CSR when a
Loop-Timing-Request control symbol is transmitted. The use and meaning of the
bits and bit fields of these registers shall be as specified in Table 7-47. The bits and
bit fields in these registers are read only.

Table 7-46. Bit Settings for Port n Timestamp 0 MSW CSRs

Bit Name Reset Value Description

0-31 MSW Bits 0x00000000 Most significant 32 bits from the timestamp generator.

Table 7-47. Bit Settings for Port n Timestamp 0 LSW CSRs

Bit Name Reset Value Description

0-31 LSW Bits 0x00000000 Least significant 32 bits from the timestamp generator.
RapidIO.org 385

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.11 Port n Timestamp 1 MSW CSRs
(Block Offsets 0x54, 0x94, ..., 0x414)

These registers contain the value of the Timestamp Generator MSW CSR when a
Loop Response control symbol is received. The use and meaning of the bits and bit
fields of these registers shall be as specified in Table 7-48. The bits and bit fields in
these registers are read only.

7.9.12 Port n Timestamp 1 LSW CSRs
(Block Offsets 0x58, 0x98, ..., 0x418)

These registers contain the value of the Timestamp Generator LSW CSR when a
Loop Response control symbol is received. The use and meaning of the bits and bit
fields of these registers shall be as specified in Table 7-49. The bits and bit fields in
these registers are read only.

Table 7-48. Bit Settings for Port n Timestamp 1 MSW CSRs

Bit Name Reset Value Description

0-31 MSW Bits 0x00000000 Most significant 32 bits from the timestamp generator.

Table 7-49. Bit Settings for Port n Timestamp 0 LSW CSRs

Bit Name Reset Value Description

0-31 LSW Bits 0x00000000 Least significant 32 bits from the timestamp generator.
386 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.13 Port n Timestamp Generator Synchronization CSRs
(Block Offsets 0x60, 0xA0, ..., 0x420)

These registers control the Timestamp Generator Synchronization capabilities that
the port will accept and transmit. The columns in Table 7-50 determine which fields
must be implemented, based on the bit field values of the Timestamp CAR.

The use and meaning of the bits and bit fields of these registers shall be as specified
in Table 7-50. The bits and bit fields in these registers are read/write.

Table 7-50. Bit Settings for Port n Timestamp Generator Synchronization CSRs

Bit Name
Reset
Value

Description
Time
Slave

Time
Master

Com.
Freq.

0 Accept Timestamps 0b0 Indicates whether the device will accept
Timestamp Control Symbols from the link
partner.
0b0 - Device will not accept Timestamp
Control Symbols from the link partner.
0b1 - Device accepts Timestamp Control
Symbols from the link partner.

X - -

1 Disable Clock
Compensation
Sequence

0b0 Controls whether the device will transmit
Clock Compensation Sequences.
0b0 - Device transmits clock compensation
sequences regularly as required
0b1 - Device does not transmit clock
compensation sequences.

- - X

2 Auto-update Link
Partner Timestamp
Generators

0b0 Controls whether the device will
automatically update the timestamp generator
of the link partner connected to this port if the
timestamp generator on this device is set.
0b0 - Do not automatically update the link
partner timestamp generator
0b1 - Automatically update the link partner
timestamp generator whenever the timestamp
generator on this device is set.

- X -

3-5 --- 0x00 Reserved - - -

6-7 Port Operating Mode 0b00 When a port supports both time slave and
master capabilities, this bit is used to control
the port’s operating mode.
0b00 - Master and slave functionality
disabled
0b01 - Time slave functionality enabled
0b10 - Time master functionality enabled
0b11 - Reserved

X X -

8-18 --- 0x00 Reserved - - -
RapidIO.org 387

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
1 The reset value of this field is implementation specific.

19 Tx Has Lower
Latency

See
Footnote
1

Indicates whether the transmit path has lower
latency than the receive path, or vice versa.
This value controls how the Asymmetry field
is applied to loop delay calculations.
0b0 - Tx has higher latency than Rx.
0b1 - Tx has lower latency than Rx.

X X -

20-
31

Asymmetry See
Footnote
1

Measure of the latency difference between the
receive path and transmit path of this port.
The value represents the number of
nanoseconds.
0x000 - No difference between transmit and
receive control path latency.
0x001 - One nanosecond difference between
transmit and receive control path latency
...
0xFFF - 4095 nanoseconds difference
between transmit and receive control path
latency.

X X -

Table 7-50. Bit Settings for Port n Timestamp Generator Synchronization CSRs

Bit Name
Reset
Value

Description
Time
Slave

Time
Master

Com.
Freq.
388 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.14 Port n Auto Update Counter CSRs
(Block Offsets 0x64, 0xA4, ..., 0x424)

These registers determine how often a timestamp generator master updates the link
partner’s timestamp generator. This is done on a per port basis since each link
partner may have different tolerances/requirements for timestamp updates. The
interval allows the link partner to be updated with intervals that range from once a
microsecond to once an hour.

Periodic timestamp updates shall not be sent when these registers are 0.

The use and meaning of the bits and bit fields of these registers shall be as specified
in Table 7-51. The bits and bit fields in these registers are read/write.

Table 7-51. Bit Settings for Port n Auto Update Counter CSRs

Bit Name Reset Value Description

0-31 Update Period 0x00000000 Time between timestamp updates. Units are 1024 nanoseconds.
RapidIO.org 389

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.15 Port n Timestamp Synchronization Command CSRs
(Block Offsets 0x68, 0xA8, ..., 0x428)

These registers enable Loop-Timing Request control symbols to be sent to the link
partner. They also allow a sequence of Timestamp Control Symbols to be sent to the
link partner to set the link partner’s timestamp generator.

The use and meaning of the bits and bit fields of these registers shall be as specified
in Table 7-52. The bits and bit fields in these registers are read/write.

Table 7-52. Bit Settings for Port n Timestamp Synchronization Command CSRs

Bit Name Reset Value Description

0-22 --- 0x00 Reserved

23 Send Zero Timestamp 0b0 A port shall transmit a sequence of Timestamp Control Symbols
when this field is written with a value of 1 and the Port Operating
Mode is set to 0b10 (Master Enabled).
The Timestamp Control Symbols shall carry a value of zero for all
timestamp generator bits.

24-26 --- 0x00 Reserved

27 Send Timestamp 0b0 A port shall transmit a sequence of Timestamp Control Symbols
when this field is written with a value of 1 and the Port Operating
Mode is set to 0b10 (Master Enabled).
The Timestamp Control Symbols shall carry the value of the
current timestamp generator, with the addition of the Port n
Timestamp Offset CSR

28 --- 0x00 Reserved

29-31 Command 0b000 Contents of the “Cmd” field of a Timing control symbol to send to
the link partner. Legal values are:
0b000 - Send Multicast Event Control Symbol
0b001 - Send Secondary Multicast Event Control Symbol
0b011 - Send Loop-Timing Request Control Symbol
390 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.16 Port n Timestamp Synchronization Status CSRs
(Block Offsets 0x6C, 0xAC, ..., 0x42C)

These registers contain the status of pending commands sent using the Port n
Timestamp Synchronization Command CSR.

The use and meaning of the bits and bit fields of these registers shall be as specified
in Table 7-53. The bits and bit fields in these registers are read only.

Table 7-53. Bit Settings for Port n Timestamp Synchronization Status CSRs

Bit Name Reset Value Description

0 Response_valid 0b0 If the value written to the Command field of the Port n Timestamp
Synchronization Command CSR causes a loop-response, this bit
indicates that the loop-response has been received and the status
fields are valid.
If the value written to the Command field of the Port n Timestamp
Synchronization Command CSR does not cause a loop-response,
then this bit indicates that the request has been transmitted.
This bit automatically clears on read.

1-21 --- 0x00 Reserved

22-31 Delay 0x000 Contents of the “Delay” field of the Link Response control symbol:
This field shall be valid when a loop-timing request was
transmitted and the response_valid field is 1.
A value of 0x3FF indicates that the delay in the link partner
exceeded 1022 nsec.
RapidIO.org 391

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.9.17 Port n Timestamp Offset CSRs
(Block Offsets 0x70, 0xB0, ..., 0x430)

These registers contain the number of nanoseconds to add to the current Timestamp
Generator value before sending a sequence of Timestamp control symbols to the link
partner. The use and meaning of the bits and bit fields of these registers shall be as
specified in Table 7-54. The bits and bit fields in these register are read/write.

Table 7-54. Bit Settings for Port n Timestamp Offset CSRs

Bit Name Reset Value Description

0-15 Offset 0x0000 Count of the number of nanoseconds to add to the timestamp
generator value when transmitting a sequence of Timestamp
Control Symbols.

16-31 --- 0x0000 Reserved
392 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10 Miscellaneous Physical Layer Extension Block
The Miscellaneous Physical Layer Extension Block is optional. The Miscellaneous
Physical Layer Extension Block contains different registers depending on the
Miscellaneous Physical Layer Extension Block CAR field values as defined in
Table 7-57.

The “SAL” column in Table 7-55 indicates which registers shall be implemented
when the “SAL Support” bit is 1. The “SMECS” column indicates which registers
shall be implemented when the “SMECS Support” bit is 1. The “PRBS” column
indicates which registers shall be implemented when the “PRBS Support” bit is 1.
In all cases, an “X” in a column means that the register shall be implemented.

The Miscellaneous Physical Layer Extension Block shall not be implemented if the
“SAL Support”, “SMECS Support”, and “PRBS Support” bits are all 0.

Table 7-55. Miscellaneous Physical Layer Extension Block

Block Byte
Offset

Register Name SAL SMECS PRBS

H
ea

de
r

0x00 Miscellaneous Physical Layer Extension Block Header X X X

0x04 Miscellaneous Physical Layer CAR X X X

0x08-3C Reserved - - -

P
or

t 0

0x40 Port 0 Port Reinit Control CSR X - X

0x44 Port 0 SAL Control and Status CSR X - -

0x48 Port 0 SMECS Control CSR - X -

0x4C Port 0 PRBS Control CSR - - X

0x50 Port 0 PRBS Lane Control CSR X

0x54 Port 0 PRBS Status 0 CSR - - X

0x58 Port 0 PRBS Status 1 CSR - - X

0x5C Port 0 PRBS Locked Time CSR - - X

0x60 Port 0 PRBS Seed CSR - - X

0x64-7C Reserved - - -

P
or

ts
 1

-1
4

0x80–3FC Assigned to Port 1-14 CSRs
RapidIO.org 393

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.1 Miscellaneous Physical Layer Extension Block Header
(Block Offset 0x0)

The Miscellaneous Physical Layer Extension Block Header register contains the
EF_PTR to the next EF_BLK and the EF_ID that identifies this as the Miscellaneous
Physical Layer Block Header. The use and meaning of the bit fields of this register
shall be as specified in Table 7-56. The register is read-only.

P
or

t 1
5

0x440 Port 15 Port Reinit Control CSR X - X

0x444 Port 15 SAL Control and Status CSR X - -

0x448 Port 15 SMECS Control CSR - X -

0x44C Port 15 PRBS Control CSR - - X

0x450 Port 15 PRBS Lane Control CSR - - X

0x454 Port 15 PRBS Status 0 CSR - - X

0x458 Port 15 PRBS Status 1 CSR - - X

0x45C Port 15 PRBS Locked Time CSR - - X

0x460 Port 15 PRBS Seed CSR - - X

0x464-47C Reserved - - -

Table 7-56. Bit Settings for Miscellaneous Physical Layer Extension Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0010 Hard wired Extended Features ID

Table 7-55. Miscellaneous Physical Layer Extension Block

Block Byte
Offset

Register Name SAL SMECS PRBS
394 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.2 Miscellaneous Physical Layer CAR
(Block Offset 0x04)

This register indicates which Timestamp Synchronization capabilities the device
supports. The use and meaning of the bit fields of this register shall be as specified
in Table 7-39. The bit fields in this register are read only.

1

1 The reset value of this field is implementation specific.

Table 7-57. Bit Settings for Miscellaneous Physical Layer CAR

Bit Name
Reset
Value

Description

0 SAL Support See
Footnote
1

Indicates whether the device supports Structurally Asymmetric Links
0b0 - Device does not support Structurally Asymmetric Links
0b1 - Device supports Structurally Asymmetric Links

1 SMECS Support See
Footnote
1

Indicates whether the device supports Secondary Multicast Event Control
Symbols (SMECS)
0b0 - Device does not support SMECS
0b1 - Device supports SMECS

2 PRBS Support See
Footnote
1

Indicates whether the device supports standard Pseudo Random Binary
Sequence (PRBS) testing
0b0 - Device does not support standard PRBS testing
0b1 - Device supports standard PRBS testing

3-31 --- 0 Reserved
RapidIO.org 395

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.3 Port n Reinit Control CSR
(Block Offset 0x40, 0x80, 0xC0,..., 0x440)

This register shall be implemented whenever at least one of the Miscellaneous
Physical Layer CAR “SAL Support” and “PRBS Support” bits are set. If the SAL
Support and Diagnostic Support bits are clear this register shall be reserved. The use
and meaning of the bit fields of this register shall be as specified in Table 7-58. The
bit fields in this register are read/write.

1

Table 7-58. Bit Settings for Port n Reinit Control CSR

Bit Name
Reset
Value

Description

0-12 - 0 Reserved

13-15 Silence Count 0 When non-zero, decremented each time the port initialization state machine
enters the SILENT state. Structurally Asymmetric Link operation and/or
PRBS operation may be enabled when this field is non-zero.

16-30 - 0 Reserved

31 Pulse Force-Reinit 0 When written with 1, causes the port initialization state machine to enter the
SILENT state.
Always reads as 0.
396 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.4 Port n SAL Control and Status CSR
(Block Offset 0x44, 0x84, 0xC4,..., 0x444)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “SAL Support” bit is set. If the SAL Support bit is clear this register shall be
reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-59. Except where noted below, the bit fields in this register are read/write.

1

Table 7-59. Bit Settings for Port n SAL Control and Status CSR

Bit Name
Reset
Value

Description

0 SAL Enabled 0 Status of Structurally Asymmetric Link operation:
0 - SAL is not active
1 - SAL is active
SAL Enabled shall be set when the port transitions to the SILENT state and
Silence Count is greater than 0. SAL Enabled shall be cleared when the
Silence Count value is 0.
This bit is read-only.

1-11 - 0 Reserved

12-15 SAL RX Width 0 When SAL Enabled is set, this field controls the receive operating width of
the port. This field is encoded as follows:
0b0000 - No override
0b0001 - 1x, lane 0
0b0010 - 1x, lane 1
0b0011 - 1x, lane 2
0b0100 - 1x, lane 3
0b0101 - 2x, lanes 0 & 1. Lanes 2 and 3 are not used.
0b0110 - 2x, lanes 2 & 3
0b0111 - 4x, lanes 0-3
0b1000 - 8x, lanes 0-7
0b1001 - 16x
0b1010-0b1011 - Implementation specific
0b1100-0b1111 - Reserved

16-27 - 0 Reserved

28-31 SAL TX Width 0 When SAL Enabled is set, this field controls the transmit operating width of
the port. This field is encoded as follows:
0b0000 - No override
0b0001 - 1x, lane 0. Disable lanes 1, 2, and 3.
0b0010 - 1x, lane 1. Disable lanes 0, 2 and 3.
0b0011 - 1x, lane 2. Disable lanes 0, 1, and 3.
0b0100 - 1x, lane 3. Disable lanes 0, 1, and 2. Transmit Lane 0 compliant
data on lane 3.
0b0101 - 2x, lanes 0 & 1. Disable lanes 2 and 3.
0b0110 - 2x, lanes 2 & 3. Transmit lane 0 and 1 2x compliant data streams on
lanes 2 and 3. Disable transmission on lanes 0 and 1.
0b0111 - 4x, lanes 0-3
0b1000 - 8x, lanes 0-7
0b1001 - 16x.
0b1010-0b1011 - Implementation specific
0b1100-0b1111 - Reserved
RapidIO.org 397

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.5 Port n SMECS Control CSR
(Block Offset 0x48, 0x88, 0xC8,..., 0x448)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “SMECS Support” bit is set. If the SMECS Support bit is clear this register
shall be reserved. The use and meaning of the bit fields of this register shall be as
specified in Table 7-60. The bit fields in this register are read/write.

1

Table 7-60. Bit Settings for Port n SMECS Control CSR

Bit Name
Reset
Value

Description

0 Secondary
Multicast-Event
Participant

0 Retransmit incoming Secondary Multicast-event control symbols out this
port (multiple port devices only)

1-31 - 0 Reserved
398 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.6 Port n PRBS Control CSR
(Block Offset 0x4C, 0x8C, 0xCC,..., 0x44C)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “PRBS Support” bit is set. If the PRBS Support bit is clear this register shall
be reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-61. The bit fields in this register are read/write.

1

Table 7-61. Bit Settings for Port n PRBS Control CSR

Bit Name
Reset
Value

Description

0 PRBS Active 0 Indicates whether a PRBS test is in progress on this port.
0b0 - PRBS test is not active
0b1 - PRBS test is active
This bit shall be read only.

1 PRBS Completed 0 Indicates whether a PRBS test has been performed on this port.
0b0 - PRBS test has not been performed on this port
0b1 - PRBS test has been performed on this port
This bit shall be cleared when '1' is written to this field.

2-6 PRBS Pattern Selection 0 When PRBS Active is set, this field controls the PRBS pattern that is
transmitted and checked by this port.
0b00000 - Diagnostics are disabled
0b00001 - Transmit and check X7+X6+1. This pattern shall be supported by
devices operating at Baud Rate Class 1 speeds.
0b00010 - Transmit and check X9+X5+1. This pattern shall be supported by
devices operating at Baud Rate Class 2 and/or Baud Rate Class 3 lane speeds.
0b00011 - Transmit and check X15+X14+1. This pattern shall be supported
by devices operating at Baud Rate Class 2 and/or Baud Rate Class 3 lane
speeds.
0b00100 - Transmit and check X23+X18+1. This pattern shall be supported
by devices operating at Baud Rate Class 2 and/or Baud Rate Class 3 lane
speeds.
0b00101 - Transmit and check X31+X28+1. This pattern shall be supported
by devices operating at Baud Rate Class 2 and/or Baud Rate Class 3 lane
speeds.
0b00110 - Reserved
0b00111 - Reserved
0b01000-0b01111 - Implementation Specific
0b10000-0b11111 - Reserved

Attempting to set the PRBS Pattern Selection value to an unsupported value
shall result in a programmed value of 0b00000.
RapidIO.org 399

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7-15 PRBS Lock Interval
Threshold

0 The period of time for which a PRBS sequence must be received error free
before declaring PRBS lock.

0 - Lock immediately
1 - One Silence Timer period
2 - Two Silence Timer periods
...
0x1FF - 511 Silence Timer periods
Note: A Silence Timer period is defined as the period of time required to
cause “silence_tmr_done” to be asserted.

16-31 PRBS Test Interval 0 The period of time that a PRBS sequence must be transmitted before
declaring the diagnostic complete. The granularity of this field is a PRBS
Test Interval Tick. If an implementation supports the Port n Link Timers
Control 2 CSR “Discovery Completion Timer” field, a Test Interval Tick
shall be the same as the Discovery Completion Timer period. If an
implementation does not support the Discovery Completion Timer field, as
Test Interval Tick shall be one second, +/- 33%.

0x0000 - 65,536 PRBS Test Interval Ticks
0x0001 - One PRBS Test Interval Tick
0x0002 - Two PRBS Test Interval Ticks
0x0003 - Three PRBS Test Interval Ticks
…
0xFFFF - 65,535 PRBS Test Interval Ticks

Table 7-61. Bit Settings for Port n PRBS Control CSR

Bit Name
Reset
Value

Description
400 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.7 Port n PRBS Lane Control CSR
(Block Offset 0x50, 0x90, 0xD0,..., 0x450)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “PRBS Support” bit is set. If the PRBS Support bit is clear this register shall
be reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-62. The bit fields in this register are read/write.

1

Table 7-62. Bit Settings for Port n PRBS Lane Control CSR

Bit Name
Reset
Value

Description

0-15 PRBS Transmit Lane
Control

0 Bit vector of lanes. When a bit is set, the PRBS pattern shall be transmitted
on the corresponding lane.
0x0001 - Transmit PRBS on lane 0
0x0002 - Transmit PRBS on lane 1
0x0004 - Transmit PRBS on lane 2
…
0x8000 - Transmit PRBS on lane 15
Bits corresponding to lanes greater than the maximum transmit port width
shall be reserved.
It shall be possible to set all supported bits in any combination.

16-31 PRBS Receive Lane
Control

0 Bit vector of lanes. When a bit is set, the PRBS pattern shall be checked on
the corresponding lane.
0x0001 - Check PRBS on lane 0
0x0002 - Check PRBS on lane 1
0x0004 - Check PRBS on lane 2
…
0x8000 - Check PRBS on lane 15
Bits corresponding to lanes greater than the maximum receive port width
shall be reserved.
It shall be possible to set one bit at a time within this field. It may be possible
to set more than one bit simultaneously within this field.
RapidIO.org 401

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.8 Port n PRBS Status 0 CSR
(Block Offset 0x54, 0x94, 0xD4,..., 0x454)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “PRBS Support” bit is set. If the PRBS Support bit is clear this register shall
be reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-63. The bit fields in this register are read only.

1

Table 7-63. Bit Settings for Port n PRBS Status 0 CSR

Bit Name
Reset
Value

Description

0 Lane 7 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 7 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved.
1 - PRBS Lock has been achieved.
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port with is 4x or less.

1-3 Lane 7 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 7 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.

4 Lane 6 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 6 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved.
1 - PRBS Lock has been achieved.
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.

5-7 Lane 6 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 6 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.

8 Lane 5 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 5 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved.
1 - PRBS Lock has been achieved.
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.
402 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9-11 Lane 5 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 5 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.

12 Lane 4 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 4 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved.
1 - PRBS Lock has been achieved.
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.

13-15 Lane 4 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 4 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 4x or less.

16 Lane 3 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 3 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved.
1 - PRBS Lock has been achieved.
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 2x or less.

17-19 Lane 3 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 3 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 2x or less.

20 Lane 2 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 2 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 2x or less.

Table 7-63. Bit Settings for Port n PRBS Status 0 CSR

Bit Name
Reset
Value

Description
RapidIO.org 403

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
21-23 Lane 2 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 2 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 2x or less.

24 Lane 1 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 1 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 1x.

25-27 Lane 1 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 1 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
This field shall be reserved if the maximum port width is 1x.

28 Lane 0 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 0 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

29-31 Lane 0 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 0 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

Table 7-63. Bit Settings for Port n PRBS Status 0 CSR

Bit Name
Reset
Value

Description
404 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.9 Port n PRBS Status 1 CSR
(Block Offset 0x58, 0x98, 0xD8,..., 0x458)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “PRBS Support” bit is set and the maximum port width is 16x. If the PRBS
Support bit is clear or the maximum port width is not 16x this register shall be
reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-64. The bit fields in this register are read only.

Table 7-64. Bit Settings for Port n PRBS Status 1 CSR

Bit Name
Reset
Value

Description

0 Lane 15 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 15 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

1-3 Lane 15 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 15 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

4 Lane 14 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 14 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

5-7 Lane 14 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 14 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

8 Lane 13 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 13 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

9-11 Lane 13 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 13 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.
RapidIO.org 405

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
12 Lane 12 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 12 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

13-15 Lane 12 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 12 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

16 Lane 11 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 11 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

17-19 Lane 11 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 11 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

20 Lane 10 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 10 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

21-23 Lane 10 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 10 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

24 Lane 9 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 9 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

25-27 Lane 9 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 9 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

Table 7-64. Bit Settings for Port n PRBS Status 1 CSR

Bit Name
Reset
Value

Description
406 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
28 Lane 8 PRBS Lock
Status

0 Indicates whether the PRBS checker for Lane 8 was able to achieve PRBS
lock during the last PRBS test.
0 - PRBS Lock has not been achieved
1 - PRBS Lock has been achieved
This field shall be cleared at the start of any PRBS test for the port.

29-31 Lane 8 PRBS Error
Count

0 Saturating count of PRBS errors detected on Lane 8 during the last PRBS
test.
0b000 - No errors were detected
0b001 - One error was detected
0b010 - Two errors were detected
…
0b111 - At least seven errors were detected
This field shall be cleared at the start of any PRBS test for the port.

Table 7-64. Bit Settings for Port n PRBS Status 1 CSR

Bit Name
Reset
Value

Description
RapidIO.org 407

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.10 Port n PRBS Locked Time CSR
(Block Offset 0x5C, 0x9C, 0xDC,..., 0x45C)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “PRBS Support” bit is set. If the PRBS Support bit is clear this register shall
be reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-65. The bit fields in this register are read only.

1

Table 7-65. Bit Settings for Port n PRBS Locked Time CSR

Bit Name
Reset
Value

Description

0-15 All PRBS Locked Time 0 This field contains the count of the full and partial PRBS Test Interval Ticks
that occurred after all lanes selected in the “PRBS Receive Lane Control”
field have asserted PRBS Lock.

0x0000 - Not all lanes declared PRBS Lock during the PRBS Test Interval
0x0001 - Between 0 and 1 full PRBS Test Interval Ticks elapsed after all
lanes asserted PRBS Lock.
0x0002 - Between 1 and 2 PRBS Test Interval Ticks elapsed after all lanes
asserted PRBS Lock
…
0xFFFF - Between 65534 and 65535 PRBS Test Interval Ticks elapsed after
all lanes asserted PRBS Lock.

This field shall be cleared at the start of any PRBS test for the port.

16-31 - 0 Reserved
408 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
7.10.11 Port n PRBS Seed CSR
(Block Offset 0x60, 0xA0, 0xE0,..., 0x460)

This register shall be implemented whenever the Miscellaneous Physical Layer
CAR “PRBS Support” bit is set. If the PRBS Support bit is clear this register shall
be reserved. The use and meaning of the bit fields of this register shall be as specified
in Table 7-66.

This register defines the starting seed value used to generate the PRBS sequence.

The ability to write the bit fields in this register is optional.
1

Table 7-66. Bit Settings for Port n PRBS Seed CSR

Bit Name Reset Value Description

0-31 Seed 0xFFFFFFFF Starting seed value used for PRBS generation.

Seed sizes of less than 32 bits shall be taken from the least significant bits of
this register.
RapidIO.org 409

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
410 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 8 Signal Descriptions

8.1 Introduction
This chapter contains the signal pin descriptions for a RapidIO LP-Serial port. The
interface is defined either as a 1x, 2x, 4x, 8x, or 16x lane, full duplex, point-to-point
interface using differential signaling. A lane implementation consists of Nx4 wires
with two for the egress and two for the ingress direction. The electrical details are
described in Chapter 9, "Common Electrical Specifications for less than 6.5 Gbaud
LP-Serial Links" and Chapter 12, "Electrical Specification for 10.3125 and 12.5
Gbaud LP-Serial Links".

8.2 Signal Definitions
Table 8-1 provides a summary of the RapidIO LP-Serial signal pins as well as a short
description of their functionality.

8.3 Serial RapidIO Interface Diagrams
Figure 8-1 shows the signal interface diagram connecting two 1x devices together
with the RapidIO LP-Serial interconnect.

Table 8-1. LP-Serial Signal Description

Signal Name I/O Signal Meaning Timing Comments

TD[0-(N-1)]1 O Transmit Data - The transmit data is a
unidirectional point to point bus designed to
transmit the packet information. The TD bus of
one device is connected to the RD bus of the
receiving device. TD[0] is used in 1x mode.

Clocking is embedded in data using
8b/10b or 64b/67b encoding.

TD[0-(N-1)]1 O Transmit Data complement—These signals are
the differential pairs of the TD signals.

RD[0-(N-1)]1 I Receive Data - The receive data is a
unidirectional point to point bus designed to
receive the packet information. The RD bus of
one device is connected to the TD bus of the
receiving device. RD[0] is used in 1x mode.

Clocking is embedded in data using
8b/10b or 64b/67b encoding.

RD[0-(N-1)]1 I Receive Data complement—These signals are
the differential pairs of the RD signals.

NOTES:
1. N has legal values of 1, 2, 4, 8, and 16
RapidIO.org 411

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Figure 8-2 shows the signal interface diagram connecting two Nx devices together
with the RapidIO LP-Serial interconnect.

Figure 8-3 shows the connections between a Nx LP-Serial device and a 1x LP-Serial
device.

Figure 8-1. RapidIO 1x Device to 1x Device Interface Diagram

Figure 8-2. RapidIO Nx Device to Nx Device Interface Diagram

Figure 8-3. RapidIO Nx Device to 1x Device Interface Diagram

TD[0]
TD[0]

RD[0]

RD[0]

1x DEVICE

RD[0]
RD[0]

TD[0]

TD[0]

1x DEVICE

TD[0-(N-1)]
TD[0-(N-1)]

RD[0–(N-1)]

RD[0–(N-1)]

Nx DEVICE

RD[0-(N-1)]
RD[0-(N-1)]

TD[0–(N-1)]

TD[0–(N-1)]

Nx DEVICE

TD[0]
TD[0]

TD[1-(N-1)]
TD[1-(N-1)]

RD[0]
RD[0]

RD[1-(N-1)]
RD[1-(N-1)]

Nx DEVICE

RD[0]
RD[0]

TD[0]
TD[0]

1x DEVICE
412 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 9 Common Electrical Specifications
for less than 6.5 Gbaud LP-Serial Links

9.1 Introduction
The chapter defines the common electrical specifications for the LP-Serial Physical
Layer. Chapter 10, "1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud LP-Serial Links"
defines Level I links compatible with the 1.3 version of the Physical Layer
Specification, that supports baud rates of 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud.
Chapter 11, "5 Gbaud and 6.25 Gbaud LP-Serial Links" defines Level II links that
support baud rates of 5 Gbaud and 6.25 Gbaud.

A Level I link shall:

• allow 1.25 Gbaud, 2.5 Gbaud, or 3.125 Gbaud baud rates

• supports AC coupling

• supports hot plug

• supports short run (SR) and long run (LR) links achieved with two transmitters

• support single receiver specification that will accept signals from both the short
run and long run transmitter specifications

• achieve Bit Error Ratio of lower than 10-12 per lane

A Level II link shall:

• allow 5 Gbaud or 6.25 Gbaud baud rates

• supports AC coupling and optional DC coupling

• supports hot plug

• supports short run (SR), medium run (MR), and long run (LR) links achieved
with two transmitters and two receivers

• achieves Bit Error Ratio of lower than 10-15 per lane but test requirements will

be verified to 10-12 per lane.

Together, these specifications allow for solutions ranging from simple chip-to-chip
interconnect to board-to-board interconnect driving two connectors across a
backplane. The faster and wider electrical interfaces specified here are required to
provide higher density and/or lower cost interfaces.
RapidIO.org 413

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The short run defines a transmitter and a receiver that should be used mainly for
chip-to-chip connections on either the same printed circuit board or across a single
connector. This covers the case where connections are made to a mezzanine
(daughter) card. The smaller swings of the short run specification reduces the overall
power used by the transceivers.

The long run defines a transmitter and receiver that use larger voltage swings and
channel equalization that allows a user to drive signals across two connectors and
backplanes.

The two transmitter specifications allows for a medium run specification that also
uses larger voltage swings that are capable of driving signals across a backplane but
simplifies the receiver requirements to minimize power and complexity. This option
has been included to allow the system integrator to deploy links that take advantage
of either channel materials and/or construction techniques that reduce channel loss
to achieve lower power systems.

It is also a goal of this specification to enable the inter-operability of Level I and
Level II links to allow newer devices to be used with existing legacy devices.

All unit intervals are specified with a tolerance of ±100 ppm. The worst case
frequency difference between any transmit and receive clock is 200 ppm.

The electrical specifications are based on loss, jitter, and channel cross-talk budgets
and defines the characteristics required to communicate between a transmitter and a
receiver using nominally 100 differential copper signal traces on a printed circuit
board. Rather than specifying materials, channel components, or configurations, this
specification focuses on effective channel characteristics. Hence a short length of
poorer material should be equivalent to a longer length of premium material. A
'length' is effectively defined in terms of its attenuation rather than physical distance.

The RapidIO specification defines applicable data characteristics (e.g. DC balance,
transition density, maximum run length), channel models and compliance
points/parameters supporting the physical run and conditions.

Finally it is assumed that the link designer has taken care to minimize reflections and
crosstalk so that the link can be sufficiently equalized with the transmitter and
receiver chosen.

9.2 References
1. IEEE Standard 802.3ae-2002. “Standard for Information

technology-Telecommunications and information exchange between
systems-Local and metropolitan area networks-Special Requirements. Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specification. Amendment: Media Access Control
(MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s
Operation”, IEEE Std. 802.3ae-2002, August 30, 2002.
414 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
2. Optical Internetworking Forum “Common Electrical I/O (CEI) - Electrical and Jitter
Interoperability Agreements for 6G+ bps and 11G+ bps I/O”, IA # OIF-CEI-02.0,
January 28, 2005.

3. ITU-T Recommendation O.150 May 1996 and corrigendum May 2002. General
requirements for instrumentation for performance measurements on digital
transmission equipment.

4. Low Voltage Differential Swing (LVDS), ANSI/TIA/EIA-644-A-2001

5. Optical Internetworking Forum, OIF 2002.507.01 - High Speed Backplane (HSB)
Interface Electrical Specification for 5-6.375Gbps Baud Rates over Currently Existing
Communications Backplanes.

9.3 Abbreviations
Table 9-1. Abbreviations

Abbreviation Meaning

BER Bit Error Ratio

BERT Bit Error Ratio Test or Tester

BUJ Bounded Uncorrelated Jitter

CBGJ Correlated Bounded Gaussian Jitter

CBHPJ Correlated Bounded High Probability Jitter

CEI Common Electrical I/O

CDF Cumulative Distribution Function

CDR Clock Data Recovery

CID Consecutive Identical Digits

CML Current Mode Logic

Cn Cursor number

DCD Duty Cycle Distortion

dB Decibel

DDJ Data Dependent Jitter

DFE Decision Feedback Equalizer

DJ Deterministic Jitter

DUT Device Under Test

EMI Electro-Magnetic Interference

erf error function

erfinv inverse error function

ESD Electro-Static Discharge

FEXT Far End Cross Talk

FFT Fast Fourier Transform

FIR Finite Impulse Response

FR-4 Fire Retardant 4 Glass Reinforce Epoxy Laminate PCB material
RapidIO.org 415

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Gbps Giga bits per second

GJ Gaussian Jitter

Gbaud Giga symbols per second

HF High Frequency

HPF High Pass Filter

HPJ High Probability Jitter

IA Implementation Agreement

ISI Inter-Symbol Interference

LMS Least Mean Square

LPF Low Pass Filter

LVDS [4] Low Voltage Differential Signal

LR Long Run

mA milli-Amp

MR Medium Run

mV milli-Volt

NEXT Near End Cross Talk

NRZ Non Return to Zero

PCB Printed Circuit Board

PDF Probability Distribution Function

PECL Positive Emitter Coupled Logic

PJ Periodic Jitter

pp Peak to Peak

ppd Peak to Peak Differential (as in 300mVppd)

PLL Phase Locked Loop

ps pico second

PRBS Pseudo Random Bit Stream

Q Inverse error function

RJ Random Jitter

RV Random Variable

RX Receiver

R_Zvtt Resistance of termination to Vtt

S11 and S22 reflection coefficient

S21 transmission coefficient

SCC11 and SCC22 Common mode reflection coefficients

SCD11 and SCD22 Differential to common mode conversion coefficient

SDD11 and SDD22 Differential reflection coefficients

SDC11 and SDC22 Common mode to differential conversion coefficient

Table 9-1. Abbreviations

Abbreviation Meaning
416 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4 Definitions

SJ Sinusoidal Jitter

SR Short Run

sym/s symbols/second

TJ Total Jitter

TDM Time Division Multiplexed data

TFI TDM Fabric to Framer Interface

TX Transmitter

UBHPJ Uncorrelated Bounded High Probability Jitter

UI Unit Interval = 1/(baud rate)

UUGJ Uncorrelated Unbounded Gaussian Jitter

Vtt Termination Voltage

XAUI 10 Gigabit Attachment Unit Interface

Table 9-2. General Definitions

Parameter Description

Bit Error Ratio A parameter that reflects the quality of the serial transmission and detection scheme. The Bit Error
Ratio is calculated by counting the number of erroneous bits output by a receiver and dividing by
the total number of transmitted bits over a specified transmission period.

Baud rate Is a measure of the number of times per second a signal in a communications channel changes
state. The state is usually voltage level, frequency, or phase angle. It is named after Émile Baudot,
the inventor of the Baudot code for telegraphy.

Channel In this specification Channel shall mean electrical differential channel. The channel is
combination of electrical interconnects that together form the signal path from reference points T
to R - see Figure 9-11. The channel will typically consist of PCB traces, via holes, component
attachment pads and connectors. A characteristic of a signal channel is the complex characteristic
impedance Z.

Common Mode Voltage Average of the Vhigh and Vlow voltage levels - see Figure 9-1.

Confidence level The use of this definition shall be understood as being with reference to a Gaussian distribution

Differential Termination
Resistance mismatch

The difference in the DC termination resistance with respect to ground of any two signals forming
a differential pair. Usually due to large process spread the absolute termination resistance is
specified relatively loose, e.g. 20% where the relative difference of resistors of the same device
will be much less, e.g 5%. This parameter is used to specify the relative difference tighter than the
overall resistance for the purpose of minimizing differential signal mode conversion

Gaussian A statistical distribution (also termed “normal”) characterized by populations that are not bound in
value and have well defined “tails”. The term “random” in this document always refers to a
Gaussian distribution.

Golden PLL Refers to a defined clock extraction unit which phase tracks the inherent clock present in a data
signal. The phase tracking bandwidth is usually defined in terms of a corner frequency and if not
defined with a corner frequency of baud/1667, a roll off of 20 dB/dec and <0.1 dB peaking

Golden Channel Refers to an electrical channel which is usually identified using a channel compliancy
methodology and is used in the testing of transmitters and receivers

Table 9-1. Abbreviations

Abbreviation Meaning
RapidIO.org 417

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Intersymbol Interference Data dependent deterministic jitter caused by the time differences required for the signal to arrive
at the receiver threshold when starting from different places in bit sequences (symbols). For
example when using media that attenuates the peak amplitude of the bit sequence consisting of
alternating 0, 1, 0, 1... more than peak amplitude of the bit sequence consisting of 0, 0, 0, 0, 1, 1, 1,
1... the time required to reach the receiver threshold with the 0, 1, 0, 1... is less than required from
the 0, 0, 0, 0, 1, 1, 1, 1... The run length of 4 produces a higher amplitude which takes more time to
overcome when changing bit values and therefore produces a time difference compared to the run
length of 1 bit sequence. When different run lengths are mixed in the same transmission the
different bit sequences (symbols) therefore interfere with each other. Intersymbol Interference is
expected whenever any bit sequence has frequency components that are propagated at different
rates by the transmission media.

Lane A single RapidIO Channel

Link A functional connection between the Tx and Rx ports of 2 components, that can be multiple or
parallel RapidIO Lanes defined as 1:N. The definition a Link does not imply duplex operation.

Non-transparent applications Defines an application where the high frequency transmit jitter of a device is defined
independently to the high frequency jitter present at any data input of the same device

Skew The constant portion of the difference in the arrival time between the data of any two in-band
signals.

Stressed Signal (or) Stressed
Eye

In order to test the tolerance of a receiver a stressed signal or eye is defined which when applied to
the receiver must be received with the defined Bit Error Rate. The stressed signal or eye is defined
in terms of its horizontal closure or jitter and amplitude normally in conjunction with an
eye-mask.

Transparent applications Defines an application where the high frequency transmit jitter of a device is dependent on the
high frequency jitter present at one or more of the data inputs of the same device

Symbol Unit of information conveyed by a single state transition in the medium

Symbol spaced Describes a time difference equal to the nominal period of the data signal

Unit Interval One nominal bit period for a given signaling speed. It is equivalent to the shortest nominal time
between signal transitions. UI is the reciprocal of Symbol.

Table 9-3. Jitter and Wander Definitions

Parameter Description

Correlated Bounded
Gaussian Jitter

Jitter distribution where the value of the jitter shows a correlation to the signal level being
transmitted. The distribution is quantified, using a Gaussian approximation, as the gradient of the
bathtub linearization at the Bit Error Rate of interest. R_RJ = R_GJ

Correlated Bounded High
Probability Jitter

Jitter distribution where the value of the jitter shows a strong correlation to the signal level being
transmitted. This jitter may considered as being equalizable due to its correlation to the signal
level. Was called Data Dependent Jitter in earlier specification revisions.

Correlated Wander Components of wander that are common across all applicable in band signals.

Duty Cycle Distortion The absolute value of the difference in the average width of a’1’ symbol or a’0’ symbol and the
ideal periodic time in a clock-like repeating 0,1,0,1 sequence. Duty Cycle Distortion is part of the
CBHPJ distribution and is measured at the time-averaged signal level.

Gaussian Jitter An overall term that defines a jitter distribution that at the BER of interest e.g. 1e-15 still
shows a Gaussian distribution. Unless otherwise specified Gaussian Jitter is the RMS
sum of CBGJ and UUGJ. Was called Random Jitter in earlier specification revisions.

Table 9-2. General Definitions

Parameter Description
418 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
High Probability Jitter Jitter distribution that at the BER of interest is approximated by a dual dirac. Unless otherwise
specified High Probability Jitter is the sum of UBHPJ, CBHPJ, PJ, SJ, DCD. The distribution is
quantified, using a dual dirac approximation, as the offset of the bathtub linearization at the Bit
Error Rate of interest. Was called Deterministic Jitter in earlier specification revisions.

Jitter Jitter is deviation from the ideal timing of an event at the mean amplitude of the signal population.
Low frequency deviations are tracked by the clock recovery circuit, and do not directly affect the
timing allocations within a bit interval. Jitter that is not tracked by the clock recovery circuit
directly affects the timing allocations in a bit interval. Jitter is phase variations in a signal (clock or
data) after filtering the phase with a single pole high pass filter with the -3 dB point at the jitter
corner frequency.

Jitter Generation Jitter generation is the process whereby jitter appears at the output port in the absence of applied
input jitter at the input port.

Jitter RMS The root mean square value or standard deviation of jitter. See clause 2 for more information.

Jitter Transfer The ratio of the jitter output and jitter input for a component, device, or system often expressed in
dB. A negative dB jitter transfer indicates the element removed jitter. A positive dB jitter transfer
indicates the element added jitter. A zero dB jitter transfer indicates the element had no effect on
jitter. The ratio should be applied separately to deterministic components and Gaussian (random)
jitter components.

Peak-to-Peak Jitter For any type of jitter, Peak to Peak Jitter is the full range of the jitter distribution that contributes
within the specified BER.

Periodic Jitter A sub form of HPJ that defines a jitter which has a single fundamental harmonic plus possible
multiple even and odd harmonics.

Relative Wander Components of wander that are uncorrelated between any two in band signals (See Figure 9-6)

Sigma Refers to the standard deviation of a random variable modelled as a Gaussian Distribution. When
used in reference to jitter, it refers to the standard deviation of the Gaussian Jitter component(s).
When used in reference to confidence levels of a result refers to the probability that the result is
correct given a Gaussian Mode, e.g. a measured result with 3 sigma confidence level would imply
that 99.9% of the measurements are correct.

Sinusoidal Jitter A sub form of HPJ that defines a jitter which has a single frequency harmonic.

Total Jitter Sum of all jitter components.

Total Wander The sum of the correlated and uncorrelated wander. (See Figure 9-7)

Unbounded Gaussian Jitter Jitter distribution that shows a true Gaussian distribution where the observed peak to peak value
has an expected value that grows as a function of the measurement time. This form of jitter is
assumed to arise from phase noise random processes typically found in VCO structures or clock
sources. It is usually quantified as either the Root Mean Square (RMS) or Sigma of the Gaussian
distribution, or as the expected peak value for a given measurement population. (Formally defined
as T_RJ)

Uncorrelated Bounded High
Probability Jitter.

Jitter distribution where the value of the jitter show no correlation to any signal level being
transmitted. Formally defined as T_DJ.

Uncorrelated Wander Components of wander that are not correlated across all applicable in band signals.

Wander The peak to peak variation in the phase of a signal (clock or data) after filtering the phase with a
single pole low pass filter with the -3db point at the wander corner frequency. Wander does not
include skew.

Table 9-3. Jitter and Wander Definitions

Parameter Description
RapidIO.org 419

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4.1 Definition of Amplitude and Swing

LP-Serial links use differential signaling. This section defines the terms used in the
description and specification of these differential signals. Figure 9-1 shows how
these signals are defined and sets out the relationship between absolute and
differential voltage amplitude. The figure shows waveforms for either the
transmitter output (TD and TD) or a receiver input (RD and RD).

Each signal swings between the voltages VHIGH and VLOW where

VHIGH > VLOW

The differential voltage, VDIFF , is defined as

VDIFF = VD+ - VD-

Figure 9-1. Definition of Transmitter Amplitude and Swing

VDIFF(n) VDIFF(n+1) VDIFF(n+2)

VD+

VD-

VCM

GND

VO

UI UI

1 1 0
VLOW

VHIGH

Min abs output

Max abs output

VDIFF-PP(n) VDIFF-PP(n+1) VDIFF-PP(n+2)
420 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
where VD+ is the voltage on the positive conductor and VD- is the voltage on the
negative conductor of a differential transmission line. VDIFF represents either the
differential output signal of the transmitter, VOD, or the differential input signal of
the receiver, VID where

VOD = VTD - VTD

and

VID = VRD - VRD

The common mode voltage, VCM, is defined as the average or mean voltage present
on the same differential pair. Therefore

VCM = |VD+ + VD-|/2

The maximum value, or the peak-to-peak differential voltage, is calculated on a per
unit interval and is defined as

VDIFFp-p = 2 x max|VD+ - VD-|

because the differential signal ranges from VD+ - VD- to -(VD+ - VD-)

To illustrate these definitions using real values, consider the case of a CML (Current
Mode Logic) transmitter and each of its outputs, TD and TD, has a swing that goes
between VHIGH = 2.5 V and VLOW = 2.0 V, inclusive. Using these values the
common mode voltage is calculated to be 2.25 V and the single-ended peak voltage
swing of the signals TD and TD is 500 mVpp. The differential output signal ranges
between 500 mV and -500 mV, inclusive. therefore the peak-to-peak differential
voltage is 1000 mVppd.

9.4.2 Transmitter (Near-End) Template

For each baud rate at which the LP-Serial transmitter is specified to operate, the
output eye pattern for transition symbols shall fall entirely within the unshaded
portion of the Transmitter (near-end) Output Compliance Mask defined in
Figure 9-2. Specific parameter values are called out in the sections that follow.
RapidIO.org 421

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The output eye pattern of a LP-Serial transmitter that implements de-emphasis (to
equalize the link and reduce intersymbol interference) need only comply with the
Transition Transmitter Output Compliance Mask when there is a symbol transition
from 1 to 0 or 1 to 0 or when pre-emphasis is disabled or minimized

For 5 Gbaud and 6.25 Gbaud links the Transmitters eye mask will also be evaluated
during the steady-state where there are no symbol transitions, e.g a 1 followed by a
1 or a 0 followed by a 0, and the signal has been de-emphasized. This additional
transmitter eye mask constraint is shown in Figure 9-3.

Figure 9-2. Transition Symbol Transmit Eye Mask

T_X1 T_X2 1-T_X2 1-T_X1 1.00.0

T_Y2

T_Y1

-T_Y1

-T_Y2

0

Time (UI)

A
m

p
lit

u
d

e
 (

m
V

)

422 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
During the steady-state the eye mask prevents the transmitter from de-emphasizing
the low frequency content of the data too much and limiting the available
signal-to-noise at the receiver.

The de-emphasis introduces a jitter artifact that is not accounted for in this eye mask.
This additional jitter is the result of the finite rise/fall time of the transmitter and the
non-uniform voltage swing between the transitions. This additional deterministic
jitter must be accounted for as part of the high probability jitter.

Table 9-4 defines the standard parameters that will be specified for every transmitter.

Figure 9-3. Transition and Steady State Symbol Eye Mask

Table 9-4. Transmitter Output Jitter Specification

Characteristic Symbol Conditions Min Typ Max Units

Total Jitter T_TJ UIpp

Eye Mask T_X1 UI

Eye Mask T_X2 UI

Eye Mask T_Y1 mV

NOTES:
Uncorrelated Unbounded Gaussian Jitter must be defined with respect to specified BER of 10-12, Q=7.03 for 1.25 Gbaud,
2.5 Gbaud, and 3.125 Gbaud links
Uncorrelated Unbounded Gaussian Jitter must be defined with respect to specified BER of 10-15, Q=7.94 for 5 Gbaud and
6.25 Gbaud links

T_X1 T_X2 1-T_X2 1-T_X1 1.00.0

T_Y2

T_Y1

-T_Y1

-T_Y2

0

Time (UI)

A
m

p
lit

u
d

e
 (

m
V

)

Keep Out
For De-emphasis

T_Y3

-T_Y3

0.5
RapidIO.org 423

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Note: In previous versions of the RapidIO LP-Serial specification
different symbols names were used to define the time and voltage
points on eye masks. Table 9-5 can be used as a cross reference for the
transmitter eye mask symbol names.

9.4.3 Receiver (Far-End) Template

The receiver (far-end) template has two definitions based on Level I and Level II
links.

9.4.3.1 Level I Receiver Template

Figure 9-4 illustrates the definition in a Level I receiver eye template.

Eye Mask T_Y2 mV

Eye Mask (5 Gbaud and 6.25 Gbaud only) T_Y3 mV

Table 9-5. Transmitter Eye Mask Cross Reference

Current Version 1.3 Version

T_Y1 VDIFF min

T_Y2 VDIFF max

T_Y3 N/A

T_X1 A

T_X2 B

Table 9-4. Transmitter Output Jitter Specification

Characteristic Symbol Conditions Min Typ Max Units

NOTES:
Uncorrelated Unbounded Gaussian Jitter must be defined with respect to specified BER of 10-12, Q=7.03 for 1.25 Gbaud,
2.5 Gbaud, and 3.125 Gbaud links
Uncorrelated Unbounded Gaussian Jitter must be defined with respect to specified BER of 10-15, Q=7.94 for 5 Gbaud and
6.25 Gbaud links
424 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table 9-8 defines the standard parameters that will be specified for Level I receivers
which have an open eye at the far-end. The termination conditions used to measure
the received eye are defined Section 9.5.13.

Also in the previous versions of the RapidIO LP-Serial specification different
symbols names were used to define the time and voltage points on eye masks. Table
9-8 can be used as a cross reference for the receiver eye mask.

Figure 9-4. Level I Receiver Input Mask

Table 9-6. Level I Receiver Jitter Specification

Characteristic Symbol Conditions Min Typ Max Units

Total Jitter R_TJ UIpp

Eye Mask R_X1 UI

Eye Mask R_X2 UI

Eye Mask R_Y1 mV

NOTES:
Uncorrelated Unbounded Gaussian Jitter must be defined with respect to specified BER of 10-12, Q=7.03 for 1.25 Gbaud,
2.5 Gbaud, and 3.125 Gbaud links

R_X1 1-R_X1 1.00.0

R_Y2

R_Y1

-R_Y1

-R_Y2

0

Time (UI)

A
m

p
lit

u
d

e
 (

m
V

)

0.5
RapidIO.org 425

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4.3.2 Level II Receiver Template

For a Level II link the receiver mask it is defined as is defined in Figure 9-5. Specific
parameter values for both masks are called out in the sections that follow.

Table 9-8 defines the standard parameters that will be specified for receivers that
have an open eye at the far-end. The termination conditions used to measure the
received eye are defined Section 9.5.13.

Table 9-7. Receiver Eye Mask Cross Reference

Current Version 1.3 Version

R_Y1 VDIFF min

R_Y2 VDIFF max

R_X1 A

R_X2 B

Figure 9-5. Receiver Input Mask

R_X1 1-R_X1 1.00.0

R_Y2

R_Y1

-R_Y1

-R_Y2

0

Time (UI)

A
m

p
lit

u
d

e
 (

m
V

)

0.5
426 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4.4 Definition of Skew and Relative Wander

See Figure 9-6 for an illustration of skew and relative wander. The definitions
appear in Table 9-3.

See Figure 9-7 for an illustration of total wander in a signal. The definition appears
in Table 9-3.

Table 9-8. Level II Receiver Jitter Specification

Characteristic Symbol Conditions Min Typ Max Units

Total Jitter R_TJ UIpp

Eye Mask R_X1 UI

Eye Mask R_Y1 mV

NOTES:
Uncorrelated Unbounded Gaussian Jitter must be defined with respect to specified BER of 10-15, Q=7.94 for 5 Gbaud and
6.25 Gbaud links

Figure 9-6. Skew and Relative Wander Between in Band Signals

Skew between
Lanes X and Y

Lane X

Lane Y The rising edges shown
are logical coincident data

with the transmitter

Relative Wander between
lanes X and Y
Peak to peak
RapidIO.org 427

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4.5 Total Wander Mask

Total wander specifications should be considered as accumulated low frequency
jitter. As modern CDRs are digitally based they show a corner tracking frequency
plus slew limitation which has been guaranteed, therefore for jitter tolerance testing
the total wander needs to be spectrally defined to ensure correct operation.

To this end, for jitter tolerance testing, the wander is considered a sinusoidal jitter
source as shown in Figure 9-8 below.

At higher frequency this jitter source is used to ensure margin in the high frequency
jitter tolerance of the receiver. At lower frequencies the higher SJ should then be
tracked by the CDR.

Figure 9-7. Total Wander of a Signal

Figure 9-8. Total Wander Mask

Total Wander of a
Data or clock signal

Peak to peak

Lane Y

Edge of clean clock
that is frequency
locked to lane Y

SJ

Total Wander Amplitude

baud/1667

20dB/dec

20MHz

High
Frequency
Amplitude
428 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4.6 Relative Wander Mask

Specifically for interfaces defining relative wander, Figure 9-9 is also defined in
terms of a sinusoidal jitter sources as shown below.

9.4.7 Random Jitter Mask

To ensure that the random jitter modulation of stressed signals is above the CDR
bandwidth and therefore untracked, the filter mask shown in Figure 9-10 shall be
applied where necessary.

9.4.8 Defined Test Patterns

The data test patterns are unique to the two levels of link and will be defined in the
sections specific to these.

Figure 9-9. Relative Wander Mask

Figure 9-10. Random Jitter Spectrum

SJ

Relative Wander
Amplitude

baud/1667

20dB/dec
High

Frequency
Amplitude

20MHz

Po
w

er
(d

B
)

0dB

10MHz

20dB/dec

fbaud /2
RapidIO.org 429

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.4.9 Reference Model

The LP-Serial electrical reference model is defined in Figure 9-11. Note that the RX
and TX blocks include all off-chip components associated with the respective
function. Thus the reference points T and R are defined to be the component edge of
the transmitter and receiver respectively.

Note: Through out this specification the terms ‘near’ and ‘far’ are used to describe
aspects of the channel. Near-end will always be used to refer to the end of the
channel attached to the transmitter, e.g. TE or TI, independent of if it is the egress or
ingress channel. Far-end will be used to refer to the end of the channel attached to
the receiver, e.g. RI or RE.

9.5 Common Electrical Specification

9.5.1 Introduction

This section specifies electrical parameters and attributes common to all links. In the
event of a difference between an individual link and these general requirements, the
respective individual link shall prevail.

The LP-Serial 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud Electrical specifications
are guided by the XAUI electrical interface specified in Clause 47 of IEEE
802.3ae-2002.[1]

Figure 9-11. Reference Model

TE E

TR II

Component
Edge

TX

RX

RX
R

TX

Egress Channel

Ingress Channel

Component
Edge
430 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The LP-Serial 5 Gbaud and 6.25 Gbaud Electrical specifications are based upon the
Optical Internetworking Forum's Common Electrical Interface [2], referred to
henceforth as CEI.

CEI includes the following sections that are the basis for the LP-Serial RapidIO
5 Gbaud and 6.25 Gbaud interfaces:

• CEI-6G-SR clause 6 specification for data lane(s) that support bit rates from
4.976 to 6.375 Gbaud over Printed Circuit Boards with physical runs from 0
to 20 cm and up to 1 connector. CEI-6G-SR forms the basis for the LP-Serial
5 Gbaud and 6.25 Gbaud Short Run Interface electrical specifications.
RapidIO has enhanced this electrical specification to include a
continuous-time equalizer with one zero and one pole.

• CEI-6G-LR Clause 7 specification for data lane(s) that support bit rates from
4.976 to 6.375 Gbaud over Printed Circuit Boards with physical runs from 0
to 100 cm and up to 2 connectors. CEI-6G-LR forms the basis for the
LP-Serial 5 Gbaud and 6.25 Gbaud Long Run Interface electrical
specifications.

• RapidIO has added a specification for data lane(s) that supports bit rates from
5 to 6.25 Gbaud over Printed Circuit Boards and physical runs from 0 to
60 cm and up 2 connectors. The CEI-6G-LR transmitter and a
continuous-time receiver with one zero and one pole form the basis for the
LP-Serial 5 Gbaud and 6.25 Gbaud Medium Run Interface electrical
specifications.

Note: The OIF CEI documentation uses the term “reach” to describe
the length of the channel. Here “run” is used to maintain consistency
with the RapidIO 1.3 interconnect specification.

While the OIF CEI documentation defines support for 4.976 to
6.375 Gbaud RapidIO only supports 5.0 Gbaud and 6.25 Gbaud data
rates

9.5.2 Data Patterns

There is a requirement that the link data follow 8b/10b encoding rules and when
specified raw data scrambling requirements as defined in Chapter 4, "8b/10b PCS
and PMA Layers", to ensure proper operation. The predicted BER performance and
jitter requirements are only valid when this assumption is satisfied. If all of these
conditions are not met, then the link may not work to the full distance, or meet the
BER, or in fact work at all.

9.5.3 Signal Levels

The signal is a low swing differential interface. This implies that the receiver has a
wide common mode range (within the maximum absolute input voltages). All
devices must support load type 0 defined in Table 9-9. Level II SR devices can
RapidIO.org 431

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
optionally support any or all of the other 3 load types while Level II MR and LR
devices can optionally support load type 1.

.

This type of differential interface allows for inter-operability between components
operating from different supply voltages and different I/O types (CML, LVDS-like,
PECL, etc.). Low swing differential signaling provides noise immunity and
improved electromagnetic interference (EMI). Differential signal swings are
defined in following sections and depend on several factors such as transmitter
pre-equalization, receiver equalization, and transmission line losses.

9.5.4 Bit Error Ratio

9.5.4.1 Level I Bit Error Ratio

The LP-Serial 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud interface lanes will operate
with a Bit Error Ratio (BER) of 10-12.

It should be noted that most modern system are capable of achieving the improved
BER required in Level II links.

9.5.4.2 Level II Bit Error Ratio

The LP-Serial 5 Gbaud and 6.25 Gbaud interface lanes will operate with a Bit Error
Ratio (BER) of 10-15 (with a test requirement to verify 10-12). See Clause 2 of CEI
for more information on the jitter model and how to measure BER.

9.5.5 Ground Differences

The maximum ground difference between the transmitter and the receiver shall be
50 mV for SR links and 100mV for MR and LR links. This will affect the absolute
maximum voltages at compliance point 'R'. If transmitter and receiver are on the
same PCB with no intervening connectors, then the ground difference is
approximately 0 mV.

9.5.6 Cross Talk

Cross talk arises from coupling within the connectors, on the PCB, the package and
the die. Cross talk can be categorized as either Near-End or Far-End cross talk
(NEXT and FEXT). In either of these categories, the amount of cross talk is
dependent upon signal amplitudes, signal spectrum, and trace/cable length. There

Table 9-9. Definition of Load Types

Characteristics Load Type 0 Load Type 1 Load Type 2 Load Type 3 Units

R_Zvtt >1k <30 <30 <30

Nominal Vtt undefined 1.2 1.0 0.8 V
432 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
can be many aggressor channels onto one victim channel, however typically only a
few are dominant.

Further consideration of cross talk can be found in Annex A, “Transmission Line
Theory and Channel Information (Informative)".

9.5.7 Transmitter Test Load

All transmitter characteristics should be implemented and measured to a differential
impedance of 100 1% at DC with a return loss of better than 20 dB from baud
rate divided by 1667 to 1.5 times the baud rate, unless otherwise noted.

9.5.8 Transmitter Lane-to-Lane Skew

While the protocol layer will control some of the lane to lane skew, the electrical
level for the lane-to-lane skew caused by the transmitter circuitry and associated
routing is allowed up to be:

• less than 1000 ps for port widths less than or equal to 4 lanes

• less than 2 UI + 1000 ps for port width with greater than 4 lanes

Hence, the total output (i.e. measured) lane-to-lane skew is to be specified in the
protocol standards with the above skew taken into account. The transmitter
lane-to-lane skew is only for the SerDes TX and does not include any effects of the
channel.

9.5.9 Receiver Input Lane-to-Lane Skew

The maximum amount of lane-to-lane skew at the input pins of the receiver is
determined by the ability of the receiver to resolve the difference between two
successive ||A|| columns. Since the minimum number of non-||A|| columns between
||A|| columns is 16, the maximum lane skew that can be unambiguously corrected is
the time it takes to transmit 7 code groups per lane. Therefore, the maximum
lane-to-lane skew at the input pins of a receiver is calculated as:

(7 code groups) x (10 bits/code-group) x (1 UI/bit) x (ns/UI)

It is important to note that the total lane-to-lane skew specification includes the skew
caused by the transmitter’s PCS and PMA (SerDes), the channel, the receivers’
PMA (SerDes) and PCS and any logic that is needed to create the aligned column of
||A|| at the receiving device.

9.5.10 Transmitter Short Circuit Current

The max DC current into or out of the transmitter pins when either shorted to each
other or to ground shall be ±100 mA when the device is fully powered up. From a
hot swap point of view, the ±100 mA limit is only valid after 10 s.
RapidIO.org 433

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.5.11 Differential Resistance and Return Loss, Transmitter and
Receiver

The DC differential resistance shall be between 80 and , inclusive.

The differential return loss shall be better than A0 from f0 to f1 and better than

A0 + Slope*log10(f/f1)

where f is the frequency from f1 to f2 (see Figure 9-12). Differential return loss is
measured at compliance points T and R. If AC coupling is used, then all components
(internal or external) are to be included in this requirement. The reference
impedance for the differential return loss measurements is 100 .

Common mode return loss measurement shall be better than -6 dB between a
minimum frequency of 100 MHz and a maximum frequency of 0.75 times the baud
rate. The reference impedance for the common mode return loss is .

9.5.12 Baud Rate Tolerance

The baud rates are defined to be 1.25 Gbaud, 2.5 Gbaud, 3.125 Gbaud, 5 Gbaud and
6.25 Gbaud. Each interface is required to operate asynchronously with a tolerance
of ±100 ppm from the nominal baud rate.

Note: The minimum and maximum baud rates can be calculated as:

Baudrate(1 ± 100E-6)

Figure 9-12. Transmitter and Input Differential Return Loss

Frequency (Hz)

Lo
ss

 (d
B

)

f2f1f0

A0

Slope

Acceptable
Region
434 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.5.13 Termination and DC Blocking

Each link requires a nominal 100 differential source termination at the transmitter
and a nominal 100 differential load termination at the receiver. The terminations
shall provide both differential and common mode termination to effectively absorb
differential or common mode noise and reflections. Receivers and transmitters shall
support AC coupling and may also optionally support DC coupling. AC Coupled
receivers require a differential termination >1 kat DC (by blocking capacitors in
or near receivers as shown in Figure 9-13 or by circuit means within the receiver).
DC Coupled devices shall meet additional electrical parameters T_Vcm, R_Vrcm,
R_Vtt, R_Zvtt. All termination components are included within the RX and TX
blocks as shown in the reference model as defined in Section 9.4.9.

9.6 Pulse Response Channel Modelling
This section shall describe the theoretical background for channel modelling.

9.6.1 Generating a Pulse Response

Knowing the spectral transfer function for a channel allows the pulse response of the
channel can be calculated using tools such as MATLAB®

The Pulse Response of the channel is the received pulse for an ideal square wave and
is calculated by either

• convolving the pulse with the impulse response of the channel or

• multiplying the Fourier spectrum of the ideal transmitted square wave with the
channel response and taking the inverse Fourier transform, where

 is difference between the maximum positive and minimum negative
frequency

Figure 9-13. Termination Example

AC
Gnd

50
ohm

AC
Gnd

Capacitors
(Optional)

50
ohm

0, 1, 2
Connectors

Driver Receiver

fmax
RapidIO.org 435

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
 is the number of equally space points in the frequency array

 is the transmit signal pulse

 is the transmit signal pulse in the frequency domain

 is the transfer function of the channel

 is the resulting pulse response of the channel

9.6.2 Basic Pulse Response Definitions

A receive pulse response as calculated is graphically represented in Figure 9-14.

Cursors are defined as being the amplitude of the received pulse at symbol spaces
from the maximum signal energy at c0, and extend to infinity in both negative and
positive time. The exact position of c0 is arbitrary and is defined specifically by the
various methodologies.

Figure 9-14. Graphical Representation of Receiver Pulse

P

tx t

tx

Tr ()

rx t()

tstep
1

fmax

t tstep n

n 1 P[,]

tx t H 0() H tperiod t–()

rx () tx () Tr ()

rx t() ifft rx ()()=

=

=

=

=

=

c-1

c0

c1

c2

c4

c3Time
(Baud spaced intervals)

A
m

pl
itu

de
436 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
A precursor is defined as a cursor that occurs before the occurrence of the main
signal c0, i.e. cn where n<0, usually convergences to zero within a small number of
bits

A post cursor is defined as a cursor that occurs after the occurrence of the main
signal c0, i.e. cn where n>0, and usually convergences to zero within twice the
propagation time of the channel.

Given a deterministic data stream travelling across the channel, the superposition of
the channel pulses give rise to Inter-Symbol Interference (ISI). This ISI has a
maximum occurring for a worst case pattern, which for a channel response where all
cursors are positive would be a single 1 or 0 in the middle of a long run of 0s or 1s
respectively. This maximum is referred to Total Distortion.

Due to ISI an enclosure in the time domain also occurs which can be determined by
either running exhaustive simulations or simulations with determined worst case
patterns. For the case where the ISI is so large that the eye is closed, Inherent
Channel Jitter has no meaning.

9.6.3 Transmitter Pulse Definition

A transmitter is defined by its ability to generate a transmit pulse. A single 1 transmit
symbol has different amplitudes at symbol space intervals, tn, where post taps have
n>0, and pre-taps have n<0.

Figure 9-15. Transmit Pulse

 cn

n –= n 0

n =

=

Time (Unit Intervals)

t(0)

t(1)
t(-1)

A
m

pl
itu

de

0UI 1UI 2UI-1UI
RapidIO.org 437

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When a pulse train is transmitted the exact transmitted amplitude is therefore the
superposition of the pulses from the previous and to be transmitted pulses, such as
in a FIR filter.

This superposition can be understood by referring to the amplitudes depicted for
various bit sequences in Figure 9-16.

The transmit emphasis can be defined to have certain limits of maximum transmit
amplitude or ratios of emphasis as defined below.

where

 is the first coefficient of the transmit FIR

 is the emphasis of the transmit emphasis

 is the maximum transmit amplitude

9.6.4 Receiver Pulse Response

Given an emphasized transmitter the pulse response of the receiver should be
recalculated using the emphasized transmit pulse as opposed to a simple NRZ pulse.

The receiver pulse cursors are defined in Figure 9-17.

Figure 9-16. Transmitter FIR Filter Function

Transmit
Signal

an

t n-1 tn+1

+tn+1+t n-1+t n

+tn+1+t n-1 -t n

-t n+1-tn-1 -t n

+tn+1-tn-1 -t n

-t n+1+t n-1 -t n

-t n+1-tn-1 +t n

+tn+1-tn-1 +t n

-t n+1+t n-1+t n

tn

z -1 z -1

+

Ppost

t1
t0

E 20
1 Ppost+

1 Ppost–

tn Vtx
min

log=

=

Ppost

E

Vtx
min
438 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.6.5 Crosstalk Pulse Response

The crosstalk pulse response is analogous to the receiver pulse response as defined
in Section 9.6.4 but using the crosstalk channel, i.e. NEXT or FEXT network
analysis measurement. The transmit signal as seen in the system should be used for
the calculation of the resulting crosstalk pulse response, e.g. an emphasized
transmitter from above, or XAUI transmit NRZ pulse.

The Crosstalk pulse response is then defined as above in Figure 9-18 as being a set
of cursors xn usually oscillatory in form. The position of x0 is defined as being at the
maximum amplitude of the pulse response.

9.6.6 Decision Feedback Equalizer

The following filter function can be used to verify the capability of the channel to be
used in such an application.

Figure 9-17. Receiver Pulse Definition

Figure 9-18. Crosstalk Pulse Definition

Time
(Baud spaced intervals)

A
m

pl
itu

de
r-1

r0

r1
r2

r4

r3

Time
(Baud spaced intervals)

A
m

pl
itu

de

x-1

x0

x1

x2

x4

x3

x-2
RapidIO.org 439

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The value of the coefficients are calculated directly from the channel pulse response
or the receiver pulse using an emphasized transmitter.

 for unemphasized transmitters, or

 for emphasized transmitters

This equalizer is capable of equalizing a finite number of post cursors, whose
individual values may be limited.

9.6.7 Time Continuous Transverse Filter

A.k.a. Feed forward Filter, Finite Input Response or Comb Structure, the Transverse
Filter, Figure 9-20 consists of a finite number of coefficients, k. The sum of the
continuous value of symbol spaced delayed samples multiplied by these coefficients
then gives the resulting signal.

9.6.7.1 Time Continuous Zero-Pole Equalizer Adaption

The pole-zero algorithm takes the SDD21 magnitude response for the through
channel and inverts it to produce a desired CTE filter response curve. From a set of
initial conditions for pn poles and zn zeros, the squared differences are minimized
between the CTE response and the inverse channel response curve. The
minimization is done using a simplex method, specifically the Nelder-Mead

Figure 9-19. Decision Feedback Equalizer

Figure 9-20. Feed Forward Filter

z -1 z -1 z -1 z -1-

k n k n-1 k n-2 k n-3

+

kn cn
n 1 m[,]=

=

kn rn
n 1 m[,]=

=

z -1 z -1 z -1

kn-1 kn kn+1

+

r n z -1 z -1 z -1

kn+2 kn+3 kn+4

y n
440 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Multidimensional Unconstrained Non-Linear Minimization Method. The
Nelder-Mead method provides a local minimization of the square of the difference
between the two curves by descending along the gradient of the difference function.
Once the optimization result is obtained, it is compared to a specified threshold. If
the threshold exceeds the target tolerance, an incrementally offset seed point is
generated from a 6-dimensional grid of seed points, and the process is iterated until
the correct curve is obtained within the target tolerance.

9.6.8 Time Continuous Zero/Pole

The Zero/Pole Filter is defined, in the frequency domain by

and consists of a single zero, , and single pole, .

9.6.9 Degrees of Freedom

9.6.9.1 Receiver Sample Point

A receiver shall be allowed to either position the centre sampling point fully
independently to the signal transitions or exactly in between the mean crossover of
the receiver signal.

9.6.9.2 Transmit Emphasis

Transmit emphasis and receiver filter coefficients must be optimized with the
defined resolution to give the best achievable results. Unless otherwise stated it shall
be assumed that the coefficients are defined using floating point variables.

9.7 Jitter Modelling
This section describes the theoretical background of the methodology used for jitter
budgeting and jitter measurement. To avoid fundamental issues with the additional
of jitter using the dual dirac model through a band limited channel, a fundamental
methodology call “stateye” is defined in Section 9.7.5, which uses only convolution
of the jitter distribution for the calculation of the jitter at the receiver.

9.7.1 High Frequency Jitter vs. Wander

Jitter is defined as the deviation of the signal transition from an origin, usually its
mean. This deviation has an amplitude and an associated spectrum. High frequency
jitter is defined by a 1st order high pass phase filter with a corner frequency equal to
the ideal CDR bandwidth. The low frequency Jitter or Wander is defined by a 1st
order low pass phase filter with a corner frequency equal to the bandwidth.

H f p
z
--- z j2f+

p j2f+
-------------------------=

z p
RapidIO.org 441

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.7.2 Total Wander vs. Relative Wander

Generation of Total and Relative Wander can be achieved using a “Common” and
“AntiPhase” Sinusoidal Source, where the total and relative wander are then related
as defined below.

By adding sinusoidal frequencies of slightly differing frequencies the maximum
total and relative wander is achieved at various phase relationship like shown in
Figure 9-21.

9.7.3 Correlated vs. Uncorrelated Jitter

If a correlation exists between the amplitude of the jitter and the current, past, and
future signal level of a data channel, this type of jitter is deemed correlated.
Typically this is encountered when band limitation and inter-symbol interference
occurs. Due to amplitude to phase conversion of the ISI, a jitter is observed which
has a direct correlation to the data pattern being transmitter.

Figure 9-21. Generation of Total and Relative Wander

Atotal Acommon Aantiphase
Arelative 2Aantiphase=

+=

0 2 4 6 8 10 12 14 16 18
x 104

-1

-0.5

0

0.5

1
Generated Jitter

0 2 4 6 8 10 12 14 16 18
x 104

-0.5

0

0.5
Jitter Sources

Common
Antiphase

Relative
Total
442 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.7.4 Jitter Distributions

High frequency jitter is traditionally measured and described using probability
density functions which describe the probability of the data signal crossing a
decision threshold, as shown in Figure 9-22.

The low probability part of the jitter distribution can be described by two
components, mathematically described in the following sections.

9.7.4.1 Unbounded and Bounded Gaussian Distribution

We define a Unbounded Gaussian distribution function in terms of sigma as below.

For every offset , there exists a finite and non-zero probability.

9.7.4.2 Bounded Gaussian Distribution

We define a Bounded Gaussian Distribution function1 in terms of sigma and a
maximum value as below.

Figure 9-22. Jitter Probability Density Functions

Decision Level

Sample Error :
Error probability is equal to

1-area under distribution

Sample Time

GJ ()
1

2
---------- 1

--- e

2

22
---------–

 =

RapidIO.org 443

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
For random processes consisting of a finite number of random variables there exists
a finite non-zero probability only if . For example, a band limited channel is
bounded but shows a Gaussian Distribution below its maximum. See
Section 9.7.4.8, "Example of Bounded Gaussian" for an explanation concerning
extrapolation.

9.7.4.3 High Probability Jitter

We define a dual dirac distribution function for a High Probability jitter (W) as
below.

9.7.4.4 Total Jitter

We define the convolution of the High Probability and Gaussian jitter as being the
total jitter and define it as below.

9.7.4.5 Probability Distribution Function vs. Cumulative Distribution
Function

An example of the convolution of GJ (magenta), HPJ (green) to give TJ (red) can be
seen Figure 9-23.

1Due to the bounded function the function does not comply to the requirements that the integral of the pdf from minus infinity to infinity is one. This small
inaccuracy is recognized and acceptance in this context.

GJ ()
1

2
---------- 1

--- e

2

22

0

if
 max

 max
=

 max

HPJ W()
 W

2
-----–()

2

 W
2
-----+()

2
---------------------+=

TJ W ()
1

2 2
-------------- 1

--- e

 W
2
-----–

 2

22
------------------------–

e

 W
2
-----+

 2

22
-------------------------–

+ =
444 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When integrating the probability distribution functions, same colors, we obtain the
cumulative distribution function or half the bathtub, shown in Figure 9-24.

9.7.4.6 BathTub Curves

Given a measured bathtub curve consisting of measured BER for various sampling
offsets, the defined Gaussian and High Probability Distributions can be used to
describe the important features of the distribution.

Figure 9-23. Example of Total Jitter PDF

Figure 9-24. Example of Total Jitter CDF

-0.1 -0.05 0 0.05 0.1 0.15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (UI)

Pr
ob

ab
ili

y

Probability Distribution Function of Convolution of Basic Elements

-0.1 -0.05 0 0.05 0.1 0.15

10-4

10-3

10-2

10-1

100

Time (UI)

Pr
ob

ab
ili

y

Cumulative Distribution Function of Convolution of Basic Elements
RapidIO.org 445

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Initially the BER axis should be converted to Q as defined below, e.g. a BER of 10-12

is a Q=7.04, and a BER of 10-15 a Q=7.941.

where is the inverse function of the error function .

Note: this conversion from BER to Q is only valid given a large time
offset from the optimal sampling point. The use of the nomenclature
BER in this reference should therefore be carefully used. Any accurate
prediction of the BER towards the center of the eye should be done
using Marcum’s Q function, and is outside the scope of this document.

By linearizing the bathtub, as shown in Figure 9-25, we can describe the function of
the left and right hand linear parts of the bathtub in terms of an offset (HPJ) and
gradient (1/GJ).

The conversion to a linearized bathtub from a measurement should be calculated
using a polynomial fit algorithm for parts of the measurement made at low BERs or
high Q.

1It is assumed that when measuring the jitter bathtub that the left and right parts of the bathtub are independent to each other, e.g. the tail of the right hand
part of the bathtub and negligible effect on the left hand side of the bathtub.

Q 2 erf
1–

2 1 BER– 1– =

erf
1–

x erf x

erf z()
2

------- e

t2–
td

0

z

=

Qleft offset() offset HPJleft– 1
GJleft

Qright offset() HPJleft offset– 1
GJright
------------------=

=
446 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.7.4.7 Specification of GJ and HPJ

In this specification the left and right hand terms are combined to give a single
definition as below where is the Q for the BER of interest, e.g Q=7.49 for a

.

Figure 9-25. Bathtub Definition

Q=0

Q=7

Q=6

HPJ left HPJ right

()
left

leftoffsetleft GJHPJQ 1x

x

x

−= τ

()
right

offsetrightright GJHPJQ 1−= τ

arbitrary origin

HPJ right

tau offset

HPJ left

BERleft QGJ

BERright QGJ

arbitrary origin
plus 1UI

x

QBER
BER 10

15–
=

HPJtotal 1 HPJright HPJleft–

GJtotal GJleft QBER GJright QBER+=

–

2QBER GJrms

GJrms

GJleft GJright+

2
--

Jtotal GJtotal HPJtotal+=

=

=

=

RapidIO.org 447

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.7.4.8 Example of Bounded Gaussian

Assuming that the Cumulative Distribution Function of the jitter could be measured
to the probabilities shown, Figure 9-26 shows an example of when a jitter should be
classified as Correlated High Probability or Correlated Bounded Gaussian.

The convolution of a true Unbounded Gaussian Jitter (green) with a Bounded
Gaussian Jitter (Red) can be seen (Magenta). It can be clearly seen and measured
that at a Q of -3 the Bounded Jitter is still Gaussian and the resulting convolution can
be calculated using RMS addition. Below a Q of -5 the Bounding effect can be seen,
and if we linearize the Bathtub we measure a non-zero High Probability Jitter and
Gaussian component.

9.7.5 Statistical Eye Methodology

The following section describes the fundamental underlying the StatEye
methodology. For a golden implementation please refer to the scripts on the OIF
website, which are published separately.

9.7.5.1 Derivation of Cursors and Calculation of PDF

The Statistical Eye Methodology uses a channel pulse response and crosstalk pulse
response in conjunction with a defined sampling jitter to generate an equivalent eye
which represents the eye opening as seen by the receiver for a given probability of
occurrence. This is shown in Figure 9-27.

Figure 9-26. Example of Bounded Gaussian

0

0

Q

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time Offset (Arbitrary)

-1

-2

-3

-4

-5

-6

-7

-8
448 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Given a pulse response (black left) we locate c0 at an arbitrary point (red arrow) and
measure the symbol space cursors (blue arrows),

Given a DFE the post cursors should be adjusted by negating the measured post
cursors by the appropriate static coefficient of the DFE, up to the maximum number
of cursors specified.

According to the exact data pattern these cursors superimpose to Inter-symbol
Interference. Each possible combination of these cursors is calculated and from
these combinations a histogram is generated to form the probability density function
(PDF) (green).

By varying the reference sampling point for c0 as shown in Figure 9-28, the previous
function is repeated and family of conditional PDFs build up.

Figure 9-27. Statistics of Pulse Response Cursor

A
m

pl
itu

de

All equal probable combination of cursors

Probability

Each possible amplitude
is the convolution of

the data stream dn with
the cursors rn

}1,1{ −=

∑=

d

rdA
n

nn
RapidIO.org 449

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
This can be represented mathematically below.

Given,

 are the cursors of the pulse response at sampling

 is the ideal static equalization coefficients of the b tap DFE

 is the set of equalization cursors at sampling

 is the dirac or delta function

 are all the possible combinations of the data stream and is either 1 or 0

 is the probability density function of the ISI for a given sample time

A similar family of PDFs are generated for the crosstalk pulse response and any
other aggressors in the system using the cursor set below, noting that the entire pulse
response is used.

Figure 9-28. Variation of the c0 Sampling Time

Pulse Response

Signal Amplitude
pdf(Amplitude)

Additional blue cursors
for each sampling point

are removed to avoid
confusion

rn

eb

c

 x
 1–

 0
lim=

dn b
p ISI ()

c r m
2
----–
() ... r 1– () r0 () r1 () ... rm

2

()=
450 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
9.7.5.2 Inclusion of Sampling Jitter

In a real system the sampling point c0 is defined by the CDR and is jittered, for the
sake of standardization, by the transmitter. This jitter has a probability density
function which is centered at the receiver CDR sampling point and defined the
probability of each of the previous conditional PDFs occurring1, as shown in
Figure 9-29.

By multiplying each the conditional PDFs by its associated sampling jitter
probability and summing their results together, the joint probability density function
at the given receiver CDR sample point can be calculated.

Given,

 is the dual dirac probability density function of the sampling jitter
in the system, as defined in Section 9.7.4.4, "Total Jitter"

 is the probability density function of the crosstalk

1Currently DCD effects are not taken into account

Figure 9-29. Varying the Receiver Sampling Point

Pulse Response

pdf(Amplitude)

pdf(Amplitude)

Signal
Amplitude

Signal
Amplitude

Zero
Line

Joint
Distribution

pdfs

pdf(Transmit Jitter)

pjitter w ()

pcrosstalk ISI ()
RapidIO.org 451

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
 is the probability density function of the ISI of the forward
channel

 is the convolution operative

9.7.5.3 Generation of Statistical Eye

By varying the receiver CDR sampling point a new joint probability density
function, Figure 9-29 can be generated.

pforward ISI ()

a b

paverage ISI ()

pcrosstalk ISI w+ +() pforward ISI +() pjitter w () d

–

=

452 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
By integrating the Joint Probability Density Function to give the Cumulative
Distribution function, and creating a contour plot an equivalent of the receiver eye
can be generated which shows the exact probability of obtaining a given amplitude,
shown in Figure 9-30, this equivalent eye is termed the statistical eye, shown in
Figure 9-31.

Figure 9-30. Generation of the Data Eye and Bathtub

Signal
Amplitude

pdf(Amplitude)

Joint
Distribution

pdfs

cdf(Jitter)

Signal
Amplitude

Zero
Line

Zero
Line

Zero
Line
RapidIO.org 453

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
By only plotting the probability against time by cutting the statistical eye along the
decision threshold axis can a bathtub of the jitter can be generated.

Figure 9-31. Statistical Eye

Arx(tsample, Q)

teye

Q = 5
Q = 6
Q = 7
Q = 8
454 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 10 1.25 Gbaud, 2.5 Gbaud, and
3.125 Gbaud LP-Serial Links

This chapter details the requirements for Level I RapidIO LP-Serial short and long
run electrical interfaces of nominal baud rates of 1.25 Gbaud, 2.5 Gbaud, and
3.125 Gbaud using NRZ coding (hence 1 bit per symbol at the electrical level). A
compliant device must meet all of the requirements listed below. The electrical
interface is based on a high speed, low voltage logic with a nominal differential
impedance of 100 Connections are point-to-point balanced differential pair and
signalling is unidirectional.

The level of links defined in this section are identical to those defined in revision 1.3
of the 1x/4x LP-Serial electrical specification. The terminology has been updated to
be consistent with the new level links defined in Section 9.1, "Introduction".

10.1 Level I Application Goals
The following are application requirements common to short run and long run at
1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud:

• The electrical specifications shall support lane widths options of 1x to Nx
where N=2, 4, 8, and 16.

• AC coupling at the receiver shall be specified to ensure inter-operability
between transmitters and receivers of different vendors and technologies.

• A compliant device may implement any subset of baud rates contained in this
section.

• A compliant device may implement either a short run transmitter, a long run
transmitter, or both, at each of the baud rates that it supports.

• The clock frequency tolerance requirement for transmit and receive are
100 ppm. The worst case frequency differences between any transmit and
receive clock is 200 ppm.

• The Bit Error Ratio (BER) shall be better than 10-12 per lane.

• The transmitter pins shall be capable of surviving short circuit either to each
other, to supply voltages, and to ground.

• The short run interface shall be capable of spanning at least 20 cm of PCB
material with up to a single connector.
RapidIO.org 455

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• The long run interface shall be capable of spanning at least 50 cm of PCB
material with up to two connectors.

10.2 Equalization
At the high baud rates used by Level I LP-Serial links, the signals transmitted over
a link are degraded by losses and characteristic impedance discontinuities in the
interconnect media. The losses increase with increasing baud rate and interconnect
media length and cause signal attenuation and inter-symbol interference that
degrade the opening of the eye pattern at both the receiver input and the data decoder
decision point. Depending on the baud rate and interconnect length, the degradation
can be greater than that allowed by the specification.

The signal degradation can be partially negated by the use of equalization in the
transmitter and/or receiver. Equalization in the transmitter can improve the eye
pattern at both the receiver input and the data decoder decision point. Equalization
in the receiver can only improve the eye pattern at the data decoder decision point.
Equalization is likely to be required only for longer Level I interconnects and higher
Level I baud rates.

The types of equalizers and, if the equalizers are adaptive, the adaptive equalizer
training algorithms that may be used in Level I transmitter or receiver are subject to
the following restrictions.

Equalizers that can convert a single bit error into a multiple bit burst error, such as
decision feedback equalizers (DFEs), shall not be used when IDLE1 has been
selected for use on the link.

The training algorithm for any adaptive equalization used by a Level I transmitter
and/or receiver shall consistently train the equalizer and retain the equalizer’s
training when IDLE1 is the training signal and shall consistently retain the
equalizer’s training when IDLE1 has been selected for use on the link and the signal
on the link is a continuous sequence of maximum length packets whose payload is
either all ONES or all ZEROS.

10.3 Explanatory Note on Level I Transmitter and
Receiver Specifications

AC electrical specifications are given for the transmitter and receiver. Long run and
short run interfaces at three baud rates are described.

The parameters for the AC electrical specifications are guided by the XAUI
electrical interface specified in Clause 47 of IEEE 802.3ae-2002.[1]

XAUI has similar application goals as serial RapidIO Level I devices as described
in Section 9.5, "Common Electrical Specification". The goal of this standard is that
456 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
electrical designs for Level I electrical designs can reuse XAUI, suitably modified
for applications at the baud intervals and runs described herein.

10.4 Level I Electrical Specification

10.4.1 Level I Short Run Transmitter Characteristics

The key transmitter electrical specifications at compliance point T are summarized
in Table 10-1 and Table 10-2 while the following sections fully detail all of the
requirements.

Table 10-1. Level I SR Transmitter AC Timing Specifications

Characteristics Symbol Conditions Min Typ Max Units

Baud Rate T_Baud Section
10.4.1.2

1.25 3.125 Gbaud

Absolute Output Voltage VO Section
10.4.1.3

-0.40 2.30 Volts

Output Differential Voltage
(into floating load Rload = 100

T_Vdiff Section
10.4.1.3

500 1000 mVppd

Differential Resistance T_Rd Section
10.4.1.5

80 100 120 W

Recommended output rise and fall times
(20% to 80%)

T_tr, T_tf Section
10.4.1.4

60 ps

Differential Output Return Loss
(T_baud/10 f < T_Baud/2)

T_SDD22 Section
10.4.1.6

dB

Differential Output Return Loss
(T_baud/2 f T_baud)

dB

Common Mode Return Loss
(625 MHz f T_baud)

T_SCC22 Section
10.4.1.6

Note 3 dB

Transmitter Common Mode Noise1 T_Ncm Note 4 mVppd

Output Common Mode Voltage T_Vcm Load Type 02 0 2.1 V

Multiple output skew, N<=4 SMO Section
10.4.1.7

1000 ps

Multiple output skew, N>4 SMO Section
10.4.1.7

2UI
+1000

ps

Unit Interval UI 320 800 ps

NOTES:
1. For all Load Types: R_Rdin = 100 20 . For Vcm definition, see Figure 9-1
2. Load Type 0 with min. T_Vdiff, AC-Coupling or floating load.
3. It is suggested that T_SCCC22 be -6 dB to be compatible with Level II transmitter requirements
4. It is suggested that T_Ncm be limited to 5% of T_Vdiff to be compatible with Level II transmitter requirements
RapidIO.org 457

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.1.1 Level I SR Transmitter Test Load

All transmitter characteristics should be implemented and measured to a differential
impedance of 100 ± 5% at DC with a return loss of better than 20 dB from the
baud rate divided by 1667 to 1.5 times the baud rate, unless otherwise noted.

10.4.1.2 Level I SR Transmitter Baud Rate

The baud rates are 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud with a tolerance of
±100 ppm.

10.4.1.3 Level I SR Transmitter Amplitude and Swing

Transmitter differential amplitude shall be between 500 to 1000 mVppd, inclusive,
either with or without transmit emphasis. Absolute driver output voltage shall be
between -0.4 V and 2.4 V, inclusive, with respect to the local ground. See Figure 9-1
for an illustration of absolute driver output voltage and definition of differential
peak-to-peak amplitude.

10.4.1.4 Level I SR Transmitter Rise and Fall Times

The recommended minimum differential rise and fall time is 60 ps as measured
between the 20% and 80% of the maximum measured levels; the maximum
differential rise and fall times are defined by the Tx eye diagram (Figure 9-2 and
Table 10-4). Shorter rise and falls may result in excessive high frequency
components and increase EMI and cross talk.

Table 10-2. Level I SR Transmitter Output Jitter Specifications

Characteristic Symbol Condition Min Typ Max Units

Uncorrelated High Probability Jitter
T_UHPJ

Section
10.4.1.9

0.17 UIpp

Duty Cycle Distortion
T_DCD

Section
10.4.1.9

0.05 UIpp

Total Jitter
T_TJ

Section
10.4.1.9

0.35 UIpp

Eye Mask
T_X1

Section
10.4.1.9

0.17 UI

Eye Mask
T_X2

Section
10.4.1.9

0.39 UI

Eye Mask
T_Y1

Section
10.4.1.9

250 mV

Eye Mask
T_Y2

Section
10.4.1.9

500 mV
458 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.1.5 Level I SR Transmitter Differential Pair Skew

It is recommended that the timing skew at the output of a LP-Serial transmitter
between the two signals that comprise a differential pair not exceed 25 ps at
1.25 Gbaud, 20 ps at 2.5 Gbaud, and 15 ps at 3.125 Gbaud.

10.4.1.6 Level I SR Transmitter Output Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 10-3 for Level I short
and long run transmitter parameters. Definitions for these parameters are in
Figure 9-12.

10.4.1.7 Level I SR Transmitter Lane-to-Lane Skew

The electrical level of lane-to-lane skew caused by the transmitter circuitry and
associated routing must be less than 1000 ps for links of 4 lanes or less. Links with
greater than 4 lanes must have lane-to-lane skew of less than 2 UI + 1000 ps. The
transmitter lane-to-lane skew is only for the serdes Tx and does not include any
effects of the channel.

10.4.1.8 Level I SR Transmitter Short Circuit Current

It is recommended that the max DC current into or out of the transmitter pins when
either shorted to each other or to ground be ±100 mA when the device is fully
powered up. From a hot swap point of view, the ±100 mA limit is only valid after
10 s.

10.4.1.9 Level I SR Transmitter Template and Jitter

For each baud rate at which a transmitter is specified to operate, the output eye
pattern of the transmitter shall fall entirely within the unshaded portion of the
Transmitter Output Compliance Mask shown in Figure 9-2 with the parameters
specified in Table 10-4. The output eye pattern of a LP-Serial transmitter that
implements pre-emphasis (to equalize the link and reduce inter-symbol interference)
need only comply with the Transmitter Output Compliance Mask when
pre-emphasis is disabled or minimized.

Table 10-3. Level I SR Transmitter Return Loss Parameters

Parameter Value Units

A0 -10 dB

f0 T_Baud/10 Hz

f1 625 MHz

f2 T_Baud Hz

Slope 10.0 dB/dec
RapidIO.org 459

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.2 Level I Long Run Transmitter Characteristics

The key transmitter electrical specifications at compliance point T are summarized
in Table 10-5 and Table 10-6 while the following sub-clauses fully detail all of the
requirements.

Table 10-4. Level I SR Near-End (Tx) Template Intervals

Characteristics Symbol
Near-End

Value
Units

Eye Mask T_X1 0.17 UI

Eye Mask T_X2 0.39 UI

Eye Mask T_Y1 250 mV

Eye Mask T_Y2 500 mV

Eye Mask T_Y3 N/A mV

Uncorrelated Bounded High Probability Jitter T_UBHPJ 0.17 UIpp

Duty Cycle Distortion T_DCD 0.05 UIpp

Total Jitter T_TJ 0.35 UIpp

Table 10-5. Level I LR Transmitter AC Timing Specifications

Characteristics Symbol Conditions Min Typ Max Units

Baud Rate T_Baud Section
10.4.2.2

1.25 3.125 Gbaud

Absolute Output Voltage VO Section
10.4.2.3

-0.40 2.30 Volts

Output Differential Voltage
(into floating load Rload=100

T_Vdiff Section
10.4.2.3

800 1600 mVppd

Differential Resistance T_Rd Section
10.4.1.5

80 100 120 W

Recommended output rise and fall times
(20% to 80%)

T_tr, T_tf 60

Differential Output Return Loss
(T_baud/10 f < T_Baud/2)

T_SDD22 Section
10.4.1.6

dB

Differential Output Return Loss
(T_baud/2 f T_baud)

dB

Common Mode Return Loss
(625 MHz f T_baud)

T_SCC22 Section
10.4.1.6

Note 3 dB

Transmitter Common Mode Noise1 T_Ncm Note 4 mVppd

Output Common Mode Voltage T_Vcm Load Type 02 0 2.1 V

Multiple output skew, N<=4 SMO 1000 ps

Multiple output skew, N>4 SMO 2UI+
1000

ps
460 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.2.1 Level I LR Transmitter Test Load

All transmitter characteristics should be implemented and measured to a differential
impedance of 100 ± 5% at DC with a return loss of better than 20 dB from the
baud rate divided by 1667 to 1.5 times the baud rate, unless otherwise noted.

10.4.2.2 Level I LR Transmitter Baud Rate

The baud rates are 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud with a tolerance of
±100 ppm.

10.4.2.3 Level I LR Transmitter Amplitude and Swing

Transmitter differential amplitude shall be between 400 to 1600 mVppd, inclusive,
either with or without transmit emphasis. Absolute driver output voltage shall be
between -0.4 V and 2.4 V, inclusive, with respect to the local ground. See Figure 9-1
for an illustration of absolute driver output voltage and definition of differential
peak-to-peak amplitude.

10.4.2.4 Level I LR Transmitter Rise and Fall Times

The recommended minimum differential rise and fall time is 60 ps as measured
between the 20% and 80% of the maximum measured levels; the maximum
differential rise and fall times are defined by the Tx eye diagram (Figure 9-2 and

Unit Interval UI 320 800 ps

NOTES:
1. For all Load Types: R_Rdin = 100 20 . For Vcm definition, see Figure 9-1.
2. Load Type 0 with min. T_Vdiff, AC-Coupling or floating load.
3. It is suggested that T_SCCC22 be -6 dB to be compatible with Level II transmitter requirements
4. It is suggested that T_Ncm be limited to 5% of T_Vdiff to be compatible with Level II transmitter requirements

Table 10-6. Level I LR Transmitter Output Jitter Specifications

Characteristic Symbol Condition Min Typ Max Units

Uncorrelated High Probability Jitter T_UHPJ Section
10.4.1.9

0.17 UIpp

Duty Cycle Distortion T_DCD Section
10.4.1.9

0.05 UIpp

Total Jitter T_TJ Section
10.4.1.9

0.35 UIpp

Eye Mask T_X1 Section
10.4.1.9

0.17 UI

Eye Mask T_X2 Section
10.4.1.9

0.39 UI

Eye Mask T_Y1 Section
10.4.1.9

400 mV

Eye Mask T_Y2 Section
10.4.1.9

800 mV

Table 10-5. Level I LR Transmitter AC Timing Specifications
RapidIO.org 461

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table 10-8). Shorter rise and falls may result in excessive high frequency
components and increase EMI and cross talk.

10.4.2.5 Level I LR Transmitter Differential Pair Skew

It is recommended that the timing skew at the output of a LP-Serial transmitter
between the two signals that comprise a differential pair not exceed 25 ps at
1.25 Gbaud, 20 ps at 2.5 Gbaud and 15 ps at 3.125 Gbaud.

10.4.2.6 Level I LR Transmitter Output Resistance and Return Loss

Refer to Section 9.5.11 for the reference model for return loss. See Table 10-3 for
Level I short and long run transmitter parameters. Definitions for these parameters
are in Figure 9-12.

10.4.2.7 Level I LR Transmitter Lane-to-Lane Skew

The electrical level of lane-to-lane skew caused by the transmitter circuitry and
associated routing must be less than 1000 ps for links of 4 lanes or less. Links with
greater than 4 lanes must have lane-to-lane skew of less than 2 UI + 1000 ps. The
transmitter lane-to-lane skew is only for the serdes Tx and does not include any
effects of the channel.

10.4.2.8 Level I LR Transmitter Short Circuit Current

It is recommended that the max DC current into or out of the transmitter pins when
either shorted to each other or to ground be ±100 mA when the device is fully
powered up. From a hot swap point of view, the ±100 mA limit is only valid after
10 s.

10.4.2.9 Level I LR Transmitter Template and Jitter

For each baud rate at which a LP-Serial transmitter is specified to operate, the output
eye pattern of the transmitter shall fall entirely within the unshaded portion of the
Transmitter Output Compliance Mask shown in Figure 9-2 with the parameters
specified in Table 10-4. The output eye pattern of a LP-Serial transmitter that
implements pre-emphasis (to equalize the link and reduce inter-symbol interference)
need only comply with the Transmitter Output Compliance Mask when
pre-emphasis is disabled or minimized.

Table 10-7. Level I LR Transmitter Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 T_Baud/10 Hz

f1 T_Baud/2 MHz

f2 T_Baud Hz

Slope 16.6 dB/dec
462 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.3 Level I Receiver Specifications

Level I LP-Serial receiver electrical and timing specifications are stated in the text
and tables of this section.

Table 10-8. Level I LR Near-End (Tx) Template Intervals

Characteristics Symbol
Near-End

Value
Units

Eye Mask T_X1 0.17 UI

Eye Mask T_X2 0.39 UI

Eye Mask T_Y1 400 mV

Eye Mask T_Y2 800 mV

Eye Mask T_Y3 N/A mV

Uncorrelated Bounded High Probability Jitter T_UBHPJ 0.17 UIpp

Duty Cycle Distortion T_DCD 0.05 UIpp

Total Jitter T_TJ 0.35 UIpp

Table 10-9. Level I Receiver Electrical Input Specifications

Characteristic Symbol Conditions Min Typ Max Units

Rx Baud Rate (1.25 Gbaud) R_Baud 1.250 Gbaud

Rx Baud Rate (2.5 Gbaud) 2.500 Gbaud

Rx Baud Rate (3.125 Gbaud) 3.125 Gbaud

Absolute Input Voltage R_Vin Section
10.4.3.4

Input Differential voltage R_Vdiff Section
10.4.3.3

200 1600 mVppd

Differential Resistance R_Rdin Section
10.4.3.7

80 100 120 W

Differential Input Return Loss
(100 MHz f R_Baud/2)

R_SDD11 Section
10.4.3.7

dB

Differential Input Return Loss
(R_Baud/2 f R_Baud)

Common mode Input Return Loss
(100 MHz to 0.8 *R_Baud)

R_SCC11 Section
10.4.3.7

dB

Termination Voltage1,2 R_Vtt R_Vtt floating4 Not Specified V

Input Common Mode Voltage1,2 R_Vrcm R_Vtt
floating3,4,

-0.05 1.85 V

Wander divider (in Figure 9-8 & Figure 9-8) n 10

NOTES:
1. Input common mode voltage for AC-coupled or floating load input with min. T_Vdiff,
2. Receiver is required to implement at least one of specified nominal R_Vtt values, and typically implements only one of

these values. Receiver is only required to meet R_Vrcm parameter values that correspond to R_Vtt values supported.
3. Input common mode voltage for AC-coupled or floating load input with min. T_Vdiff.
4. For floating load, input resistance must be 1k.
RapidIO.org 463

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.3.1 Level I Receiver Input Baud Rate

All devices shall work at either 1.25 Gbaud, 2.5 Gbaud, or 3.125 Gbaud or any
combination of these baud rates with the baud rate tolerance as per Section 10.4.1.2.

10.4.3.2 Level I Receiver Reference Input Signals

Reference input signals to the receiver have the characteristics determined by
compliant transmitter. The reference input signal must satisfy the transmitter
near-end template and jitter given in Figure 9-2 and Table 10-1 (Table 10-5),
Table 10-2 (Table 10-6), and Table 10-3 (Table 10-7) for short run (long run) as well
as the far-end eye template and jitter given in Figure 9-5 and Table 10-13, with the
differential load impedance of 100 1% at DC with a return loss of better than
20 dB from baud rate divided by 1667 to 1.5 times the baud rate. Note that the input
signal might not meet either of these templates when the actual receiver replaces this
load.

10.4.3.3 Level I Receiver Input Signal Amplitude

The receiver shall accept differential input signal amplitudes produced by compliant
transmitters connected without attenuation to the receiver. This may be larger than
the 1600 mVppd maximum of the transmitter due to output/input impedances and
reflections.

Table 10-10. Level I Receiver Input Jitter Tolerance Specifications

Characteristic Symbol Conditions Min Typ Max Units

Bit Error Ratio BER 10-12

Bounded High Probability Jitter R_BHPJ
Section
10.4.3.8

0.37
UIpp

Sinusoidal Jitter, maximum R_SJ-max
Section
10.4.3.8

8.5
UIpp

Sinusoidal Jitter, High Frequency R_SJ-hf
Section
10.4.3.8

0.1
UIpp

Total Jitter (Does not include Sinusoidal Jitter) R_TJ
Section
10.4.3.8

0.55
UIpp

Total Jitter Tolerance1 R_JT 0.65 UIpp

Eye Mask R_X1
Section
10.4.3.8

0.275
UI

Eye Mask R_Y1
Section
10.4.3.8

100
mV

Eye Mask R_Y2
Section
10.4.3.8

800
mV

NOTES:
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 10-1. The sinusoidal jitter
component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
464 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The minimum input amplitude is defined by the far-end transmitter template, the
actual receiver input impedance and the loss of the actual PCB. Note that the far-end
transmitter template is defined using a well controlled load impedance, however the
real receiver is not, which can leave the receiver input signal smaller than the
minimum 200 mVppd.

10.4.3.4 Level I Receiver Absolute Input Voltage

The voltage levels at the input of an AC coupled receiver (if AC coupling is done
within the receiver) or at the Tx side of the external AC coupling cap (if AC coupling
is done externally) shall be between -0.40 V to 2.30 V, inclusive, with respect to
local ground.

10.4.3.5 Level I Receiver Input Common Mode Impedance

AC coupling is to be considered part of the receiver for the purposes of this
specification unless explicitly stated otherwise. It should be noted that various
methods for AC coupling are allowed (for example, internal to the chip or done
externally). See Section 9.5.13 for more information.

10.4.3.6 Level I Receiver Input Lane-to-Lane Skew

Refer to Section 9.5.9.

10.4.3.7 Level I Receiver Input Resistance and Return Loss

Refer to Section 9.5.11 for the reference model for return loss. See Table 10-11 for
Level I receiver parameters. Definitions for these parameters are in Figure 9-12.

Receiver input impedance shall result in a differential return loss better that -8 dB
and a common mode return loss better than -6 dB from 100 MHz to (0.5)*(R_Baud
Frequency). This includes contributions from on-chip circuitry, the chip package
and any off-chip components related to the receiver. AC coupling components are
included in this requirement. The reference impedance for return loss measurements
is 100 resistive for differential return loss and 25 resistive for common mode.

Table 10-11. Level I Input Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 Hz

f2 R_Baud Hz

Slope 16.6 dB/dec

RBaud
1
2

RapidIO.org 465

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.4.3.8 Level I Receiver Input Jitter Tolerance

The DUT shall be measured to have a BER better than specified for stressed signal
with a confidence level of three sigma. Therefore the receiver shall tolerate at least
the far-end eye template and jitter requirements as given in Figure 9-5 and
Table 10-10 with an additional SJ with any frequency and amplitude defined by the
mask of Figure 10-1 where the minimum and maximum total wander amplitude are
0.1 UIpp and 8.5 UIpp respectively. This additional SJ component is intended to
ensure margin for wander, hence is over and above any high frequency jitter from
Table 10-13.

Table 10-12 defines the low and high knee frequency for Level I links where the
baud rates are defined as in Section 10.4.3.1.

Figure 10-1. Single Frequency Sinusoidal Jitter Limits

Table 10-12. Level I Single Frequency Sinusoidal Jitter Limits Knee Frequencies

Receiver Data Baud Rate
(Gbaud)

f1 (kHz) f2 (kHz)

1.25 8.82 750

2.5 17.6 1500

3.125 22.1 1875

8.5 UI p-p

0.10 UI p-p

Sinusoidal
Jitter

Amplitude

f1 f2 20 MHzFrequency

PASS

FAIL
466 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
For each baud rate at which a LP-Serial receiver is specified to operate, the receiver
shall meet the corresponding Bit Error Ratio specification in Table 10-10 when the
eye pattern of the receiver test signal (exclusive of sinusoidal jitter) falls entirely
within the unshaded portion of the Receiver Input Compliance Mask shown in
Figure 9-5 with the parameters specified in Table 10-13. The eye pattern of the
receiver test signal is measured at the input pins of the receiving device with the
device replaced with a 100 ± 5% differential resistive load.

10.5 Level I Measurement and Test Requirements
Since the LP-Serial electrical specification is guided by the XAUI electrical
interface specified in Clause 47 of IEEE 802.3ae-2002, the measurement and test
requirements defined here are similarly guided by Clause 47. In addition, the CJPAT
test pattern defined in Annex 48A of IEEE802.3ae-2002 is specified as the test
pattern for use in transmitter eye pattern and jitter measurements. Annex 48B of
IEEE802.3ae-2002 is recommended as a reference for additional information on
jitter test methods.

10.5.1 Level I Transmitter Measurements

10.5.1.1 Level I Eye Template Measurements

For the purpose of transmitter eye template measurements, the effects of a
single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to
the jitter. The data pattern for template measurements is the Continuous Jitter Test
Pattern (CJPAT) defined in Annex 48A of IEEE802.3ae. All lanes of the LP-Serial
link shall be active in both the transmit and receive directions, and opposite ends of
the links shall use asynchronous clocks. N lane implementations shall use CJPAT as
defined in Annex 48A. Single lane implementations shall use the CJPAT sequence
specified in Annex 48A for transmission on lane 0. The amount of data represented
in the eye shall be adequate to ensure that the bit error ratio is less than 10-12. The
eye pattern shall be measured with AC coupling and the compliance template
centered at 0 Volts differential. The left and right edges of the template shall be
aligned with the mean zero crossing points of the measured data eye. The load for
this test shall be 100 resistive ± 5% differential to 2.5 GHz.

Table 10-13. Level I Far-End (Rx) Template Intervals

Characteristics Symbol
Far-End

Value
Units

Eye Mask R_X1 0.275 UI

Eye Mask R_Y1 100 mV

Eye Mask R_Y2 800 mV

High Probability Jitter R_HPJ 0.37 UIpp

Total Jitter (Does not include Sinusoidal Jitter) R_TJ 0.55 UIpp
RapidIO.org 467

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
10.5.1.2 Level I Jitter Test Measurements

For the purpose of transmitter jitter measurement, the effects of a single-pole high
pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The
data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT)
pattern defined in Annex 48A of IEEE802.3ae. All lanes of the LP-Serial link shall
be active in both the transmit and receive directions, and opposite ends of the links
shall use asynchronous clocks. N lane implementations shall use CJPAT as defined
in Annex 48A. Single lane implementations shall use the CJPAT sequence specified
in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling
and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration
of a jitter tolerance setup) shall be performed with a test procedure resulting in a
BER curve such as that described in Annex 48B of IEEE802.3ae.

10.5.1.3 Level I Transmit Jitter Load

Transmit jitter is measured at the driver output when terminated into a load of 100
resistive ± 5% differential to 2.5 GHz.

10.5.2 Level I Receiver Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This
signal is obtained by first producing the sum of deterministic and random jitter
defined in Section 10.4.3 and then adjusting the signal amplitude until the data eye
contacts the 4 points of the minimum eye opening of the receive template shown in
Table 9-4 and Table 10-13. Note that for this to occur, the test signal must have
vertical waveform symmetry about the average value and have horizontal symmetry
(including jitter) about the mean zero crossing. Eye template measurement
requirements are as defined above. Random jitter is calibrated using a high pass
filter with a low frequency corner at 20 MHz and a 20 dB/decade rolloff below this.
The required sinusoidal jitter specified in Section 10.4.3 is then added to the signal
and the test load is replaced by the receiver being tested.
468 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 11 5 Gbaud and 6.25 Gbaud LP-Serial
Links

This chapter details the requirements for Level II RapidIO LP-Serial short, medium,
and long run electrical interfaces of nominal baud rates of 5 Gbaud and 6.25 Gbaud
using NRZ coding (hence 1 bit per symbol at the electrical level). A compliant
device must meet all of the requirements listed below. The electrical interface is
based on a high speed low voltage logic with a nominal differential impedance of
100 . Connections are point-to-point balanced differential pair and signaling is
unidirectional.

11.1 Level II Application Goals

11.1.1 Common to Level II Short run, Medium run and Long
run

The following are application requirements common to short run, medium run and
long run Level II links at 5 Gbaud and 6.25 Gbaud:

• The electrical specifications shall support lane widths options of 1x, 2x, 4x, 8x
and 16x.

• Both AC coupled and DC coupled links options shall be specified. A compliant
device must implement AC coupling and may implement DC coupling as an
option.

• A compliant device may implement any subset of baud rates contained in this
chapter.

• A compliant device may implement either a short run transmitter, a long run
transmitter, or both, at each of the baud rates that it supports.

• A compliant device may implement either a short run receiver or a long run
receiver at each of the baud rates that it supports.

• The clock frequency tolerance requirement for transmit and receive are
100 ppm. The worst case frequency differences between any transmit and
receive clock is 200 ppm.

• The Bit Error Ratio (BER) shall be better than 10-15 per lane but the test

requirements will be to verify 10-12 per lane.
RapidIO.org 469

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Transmitters and receivers used on short, medium and long run links shall
inter-operate for path lengths up to 20 cm.

• Transmitters and receivers used on medium and long run links shall
inter-operate for path lengths up to 60 cm.

• The transmitter pins shall be capable of surviving short circuit either to each
other, to supply voltages, and to ground.

11.1.2 Application Goals for Level II Short Run
• The short run interface shall be capable of spanning at least 20 cm of PCB

material with up to a single connector.

11.1.3 Application Goals for Level II Medium Run
• The medium run interface shall be capable of spanning at least 60 cm of PCB

material with up to two connectors.

• An AC coupled receiver used for a medium run shall be inter-operable with an
AC coupled short run transmitter

• An AC coupled transmitter used for a medium run shall be inter-operable with
an AC coupled short run receiver, provided that the signal swing values are
lowered. This implies that the signal swing is configurable.

• The medium run PHY may use techniques such as increased signal swing and
linear equalization to accommodate medium run backplane applications,
where the receiver eye may be closed.

11.1.4 Application Goals for Long Run
• The long run interface shall be capable of spanning at least 100 cm of PCB

material with up to two connectors.

• An AC coupled long run receiver shall be inter-operable with an AC coupled
short or medium run transmitter

• An AC coupled long run transmitter shall be inter-operable with an AC coupled
short run receiver provided that the signal swing values are lowered. This
implies that the signal swing is configurable.

• The long run PHY may use techniques such as increased signal swing, linear
equalization, and Decision Feedback Equalizer, designed to accommodate
longer run backplane applications, where the receiver eye may be closed.

• A long run transmitter and receiver is intended to accommodate ‘legacy’ long
run RapidIO 1.3 backplanes of at least 60 cm with up to two connectors that
can operate at data rates up to 6.25 Gbaud.
470 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.1.5 Explanatory Note on Transmitter and Receiver
Specifications

AC electrical specifications are given for transmitters and receivers. Long run,
medium run and short run interfaces at two baud rates are described.

The parameters for the AC electrical specifications are guided by the OIF CEI
Electrical and Jitter Inter-operability agreement for CEI-6G-SR and
CEI-6G-LR[Reference 2].

OIF CEI-6G-SR and CEI-6G-LR have similar application goals to serial RapidIO,
as described in Section 11.1, "Level II Application Goals". The goal of this standard
is that electrical designs for serial RapidIO can reuse electrical designs for OIF
CEI-6G, suitably modified for applications at the baud intervals and runs described
herein.

11.2 Equalization
At the high baud rates used by Level II LP-Serial links, the signals transmitted over
a link are degraded by losses and characteristic impedance discontinuities in the
interconnect media. The losses increase with increasing baud rate and interconnect
media length and cause signal attenuation and inter-symbol interference that
degrade the opening of the eye pattern at both the receiver input and the data decoder
decision point. Depending on the baud rate and interconnect length, the degradation
can be greater than that allowed by the specification.

The signal degradation can be partially negated by the use of equalization in the
transmitter and/or receiver. Equalization in the transmitter can improve the eye
pattern at both the receiver input and the data decoder decision point. Equalization
in the receiver can only improve the eye pattern at the data decoder decision point.
Some degree of equalization is required by most Level II interconnects.

The types of equalizers and, if the equalizers are adaptive, the adaptive equalizer
training algorithms that may be used in a Level II 5.0 Gbaud transmitter or receiver
are subject to the following restrictions.

Equalizers that can convert a single bit error into a multiple bit burst error, such as
decision feedback equalizers (DFEs), shall not be used when IDLE1 has been
selected for use on the link.

The training algorithm for any adaptive equalization used by a Level II transmitter
and/or receiver shall consistently train the equalizer and retain the equalizer’s
training when IDLE1 is the training signal and shall consistently retain the
equalizer’s training when IDLE1 has been selected for use on the link and the signal
on the link is a continuous sequence of maximum length packets whose payload is
either all ONES or all ZEROS.
RapidIO.org 471

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The above restrictions on the types of equalizers and adaptive equalizer training
algorithms do not apply to Level II transmitters and receivers operating at Baud Rate
Class 2.

11.3 Link Compliance Methodology

11.3.1 Overview

A serial link is comprised of a transmitter, a receiver, and a channel which connects
them. Typically, two of these are normatively specified, and the third is
informatively specified. In this specification, the transmitter and channel are
normatively specified, while the receiver is informatively specified.

This specification follows the OIF inter-operability or compliance methodology and
is based on using transmitter and receiver reference models, measured channel
S-parameters, eye masks, and calculated “statistical eyes”. These “statistical eyes”
are determined by the reference models and measured channel S-parameters using
publicly available StatEye MATLAB® scripts and form the basis for identifying
compliant transmitters and channels. Compliant receivers are identified through a
BER test.

Reference models are used extensively because at 5 Gbaud and 6.25 Gbaud data
rates the incoming eye at the receiver may be closed. This prevents specifying
receiver compliance through receiver eye masks as is typically done at lower data
rates.

11.3.2 Reference Models

The OIF serial link reference model is shown in Figure 11-1. The reference models
are simple models of the transmitter and receiver equalization with the effects of
amplitude, return loss, and bandwidth included. These models do not include any
other aspects of transmitter or receiver performance.
472 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
There are three target channel run goals in this specification which require various
amounts of equalization. These different goals can be met using two transmitter and
two receiver reference models. The run goals are short (20 cm), medium (60 cm),
and long (100 cm). The reference models for each of the run goals are based on
combining short and long run transmitter and receiver models as shown in Table
11-1.

11.3.3 Channel Compliance

A compliant channel is determined using the appropriate transmitter and receiver
reference model, measured S-parameters for the channel under consideration, and
the StatEye script. A compliant channel is one that produces a receiver equalizer
output “statistical eye” which meets a BER 10-15 using StatEye.

Figure 11-1. OIF Reference Model

Table 11-1. Reference Models

Run Tx Reference Model Rx Reference Model

Short Short Short

Medium Long Short

Long Long Long

NOTES:
Transmitter Reference Models

Short: 1 tap with 3 dB post cursor emphasis
Long: 1 tap with 6 dB of either pre or post cursor emphasis

Receiver Reference Model
Short: Single pole, Single zero with 4 dB max gain
Long: 5 tap DFE

Channel

+ +

--

Transmitter

+ +

--

Receiver

Transmitter Reference Model
Includes effects of transmitter
equalization, return loss,
amplitude, and bandwidth

Receiver Reference Model
Includes effects of receiver
equalization, return loss,
amplitude, and bandwidth

Receiver Equalizer
Output

Near-End Far-End
RapidIO.org 473

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.3.4 Transmitter Compliance

The experimental setup for transmitter compliance is shown in Figure 11-2. The
shown setup consists of the transmitter under test connected to a compliant channel
terminated with a 100 differential load. OIF requires the compliant channel used
in verifying transmitter compliance use at least half of the available transmitter
emphasis to produce an open eye at the far-end of the channel.

Using the shown setup, the following three conditions shall be met for compliant
transmitters:

1. After optimally adjusting the transmitter amplitude and emphasis to produce
the most open far-end eye (given the transmitter emphasis constraint), the
measured far-end eye must be equal or better than the calculated far-end eye
as produced by StatEye.

2. The high frequency transmit jitter measured at the near-end must meet
specification.

3. The measured near-end transmit eye mask must meet the specified near-end
eye mask.

11.3.5 Receiver Compliance

The experimental setup for receiver compliance is shown in Figure 11-3. The shown
setup consists of a compliant channel connected to the receiver under test. To verify
the receiver under test, the receiver must meet a BER < 10-12 with a stressed input
eye mask. OIF does not place any requirements on the channel used in this
measurement other than it must be compliant.

Figure 11-2. Transmitter Compliance Setup

Channel

+ +

--

Transmitter

Transmitter Under Test
Adjust transmitter amplitude and
equalization to obtain
best far-end eye opening

Vterm

50

50

Channel must require
at least half of transmitter
equalization to obtain an
open far-end eye opening

Near-End Far-End
474 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The input stressed eye used in this measurement includes sinusoidal, high
probability, and Gaussian jitter as defined in the appropriate sections of this
specification, along with any necessary additive crosstalk. Additive crosstalk is used
to insure that the receiver under test is adequately stressed if a low loss channel is
used in the measurement.

The additive input crosstalk signal is determined using the channel S-parameters,
receiver reference model, and the StatEye script. It must be of amplitude such that
the resulting receiver equalizer output eye, given the channel, jitter, and crosstalk, is
as close as feasible in amplitude when compared to the defined minimum amplitude
used for channel compliance.

11.4 Level II Short Run Interface - General Requirements

11.4.1 Jitter and Inter-operability Methodology

This section describes the requirements for inter-operability testing of the electrical
interfaces used to implement a Short Run link. The LP-Serial 5 Gbaud and
6.25 Gbaud short run interfaces use Method C, described in CEI sub-clause 2.2. This
sub-clause defines the inter-operability methodology specifically for interfaces
where transmit emphasis may be used and the receiver eye requires Linear
Continuous Time equalization (from channel inter-operability point of view) to be
open to within the BER of interest.

Figure 11-3. Receiver Compliance Setup

Channel

+ +

--

Receiver

Receiver Under Test
Measured BER must be
better than 10-12

BERT

Data
Out

Data
In

+

-

+

-

Channel must be
a compliant one

Cross
Talk

Additive Crosstalk

Crosstalk is added if the compliant channel used does not close the reference
model receiver equalizer output eye to the specified minimum amplitude.
The crosstalk amplitude is determined using the receiver reference model.
RapidIO.org 475

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.1.1 Level II SR Defined Test Patterns1

A free running PRBS31 polynomial [ITU-T 0.150] shall be used for the testing of
jitter tolerance and output jitter compliance.

11.4.1.2 Level II SR Channel Compliance

The following steps shall be made to identify which channels are to be considered
compliant:

1. The forward channel and significant crosstalk channels shall be measured
using a network analyzer for the specified baud rate (see Section 11.7.4.5,
"Network Analysis Measurement" for a suggested method). Differential
S-parameters will be used to represent the characteristics of this channel.

2. The reference transmitter shall be a single post tap transmitter, with 3 dB of
emphasis and infinite precision accuracy.

3. A Tx edge rate filter: a single pole 20 dB/dec low pass at 75% of baud rate,

this is to emulate a Tx -3 dB bandwidth at 3/4 baud rate.

4. A transmit amplitude of 400 mVppd shall be used.

5. Additional Uncorrelated Bounded High Probability Jitter of 0.15 UIpp
(emulating part of the Tx jitter).

6. Additional Uncorrelated Unbounded Gaussian Jitter of 0.15 UIpp (emulating
part of the Tx jitter)

7. The baud rate shall be 5 Gbaud or 6.25 Gbaud.

8. The reference transmitter shall use the worst case transmitter return loss at the
baud frequency. In order to construct the worse case transmitter return loss,
the reference transmitter should be considered to be a parallel R and C, where
R is the defined maximum allowed DC resistance of the interface and C is
increased until the defined maximum Return Loss at the baud frequency is
reached. The transmitter return loss is specified in Section 11.4.2.1.6, "Level
II SR Transmitter Output Resistance and Return Loss".

9. An ideal receiver filter of the form in CEI Section 9.6.7, "Time Continuous
Transverse Filter". The reference receiver uses a continuous-time equalizer
with 1 zero and 1 pole in the region of baudrate/100 to baudrate. Additional
parasitic zeros and poles must be considered part of the receiver vendor’s
device and be dealt with as they are for the reference receiver. Pole and Zero
values have infinite precision accuracy. Maximum required gain/attenuation
shall be less than or equal to 4 dB.

10. The reference receiver shall use a sampling point defined at the midpoint
between the average zero crossings of the differential signal.

1All descriptions of PRBS31 imply the standard polynomial as described in [Reference 3]
476 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11. The reference receiver shall use the worst case receiver return loss at the baud
frequency. In order to construct the worse case receiver return loss, the
reference receiver should be considered to be a parallel R and C, where R is
the defined maximum allowed DC resistance of the interface and C is
increased until the defined maximum Return Loss at the baud frequency is
reached. The receiver return loss is specified in Section 11.4.2.2.7, "Level II
SR Receiver Input Resistance and Return Loss".

12. The opening of the eye shall be calculated using Statistical Eye Analysis
methods, as per Section 9.7.5, "Statistical Eye Methodology", and confirmed
to be within the requirements as specified in Table 11-9 at the required BER,

10-15.

11.4.1.3 Level II SR Transmitter Inter-operability

The following step shall be made to identify which transmitters are to be considered
compliant:

1. It shall be verified that the measured eye is equal or better than the calculated
eye for the given measurement probability Q (see Annex B.3, “Eye Mask
Adjustment for Sampling Oscilloscopes") for a suggested method of
calculating Q given a measurement population), given:

– A “compliance” channel as per Section 11.4.1.2, "Level II SR Channel
Compliance" that required at least half the maximum transmit emphasis.

– Using this channel the transmitter shall be then be optimally adjusted and the
resulting eye measured (see Section 11.7.4.6, "Eye Mask Measurement Setup"
for a suggested method).

– Using this channel the statistical eye shall then be calculated, as per CEI
Section 9.7.5, "Statistical Eye Methodology", using the maximum defined
transmit jitter and the actual transmitter's amplitude and emphasis.

2. The high frequency transmit jitter shall be within that specified (see
Section 11.7.1, "High Frequency Transmit Jitter Measurement"for suggested
methods)

3. The specified transmit eye mask shall not be not violated (see
Section 11.7.4.6, "Eye Mask Measurement Setup" for a suggested method)
after adjusting the horizontal time positions for the measured time with a
confidence level of 3 sigma (see Annex B.3, “Eye Mask Adjustment for
Sampling Oscilloscopes" for a suggested method).

11.4.1.4 Level II SR Receiver Inter-operability

The following step shall be made to identify which receivers are to be considered
compliant:
RapidIO.org 477

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
1. The DUT shall be measured to have a BER1 better than 10-12 for a stressed
signal (see Section 11.7.4.2, "Jitter Tolerance with no Relative Wander Lab
Setup" for a suggested method) with a confidence level of three sigma (see
Annex B.2, “Confidence Level of Errors Measurement" for a suggested
method), given:

– The defined sinusoidal jitter mask for total and relative wander as per
Section 11.4.2.2.8, "Level II SR Receiver Input Jitter Tolerance" with a high
frequency total/relative wander and a maximum total/relative wander as defined
in the CEI IA.

– The specified amount of High Probability Jitter and Gaussian jitter per
Section 11.4.2.2.8, "Level II SR Receiver Input Jitter Tolerance".

– An additive crosstalk signal of amplitude such that the resulting statistical eye,
given the channel, jitter and crosstalk, is as close as feasible in amplitude when
compared to the defined minimum amplitude for channel compliance.

11.4.2 Level II SR Electrical Characteristics

The electrical interface is based on high speed, low voltage logic with nominal
differential impedance of 100 . Connections are point-to-point balanced
differential pair and signalling is unidirectional.

11.4.2.1 Level II SR Transmitter Characteristics

The key transmitter characteristics are summarized in Table 11-2 and Table 11-3
while the following sections fully detail all the requirements.

1if the defined measurement BER is different to system required BER, adjustments to applied stressed eye TJ are necessary

Table 11-2. Level II SR Transmitter Output Electrical Specifications

Characteristic Symbol Condition Min Typ Max Units

Baud Rate (5 Gbaud) T_Baud Section 11.4.2.1.2 5.00
-0.01%

5.00 5.00
+0.01%

Gbaud

Baud Rate (6.25 Gbaud) 6.25
-0.01%

6.25 6.25
+0.01%

Gbaud

Absolute Output Voltage VO Section 11.4.2.1.3 -0.40 2.30 Volts

Output Differential voltage
(into floating load Rload=)

T_Vdiff Section 11.4.2.1.3 400 750 mVppd

Differential Resistance T_Rd Section 11.4.2.1.6 80 100 120 W

NOTES:
1. Load Type 0 with min T_Vdiff, AC-Coupling or floating load
2. For Load Types 1 through 3: R_Zvtt 30 Vtt is defined for each load type as follows: Load Type 1 R_Vtt = 1.2 V +5%/-8%;

Load Type 2 R_Vtt = 1.0 V +5%/-8%; Load Type 3 R_Vtt = 0.8 V +5%/-8%.
3. DC Coupling compliance is optional (Type 1 through 3). Only Transmitters that support DC coupling are required to meet this

parameter. It is acceptable for a transmitter to restrict the range of T_Vdiff in order to comply with the specified T_Vcm range.
For a transmitter which supports multiple T_Vdiff levels, it is acceptable for a transmitter to claim DC Coupling Compliance if
it meets the T_Vcm ranges for at least one of its T_Vdiff setting as long as those setting(s) that are compliant are indicated.
478 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Recommended output rise and fall times
(20% to 80%)

T_tr, T_tf Section 11.4.2.1.4 30 ps

Skew between signals comprising a differential
pair

T_SKEWdiff Section 11.4.2.1.5 15 ps

Differential Output Return Loss
(100 MHz to 0.5*T_Baud)

T_SDD22 Section 11.4.2.1.6 -8 dB

Differential Output Return Loss
(0.5*T_Baud to T_Baud)

Common Mode Return Loss
(100 MHz to 0.75 *T_Baud)

T_SCC22 Section 11.4.2.1.6 -6 dB

Transmitter Common Mode Noise T_Ncm 5% of
T_Vdiff

mVppd

Output Common Mode Voltage
Editor notes: This row is deleted and replaced
with the following row.

T_Vcm Load Type 01,2,3,4

Section 9.5.3
0.0 1.8 V

Load Type 11,3,4,6

Section 9.5.3
735 1135 mV

Load Type 21,3,4

Section 9.5.3
550 1060 mV

Load Type 31,3,4,5

Section 9.5.3
490 850 mV

Output Common Mode Voltage T_Vcm Load Type 01

Section 9.5.3
100 1700 mV

Load Type 12,3

Section 9.5.3
630 1100 mV

Table 11-3. Level II SR Transmitter Output Jitter Specifications

Characteristic Symbol Conditions Min Typ Max Units

Uncorrelated High Probability Jitter T_UHPJ Section 11.4.2.1.8 0.15 UIpp

Duty Cycle Distortion T_DCD Section 11.4.2.1.8 0.05 UIpp

Total Jitter T_TJ Section 11.4.2.1.8 0.30 UIpp

Eye Mask T_X1 Section 11.4.2.1.8 0.15 UI

Eye Mask T_X2 Section 11.4.2.1.8 0.40 UI

Eye Mask T_Y1 Section 11.4.2.1.8 200 mV

Eye Mask T_Y2 Section 11.4.2.1.8 375 mV

Table 11-2. Level II SR Transmitter Output Electrical Specifications

Characteristic Symbol Condition Min Typ Max Units

NOTES:
1. Load Type 0 with min T_Vdiff, AC-Coupling or floating load
2. For Load Types 1 through 3: R_Zvtt 30 Vtt is defined for each load type as follows: Load Type 1 R_Vtt = 1.2 V +5%/-8%;

Load Type 2 R_Vtt = 1.0 V +5%/-8%; Load Type 3 R_Vtt = 0.8 V +5%/-8%.
3. DC Coupling compliance is optional (Type 1 through 3). Only Transmitters that support DC coupling are required to meet this

parameter. It is acceptable for a transmitter to restrict the range of T_Vdiff in order to comply with the specified T_Vcm range.
For a transmitter which supports multiple T_Vdiff levels, it is acceptable for a transmitter to claim DC Coupling Compliance if
it meets the T_Vcm ranges for at least one of its T_Vdiff setting as long as those setting(s) that are compliant are indicated.
RapidIO.org 479

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.2.1.1 Level II SR Transmitter Test Load

All transmitter characteristics should be implemented and measured to a differential
impedance of 100 ± 1% at DC with a return loss of better than 20 dB from baud
rate divided by 1667 to 1.5 times the baud rate, unless otherwise noted.

11.4.2.1.2 Level II SR Transmitter Baud Rate

The baud rates are 5 Gbaud and 6.25 Gbaud with a tolerance of ±100 ppm.

11.4.2.1.3 Level II SR Transmitter Amplitude and Swing

Transmitter differential output amplitude shall be between 400 and 750 mVppd,
inclusive, either with or without any transmit emphasis. Absolute transmitter output
voltage shall be between -0.1 V and 1.9 V, inclusive, with respect to local ground.
See Figure 9-1 for an illustration of absolute transmitter output voltage limits and
definition of differential peak-to-peak amplitude.

11.4.2.1.4 Level II SR Transmitter Rise and Fall Times

The recommended minimum differential rise and fall times are 30 ps as measured
between the 20% and 80% of the maximum measured levels; the maximum
differential rise and fall times are defined by the Tx eye diagram Figure 9-2 and
Table 11-5. Shorter rise and fall times may result in excessive high frequency
components and increase EMI and cross talk.

11.4.2.1.5 Level II SR Transmitter Differential Pair Skew

The timing skew at the output of a Level II SR transmitter between the two signals
that comprise a differential pair shall not exceed 15 ps at 5.0 Gbaud and 6.25 Gbaud.

11.4.2.1.6 Level II SR Transmitter Output Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 11-4 for 5 Gbaud and
6.25 Gbaud short run transmitter parameters. Definitions for these parameters are in
Figure 9-12.

11.4.2.1.7 Level II SR Transmitter Lane-to-Lane Skew

The electrical level of lane-to-lane skew caused by the transmitter circuitry and
associated routing must be less than 1000 ps for links of 4 lanes or less. Links with

Table 11-4. Level II SR Transmitter Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 T_Baud/2 Hz

f2 T_Baud Hz

Slope 16.6 dB/dec
480 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
greater than 4 lanes must have lane-to-lane skew of less than 2 UI + 1000 ps. The
transmitter lane-to-lane skew is only for the serdes Tx and does not include any
effects of the channel.

11.4.2.1.8 Level II SR Transmitter Template and Jitter

As per Section 11.4.1.3, "Level II SR Transmitter Inter-operability" the transmitter
shall satisfy both the near-end and far-end eye template and jitter requirements as
given in Figure 9-2, Table 11-5, Figure 9-5, and Table 11-9 either with or without
any transmit emphasis.

The maximum near-end duty cycle distortion (T_DCD) shall be less than 0.05 UIpp.

It should be noted that it is assumed the Uncorrelated High Probability Jitter
component of the transmitter jitter is not Inter-symbol Interference (ISI). This is only
assumed from a receiver point of view and does not in any way put any restrictions
on the real transmitter HPJ.

11.4.2.2 Level II SR Receiver Characteristics

The key receiver characteristics are summarized in Table 11-6 and Table 11-7 while
the following sections fully detail all the requirements.

Table 11-5. Level II SR Near-End (Tx) Template Intervals

Characteristics Symbol
Near-End

Value
Units

Eye Mask T_X1 0.15 UI

Eye Mask T_X2 0.40 UI

Eye Mask T_Y1 200 mV

Eye Mask T_Y2 375 mV

Eye Mask T_Y3 125 mV

Uncorrelated Bounded High Probability Jitter T_UBHPJ 0.15 UIpp

Duty Cycle Distortion T_DCD 0.05 UIpp

Total Jitter T_TJ 0.30 UIpp

Table 11-6. Level II SR Receiver Electrical Input Specifications

Characteristic Symbol Conditions Min Typ Max Units

Rx Baud Rate (5 Gbaud) R_Baud Section 11.4.2.2.1 5.00
-0.01%

5.00 5.00
+0.01%

Gbaud

Rx Baud Rate (6.25 Gbaud) 6.25
-0.01%

6.25 6.25
+0.01%

Gbaud

Absolute Input Voltage R_Vin Section 11.4.2.2.4

NOTES:
1. DC Coupling compliance is optional. For Vcm definition, see Figure 9-1.
2. Receiver is required to implement at least one of specified nominal R_Vtt values, and typically implements only one of these

values. Receiver is only required to meet R_Vrcm parameter values that correspond to R_Vtt values supported.
3. Input common mode voltage for AC-coupled or floating load input with min. T_Vdiff.
4. For floating load, input resistance must be 1 k.
RapidIO.org 481

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Input Differential voltage R_Vdiff Section 11.4.2.2.3 125 1200 mVppd

Differential Resistance R_Rdin Section 11.4.2.2.7 80 100 120

Bias Voltage Source Impedance
(load types 1 to 3)1

R_Zvtt 30

Differential Input Return Loss
(100 MHz to 0.5*R_Baud)

R_SDD11 Section 11.4.2.2.7 -8 dB

Differential Input Return Loss
(0.5*R_Baud to R_Baud))

Common mode Input Return Loss
(100 MHz to 0.5*R_Baud)

R_SCC11 Section 11.4.2.2.7 -6 dB

Termination Voltage1,2 R_Vtt R_Vtt floating4 Not Specified V

R_Vtt = 1.2V
Nominal

1.2 - 8% 1.2 +
5%

V

R_Vtt = 1.0V
Nominal

1.0 - 8% 1.0 +
5%

V

R_Vtt = 0.8V
Nominal

0.8 - 8% 0.8 +
5%

V

Input Common Mode Voltage1,2

Editor notes: This row is deleted and replaced
with the following row.

R_Vrcm R_Vtt floating3,4 -0.05 1.85 V

R_Vtt = 1.2V
Nominal

720 R_Vtt -
10

mV

R_Vtt = 1.0V
Nominal

535 R_Vtt +
125

mV

R_Vtt = 0.8V
Nominal

475 R_Vtt +
105

mV

Input Common Mode Voltage R_Vfcm Load Type 02 0 1800 mV

Load Type 11,3 595 R_Vtt -
60

mV

Wander divider (in Figure 9-8 & Figure 9-9) n 10

Table 11-7. Level II SR Receiver Input Jitter Tolerance Specifications

Characteristics Symbol Conditions Min Typ Max Units

Bounded High Probability Jitter R_BHPJ Section 11.4.2.2.8 0.45 UIpp

Sinusoidal Jitter, maximum R_SJ-max Section 11.4.2.2.8 5 UIpp

Sinusoidal Jitter, High Frequency R_SJ-hf Section 11.4.2.2.8 0.05 UIpp

Total Jitter (Does not include Sinusoidal Jitter) R_TJ Section 11.4.2.2.8 0.60 UIpp

Eye Mask R_X1 Section 11.4.2.2.8 0.30 UI

Table 11-6. Level II SR Receiver Electrical Input Specifications

Characteristic Symbol Conditions Min Typ Max Units

NOTES:
1. DC Coupling compliance is optional. For Vcm definition, see Figure 9-1.
2. Receiver is required to implement at least one of specified nominal R_Vtt values, and typically implements only one of these

values. Receiver is only required to meet R_Vrcm parameter values that correspond to R_Vtt values supported.
3. Input common mode voltage for AC-coupled or floating load input with min. T_Vdiff.
4. For floating load, input resistance must be 1 k.
482 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.2.2.1 Level II SR Receiver Input Baud Rate

All devices shall work at 5 Gbaud, 6.25 Gbaud or both baud rates with the baud rate
tolerance as per Section 9.5.12, "Baud Rate Tolerance".

11.4.2.2.2 Level II SR Receiver Reference Input Signals

Reference input signals to the receiver have the characteristics determined by
compliant transmitter. The reference input signal must satisfy the transmitter
near-end template and jitter given in Figure 9-2 and Table 11-5, as well as the
far-end eye template and jitter given in Figure 9-5 and Table 11-9, with the
differential load impedance of 100 1% at DC with a return loss of better than
20 dB from baud rate divided by 1667 to 1.5 times the baud rate. Note that the input
signal might not meet either of these templates when the actual receiver replaces this
load.

11.4.2.2.3 Level II SR Receiver Input Signal Amplitude

The receiver shall accept differential input signal amplitudes produced by compliant
transmitters connected without attenuation to the receiver. This may be larger than
the 1200 mVppd maximum of the transmitter due to output/input impedances and
reflections.

The minimum input amplitude is defined by the far-end transmitter template, the
actual receiver input impedance, and the loss of the actual PCB. Note that the far-end
transmitter template is defined using a well controlled load impedance, however, the
real receiver is not, which can leave the receiver input signal smaller than the
minimum 125 mVppd.

11.4.2.2.4 Level II SR Receiver Absolute Input Voltage

The absolute voltage levels with respect to the receiver ground at the input of the
receiver are dependent on the transmitter implementation, the inter-ground
difference, whether the receiver is AC or DC coupled, and (in the case of DC
coupling load types 1 to 3) the nominal R_Vtt supported by the receiver. The voltage
levels at the input of a DC coupled receiver shall be consistent with the R_Vrcm and
R_Vdiff values defined in Table 11-6.

The voltage levels at the input of an AC coupled receiver (if AC coupling is done
within the receiver) or at the Tx side of the external AC coupling cap (if AC coupling
is done externally) shall be between -0.15 V and 1.95 V, inclusive, with respect to
local ground.

Eye Mask R_Y1 Section 11.4.2.2.8 62.5 mV

Eye Mask R_Y2 Section 11.4.2.2.8 375 mV

Table 11-7. Level II SR Receiver Input Jitter Tolerance Specifications

Characteristics Symbol Conditions Min Typ Max Units
RapidIO.org 483

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.2.2.5 Level II SR Receiver Input Common Mode Impedance

The input common mode impedance (R_Zvtt) at the input of the receiver is
dependent on whether the receiver is AC or DC coupled. The value of R_Zvtt as
measured at the input of an AC coupled receiver is undefined. The value of R_Zvtt
as measured at the input of a DC coupled receiver is defined as per Table 11-6.

If AC coupling is used it is to be considered part of the receiver for the purposes of
this specification unless explicitly stated otherwise. It should be noted that various
methods for AC coupling are allowed (for example, internal to the chip or done
externally). See Section 9.5.13, "Termination and DC Blocking" for more
information.

11.4.2.2.6 Level II SR Receiver Input Lane-to-Lane Skew

Lane-to-lane skew at the input to the receiver shall not exceed 70 UI peak. See
Section 9.5.9, "Receiver Input Lane-to-Lane Skew".

11.4.2.2.7 Level II SR Receiver Input Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 11-8 for 5 Gbaud and
6.25 Gbaud short run receiver parameters. Definitions for these parameters are in
Figure 9-12.

11.4.2.2.8 Level II SR Receiver Input Jitter Tolerance

As per Section 11.4.1.4, "Level II SR Receiver Inter-operability", the receiver shall
tolerate at least the far-end eye template and jitter requirements as given in
Figure 9-5 and Table 11-9 with an additional SJ with any frequency and amplitude
defined by the mask of Figure 9-9 where the minimum and maximum total wander
amplitude are 0.05 UIpp and 5 UIpp respectively. This additional SJ component is
intended to ensure margin for wander, hence is over and above any high frequency
jitter from Table 11-9.

Table 11-8. Level II SR Input Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 R_Baud/2 Hz

f2 R_Baud Hz

Slope 16.6 dB/dec
484 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.2.3 Level II SR Link and Jitter Budgets

The primary intended application is as a point-to-point interface of up to
approximately 20 cm and up to one connector between integrated circuits using
controlled impedance traces on low-cost printed circuit boards (PCBs). Informative
loss and jitter budgets are presented in Table 11-10 to demonstrate the feasibility of
legacy FR4 epoxy PCBs. The jitter budget is given in Table 11-11. The performance
of an actual transceiver interconnect is highly dependent on the implementation.

Table 11-9. Level II SR Far-End (Rx) Template Intervals

Characteristics Symbol
Far-End

Value
Units

Eye Mask R_X1 0.30 UI

Eye Mask R_Y1 62.5 mV

Eye Mask R_Y2 375 mV

Uncorrelated Bounded High Probability Jitter R_UBHPJ 0.15 UIpp

Correlated Bounded High Probability Jitter R_CBHPJ 0.30 UIpp

Total Jitter (Does not include Sinusoidal Jitter) R_TJ 0.60 UIpp

Table 11-10. Level II SR Informative Loss, Skew and Jitter Budget

Description Loss (dB)
Differential
Skew (ps)

Bounded High
Probability

(UIpp)
TJ (UIpp)

Driver 0 15 0.15 0.30

Interconnect (with Connector) 6.6 25 0.15 0.15

Other 3.5 0.15 0.15

Total 10.1 40 0.45 0.60

Table 11-11. Level II SR High Frequency Jitter Budget

CEI-6G-SR

Uncorrelated Jitter Correlated Jitter Total Jitter

Amplitude
Unbounded

Gaussian
 High

Probability
Bounded
Gaussian

Bounded
High

Probability
Gaussian Sinusoidal

Bounded
High

Probability
Total

Abbreviation UUGJ UHPJ CBGJ CBHPJ GJ SJ HPJ TJ k

Units UIpp UIpp UIpp UIpp UIpp UIpp UIpp UIpp mVppd

Transmitter 0.150 0.150 -0.2001 0.150 -0.050 0.100 400.0

Channel 0.500

Receiver Input 0.150 0.150 0.000 0.300 0.150 0.450 0.600 0.25 125

Clock +
Sampler

0.150 0.100 0.100 -50.0

Budget 0.212 0.250 0.000 0.400 0.212 0.050 0.650 0.912 0.13 75.0

NOTES:
1. Due to transmitter emphasis, it reduces the ISI as seen at the receiver. Thus this number is negative.
RapidIO.org 485

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.4.3 Level II SR StatEye.org Template

%%

% example template for setting up a standard, i.e. equalizer
% jitter and return loss

%%

param.version = [param.version ’_v1.0’];

% these are internal variables and should not be changed

param.scanResolution = 0.01;
param.binsize = 0.0005;
param.points = 2^13;

%%

% set the transmitter and baud rate. The tx filter has two
% parameters defined for the corner frequency of the poles

param.bps = 6.25e9;
param.bitResolution = 1/(4*param.bps);
param.txFilter = ’singlepole’;
param.txFilterParam = [0.75];

%%

% set the return loss up. The return loss can be turned off
% using the appropriate option

param.returnLoss = ’on’;
param.cpad = 1.0;

%%

% set the transmitter emphasis up. Some example setting are
% included which can be uncommented

% single tap emphasis
param.txpre = [];
param.signal = 1.0;
param.txpost = [-0.1];
param.vstart = [-0.3 -0.3];
param.vend = [+0.0 +0.0];
param.vstep = [0.1 0.05 0.025];

%%

% set the de-emphasis of 4-point transmit pulse
486 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
% the de-emphasis run if param.txpre = [] and param.txpost = []

param.txdeemphasis = [1 1 1 1]; % de-emphasis is off

%%

% set the data coding changing the transmit pulse spectrum
% the coding run if param.txpre = [] and param.txpost = []

param.datacoding = 1; % the coding is off

%%

% set PAM amplitude and rate

param.PAM = 2; % PAM is switched off

%%

% the rxsample point does not need to be changed as it is
% automatically adjusted by the optimization scripts.
% The number of DFE taps should be set, however, the initial
% conditions are irrelevant.

param.rxsample = -0.1;

% no DFE
param.dfe = [];

%%

% sampling jitter in HPJpp and GJrms is defined here

param.txdj = 0.15;
param.txrj = 0.15/(2*7.94);

%%

% the following options are not yet implemented and should
% not be changed

param.user = [0.0];
param.useuser = ’no’;
param.usesymbol = ’’;
param.xtAmp = 1.0;

%%

param.TransmitAmplitude = 0.400; % mVppdif
param.MinEye = 0.125; % mVppdif

param.Q = 2*7.94;
RapidIO.org 487

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
param.maxDJ = 0.30;
param.maxTJ = 0.60;

11.5 Level II Long Run Interface General Requirements

11.5.1 Long Run Jitter and Inter-operability Methodology

The LP-Serial 5 Gbaud and 6.25 Gbaud short run interfaces use Method D,
described in CEI clause 2.4. This section defines the inter-operability methodology
specifically for interfaces where transmit emphasis may be used and the receiver eye
requires DFE equalization (from channel inter-operability point of view) to be open
to within the BER of interest.

11.5.1.1 Level II LR Channel Compliance

The following steps shall be made to identify which channels are to be considered
compliant:

1. The forward channel and significant crosstalk channels shall be measured
using a network analyzer for the specified baud rate (see Section 11.7.4.5,
"Network Analysis Measurement" for a suggested method).

2. A single pre or post tap transmitter with 6 dB of emphasis, with infinite
precision accuracy.

3. A Tx edge rate filter: a two-pole 40 dB/dec low pass at 75% of baud rate, this

is to emulate both Rx and Tx -3 dB bandwidths at 3/4 baud rate.

4. A transmit amplitude of 800 mVppd.

5. Additional Uncorrelated Bounded High Probability Jitter of 0.15 UIpp
(emulating part of the Tx jitter).

6. Additional Uncorrelated Unbounded Gaussian Jitter of 0.15 UIpp (emulating
part of the Tx jitter).

7. The reference transmitter shall use the worst case transmitter return loss at the
baud frequency. In order to construct the worse case transmitter return loss,
the reference transmitter should be considered to be a parallel R and C, where
R is the defined maximum allowed DC resistance of the interface and C is
increased until the defined maximum Return Loss at the baud frequency is
reached. The transmitter return loss is specified in Section 11.5.2.1.6, "Level
II LR Transmitter Output Resistance and Return Loss".

8. An ideal receiver filter of the form in Section 9.6.6, "Decision Feedback
Equalizer". The reference receiver uses a 5 tap DFE, with infinite precision
accuracy and having the following restriction on the coefficient values:

Let W[N] be sum of DFE tap coefficient weights from taps N through M
where
488 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2

N = 1 is previous decision (i.e. first tap)
M = oldest decision (i.e. last tap)
R_Y2 = T_Y2 = 400 mV
Y = min(R_X1, (R_Y2 - R_Y1) / R_Y2) = 0.30
Z = 2/3 = 0.66667

Then W[N] Y * Z(N - 1)

For the channel compliance model the number of DFE taps (M) = 5. This
gives the following maximum coefficient weights for the taps:

W[1] 0.2625 (sum of taps 1 to 5)
W[2] 0.1750 (sum of taps 2 to 5)
W[3] 0.1167 (sum of taps 3 to 5)
W[4] 0.0778 (sum of taps 4 and 5)
W[5] 0.0519 (tap 5)

Notes:
- These coefficient weights are absolute assuming a T_Vdiff of 1 Vppd
- For a real receiver the restrictions on tap coefficients would apply for the
actual number of DFE taps implemented (M)

9. The reference receiver shall use the worst case receiver return loss at the baud
frequency. In order to construct the worse case receiver return loss, the
reference receiver should be considered to be a parallel R and C, where R is
the defined maximum allowed DC resistance of the interface and C is
increased until the defined maximum Return Loss at the baud frequency is
reached. The receiver return loss is specified in Section 11.5.2.2.7, "Level II
LR Receiver Input Resistance and Return Loss".

10. Any parameters that have degrees of freedom (e.g. filter coefficients or
sampling point) shall be optimized against the amplitude, at the zero phase
offset, as generated by the Statistical Eye Output, e.g. by sweeping all degrees
of freedom and selecting the parameters giving the maximum amplitude. A
receiver return loss, as defined by the reference receiver, shall be used.

Table 11-12. Level II LR Receiver Equalization Output Eye Mask

Parameter Symbol Max Units

Eye mask R_X1 0.30 UI

Eye mask R_Y1 50 mV

Bounded High Probability Jitter R_BHPJ 0.325 UI
RapidIO.org 489

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11. The opening of the eye shall be calculated using Statistical Eye Analysis
methods, as per Section 9.7.5, "Statistical Eye Methodology", and confirmed
to be within the requirements of the equalized eye mask as specified in

Table 11-12 at the required BER, 10-15.

11.5.1.2 Level II LR Transmitter Inter-operability

The following step shall be made to identify which transmitters are to be considered
compliant:

1. It shall be verified that the measured eye is equal or better than the calculated
eye for the given measurement probability Q (see Annex B.3, “Eye Mask
Adjustment for Sampling Oscilloscopes" for a suggested method of
calculating Q given a measurement population), given:

– A “compliance” channel as per Section 11.5.1.1, "Level II LR Channel
Compliance" that required at least half the maximum transmit emphasis with no
receiver filtering to give an open eye.

– Using this channel the transmitter shall be then optimally adjusted and the
resulting near-end eye measured (see Section 11.7.4.6, "Eye Mask Measurement
Setup" for a suggested method).

– Using this channel the statistical eye shall then be calculated, as per
Section 9.7.5, "Statistical Eye Methodology", using the maximum defined
transmit jitter and the actual transmitter's amplitude and emphasis.

If the transmit jitter or transmit eye mask is additionally defined then the following
steps shall also be made to identify which transmitters are to be considered
compliant:

1. The high frequency transmit jitter shall be within that specified (see
Section 11.7.1, "High Frequency Transmit Jitter Measurement" for suggested
methods).

The specified transmit eye mask shall not be violated (see Section 11.7.4.6, "Eye
Mask Measurement Setup" for a suggested method) after adjusting the horizontal
time positions for the measured time with a confidence level of 3 sigma (see
Annex B.3, “Eye Mask Adjustment for Sampling Oscilloscopes" for a suggested
method).

11.5.1.3 Level II LR Receiver Inter-operability

The following step shall be made to identify which receivers are to be considered
compliant:
490 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
1. The DUT shall be measured to have a BER1 better than specified for a stressed
signal (see Section 11.7.4.3, "Jitter Tolerance with Defined ISI and no
Relative Wander" for a suggested method) with a confidence level of three
sigma (see Annex B.2, “Confidence Level of Errors Measurement" for a
suggested method), given:

– The defined sinusoidal jitter mask for relative wander as per Section 9.4.6,
"Relative Wander Mask" with a high frequency relative wander and a maximum
relative wander as defined in Section 11.5.2.2.8, "Level II LR Receiver Jitter
Tolerance".

– The specified amount of High Probability Jitter and Gaussian jitter as defined in
Section 11.5.2.2.8, "Level II LR Receiver Jitter Tolerance".

– A compliance channel or filter as identified by Section 11.5.1.1, "Level II LR
Channel Compliance".

– An additive crosstalk signal of amplitude such that the resulting statistical eye,
given the channel, jitter, and crosstalk, is as close as feasible in amplitude when
compared to the defined minimum amplitude for channel compliance.

11.5.2 Level II LR Interface Electrical Characteristics

The electrical interface is based on high speed, low voltage logic with nominal
differential impedance of 100 . Connections are point-to-point balanced
differential pair and signalling is unidirectional.

11.5.2.1 Level II LR Transmitter Characteristics

The key transmitter characteristics are summarized in Table 11-13 and Table 11-14
while the following sections fully detail all the requirements.

1if the defined measurement BER is different to system required BER, adjustments to applied stressed eye TJ are necessary
RapidIO.org 491

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table 11-13. Level II LR Transmitter Output Electrical Specifications

Characteristics Symbols Conditions Min Typ Max Units

Tx Baud Rate (5 Gbaud) T_Baud Section 11.5.2.1.2 5.00
-0.01%

5.00 5.00
+0.01%

Gbaud

Tx Baud Rate (6.25 Gbaud) 6.25
-0.01%

6.25 6.25
+0.01%

Gbaud

Absolute Output Voltage VO Section 11.5.2.1.3 -0.40 2.30 Volts

Output Differential voltage
(into floating load Rload = 100)

T_Vdiff Section 11.5.2.1.31 800 1200 mVppd

Differential Resistance T_Rd Section 11.5.2.1.6 80 100 120

Recommended output rise and fall times
(20% to 80%)

T_tr, T_tf Section 11.5.2.1.4 30 ps

Skew between signals comprising a differential
pair

T_SKEWdiff Section 11.5.2.1.5 15 ps

Differential Output Return Loss
(100 MHz to 0.5*T_Baud)

T_SDD22 Section 11.5.2.1.6 -8 dB

Differential Output Return Loss
(0.5*T_Baud to T_Baud)

Common Mode Return Loss
(100 MHz to 0.75 *T_Baud)

T_S11 Section 11.5.2.1.6 -6 dB

Transmitter Common Mode Noise T_Ncm 5% of
T_Vdiff

mVppd

Output Common Mode Voltage T_Vcm Load Type 02

Section 9.5.3
100 1700 mV

Load Type 13,4

Section 9.5.3
630 1100 mV

NOTES:
1. The Transmitter must be capable of producing a minimum T_Vdiff greater than or equal to 800 mVppd. In applications where

the channel is better than the worst case allowed, a Transmitter device may be provisioned to produce T_Vdiff less than this
minimum value, but greater than or equal to 400 mVppd, and is still compliant with this specification.

2. Load Type 0 with min T_Vdiff, AC-Coupling or floating load.
3. For Load Type 1: R_Zvtt 30 T_Vtt & R_Vtt = 1.2V +5%/-8%.
4. DC Coupling compliance is optional (Load Type 1). Only Transmitters that support DC coupling are required to meet this

parameter.

Table 11-14. Level II LR Transmitter Output Jitter Specifications

Characteristics Symbol Conditions Min Typ Max Units

Uncorrelated High Probability Jitter T_UHPJ Section 11.5.2.2.8 0.15 UIpp

Duty Cycle Distortion T_DCD Section 11.5.2.2.8 0.05 UIpp

Total Jitter T_TJ Section 11.5.2.2.8 0.30 UIpp

Eye Mask T_X1 Section 11.5.2.2.8 0.15 UI

Eye Mask T_X2 Section 11.5.2.2.8 0.40 UI

Eye Mask T_Y1 Section 11.5.2.2.8 200 mV

Eye Mask T_Y2 Section 11.5.2.2.8 600 mV
492 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.5.2.1.1 Level II LR Transmitter Test Load

All transmitter characteristics should be implemented and measured to a differential
impedance of 1% at DC with a return loss of better than 20 dB from baud
rate divided by 1667 to 1.5 times the baud rate, unless otherwise noted.

11.5.2.1.2 Level II LR Transmitter Baud Rate

The baud rates are 5 Gbaud and 6.25 Gbaud with a tolerance of ±100 ppm.

11.5.2.1.3 Level II LR Transmitter Amplitude and Swing

Transmitter differential output amplitude shall be able to drive between 800 and
1200 mVppd, inclusive, either with or without any transmit emphasis. DC
referenced logic levels are not defined since the receiver must have high common
mode impedance at DC. However, absolute transmitter output voltage shall be
between -0.1 V and 1.9 V, inclusive, with respect to local ground. See Figure 9-1 for
an illustration of absolute transmitter output voltage limits and definition of
differential peak-to-peak amplitude.

11.5.2.1.4 Level II LR Transmitter Rise and Fall Times

The recommended minimum differential rise and fall time is 30 ps as measured
between the 20% and 80% of the maximum measured levels; the maximum
differential rise and fall times are defined by the Tx eye diagram (Figure 9-2 and
Table 11-16). Shorter rise and falls may result in excessive high frequency
components and increase EMI and cross talk.

11.5.2.1.5 Level II LR Transmitter Differential Pair Skew

The timing skew at the output of a Level II LR transmitter between the two signals
that comprise a differential pair shall not exceed 15 ps at 5.0 Gbaud and 6.25 Gbaud.

11.5.2.1.6 Level II LR Transmitter Output Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 11-15 for 5 Gbaud and
6.25 Gbaud long run transmitter parameters. Definitions for these parameters are in
Figure 9-12.

Table 11-15. Level II LR Transmitter Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 T_Baud/2 Hz

f2 R_Baud Hz

Slope 16.6 dB/dec
RapidIO.org 493

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.5.2.1.7 Level II LR Transmitter Lane-to-Lane Skew

The electrical level of lane-to-lane skew caused by the transmitter circuitry and
associated routing must be less than 1000 ps for links of 4 lanes or less. Links with
greater than 4 lanes must have lane-to-lane skew of less than 2 UI + 1000 ps. The
transmitter lane-to-lane skew is only for the serdes Tx and does not include any
effects of the channel.

11.5.2.1.8 Level II LR Transmitter Short Circuit Current

The max DC current into or out of the transmitter pins when either shorted to each
other or to ground shall be ±100 mA when the device is fully powered up. From a
hot swap point of view, the ±100 mA limit is only valid after 10 s.

11.5.2.1.9 Level II LR Transmitter Template and Jitter

The transmitter shall satisfy both the near-end eye template and jitter requirements
as given in Figure 9-2 and Table 11-16 either with or without any transmit emphasis.

The maximum near-end duty cycle distortion (T_DCD) shall be less than 0.05 UIpp.

It should be noted that it is assumed the Uncorrelated High Probability Jitter
component of the transmitter jitter is not Inter-symbol Interference (ISI). This is only
assumed from a receiver point of view so that a receiver can’t equalize it and does
not in any way put any restrictions on the real transmitter HPJ.

11.5.2.2 Level II LR Receiver Characteristics

The key receiver characteristics are summarized in Table 11-17 while the following
sections fully detail all the requirements.

Table 11-16. Level II LR Near-End Template Intervals

Characteristics Symbol Near-End Value Units Comments

Eye Mask T_X1 0.15 UI

Eye Mask T_X2 0.40 UI

Eye Mask T_Y1 200 mV For connection
to short run Rx

400 For connection
to long run Rx

Eye Mask T_Y2 375 mV For connection
to short run Rx

600 For connection
to long run Rx

Uncorrelated Bounded High Probability
Jitter

T_UBHPJ 0.15 UIpp

Duty Cycle Distortion T_DCD 0.05 UIpp

Total Jitter T_TJ 0.30 UIpp
494 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.5.2.2.1 Level II LR Receiver Input Baud Rate

All devices shall work at 5 Gbaud, 6.25 Gbaud or both baud rates with the baud rate
tolerance as per Section 9.5.12.

11.5.2.2.2 Level II LR Receiver Reference Input Signals

Reference input signals to the receiver have the characteristics determined by the
compliant transmitter. The reference input signal must satisfy the transmitter
near-end template and jitter given in Figure 9-2 and Table 11-16, as well as the
far-end eye jitter given in Table 11-20, with the differential load impedance of
1% at DC with a return loss of better than 20 dB from baud rate divided by 1667
to 1.5 times the baud rate. Note that the input signal might not meet either of these
requirements when the actual receiver replaces this load.

11.5.2.2.3 Level II LR Receiver Input Signal Amplitude

The receiver shall accept differential input signal amplitudes produced by compliant
transmitters connected without attenuation to the receiver. This may be larger than
the 1200 mVppd maximum of the transmitter due to output/input impedances and
reflections.

Table 11-17. Level II LR Receiver Electrical Input Specifications

Characteristic Symbol Condition Min Typ Max Units

Rx Baud Rate (5 Gbaud) R_Baud Section 11.5.2.1.2 5.00
-0.01%

5.00 5.00
+0.01%

Gbaud

Rx Baud Rate (6.25 Gbaud) 6.25
-0.01%

6.25 6.25
+0.01%

Gbaud

Absolute Input Voltage R_Vin Section 11.5.2.2.4

Input Differential voltage R_Vdiff Section 11.5.2.2.3 1200 mVppd

Differential Resistance R_Rdin Section 11.5.2.2.7 80 100 120

Bias Voltage Source Impedance
(load type 1)1

R_Zvtt 30

Differential Input Return Loss
(100 MHz to 0.5*R_Baud)

R_SDD11 Section 11.5.2.2.7 -8 dB

Differential Input Return Loss
(0.5*R_Baud to R_Baud))

Common mode Input Return Loss
(100 MHz to 0.5*R_Baud)

R_SCC11 Section 11.5.2.2.7 -6 dB

Input Common Mode Voltage R_Vfcm Load Type 02 0 1800 mV

Load Type 11,3 595 R_Vtt -
60

mV

Wander divider (in Figure 9-8 & Figure 9-9) n 10

NOTES:
1. DC Coupling compliance is optional (Load Type 1). Only receivers that support DC coupling are required to meet this

parameter.
2. Load Type 0 with min T_Vdiff, AC-Coupling or floating load. For floating load, input resistance must be 1 k
3. For Load Type 1: T_Vtt & R_Vtt = 1.2 V +5%/-8%.
RapidIO.org 495

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The minimum input amplitude is defined by the far-end transmitter template, the
actual receiver input impedance, and the loss of the actual PCB. Note that the far-end
transmitter template is defined using a well controlled load impedance, however the
real receiver is not, which can leave the receiver input signal smaller than expected.

11.5.2.2.4 Level II LR Receiver Absolute Input Voltage

The absolute voltage levels with respect to the receiver ground at the input of the
receiver are dependent on the transmitter implementation and the inter-ground
difference.

The voltage levels at the input of an AC coupled receiver (if the effective AC
coupling is done within the receiver) or at the Tx side of the external AC coupling
cap (if AC coupling is done externally) shall be between -0.15 V and 1.95 V,
inclusive, with respect to local ground.

11.5.2.2.5 Level II LR Receiver Input Common Mode Impedance

The input common mode impedance (R_Zvtt) at the input of the receiver is
dependent on whether the receiver is AC or DC coupled. The value of R_Zvtt as
measured at the input of an AC coupled receiver is undefined. The value of R_Zvtt
as measured at the input of a DC coupled receiver is defined as per Table 11-17.

If AC coupling is used it is to be considered part of the receiver for the purposes of
this specification unless explicitly stated otherwise. It should be noted that various
methods for AC coupling are allowed (for example, internal to the chip or done
externally). See Section 9.5.13, "Termination and DC Blocking" for more
information.

11.5.2.2.6 Level II LR Receiver Input Lane-to-Lane Skew

Lane-to-lane skew at the input to the receiver shall not exceed 70 UI peak. See
Section 9.5.9, "Receiver Input Lane-to-Lane Skew".

11.5.2.2.7 Level II LR Receiver Input Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 11-18 for 5 Gbaud and
6.25 Gbaud short run receiver parameters. Definitions for these parameters are in
Figure 9-12.

Table 11-18. Level II LR Input Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 R_Baud/2 Hz

f2 R_Baud Hz

Slope 16.6 dB/dec
496 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.5.2.2.8 Level II LR Receiver Jitter Tolerance

As per Section 11.5.1.3, "Level II LR Receiver Inter-operability", the receiver shall
tolerate at least the far-end jitter requirements as given in Table 11-12 in
combination with any compliant channel, as per Section 11.5.1.1, "Level II LR
Channel Compliance", with an additional SJ with any frequency and amplitude
defined by the mask of Figure 9-9 where the minimum and maximum total wander
amplitude are 0.05 UIpp and 5 UIpp respectively. This additional SJ component is
intended to ensure margin for wander, hence is over and above any high frequency
jitter from Table 11-12.

11.5.3 Level II LR Link and Jitter Budgets

The primarily intended application is as a point-to-point interface of up to
approximately 100 cm and up to two connector between integrated circuits using
controlled impedance traces on low-cost printed circuit boards (PCBs). Informative
loss and jitter budgets are presented in Table 11-19 to demonstrate the feasibility of
legacy FR4 epoxy PCBs. The jitter budget is given in Table 11-20. The performance
of an actual transceiver interconnect is highly dependent on the implementation.

Table 11-19. Level II LR Informative Loss, Skew and Jitter Budget

Description Loss (dB)
Differential
Skew (ps)

Bounded High
Probability

(UIpp)
TJ (UIpp)

Transmitter 0 15 0.15 0.30

Interconnect (with Connector) 15.9 25 0.35 0.513

Other 4.5 0.10 0.262

Total 20.4 40 0.60 0.875

Table 11-20. Level II LR High Frequency Jitter Budget

CEI-6G-LR

Uncorrelated Jitter Correlated Jitter Total Jitter

AmplitudeUnbounded
Gaussian

High
Probability

Bounded
Gaussian

Bounded
High

Probability
Gaussian Sinusoidal

Bounded
High

Probability
Total

Abbreviation UUGJ UHPJ CBGJ CBHPJ GJ SJ HPJ TJ k

Units UIpp UIpp UIpp UIpp UIpp UIpp UIpp UIpp mVppd

Transmitter 0.150 0.150 0.150 0.150 0.300 800.0

Channel 0.230 0.525

Receiver Input 0.150 0.150 0.230 0.525 0.275 0.675 0.950 0.00 0.02

Equalizer -0.3501

Post Equalization 0.150 0.150 0.230 0.175 0.275 0.325 0.60 0.20 100.0

DFE Penalties 0.100 -0.08 -45.0

Clock + Sampler 0.150 0.100 0.100 -45.0

Budget 0.212 0.250 0.230 0.375 0.313 0.050 0.625 0.988 0.06 10.0

NOTES:
1. Due to receiver equalization, it reduces the ISI as seen inside the receiver. Thus this number is negative.
2. It is assumed that the eye is closed at the receiver, hence receiver equalization is required as indicated below.
RapidIO.org 497

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.5.4 Level II LR StatEye.org Template

%%

% example template for setting up a standard, i.e. equalizer
% jitter and return loss

%%

param.version = [param.version ’_v1.0’];

% these are internal variables and should not be changed

param.scanResolution = 0.01;
param.binsize = 0.0005;
param.points = 2^13;

%%

% set the transmitter and baud rate. The tx filter has two
% parameters defined for the corner frequency of the poles

param.bps = 6.25e9;
param.bitResolution = 1/(4*param.bps);
param.txFilter = ’twopole’;
param.txFilterParam = [0.75 0.75];

%%

% set the return loss up. The return loss can be turned off
% using the appropriate option

param.returnLoss = ’on’;
param.cpad = 1.00;

%%

% set the transmitter emphasis up. Some example setting are
% included which can be uncommented

% single tap emphasis
param.txpre = [-0.1];
param.signal = 1.0;
param.txpost = [];
param.vstart = [-0.3 -0.3];
param.vend = [+0.0 +0.0];
param.vstep = [0.1 0.05 0.025];

%%

% set the de-emphasis of 4-point transmit pulse
498 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
% the de-emphasis run if param.txpre = [] and param.txpost = []

param.txdeemphasis = [1 1 1 1]; % de-emphasis is off

%%

% set the data coding changing the transmit pulse spectrum
% the coding run if param.txpre = [] and param.txpost = []

param.datacoding = 1; % the coding is off

%%

% set PAM amplitude and rate

param.PAM = 2; % PAM is switched off

%%

% the rxsample point does not need to be changed as it is
% automatically adjusted by the optimization scripts.
% The number of DFE taps should be set, however, the initial
% conditions are irrelevant.

param.rxsample = -0.1;

param.dfe = [0.3 0.1 0.1 0.1 0.1];

%%

% sampling jitter in HPJpp and GJrms is defined here

param.txdj = 0.15;
param.txrj = 0.15/(2*7.94);

%%

% the following options are not yet implemented and should
% not be changed

param.user = [0.0];
param.useuser = ’no’;
param.usesymbol = ’’;
param.xtAmp = 1.0;

%%

param.TransmitAmplitude = 0.800; % mVppdif
param.MinEye = 0.100; % mVppdif

param.Q = 2*7.94;
param.maxDJ = 0.325;
RapidIO.org 499

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
param.maxTJ = 0.60;

11.6 Level II Medium Run Interface General
Requirements

11.6.1 Medium Run Jitter and Inter-operability Methodology

The LP-Serial 5 Gbaud and 6.25 Gbaud short run interfaces use Method C,
described in CEI clause 2.4. This section defines the inter-operability methodology
specifically for interfaces where transmit emphasis may be used and the receiver eye
requires linear equalization (from channel inter-operability point of view) to be open
to within the BER of interest.

11.6.1.1 Level II Medium Run Channel Compliance

The following steps shall be made to identify which channels are to be considered
compliant:

1. The forward channel and significant crosstalk channels shall be measured
using a network analyzer for the specified baud rate (see CEI
Section 11.7.4.5, "Network Analysis Measurement" for a suggested method).

2. A single pre or post tap transmitter with <= 6 dB of emphasis, with infinite
precision accuracy.

3. A Tx edge rate filter: simple 40 dB/dec low pass at 75% of baud rate, this is to

emulate both Rx and Tx -3 dB bandwidths at 3/4 baud rate.

4. A transmit amplitude of 800 mVppd.

5. Additional Uncorrelated Bounded High Probability Jitter of 0.15 UIpp
(emulating part of the Tx jitter).

6. Additional Uncorrelated Unbounded Gaussian Jitter of 0.15 UIpp (emulating
part of the Tx jitter).

7. The reference transmitter shall use the worst case transmitter return loss at the
baud frequency. In order to construct the worse case transmitter return loss,
the reference transmitter should be considered to be a parallel R and C, where
R is the defined maximum allowed DC resistance of the interface and C is
increased until the defined maximum Return Loss at the baud frequency is
reached. The transmitter return loss is specified in Section 11.6.2.1.6, "Level
II MR Transmitter Output Resistance and Return Loss".

8. An ideal receiver filter of the form in Section 9.6.8, "Time Continuous
Zero/Pole". The reference receiver uses a continuous-time equalizer with 1
zero and 1 pole in the region of baudrate/100 to baudrate. Additional parasitic
zeros and poles must be considered part of the receiver vendor’s device and
500 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
be dealt with as they are for the reference receiver. Pole and Zero values have
infinite precision accuracy. Maximum required gain/attenuation shall be less
than or equal to 4 dB.

9. The reference receiver shall use the worst case receiver return loss at the baud
frequency. In order to construct the worse case receiver return loss, the
reference receiver should be considered to be a parallel R and C, where R is
the defined maximum allowed DC resistance of the interface and C is
increased until the defined maximum Return Loss at the baud frequency is
reached. The receiver return loss is specified in Section 11.6.2.2.7, "Level II
MR Receiver Input Resistance and Return Loss".

10. Any parameters that have degrees of freedom (e.g. filter coefficients or
sampling point) shall be optimized against the amplitude, at the zero phase
offset, as generated by the Statistical Eye Output, e.g. by sweeping all degrees
of freedom and selecting the parameters giving the maximum amplitude. A
receiver return loss, as defined by the reference receiver, shall be used.

11. The opening of the eye shall be calculated using Statistical Eye Analysis
methods, as per Section 9.7.5, "Statistical Eye Methodology", and confirmed
to be within the requirements of the equalized eye mask as specified in

Table 11-12 at the required BER, 10-12.

11.6.1.2 Level II MR Transmitter Inter-operability

The following step shall be made to identify which transmitters are to be considered
compliant:

1. It shall be verified that the measured eye is equal or better than the calculated
eye for the given measurement probability Q (see Annex B.3, “Eye Mask
Adjustment for Sampling Oscilloscopes" for a suggested method of
calculating Q given a measurement population), given:

– A “compliance” channel as per Section 11.6.1.1, "Level II Medium Run Channel
Compliance" that required at least half the maximum transmit emphasis with no
receiver filtering to give an open eye.

– Using this channel the transmitter shall be then optimally adjusted and the
resulting near-end eye measured (see Section 11.7.4.6, "Eye Mask Measurement
Setup" for a suggested method).

– Using this channel the statistical eye shall then be calculated, as per
Section 9.7.5, "Statistical Eye Methodology", using the maximum defined
transmit jitter and the actual transmitter's amplitude and emphasis.

Table 11-21. Level II LR Receiver Equalization Output Eye Mask

Parameter Symbol Max Units

Eye mask R_X1 0.30 UI

Eye mask R_Y1 50 mV

Bounded High Probability Jitter R_BHPJ 0.325 UI
RapidIO.org 501

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
If the transmit jitter or transmit eye mask is additionally defined then the following
steps shall also be made to identify which transmitters are to be considered
compliant:

1. The high frequency transmit jitter shall be within that specified (see
Section 11.7.1, "High Frequency Transmit Jitter Measurement" for suggested
methods).

The specified transmit eye mask shall not be violated (see Section 11.7.4.6, "Eye
Mask Measurement Setup" for a suggested method) after adjusting the horizontal
time positions for the measured time with a confidence level of 3 sigma (see
Annex B.3, “Eye Mask Adjustment for Sampling Oscilloscopes" for a suggested
method).

11.6.1.3 Medium Receiver Inter-operability

The following step shall be made to identify which receivers are to be considered
compliant:

1. The DUT shall be measured to have a BER1 better than specified for a stressed
signal (see Section 11.7.4.3, "Jitter Tolerance with Defined ISI and no
Relative Wander" for a suggested method) with a confidence level of three
sigma (see Annex B.2, “Confidence Level of Errors Measurement" for a
suggested method), given:

– The defined sinusoidal jitter mask for relative wander as per Section 9.4.5, "Total
Wander Mask" with a high frequency relative wander and a maximum relative
wander as defined in Section 11.5.2.2.8, "Level II LR Receiver Jitter Tolerance".

– The specified amount of High Probability Jitter and Gaussian jitter as defined in
Section 11.5.2.2.8, "Level II LR Receiver Jitter Tolerance".

– A compliance channel or filter as identified by Section 11.5.1.1, "Level II LR
Channel Compliance".

– An additive crosstalk signal of amplitude such that the resulting statistical eye,
given the channel, jitter, and crosstalk, is as close as feasible in amplitude when
compared to the defined minimum amplitude for channel compliance.

11.6.2 Level II MR Interface Electrical Characteristics

The electrical interface is based on high speed low voltage logic with nominal
differential impedance of Connections are point-to-point balanced
differential pair and signalling is unidirectional.

11.6.2.1 Level II MR Transmitter Characteristics

The key transmitter characteristics are summarized in Table 11-22 and Table 11-23
while the following sections fully detail all the requirements.

1if the defined measurement BER is different to system required BER, adjustments to applied stressed eye TJ are necessary
502 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table 11-22. Level II MR Transmitter Output Electrical Specifications

Characteristics Symbols Conditions Min Typ Max Units

Tx Baud Rate (5 Gbaud) T_Baud Section 11.6.2.1.2 5.00
-0.01%

5.00 5.00
+0.01%

Gbaud

Tx Baud Rate (6.25 Gbaud) 6.25
-0.01%

6.25 6.25
+0.01%

Gbaud

Absolute Output Voltage VO Section 11.6.2.1.3 -0.40 2.30 Volts

Output Differential voltage
(into floating load Rload = 100)

T_Vdiff Section 11.6.2.1.31 800 1200 mVppd

Differential Resistance T_Rd Section 11.6.2.1.6 80 100 120

Recommended output rise and fall times
(20% to 80%)

T_tr, T_tf Section 11.6.2.1.4 30 ps

Skew between signals comprising a differential
pair

T_SKEWdiff Section 11.6.2.1.5 15 ps

Differential Output Return Loss
(100 MHz to 0.5*T_Baud)

T_SDD22 Section 11.6.2.1.6 -8 dB

Differential Output Return Loss
(0.5*T_Baud to T_Baud)

Common Mode Return Loss
(100 MHz to 0.75 *T_Baud)

T_S11 Section 11.6.2.1.6 -6 dB

Transmitter Common Mode Noise T_Ncm 5% of
T_Vdiff

mVppd

Output Common Mode Voltage T_Vcm Load Type 02

Section 9.5.3
100 1700 mV

Load Type 13,4

Section 9.5.3
630 1100 mV

NOTES:
1. The Transmitter must be capable of producing a minimum T_Vdiff greater than or equal to 800 mVppd. In applications where

the channel is better than the worst case allowed, a Transmitter device may be provisioned to produce T_Vdiff less than this
minimum value, but greater than or equal to 400 mVppd, and is still compliant with this specification.

2. Load Type 0 with min T_Vdiff, AC-Coupling or floating load.
3. For Load Type 1: R_Zvtt 30 T_Vtt & R_Vtt = 1.2 V +5%/-8%
4. DC Coupling compliance is optional (Load Type 1). Only Transmitters that support DC coupling are required to meet this

parameter.

Table 11-23. Level II MR Transmitter Output Jitter Specifications

Characteristics Symbol Conditions Min Typ Max Units

Uncorrelated High Probability Jitter T_UHPJ Section 11.6.2.2.8 0.15 UIpp

Duty Cycle Distortion T_DCD Section 11.6.2.2.8 0.05 UIpp

Total Jitter T_TJ Section 11.6.2.2.8 0.30 UIpp

Eye Mask T_X1 Section 11.6.2.2.8 0.15 UI

Eye Mask T_X2 Section 11.6.2.2.8 0.40 UI

Eye Mask T_Y1 Section 11.6.2.2.8 200 mV

Eye Mask T_Y2 Section 11.6.2.2.8 600 mV
RapidIO.org 503

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.6.2.1.1 Level II MR Transmitter Test Load

All transmitter characteristics should be implemented and measured to a differential
impedance of 1% at DC with a return loss of better than 20 dB from baud
rate divided by 1667 to 1.5 times the baud rate, unless otherwise noted.

11.6.2.1.2 Level II MR Transmitter Baud Rate

The baud rates are 5 Gbaud and 6.25 Gbaud with a tolerance of 100 ppm.

11.6.2.1.3 Level II MR Transmitter Amplitude and Swing

Transmitter differential output amplitude shall be able to drive between 800 and
1200 mVppd, inclusive, either with or without any transmit emphasis. DC
referenced logic levels are not defined since the receiver must have high common
mode impedance at DC. However, absolute transmitter output voltage shall be
between -0.1 V and 1.9 V, inclusive, with respect to local ground. See Figure 9-1 for
an illustration of absolute transmitter output voltage limits and definition of
differential peak-to-peak amplitude.

11.6.2.1.4 Level II MR Transmitter Rise and Fall Times

The recommended minimum differential rise and fall time is 30 ps as measured
between the 20% and 80% of the maximum measured levels; the maximum
differential rise and fall times are defined by the Tx eye diagram (Figure 9-2 and
Table 11-16). Shorter rise and falls may result in excessive high frequency
components and increase EMI and cross talk.

11.6.2.1.5 Level II MR Transmitter Differential Pair Skew

The timing skew at the output of a Level II MR transmitter between the two signals
that comprise a differential pair shall not exceed 15 ps at 5.0 Gbaud and 6.25 Gbaud.

11.6.2.1.6 Level II MR Transmitter Output Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 11-15 for 5 Gbaud and
6.25 Gbaud long run transmitter parameters. Definitions for these parameters are in
Figure 9-12.

Table 11-24. Level II MR Transmitter Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 T_Baud/2 Hz

f2 R_Baud Hz

Slope 16.6 dB/dec
504 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.6.2.1.7 Level II MR Transmitter Lane-to-Lane Skew

The electrical level of lane-to-lane skew caused by the transmitter circuitry and
associated routing must be less than 1000 ps for links of 4 lanes or less. Links with
greater than 4 lanes must have lane-to-lane skew of less than 2 UI + 1000 ps. The
transmitter lane-to-lane skew is only for the serdes Tx and does not include any
effects of the channel.

11.6.2.1.8 Level II MR Transmitter Short Circuit Current

The max DC current into or out of the transmitter pins when either shorted to each
other or to ground shall be ±100 mA when the device is fully powered up. From a
hot swap point of view, the ±100 mA limit is only valid after 10 s.

11.6.2.1.9 Level II MR Transmitter Template and Jitter

The transmitter shall satisfy both the near-end eye template and jitter requirements
as given in Figure 9-2, Figure 9-3, and Table 11-16 either with or without any
transmit emphasis.

The maximum near-end duty cycle distortion (T_DCD) shall be less than 0.05 UIpp.

It should be noted that it is assumed the Uncorrelated High Probability Jitter
component of the transmitter jitter is not Inter-symbol Interference (ISI). This is only
assumed from a receiver point of view so that a receiver can’t equalize it and does
not in any way put any restrictions on the real transmitter HPJ.

11.6.2.2 Level II MR Receiver Characteristics

The key receiver characteristics are summarized in Table 11-26 while the following
sections fully detail all the requirements.

Table 11-25. Level II MR Near-End Template Intervals

Characteristics Symbol Near-End Value Units Comments

Eye Mask T_X1 0.15 UI

Eye Mask T_X2 0.40 UI

Eye Mask T_Y1 200 mV For connection
to short run Rx

400 For connection
to long run Rx

Eye Mask T_Y2 375 mV For connection
to short run Rx

600 For connection
to long run Rx

Uncorrelated Bounded High Probability
Jitter

T_UBHPJ 0.15 UIpp

Duty Cycle Distortion T_DCD 0.05 UIpp

Total Jitter T_TJ 0.30 UIpp
RapidIO.org 505

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.6.2.2.1 Level II MR Receiver Input Baud Rate

All devices shall work at 5 Gbaud, 6.25 Gbaud or both baud rates with the baud rate
tolerance as per Section 9.5.12, "Baud Rate Tolerance".

11.6.2.2.2 Level II MR Receiver Reference Input Signals

Reference input signals to the receiver have the characteristics determined by the
compliant transmitter. The reference input signal must satisfy the transmitter
near-end template and jitter given in Figure 9-2, Figure 9-3, and Table 11-16, as well
as the far-end eye jitter given in Table 11-20, with the differential load impedance of
1% at DC with a return loss of better than 20 dB from baud rate divided by
1667 to 1.5 times the baud rate. Note that the input signal might not meet either of
these requirements when the actual receiver replaces this load.

11.6.2.2.3 Level II MR Receiver Input Signal Amplitude

The receiver shall accept differential input signal amplitudes produced by compliant
transmitters connected without attenuation to the receiver. This may be larger than
the 1200 mVppd maximum of the transmitter due to output/input impedances and
reflections.

Table 11-26. Level II MR Receiver Electrical Input Specifications

Characteristic Symbol Condition Min Typ Max Units

Rx Baud Rate (5 Gbaud) R_Baud Section 11.6.2.2.1 5.00
-0.01%

5.00 5.00
+0.01%

Gbaud

Rx Baud Rate (6.25 Gbaud) 6.25
-0.01%

6.25 6.25
+0.01%

Gbaud

Absolute Input Voltage R_Vin Section 11.6.2.2.4

Input Differential voltage R_Vdiff Section 11.6.2.2.3 1200 mVppd

Differential Resistance R_Rdin Section 11.5.2.2.7 80 100 120

Bias Voltage Source Impedance
(load type 1)1

R_Zvtt 30

Differential Input Return Loss
(100 MHz to 0.5*R_Baud)

R_SDD11 Section 11.6.2.2.7 -8 dB

Differential Input Return Loss
(0.5*R_Baud to R_Baud))

Common mode Input Return Loss
(100 MHz to 0.5*R_Baud)

R_SCC11 Section 11.6.2.2.7 -6 dB

Input Common Mode Voltage R_Vfcm Load Type 02 0 1800 mV

Load Type 11,3 595 R_Vtt -
60

mV

Wander divider (in Figure 9-8 & Figure 9-9) n 10

NOTES:
1. DC Coupling compliance is optional (Load Type 1). Only receivers that support DC coupling are required to meet this

parameter.
2. Load Type 0 with min T_Vdiff, AC-Coupling or floating load. For floating load, input resistance must be 1 k
3. For Load Type 1: T_Vtt & R_Vtt = 1.2 V +5%/-8%.
506 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The minimum input amplitude is defined by the far-end transmitter template, the
actual receiver input impedance, and the loss of the actual PCB. Note that the far-end
transmitter template is defined using a well controlled load impedance, however the
real receiver is not, which can leave the receiver input signal smaller than expected.

11.6.2.2.4 Level II MR Receiver Absolute Input Voltage

The absolute voltage levels with respect to the receiver ground at the input of the
receiver are dependent on the transmitter implementation and the inter-ground
difference.

The voltage levels at the input of an AC coupled receiver (if the effective AC
coupling is done within the receiver) or at the Tx side of the external AC coupling
cap (if AC coupling is done externally) shall be between -0.15 V and 1.95 V,
inclusive, with respect to local ground.

11.6.2.2.5 Level II MR Receiver Input Common Mode Impedance

The input common mode impedance (R_Zvtt) at the input of the receiver is
dependent on whether the receiver is AC or DC coupled. The value of R_Zvtt as
measured at the input of an AC coupled receiver is undefined. The value of R_Zvtt
as measured at the input of a DC coupled receiver is defined as per Table 11-17.

If AC coupling is used it is to be considered part of the receiver for the purposes of
this specification unless explicitly stated otherwise. It should be noted that various
methods for AC coupling are allowed (for example, internal to the chip or done
externally). See Section 9.5.13, "Termination and DC Blocking" for more
information.

11.6.2.2.6 Level II MR Receiver Input Lane-to-Lane Skew

Lane-to-lane skew at the input to the receiver shall not exceed 70 UI peak. See
Section 9.5.9, "Receiver Input Lane-to-Lane Skew".

11.6.2.2.7 Level II MR Receiver Input Resistance and Return Loss

Refer to Section 9.5.11, "Differential Resistance and Return Loss, Transmitter and
Receiver" for the reference model for return loss. See Table 11-27 for 5 Gbaud and
6.25 Gbaud short run receiver parameters. Definitions for these parameters are in
Figure 9-12.

Table 11-27. Level II MR Input Return Loss Parameters

Parameter Value Units

A0 -8 dB

f0 100 MHz

f1 R_Baud/2 Hz

f2 R_Baud Hz

Slope 16.6 dB/dec
RapidIO.org 507

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.6.2.2.8 Level II MR Receiver Jitter Tolerance

As per Section 11.5.1.3, "Level II LR Receiver Inter-operability", the receiver shall
tolerate at least the far-end jitter requirements as given in Table 11-12 in
combination with any compliant channel, as per Section 11.5.1.1, "Level II LR
Channel Compliance", with an additional SJ with any frequency and amplitude
defined by the mask of Figure 9-8 where the minimum and maximum total wander
amplitude are 0.05 UIpp and 5 UIpp respectively. This additional SJ component is
intended to ensure margin for wander, hence is over and above any high frequency
jitter from Table 11-12.

11.6.3 Level II MR Link and Jitter Budgets

The primarily intended application is as a point-to-point interface of up to
approximately 60 cm and up to two connector between integrated circuits using
controlled impedance traces on low-cost printed circuit boards (PCBs). Informative
loss and jitter budgets are presented in Table 11-19 to demonstrate the feasibility of
legacy FR-4 epoxy PCBs. The jitter budget is given in Table 11-20. The
performance of an actual transceiver interconnect is highly dependent on the
implementation.

Table 11-28. Level II MR Informative Loss, Skew and Jitter Budget

Description Loss (dB)
Differential
Skew (ps)

Bounded High
Probability

(UIpp)
TJ (UIpp)

Transmitter 0 15 0.15 0.30

Interconnect (with Connector) 15.9 25 0.35 0.513

Other 4.5 0.10 0.262

Total 20.4 40 0.60 0.875

Table 11-29. Level II MR High Frequency Jitter Budget

CEI-6G-LR

Uncorrelated Jitter Correlated Jitter Total Jitter

AmplitudeUnbounded
Gaussian

High
Probability

Bounded
Gaussian

Bounded
High

Probability
Gaussian Sinusoidal

Bounded
High

Probability
Total

Abbreviation UUGJ UHPJ CBGJ CBHPJ GJ SJ HPJ TJ k

Units UIpp UIpp UIpp UIpp UIpp UIpp UIpp UIpp mVppd

Transmitter 0.150 0.150 0.150 0.150 0.300 800.0

Channel 0.230 0.525

Receiver Input 0.150 0.150 0.230 0.525 0.275 0.675 0.950 0.00 0.02

Equalizer -0.3501

Post Equalization 0.150 0.150 0.230 0.175 0.275 0.325 0.60 0.20 100.0

DFE Penalties 0.100 -0.08 -45.0

Clock + Sampler 0.150 0.100 0.100 -45.0

Budget 0.212 0.250 0.230 0.375 0.313 0.050 0.625 0.988 0.06 10.0

NOTES:
1. Due to receiver equalization, it reduces the ISI as seen inside the receiver. Thus this number is negative.
2. It is assumed that the eye is closed at the receiver, hence receiver equalization is required as indicated below.
508 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.6.4 Level II MR StatEye.org Template

%%

% example template for setting up a standard, i.e. equalizer
% jitter and return loss

%%

param.version = [param.version ’_v1.0’];

% these are internal variables and should not be changed

param.scanResolution = 0.01;
param.binsize = 0.0005;
param.points = 2^13;

%%

% set the transmitter and baud rate. The tx filter has two
% parameters defined for the corner frequency of the poles

param.bps = 6.25e9;
param.bitResolution = 1/(4*param.bps);
param.txFilter = ’twopole’;
param.txFilterParam = [0.75 0.75];

%%

% set the return loss up. The return loss can be turned off
% using the appropriate option

param.returnLoss = ’on’;
param.cpad = 1.0;

%%

% set the transmitter emphasis up. Some example setting are
% included which can be uncommented

% single tap emphasis
param.txpre = [];
param.signal = 1.0;
param.txpost = [-0.1];
param.vstart = [-0.3 -0.3];
param.vend = [+0.0 +0.0];
param.vstep = [0.1 0.05 0.025];

%%

% set the de-emphasis of 4-point transmit pulse
RapidIO.org 509

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
% the de-emphasis run if param.txpre = [] and param.txpost = []

param.txdeemphasis = [1 1 1 1]; % de-emphasis is off

%%

% set the data coding changing the transmit pulse spectrum
% the coding run if param.txpre = [] and param.txpost = []

param.datacoding = 1; % the coding is off

%%

% set PAM amplitude and rate

param.PAM = 2; % PAM is switched off

%%

% the rxsample point does not need to be changed as it is
% automatically adjusted by the optimization scripts.
% The number of DFE taps should be set, however, the initial
% conditions are irrelevant.

param.rxsample = -0.1;

% no DFE
param.dfe = [];

%%

% The CTE shall be controlled.

param.cte = 1; % CTE setting “0” = off; “1” = on;
param.ctethresh = 3; % max gain;

%%

% sampling jitter in HPJpp and GJrms is defined here

param.txdj = 0.15;
param.txrj = 0.15/(2*7.94);

%%

% the following options are not yet implemented and should
% not be changed

param.user = [0.0];
param.useuser = ’no’;
param.usesymbol = ’’;
param.xtAmp = 1.0;
510 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
%%

param.TransmitAmplitude = 0.800; % mVppdif
param.MinEye = 0.100; % mVppdif

param.Q = 2*7.94;
param.maxDJ = 0.325;
param.maxTJ = 0.60;

11.7 Level II Measurement and Test Requirements
All methodology described in this section is only relevant for verification of low
level CDR functionality, and does not cover any required tests for protocol
compliance, e.g. deskew. The methodology is based on the assumption that either an
integrated BERT is present in the DUT or a loop or functionality for the attachment
of external equipment.

11.7.1 High Frequency Transmit Jitter Measurement

The following section describes various methods for measuring high frequency
jitter, which depending upon the baud rate can be applied for various levels of
accuracy.

11.7.1.1 BERT Implementation

Referring to Figure 11-4, this section describes test methodology based on bathtub
extraction, which relies on equipment being available for the given baud rate.

• This same methodology can be used by equalized transmitters by initially
turning the equalization off, or by performing the measurement at the end of
a golden channel.

Figure 11-4. BERT with Golden PLL

BERT

Trigger

Golden
PLL

Signal

+DUT

Differential
to single ended

amplifier

Clock
Reference
RapidIO.org 511

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• The transmitter under test shall transmit the specified data pattern, while all
other signals are active.

– The other channels can transmit the same pattern if they have at least a 16 bit
offset with the channel under test.

– All links within a device under test to be active in both transmit and receive
directions, and receive links are to use asynchronous clocks with respect to
transmit links to maximum allowed ppm offset as specified in the protocol
specifications.

• The data should be differentially analyzed using an external differential amp or
differential input BERT and golden PLL.

– Use of single ended signals will give an inaccurate measurement and should not
be used.

– The use of a balun will most likely degrade the signal integrity and is only
recommended for 3 Gbaud signaling when the balun is linear with a return loss
of better than -15 dB until three times the baud rate.

• Inherent bandwidth of clock reference inputs of the BERT should be verified,
e.g. in the case of parBERTs. Additional bandwidth limitation of the BERT
will lead to inaccurate results.

• The use of a golden PLL is required to eliminate inherent clock content
(Wander) in transmitted data signals for long measurement periods.

– The golden PLL should have at maximum a bandwidth of baud rate over 1667,
with a maximum of 20 dB/dec rolloff, until at least baud rate over 16.67, with no
peaking around the corner frequency.

• The output jitter for the DUT is not defined as the contributed jitter from the
DUT but as the total output jitter including the contributions from the
reference clock. To this end, the reference clock of the DUT should be
verified to have a performance similar to the real application.

• A confidence level of three sigma should be guaranteed in the measurement of
BER for the Bathtub as per Annex B.2, “Confidence Level of Errors

Measurement".1

• The High Probability and Gaussian Jitter components should be extracted from
the bathtub measurement using the methodology defined in Section 9.7.4.6,
"BathTub Curves".

• If not defined the maximum Gaussian jitter is equal to the maximum total jitter
minus the actual High Probability jitter.

1It is assumed due to the magnitude of jitter present at the transmitter that the left and right hand parts of the bathtub are independent to each other
512 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.7.1.2 Spectrum Analyzer and Oscilloscope Methodology

11.7.1.2.1 Band Limited1 Unbounded Gaussian Noise

Referring to Figure 11-5, blandishment or high frequency Gaussian noise can be
measured at the transmitter of the DUT accurately using a high frequency 101010
pattern and measuring the spectral power2. In Figure 11-5 the clock reference is such
that its power noise represents the typical power noise of the reference in the system.

The spectral power is calculating by integrating over the frequency band of interest
and converting into time jitter.

where

 is the time jitter

 is the measured spectral power for 1 Hz Bandwidth

It should be noted that the measured Gaussian noise for a driver can usually be
considered equivalent to that derived from a full bathtub jitter distribution.

11.7.1.2.2 Band Limited 60 Second Total Jitter Measurements

In certain CEI-11G-SR applications total jitter measurements of 60 seconds are
required. The Gaussian Jitter, as measured above, should be multiplied by a Q of
6.963. If spurs are present in the spectrum then these must be converted to time jitter

1Normal CEI application will integrate from the defined ideal CDR bandwidth to infinity, while some CEI-11G-SR application will integrate over a specific
band

2The spectral power should be measured using averaging

Figure 11-5. Spectral Measurement Setup

3Traditional measurements are performed for 60 seconds using a demodulator and performing a real time peak to peak measurement of the jitter. Given this,
the number of bits transmitter across the link in 60 seconds is calculated and the associated three sigma confidence level, peak to peak multiplication
factor, Q, for the random jitter.

DUT
Spectrum
Analyzer

Clock
Reference (a)

Differential to
single-ended

amplifier

rms
1

2
------ 2

1 f1 j f

1 j f f1+ 1 j f f2+
-- 10

P f()
10

f1 100

100f2

=

rms

P f()
RapidIO.org 513

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
separately using an inverse of the Bessel function as per Figure 11-6, which
describes the power spectrum for a given phase modulated signal

where

 is the inverse spectral SSB power to time modulation (below)

 is the relative SSB power of a spur.

11.7.1.2.3 Uncorrelated High Probability Jitter

After measuring the Gaussian Jitter, as above, an oscilloscope measurement, as per
Section 11.7.4.6, "Eye Mask Measurement Setup", of the peak to peak jitter should
be performed using a 101010 pattern.

The Uncorrelated High Probability Jitter is then calculated by removing the
accumulated Unbounded Gaussian jitter

Figure 11-6. Single Side Band Relative Power Spectrum for Phase Modulated Signal

F Pn()

pkpk 2Qrms F Pn()

n
+=

Pn

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
15

20

25

30

35

40

45

50

Modulation Index (UI)

dB
c

Phase Modulation Power Spectrum
514 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
using a Q calculated for a 3 sigma confidence level1 as per Annex B.3, “Eye Mask
Adjustment for Sampling Oscilloscopes".

11.7.1.2.4 Total High Probability Jitter

After measuring the Unbounded Gaussian Jitter, as above, an oscilloscope
measurement, as per Section 11.7.4.6, "Eye Mask Measurement Setup", of the peak
to peak jitter should be performed using the standard pattern e.g. PRBS31.

The Total High Probability Jitter is then calculated by removing the accumulated
Gaussian jitter.

using a Q calculated for a 3 sigma confidence level2 as per Annex B.3, “Eye Mask
Adjustment for Sampling Oscilloscopes".

11.7.2 Total Transmit Wander Measurement

This section describes the total transmit wander of a simple non-equalized
transmitter as depicted in Figure 11-7 below.

• The transmitter under test shall transmit the specified data pattern while all
other signals are active.

– The other channels can transmit the same pattern if they have at least a 16 bit
offset with the channel under test.

1It is recommended that enough samples on the oscilloscope should be made such that Q>4
2It is recommended that enough samples on the oscilloscope should be made such that Q>4

Figure 11-7. Transmit Wander Lab Setup

UBHJ pkpk 2Qrms–=

HPJ pkpk 2Qrms–=

Differential to
single ended

amplifier
Scope1/nGolden PLL

Clock Reference

DUT
RapidIO.org 515

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
– All lanes to be active in both transmit and receive directions, and opposite ends
of the link, i.e. transmit to receiver, are to use asynchronous clocks to maximum
allowed ppm offset as specified in the protocol specifications.

• The transmitter can be tested single ended as high frequency jitter components
are filtered by the golden PLL.

• Temperature and supply voltage should be cycled with a rate slower than baud
rate over 166700 Hz during test to exercise any delay components in the
DUT.

• The inherent clock wander in signal shall be extracted using golden PLL and
divided by the 1/n block, such as to limit the measured wander to 1 UI at the
divided frequency, and thus allowing it to be measured on an oscilloscope.

– The golden PLL should have at a minimum bandwidth of baud rate over 1667,
with a maximum of 20 dB/dec rolloff, until at least baud rate over 16.67, and is
suggested to have no peaking around the corner frequency.

• The peak to peak total wander of the extracted clock should be measured using
a scope triggered by the reference clock. The measured peak to peak wander
should be verified to be bounded by repeating the measurement for ever
increasing periods of time until the measurement is constant.

11.7.3 Relative Transmit Wander Measurement

This section describes specifically for SxI-5 interfaces, where limitations are
defined in terms of relative wander between data lanes and clocks, whose relative
wander can be measured as depicted below.

• The transmitter under test shall transmit the specified data pattern while all
other signals are active.

– The other channels can transmit the same pattern if they have at least a 16 bit

Figure 11-8. Relative Wander Lab Setup

DUT
Trigger

ScopeGolden
PLL

Golden
PLL 1/n

1/n

Clock Reference
516 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
offset with the channel under test.

– All lanes to be active in both transmit and receive directions, and opposite ends
of the link, i.e. transmit to receiver, are to use asynchronous clocks to maximum
allowed ppm. offset as specified in the protocol specifications.

– The transmitters can be tested single ended as high frequency jitter components
are filtered by the golden PLL.

– Temperature and supply voltage should be cycled with a rate slower than baud
rate over 166700 Hz during test to exercise any delay components in the DUT.

– The inherent clock wander in each signal shall be extracted using golden PLL
and divided by the 1/n block, such as to limit the measured wander to 1 UI at the
divided frequency, and thus allowing it to be measured on an oscilloscope.

– The golden PLL should have at a minimum bandwidth of baud rate over 1667,
with a maximum of 20 dB/dec rolloff, until at least baud rate over 16.67, and is
suggested to have no peaking around the corner frequency.

• The peak to peak relative wander between the extracted clocks should be
measured using a scope triggered by one of the extracted clocks. The
measured peak to peak wander should be verified to be bounded by repeating
the measurement for ever increasing periods of time until the measurement is
constant.

11.7.4 Jitter Tolerance

11.7.4.1 Jitter Tolerance with Relative Wander Lab Setup

The following section describes the required jitter tolerance methodology for
devices where Relative Wander is applicable, e.g. SxI.5, and where no receive
equalization is implemented.
RapidIO.org 517

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.7.4.1.1 General

The transmitter under test shall transmit the specified data pattern while all other
signals are active.

– The other channels can transmit the same pattern if they have at least a 16 bit
offset with the channel under test.

– All lanes to be active in both transmit and receive directions, and opposite ends
of the link, i.e. transmit to receiver, are to use asynchronous clocks to maximum
allowed ppm offset as specified in the protocol specifications.

• The DUT shall be tested using an internal BERT or loop to have the defined
BER performance.

• The confidence level of the BER measurement should be at least three sigma
as per Annex B.2, “Confidence Level of Errors Measurement".

11.7.4.1.2 Synchronization
• All lanes are to be active in both transmit and receive directions.

• All reference clocks should have the maximum offset frequency, with respect
to each other, as defined in the CEI IA.

Figure 11-9. Jitter Tolerance with Relative Wander Lab Setup

DUT

+

BERT
transmitting defined test

pattern

Signal Filter
for defining
edge rate

White Noise Source
for generating Gaussian

Jitter

Signal Filter
for defining
edge rate

Calibrated
Test Data

Common SJ Wander
Source, which together

with Antiphase
generates Total Wander

Clock
Reference

modulated by Common SJ
Wander Source

Voltage
Controlled
Delay Line

Voltage
Controlled
Delay Line

PRBS Generator
for generating

Uncorrelated High
Probability Jitter

Control Voltage
Inverted Input

Antiphase SJ Wander
Source for generating

Relative Wander

Jitter Control
Signal Filter

Jitter Control
Signal Filter

DUT Clock
Reference

(100ppm offset to BERT)

Control
Voltage

Input

Clock
Reference

Input

Data Output
518 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.7.4.1.3 Jitter
• The applied calibrated test signal shall have applied a calibrated amount of HF,

GJ, and HPJ.

• The jitter control signal for generating High Probability Jitter should be filtered
using at least a first order low pass filter with a corner frequency between
1/20 - 1/10 of the baud rate of the PRBS generator to ensure that high
frequency components are removed. The distribution of the jitter after the
filter must be reasonably even, symmetrical, and large spikes should be
avoided. The order of the PRBS polynomial may be between 7 and 11,
inclusive, to allow flexibility in meeting this objective. The rate of the PRBS
generator should be between 1/10 - 1/3 of the data rate of the DUT, and their
rates must be not harmonically related. The upper -3 dB frequency of the
filtered HPJ should be at least 1/100 of the data rate of the DUT to represent
transmitter jitter that is above the tracking frequencies of the DUT's CDR.
Calibration of HPJ must be done with a golden PLL in place. Once these
objectives are achieved, there is no need to vary these settings; any
combination of settings that meets all the objectives is satisfactory.

• The jitter control signal for generating Unbounded Gaussian Jitter shall be
filtered as per Figure 9-10 using the “Jitter Control Signal Filter”. However,
the upper frequency of the Gaussian Jitter spectrum will be, acceptably,
limited by the bandwidth of the voltage controlled delay line. The crest factor
of the white noise generator should be better than 18 dB.

• The calibrated test signal shall have a calibrated amount of Total Wander and
Relative Wander as compared to the used clock by using the Common SJ
Wander and Antiphase SJ Sources with 1% frequency offsets (note the use of
the inverted input to the uppermost delay line) as per Section 9.7.2, "Total
Wander vs. Relative Wander".

• The amplitude of the Total Wander and Relative Wander is defined by the
sinusoidal masks defined in Section 9.4.5, "Total Wander Mask" and
Section 9.4.6, "Relative Wander Mask" with the specified amplitudes from
the CEI IA.

• Wander should be applied

– from a frequency equivalent to 1 UI of Total Jitter up to 20 MHz modulation
frequency.

– at a maximum of 2 MHz frequency steps above the corner frequency.

– at a maximum of 200 kHz frequency steps below the corner frequency.

11.7.4.1.4 Amplitude
• The calibrated data signals should be filtered using single pole low pass filter

with a corner frequency of 0.7 times the baud rate to define the edge rate.

• The amplitude of the signal should be adjusted such that it just passes the
defined receiver data eye sensitivity.
RapidIO.org 519

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• For testing of DC coupled receivers either a pattern generator capable of
generating differential signals and setting the common mode should be used,
or a combined AC coupled signal together with a biased-T. Using this setup
the common mode should be varied between the defined maximum and
minimum.

11.7.4.2 Jitter Tolerance with no Relative Wander Lab Setup

The following section describes the required jitter tolerance methodology for
devices where Relative Wander is not applicable and no receive equalization is
implemented.

Referring to Figure 11-10, the DUT shall be tested as per the description in
Section 11.7.4.1, "Jitter Tolerance with Relative Wander Lab Setup", omitting any
requirements relating to relative wander and where only Total Wander is applied via
the SJ Source shown.

11.7.4.3 Jitter Tolerance with Defined ISI and no Relative Wander

The following section describes the required jitter tolerance methodology for
devices where Relative Wander is not applicable, e.g. SxI.5, and where receive
equalization is implemented and the performance of the equalization must be
verified.

Figure 11-10. Jitter Tolerance with no Relative Wander

BERT
Data Output

Total
SJ Wander

Source

Jitter Control
Signal Filter

Jitter Control
Signal Filter PRBS Generator

for generating
uncorrelated High
Probability Jitter

White Noise Source for
generating Unbounded

Gausian Jitter

Signal Filter
for defining

end gate

Clock
Reference

Clock
Reference

Input Wander can be
optionally applied

directly to FM input

Voltage
Controlled
Delay Line

DUT

Callibrated
Test Data

+

520 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Referring to Figure 11-11, the DUT shall be tested as per the description in
Section 11.7.4.1, "Jitter Tolerance with Relative Wander Lab Setup", omitting any
requirements relating to relative wander, and additionally:

• The transmit jitter and amplitude shall be initially calibrated as per
Section 11.7.1, "High Frequency Transmit Jitter Measurement" at the output
of the delay line.

• A compliance channel shall be added.

• The defined amount of uncorrelated additive noise shall be applied via a
sinusoidal source differentially to the signal. The frequency used shall be
between 100 MHz and the lesser of 1/4 the data rate and 2 GHz. There is no
need to sweep the frequency.

11.7.4.4 Jitter Transfer

This section describes how jitter transfer relevant interfaces can be tested for
compliance:

• The BERT shall generate a data pattern as defined by the CEI IA.

• The jitter present before the delay line should be minimized so as to maximize
any transfer bandwidth function of the DUT.

• A sinusoidal jitter should be applied following the same defined SJ mask as
used for jitter tolerance and with the same resolution as described in
Section 11.7.4, "Jitter Tolerance".

The peak to peak jitter for a 60 second period measured on the scope should be
compared before and after the application of the sinusoidal jitter. The ratio of the
difference to the jitter applied is then defined as the jitter transfer function.

Figure 11-11. Jitter Tolerance with Defined ISI

Clock Reference

BERT
Signal Filter

to Define
Edge Rate

Voltage
Controlled
Delay Line

Sinusoidal Noise
Source for
Generating
Crosstalk

DUT

White Noise Source
for Generating

Unbounded Gaussian
Jitter

PRBS Generator for
Uncorrelated High
Probability Jitter

Jitter Control
Signal Filter

Jitter Control
Signal Filter

FFE
(Optional)

Clock
Reference

Input

Wander Can
be applied to

FM Input

Stress
Channel

Calibrated
Test Data

Sinusoidal
Wander
Source

+

+

RapidIO.org 521

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
11.7.4.5 Network Analysis Measurement

To enable accurate analysis of a channel the following methodology should be
followed for the measurement and calculation of the effective channel transfer
function.

Figure 11-12. Jitter Transfer Lab Setup

Figure 11-13. S-parameter Port Definitions

Wander can be
optionally applied

directly to FM input

Total
SJ Wander

Source

Delay
Line

Clock
Reference

BERT ScopeDUT

TxP,N RxP,N

Forward
Channel

TxP,N

RxP,N

NEXT

TxP,N

RxP,N

FEXT

Term.

Term.

Term.

Term.

Term.Term.

Term.

Term.

Term.

Term.

Term.

Term.
522 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• Figure 11-13 shows an overview of the termination and port definitions
typically used when measuring the forward channel and NEXT/FEXT
crosstalk aggressors.

• The intermediate frequency (IF) bandwidth should be set to a maximum of
300 Hz with 100 Hz preferred. The launch power shall be specified to the
highest available leveled output power not to exceed 0 dBm.

• Either direct differential measurements of the channel S21 and S11 should be
performed or multiple single ended measurements from which the

differential modes can be calculated.1

• Linear frequency steps of the measurements shall be no larger than 12.5 MHz.

• A frequency range from no higher than 100 MHz to no lower than three times
the fundamental frequency should be measured.

• Extrapolation towards DC should be performed linearly on magnitude part with
the phase being extrapolated to zero at DC, i.e. only a real part is present at
DC.

• The channel response of the channel should be calculated by cascading the
complete 4 port S-parameter matrix with a worst case transmitter and
receiver. The transmitter/receiver should be described as a parallel R and C,
where R is the defined maximum allowed DC resistance of the interface and
C is increased until the defined maximum Return Loss at the defined
frequency is reached.

• Any defined effective transmit or receiver filters should also be cascaded with
the channel response.

• The time resolution should be increased by resampling the impulse response in
the time domain.

• If required, interpolation of the frequency domain should be performed on the
magnitude and unwrapped phase components of the channel response

where

 is the measured 4 port differential data of the channel

 is the transmitter return loss

 is the receiver return loss

 is the receiver return loss.

Converting the original frequency range to time domain, we obtain

1Special care must be taken when performing multiple single ended measurements if the system is tightly coupled

Tr ()
1 1

1 Tx22 ()

S11 () S21 ()

S12 () S22 ()

Rx11 () 1

1 1
 =

Sm n
Tx22

Rx11

Tr ()
RapidIO.org 523

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
where

11.7.4.6 Eye Mask Measurement Setup

The measurement of an eye mask is defined by the various CEI IAs in terms of a
polygon for the probability of the required Bit Error Rate. This polygon may have
to be altered given that the sample population of the scope is limited and must be
adjusted as per Annex B.3, “Eye Mask Adjustment for Sampling Oscilloscopes".
For the measurement of the signal the laboratory setup shown in Figure 11-14
should be used, including the recommendations list in Section 11.7.1, "High
Frequency Transmit Jitter Measurement".

Figure 11-14. Mask Measurement with Golden PLL

i tm() ifft Tr ()()=

 3
4
---fbaud–

3
4
---f

baud
[,]=

DUT

Clock
Ref

Golden
PLL

Differential
to Single ended

amplifier +

Signal
Oscilloscope

Trigger
524 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Chapter 12 Electrical Specification for
10.3125 and 12.5 Gbaud LP-Serial Links

This chapter details the requirements for Level III RapidIO LP-Serial short and long
run electrical interfaces of nominal baud rates of 10.3125 and 12.5 Gbaud using
NRZ coding (hence 1 bit per symbol at the electrical level). A compliant device must
meet all of the requirements listed below. The electrical interface is based on a high
speed low voltage logic with a nominal differential impedance of 100 .
Connections are point-to-point balanced differential pair and signaling is
unidirectional.

12.1 References
1. IEEE Standard 802.3-2008. “IEEE Standard for Information

technology-Telecommunications and information exchange between
systems-Local and metropolitan area networks-Specific requirements - Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications”, IEEE Std. 802.3-2008,
December 26, 2008.

2. IEEE Standard 802.3ba-2010. “IEEE Standard for Information
technology-Telecommunications and information exchange between
systems-Local and metropolitan area networks-Specific requirements - Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications. Amendment 4: Media Access
Control Parameters, Phhysical Layers, and Management Parameters for
40 Gb/s and 100 Gb/s Operation”, IEEE Std. 802.3ba-2010, June 22, 2010.

12.2 Level III Application Goals

12.2.1 Common to Level III Short run and Long run

The following are application requirements common to short run and long run Level
III links at 10.3125 and 12.5 Gbaud:

• The electrical specifications shall support lane width options of 1x, 2x, 4x, 8x
and 16x.

• A compliant device must implement AC coupling.
RapidIO.org 525

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
• A compliant device may implement any subset of baud rates contained in this
chapter.

• A compliant device may implement either a short run transmitter, a long run
transmitter, or both, at each of the baud rates that it supports.

• A compliant device may implement either a short run receiver or a long run
receiver at each of the baud rates that it supports.

• The clock frequency tolerance requirement for transmit and receive are
100 ppm. The worst case frequency differences between any transmit and
receive clock is 200 ppm.

• The Bit Error Ratio (BER) shall be better than 10-15 per lane but the test

requirements will be to verify 10-12 per lane.

• Transmitters and receivers used on short and long run links shall inter-operate
for path lengths up to 20 cm.

• Transmitters and receivers used on long run links shall inter-operate for path
lengths up to 100 cm.

• The transmitter pins shall be capable of surviving short circuit either to each
other, to supply voltages, and to ground.

12.2.2 Application Goals for Level III Short Run
• The short run interface shall be capable of spanning at least 20 cm of PCB

material with up to a single connector.

12.2.3 Application Goals for Long Run
• The long run interface shall be capable of spanning at least 100 cm of PCB

material with up to two connectors at 10.3125 Gbaud.

• An AC coupled long run receiver shall be inter-operable with an AC coupled
short run transmitter

• An AC coupled long run transmitter shall be inter-operable with an AC coupled
short run receiver provided that the signal swing values are lowered. This
implies that the signal swing is configurable.

• The long run PHY may use techniques such as increased signal swing, linear
equalization, and Decision Feedback Equalizer, designed to accommodate
longer run backplane applications, where the receiver eye may be closed.

• A long run transmitter and receiver is intended to accommodate ‘legacy’ long
run RapidIO 1.3 backplanes of at least 60 cm with up to two connectors that
can operate at data rates up to 10.3125 Gbaud.
526 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
12.3 Equalization
At the high baud rates used by Level III LP-Serial links, the signals transmitted over
a link are degraded by losses and characteristic impedance discontinuities in the
interconnect media. The losses increase with increasing baud rate and interconnect
media length and cause signal attenuation and inter-symbol interference that
degrade the opening of the eye pattern at both the receiver input and the data decoder
decision point. Depending on the baud rate and interconnect length, the degradation
can be greater than that allowed by the specification.

The signal degradation can be partially negated by the use of equalization in the
transmitter and/or receiver. Equalization in the transmitter can improve the eye
pattern at both the receiver input and the data decoder decision point. Equalization
in the receiver can only improve the eye pattern at the data decoder decision point.
Some degree of equalization is required by most Level III interconnects.

12.3.1 Receiver

Adaptive equalization in the receiver and the algorithms for training that
equalization are entirely within the receiver. The configurations, characteristics and
adjustment algorithms for equalization in the receiver are implementation specific
and outside the scope of this specification.

12.3.2 Transmitter

Adaptive equalization in the transmitter shall be controlled by the connected
receiver.

12.4 Level III Electrical Specification
Two sets of electrical specifications are specified for 10.3125 and 12.5 Gbaud, a
short reach set and a long reach set. The transmitters and receivers of an LP-Serial
port operating at a nominal baud rate of 10.3125 or 12.5 Gbaud shall comply with at
least one of these sets of specifications.

12.4.1 Level III Short Run

The electrical specifications for the short-reach 10.3125 and 12.5 Gbaud PHY shall
be the same as those specified in Annex 83A.3 of the IEEE Standard
802.3ba-2010[2] for XLAUI/CAUI. The specifications for the short-reach channel
shall be the same as those specified in Annex 83A.4 of the IEEE Standard
802.3ba-2010[2] for a single XLAUI/CAUI lane.
RapidIO.org 527

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
12.4.2 Level III Long Run

The electrical specifications for the long-reach 10.3125 and 12.5 Gbaud PHY shall
be the same as those specified in Clauses 72.6.1 and 72.7.1 through 72.9.5 of the
IEEE Standard 802.3-2008[1] (Part 5). The specifications for the long-reach channel
shall be the same as those specified for the 10GBASE-KR channel in Annex 69A of
the IEEE Standard 802.3-2008[1] (Part 5).

12.4.3 Level III Transmitter Lane-to-Lane Skew

The electrical level of lane-to-lane skew caused by the transmitter circuitry and
associated routing must be less than 2*67 UI + 1000 ps. The transmitter lane-to-lane
skew is only for the SerDes Tx and does not include any effects of the channel.

12.4.4 Receiver Input Lane-to-Lane Skew

The maximum amount of lane-to-lane skew at the input pins of the receiver is
determined by the ability of the receiver to resolve the difference between two
successive Status/Control columns. Since the minimum number of
non-Status/Control columns between Status/Control columns is 16, the maximum
lane skew that can be unambiguously corrected is the time it takes to transmit 7
codewords per lane. Therefore, the maximum lane-to-lane skew at the input pins of
a receiver is calculated as follows:

(7 codewords) x (67 bits/codeword) x (1 UI/bit) x (ns/UI)

It is important to note that the total lane-to-lane skew specification includes the skew
caused by the transmitter’s PCS and PMA (SerDes), the channel, the receiver’s PCS
and PMA (SerDes), and any logic that is needed to create the aligned column of
Status/Control at the receiving device.

12.4.5 Electrical IDLE

When a Level III transmitter is disabled due to the deassertion of the drvr_oe[k]
signal, the transmitter shall output a constant output level with no transitions. It is
also recommended that the transmitter outputs should meet the requirements for
‘Differential peak-to-peak output voltage (max.) with TX disabled’ as specified in
Table 72-6 of IEEE 802.3-2008 [1] (Part 5).
528 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex A Transmission Line Theory and
Channel Information (Informative)

A.1 Transmission Lines Theory
The performance of a high frequency transmission line is strongly affected by
impedance matching, high frequency attenuation and noise immunity.

It is possible to design a high frequency transmission line using only a single
conductor. Nevertheless, most high frequency signals use differential transmission
lines (i.e. a pair of coupled conductors carrying signals of opposite polarity).
Although differential signaling appears wasteful of both pins and signal traces it
results in much better noise immunity. Differential signals produce less conducted
noise because the opposite power and ground current flows cancel each other both
in the line driver and in the transmission line. Differential signals produce less
radiated noise because over a modest distance the opposite fields induced by the
opposite currents cancel each other. Differential signals are less susceptible to noise
because most sources of noise (common mode noise) tend to affect both signal lines
identically, producing a variation in common mode voltage but not in differential
voltage.

A.2 Impedance Matching
The AC impedance of a single conductor is determined by the trace geometry,
distance to the nearest AC ground plane(s) and the dielectric constant of the material
between the trace and the ground plane(s). If the distance between the signal trace
and the nearest ground plane is significantly less than the distance to other signal
traces the signal trace will behave as a single-ended transmission line. Its AC
impedance does not vary with signal polarity although it may vary with frequency
due to the properties of the dielectric material. This impedance is often called single
ended impedance, Zse.

The AC impedance, Z of a differential transmission line is affected by the
configuration of the pair of conductors and the relationship between their signal
polarities, in addition to the trace geometry, distance to the nearest AC ground
plane(s) and the dielectric constant of the material between the trace and the ground
plane(s). If the paired conductors are close enough to interact (coupled), then the
impedance for signals of opposite polarity (odd mode impedance, Zodd) will be
lower than the impedance for signals of the same polarity (even mode impedance,
RapidIO.org 529

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Zeven).

If there is minimal coupling between the paired conductors then Zodd = Zeven =
Zse. Coupled transmission lines always produce Zodd < Zse < Zeven. The following
equations relate effective differential impedance, Zdiff, to common mode
impedance, Zcm, and single ended impedance, Zse, to even and odd mode
impedances:

Most differential data signals are designed with zdiff = 100 and 25< Zcm < 50.

There is a trade-off in the choice of Zcm. Zcm = 25 (no coupling) may reduce
conducted noise for transmission lines with inadequate AC or DC grounding. Zcm
= 50 (close coupling) may reduce radiated noise (crosstalk) which is more critical
in backplanes. However close coupling requires careful ground construction to
control common mode noise.

The reader may wonder why common mode impedance is meaningful in a
differential transmission system. In a perfectly constructed system only odd mode
(opposite polarity) signals propagate. However imperfections in the transmission
system cause differential to common mode conversion. Once converted into
common mode the energy may convert back to differential mode by the same
imperfections. Thus, these imperfections convert some of the signal energy from
opposite polarities to the same polarity and back.

The two main sources of mode conversion are impedance mismatches which cause
part of the energy to be reflected, and differential skew which causes variations in
forward signal propagation delay between the individual paths of the differential
pair. Impedance mismatches typically occur at boundaries between transmission line
segments, including wire bonds, solder joints, connectors, vias, and trace-to-via
transitions. Often ignored sources of impedance mismatches at these boundaries are
discontinuities within the AC ground itself as well as asymmetric coupling between
the individual traces and the AC ground. Differential skew can occur at these same
boundaries and also due to mismatched trace lengths in device packages and in
PCBs.

A.3 Impedance Definition Details
Differential transmission lines consist of two conductors and a ground plane. The
voltage-current relationships at one end of this line can be formulated in terms of a
two-port as in Figure A-1.

Zdiff 2Zodd= Zcm Zeven
2

---------------= Zse Zeven Zodd+
2

------------------------------------=
530 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The voltage current relationships are:

If the line is infinitely long or perfectly terminated, then these four impedance values
are the characteristic impedance of the line. The characteristic impedance is a 2 x 2
matrix:

Generally, all four of the matrix entries are complex. But, at frequencies of interest,
the inductance and capacitance per unit length dominate so that all four quantities
are approximately real positive numbers. For engineering purposes it is common to
speak of the impedances as though they are resistances with no imaginary part,
keeping in mind that the imaginary part exists. Since the line is passive and
symmetric, we have Z11 = Z22 and Z12 = Z21 so that the line is described by just two
impedance values. If the line is to be perfectly terminated, then we must create a
network that is equivalent to . That is, we need a 3-terminal (2 nodes + ground)
network that presents the same values of Z11 and Z12 as the line. A T or pi network
could be used. The pi network is shown in Figure A-2, along with the impedance
values in terms of Z11 and Z12.

Figure A-1. Transmission Line as 2-port

Figure A-2. Network Terminations

Transmission Line

Conductor 1

1V
2V

2I

1I

Conductor 2

Ground Plane

V1 Z11I1 Z12I2+= V2 Z21I1 Z22I2+=

Zc
ˆ Z11 Z12

Z21 Z22

=

Zc
ˆ

I1

I2

V1

V2

Zb

Za

Za

Za Z11 Z12+= Zb
Z11

2 Z12
2–

Z12
---------------------------=

Zodd ZaZb
2Za Zb+
----------------------- Z11 Z– 12== Zeven Za Z11 Z+ 12==
RapidIO.org 531

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The odd and even mode impedances, Zodd and Zeven, are other impedance
definitions that are more descriptive, referring to the polarity of the signal
propagating the differential pair. In the case of opposite signal polarity in the two
lines of the signal pair the odd mode impedance is used. In the case of same signal
polarity the even mode is used. Zodd and Zeven are measured as shown in
Figure A-3.

Zodd Zeven

Odd mode impedance is the impedance measured when the two halves of the line
are driven by equal voltage or current sources of opposite polarity. Even mode
impedance is the impedance measured when the two halves of the line are driven by
equal voltage or current sources of the same polarity.

From the above equations we see that Zeven is always greater than Zodd by 2Z12,
where Z12 is a measure of the amount of coupling between the lines. This means that
Zeven is larger than Zodd for coupled transmission lines.

A.4 Density considerations
The preceding section showed that, for two idealized forms of termination, Zodd is
correctly terminated but Zeven is not. The first illustrated case, using a 50 resistor
(or its equivalent) from either terminal to ground (or to AC ground), has become
relatively standard. Because it has ZoddT = ZevenT = 50, it provides correct
differential termination and is often close to providing correct common-mode
termination.

By increasing the conductor spacing in the transmission line we can decrease Zeven
(decrease Z12) and bring it closer to 50. But dense backplanes require a large
number of transmission lines per unit cross-sectional area of the printed circuit
board. This means that the two printed circuit traces comprising the differential
transmission line are forced close together, which increases Z12. The backplane

Figure A-3. Measurement of Zodd, Zeven

I
1

2

gnd

-

+

V
-

+

I
V

1

2-

+

V
-

+
I

gnd

V V1 V– 2= = V V1 V2= =

I I1 I– 2= = I I1 I2= =

Zodd V
I
---= Zeven V

I
---=
532 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
design is therefore, a compromise between the desire for high density of
transmission lines and a desire for correct common-mode termination.

Transmission lines act as low-pass filters due to skin effect and dielectric absorption.
As the density of transmission lines increases, both the series resistance per unit
length and the parallel conductance per unit length increase. This, in turn, results in
greater attenuation at a given frequency. Thus, high speed backplane design is not
just a compromise between density and common-mode matching. There is also a
compromise between density and attenuation.

A.5 Common-Mode Impedance and Return Loss
It is demonstrated above that increasing the density of transmission lines in a
backplane results in higher common-mode impedance, which is known as
interference, and for high amplitudes the receiver is likely to be disrupted.

Common-mode interference arises from several sources. Among them are:

1. Imperfections in driver circuits

2. A difference in length between the two conductors of the transmission line

3. Imperfections in impedance matching across board boundaries, connectors,
and vias causing mode conversion, from differential to common mode

4. EMI

The interference resulting from the driver probably has a spectrum that is the same
as or similar to that of the signal. EMI arising from coupling into the printed circuit
traces should be small, assuming that coupled stripline is used. However, connector
pins may be exposed. EMI may have frequency components that are well below
signal frequencies, which means that it won’t necessarily be attenuated to the extent
that signals are. But, at the same time, the lower frequencies are probably poorly
coupled into the backplane circuit.

Earlier, two ideal forms of termination were presented based on either one or two
resistors. These ideal terminating devices are helpful in examining the relationship
between the parameters of the transmission line versus those of the device. Real
devices, however, are not simple resistances. They contain parasitic components and
a non-ideal path from package pins to die. There may also be a need to AC-couple
the terminations.

The most that can be done in this situation is to make the package and the die appear
as close to ideal as possible over as much of the signal spectrum as possible. The
extent of the deviation from ideal is specified and measured as a function of
frequency. The preferred measures are S11 (single-ended return loss) or SDD11
(differential return loss) as functions of frequency. (Sometimes S22 or SDD22 are
used to indicate an output.) Ideally these return losses are 0 (no reflection) over the
frequency range of interest. In dB this is -.
RapidIO.org 533

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Note: Sometimes a return loss is specified as a positive number, it being understood
that this still refers to the log of a reflection coefficient in the range of 0 to 1.

A.6 Crosstalk Considerations
This implementation assumes that the dominant cross talk can come from aggressors
other than the transmitter associated with the receiver. Hence NEXT cancellation is
not useful.

Crosstalk between channels should be minimized by good design practices. This
includes the pin-out arrangement to the driving/receiving ICs, connectors and
backplane tracking.

Optimum arrangement for minimizing crosstalk between channels at IC pins is
illustrated in Figure A-4 below. Crosstalk between channels can be reduced by
grouping TX and RX pins and avoiding close proximity between individual TX and
Rx pins. This practice will minimize coupling of noise from TX drivers into RX
inputs.

Crosstalk at connector pins can be minimized by careful optimization of connections
as shown in Figure A-5 below.

Figure A-4. Minimization of Crosstalk at IC Pins

Chip

Chip

Rx
Tx
Rx
Tx
Rx
Tx
Rx
Tx
Rx
Tx

Rx
Rx
Rx
Rx
Rx

Tx
Tx
Tx
Tx
Tx

Can increase cross talk
due to Tx beside an Rx,
yet is good to allow for
loopback debug testing

Best for cross talk prevention
due to separating Rx and Tx,
but harder to design in
loopback debug testing

Diff pair
534 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Crosstalk between channels over a backplane can be minimized by careful
arrangement of tracking, avoiding coupling of noise into RX inputs and increasing
spacing “d” between channels as far as possible as shown in Figure A-6 below.

A.7 Equation Based Channel Loss by Curve Fit
This section describes a technique with specific limitations. It does not include any
phase data for the SDD21, and includes no return loss information about SDD11 or
SDD22, information that is critical for the evaluation of a specific topology's
performance. The preceding proposed statistical-eye characterization includes these
effects by including the full 4-port s-parameter measurements. The following
method is included for information only and is believed to be of relevance to the
overall understanding of the channel transfer loss.

One way to specify the channel loss is to have an average or worst case “curve” fit
to several real channels. This method includes effects of real vias and connectors.
This method typically uses the equation below:

Figure A-5. Minimization of Crosstalk At Connector Pins

Figure A-6. Minimization of Crosstalk Over Backplane

Rx
Rx
Rx
Rx

Tx
Tx
Tx
Tx

Rx
Tx
Rx
Tx

Rx
Tx
Rx
Tx

Diff pair Single trace

Best for crosstalk prevention
due to separating Rx and Tx,
but might be harder to route

Poor design for crosstalk prevention
due to Tx beside an Rx.
Might be easier to route.
Note, quite a lot of the crosstalk is in
the vias, while routing and internal
parts of the connector cause the rest.

Making “d” large reduces
crosstalk, but eats up PCB

area

d

d

C
ro

ss
ta

lk
RapidIO.org 535

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Where f is frequency in Hz, a1, a2, and a3 are the curve fit coefficients and Att is in
dB.

Table A-1 gives some examples of these coefficients and Figure A-7 plots them
along with the PCB model and a real 75cm backplane with 5cm paddle cards on both
ends. These examples are representative of Level II LR applications but do not
represent specifications that a RapidIO link is to comply with.

Table A-1. Curve fit Coefficients

Channel a1 a2 a3

sRIO1 (50cm)

1Chapter 8 reference 1

6.5e-6 2.0e-10 3.3e-20

75cm2 “Worse”

2Chapter 8 reference 5

6.5e-6 3.9e-10 6.5e-20

75cm3 “Typical”

3Chapter 8 reference 5

6.0e-6 3.9e-10 3.5e-20

Figure A-7. Equations Based Channel Loss Curves

 2
321 ****)log(*20 fafafaeAtt

-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

1.00E+08

1.00E+09

1.00E+10

XAUI Model (50 cm) 75 cm Typical case 75 cm Worst case Real 75 cm Channel

Frequency (Hz)

Lo
ss

 (d
B

)

536 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex B BER Adjustment Methodology
(Informative)

B.1 Extrapolation of Correlated Bounded Gaussian Jitter
to low BERs

For this specification, which has a BER requirement of or lower,
measurements to that level are very time consuming (or rely on averaging
multi-links), hence it is more practical to only take measurements to Qs around 7
(BER around).

B.1.1 Bathtub Measurements

CBGJ can appear as either GJ or CBHPJ depending upon the Q at which it is
linearized.

If HPJ and GJ are measured using a bathtub there is no knowledge as to if the GJ is
UUGJ or CBGJ. For system budgeting it is recommended that the bathtub GJ should
be assumed to be all UUGJ.

If combined spectral oscilloscope methods are used then UUGJ, UBHPJ, and
CBHPJ can be estimated. It is not possible to estimate the CBGJ as it has already
become bounded and appears as CBHPJ. For system budgeting it is recommended
that this peak value is valid for the extrapolated Q of interest.

B.2 Confidence Level of Errors Measurement
Assuming that a link with a given BER can be modelled as a Bernoulli random
process, the following statistics can be assumed.

Given,

 is the probability of error

 is the probability of not having an error

 is the number of bits received and measured

then

 is the expected number of errors received

1
15–10

1
12–10

p

q 1 p– =

n

m np=
RapidIO.org 537

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
 is the sigma of the variation of the number of errors received

As an example process, for a 3 sigma confidential level

To assess the accuracy of such a measurement an equivalent process with a higher
BER can be calculated that would show the same limit of error for the same
confidence level and measured number of bits.

Solving the quadratic equation for p

B.3 Eye Mask Adjustment for Sampling Oscilloscopes
The data mask is defined for the bit error rate of the link. Given that this bit error rate
is very small, typical oscilloscope measurement will not sample enough points to be
able to verify compliance to these mask.

 npq=

p 10
12–

n 100 10
12

m

100

 10

m
max
min

m Q+
Q 3–=
Q 3=

m
max
min 70

130
=

=

=

=

=

=

m
max

E m Q

m
max

–

np Q npq

m
max

–

np Q np 1 p– –

=

=

=

p 1.69
12–10=
538 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
B.3.1 Theory

Given an example eye mask, Figure B-1, the extremes of the mask, X1, are defined
as a linear addition of a Gaussian and high probability jitter component.

where

 is the high probability jitter

 is the Gaussian distributed jitter

 is the GJ multiplication factor

Given a low sample population and the requirements for mask verification to
achieve a hit or no-hit result, X1 must be adjusted according to the sample
population and the confidence level that a particular peak to peak is achieved.

Figure B-1. Example Data Mask

0UI 1UI0.5UIX1 1-X1

X1 HPJ
2

----------- Q GJrms+=

HPJ

GJrms

Q

RapidIO.org 539

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Given a random process the probability of measuring a particular maximum
amplitude on an oscilloscope requires one sample to lie on the maximum and all
other samples to lie below this value. Referring this all to a half Gaussian
distribution and a population of n, there are n different ways this can occur,

where

 is the random variable of the maximum amplitude measured

 is the random variable of the underlying random jitter process

 is the Q function of the Normal probability density function

 is the sample population

 is a probability density function

The equation above is solved and the probability of attaining a given maximum
(normalized to the sigma) for various populations plotted, Figure B-3.

Figure B-2. Example Data Mask

Amplitude

Maximum of
Population

Sample
Population of n

P xm nQ xm Q x xd

0

xm

 n 1–

=

xm

x

Q x

n

P xm
540 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
B.3.2 Usage

Given a known sampling population, n, calculated from the measurement time,
average transition density and sampling/collection frequency of the oscilloscope the
three sigma confidence level (i.e.) of the measured Gaussian jitter peak
value can be read from Figure B-3. This value should be multiplied by 2 to give the
full peak to peak value of the random jitter.

The three sigma confidence level should be understood as ensuring that 99.96% of
all good devices do not violate the eye mask. To limit the number of bad devices that
also pass the eye mask it is strongly recommended that the sample population be
chosen as to give a Q larger than 5.

For example, referring to the red circled intersections Figure B-3, if we calculate
that the sample population for an oscilloscope was 100 i.e. n=100, then for a 3 sigma
confidence this equals a Q of 4.2. As the recommended Q value is 5 we should
increase the sample population to 10k to give a Q of 5.2.

Figure B-3. Cumulative Distribution Function of Maximum Amplitude

0 1 2 3 4 5 6 7
10

-4

10
-3

10
-2

10
-1

10
0

n=1
n=10

n=100
n=1k

n=10k
n=100k

n=1M

Q

3 sigma confidence
level

C
on

fid
en

ce
 L

ev
el

1.3
3–10
RapidIO.org 541

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
542 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex C Interface Management (Informative)

C.1 Introduction
This appendix contains state machine descriptions that illustrate a number of
behaviors that are described in the RapidIO Part 6: LP-Serial Physical Layer
Specification. They are included as examples and are believed to be correct,
however, actual implementations should not use the examples directly.

C.2 Packet Retry Mechanism
This section contains the example packet retry mechanism state machine referred to
in Section 6.8, “Packet Transmission Protocol“.

Packet retry recovery actually requires two inter-dependent state machines in order
to operate, one associated with the input port and the other with the output port on
the two connected devices. The two state machines work together to attempt
recovery from a retry condition.

C.2.1 Input port retry recovery state machine

If a packet cannot be accepted by a receiver for reasons other than error conditions,
such as a full input buffer, the receiver follows the state sequence shown in
Figure C-1.
RapidIO.org 543

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table C-1 describes the state transition arcs for Figure C-1. The states referenced in
the comments in quotes are the RapidIO LP-Serial defined status states, not states in
this state machine.

Figure C-1. Input Port Retry Recovery State Machine

Table C-1. Input Port Retry Recovery State Machine Transition Table

Arc Current State Next state Cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the input
port is enabled to receive packets.

This is the initial state after reset. The
input port can’t be enabled before the
initialization sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_retry Input port is enabled.

3 wait_for_retry wait_for_retry Remain in this state until a packet
retry situation has been detected.

4 wait_for_retry stop_input A packet retry situation has been
detected.

Usually this is due to an internal
resource problem such as not having
packet buffers available for low
priority packets.

5 wait_for_retry recovery_disabled Input port is disabled.

6 stop_input stop_input Remain in this state until described
input port stop activity is completed.

Send a packet-retry control symbol
with the expected ackID, discard the
packet, and don’t change the expected
ackID. This will force the attached
device to initiate recovery starting at
the expected ackID. Clear the “Port
Normal” state and set the “Input
Retry-stopped” state.

7 stop_input retry_stopped Input port stop activity is complete.

stop_input

retry_stopped

7

4

9

wait_for_retry

3

recovery_disabled

1

2 5

6

8

reset
544 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
C.2.2 Output port retry recovery state machine

On receipt of an error-free packet-retry control symbol, the attached output port
follows the behavior shown in Figure C-2. The states referenced in the comments in
quotes are the RapidIO LP-Serial defined status states, not states in this state
machine.

8 retry_stopped retry_stopped Remain in this state until a
restart-from-retry or link request
(restart-from-error) control symbol is
received or an input port error is
encountered.

The “Input Retry-stopped” state
causes the input port to silently
discard all incoming packets and not
change the expected ackID value.

9 retry_stopped wait_for_retry Received a restart-from-retry or a link
request (restart-from-error) control
symbol or an input port error is
encountered.

Clear the “Input Retry-stopped” state
and set the “Port Normal” state. An
input port error shall cause a clean
transition between the retry recovery
state machine and the error recovery
state machine.

Figure C-2. Output Port Retry Recovery State Machine

Table C-1. Input Port Retry Recovery State Machine Transition Table (Continued)

Arc Current State Next state Cause Comments

stop_output

4

recover

7
9

6

wait_for_retry

3

recovery_disabled

1

2 5

8

reset
RapidIO.org 545

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table C-2 describes the state transition arcs for Figure C-2.

Table C-2. Output Port Retry Recovery State Machine Transition Table

Arc Current State Next state Cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the output
port is enabled to receive packets.

This is the initial state after reset. The
output port can’t be enabled before
the initialization sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_retry Output port is enabled.

3 wait_for_retry wait_for_retry Remain in this state until a
packet-retry control symbol is
received.

The packet-retry control symbol shall
be error free.

4 wait_for_retry stop_output A packet-retry control symbol has
been received.

 Start the output port stop procedure.

5 wait_for_retry recovery_disabled Output port is disabled.

6 stop_output stop_output Remain in this state until the output
port stop procedure is completed.

Clear the “Port Normal” state, set the
“Output Retry-stopped” state, and
stop transmitting new packets.

7 stop_output recover Output port stop procedure is
complete.

8 recover recover Remain in this state until the internal
recovery procedure is completed.

The packet sent with the ackID value
returned in the packet-retry control
symbol and all subsequent packets
shall be retransmitted. Output port
state machines and the outstanding
ackID scoreboard shall be updated
with this information, then clear the
“Output Retry-stopped” state and set
the “Port Normal” state to restart the
output port.
Receipt of a packet-not-accepted
control symbol or other output port
error during this procedure shall
cause a clean transition between the
retry recovery state machine and the
error recovery state machine.
Send restart-from-retry control
symbol.

9 recover wait_for_retry Internal recovery procedure is
complete.

Retransmission has started, so return
to the wait_for_retry state to wait for
the next packet-retry control symbol.
546 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
C.3 Error Recovery
This section contains the error recovery state machine referred to in Section 6.13.2,
“Link Behavior Under Error."

Error recovery actually requires two inter-dependent state machines in order to
operate, one associated with the input port and the other with the output port on the
two connected devices. The two state machines work together to attempt recovery.

C.3.1 Input port error recovery state machine

There are a variety of recoverable error types described in detail in Section 6.13.2,
“Link Behavior Under Error“. The first group of errors are associated with the input
port, and consists mostly of corrupt packet and control symbols. An example of a
corrupt packet is a packet with an incorrect CRC. An example of a corrupt control
symbol is a control symbol with error on the 5-bit CRC control symbol. The
recovery state machine for the input port of a RapidIO link is shown in Figure C-3.

Table C-3 describes the state transition arcs for Figure C-3. The states referenced in
the comments in quotes are the RapidIO LP-Serial defined status states, not states in
this state machine.

Figure C-3. Input Port Error Recovery State Machine

stop_input

error_stopped

7

4

9

recovery_disabled

1

2

wait_for_error

3

5

8

6

reset
RapidIO.org 547

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
C.3.2 Output port error recovery state machine

The second recoverable group of errors described in Section 6.13.2, “Link Behavior
Under Error” is associated with the output port, and is comprised of control symbols
that are error-free and indicate that the attached input port has detected a
transmission error or some other unusual situation has occurred. An example of this
situation is indicated by the receipt of a packet-not-accepted control symbol. The
state machine for the output port is shown in Figure C-4.

Table C-3. Input Port Error Recovery State Machine Transition Table

Arc Current State Next state Cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error
recovery is enabled.

This is the initial state after reset.
Error recovery can’t be enabled
before the initialization sequence has
been completed, and may be
controlled through other mechanisms
as well, such as a software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a
recoverable error is detected.

Detected errors and the level of
coverage is implementation
dependent.

4 wait_for_error stop_input A recoverable error has been
detected.

An output port associated error will
not cause this transition, only an input
port associated error.

5 wait_for_error recovery_disabled Error recovery is disabled. This can occur when a port operating
with IDLE3 deasserts receive_enable,
or whenever any port deasserts
port_initialized.

6 stop_input stop_input Remain in this state until described
input port stop activity is completed.

Send a packet-not-accepted control
symbol and, if the error was on a
packet, discard the packet and don’t
change the expected ackID value.
This will force the attached device to
initiate recovery. Clear the “Port
Normal” state and set the “Input
Error-stopped” state.

7 stop_input error_stopped Input port stop activity is complete.

8 error_stopped error_stopped Remain in this state until a link
request (restart-from-error) control
symbol is received.

The “Input Error-stopped” state
causes the input port to silently
discard all subsequent incoming
packets and ignore all subsequent
input port errors.

9 error_stopped wait_for_error Received a link request
(restart-from-error) control symbol.

Clear the “Input Error-stopped” state
and set the “Port Normal” state,
which will put the input port back in
normal operation.
548 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Table C-4 describes the state transition arcs for Figure C-4. The states referenced in
the comments in quotes are the RapidIO LP-Serial defined status states, not states in
this state machine.

Figure C-4. Output Port Error Recovery State Machine

Table C-4. Output Port Error Recovery State Machine Transition Table

Arc Current State Next state Cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error
recovery is enabled.

This is the initial state after reset.
Error recovery can’t be enabled
before the initialization sequence has
been completed, and may be
controlled through other mechanisms
as well, such as a software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a
recoverable error is detected.

Detected errors and the level of
coverage is implementation
dependent.

4 wait_for_error stop_output A recoverable error has been
detected.

An input port associated error will not
cause this transition, only an output
port associated error.

5 wait_for_error recovery_disabled Error recovery is disabled.

stop_output

fatal_error

8

4 12

recover
7

10

6

wait_for_error

3

recovery_disabled

1

2 5

9

11

reset

fast
recovery

13

14

15

16

stop_output2

18
17

20

19
RapidIO.org 549

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
6 stop_output stop_output Remain in this state until an exit
condition occurs.

Clear the “Port Normal” state, set the
“Output Error-stopped” state, stop
transmitting new packets, and send a
link-request/port-status control
symbol. Ignore all subsequent output
port errors.
The input on the attached device is in
the “Input Error-stopped” state and is
waiting for a link-request/port-status
in order to be re-enabled to receive
packets.
An implementation may wish to
timeout several times before
regarding a timeout as fatal using a
threshold counter or some other
mechanism.

7 stop_output recover The link-response is received and
returned an outstanding ackID value

An outstanding ackID is a value sent
out on a packet that has not been
acknowledged yet. In the case where
no ackID is outstanding the returned
ackID value shall match the next
expected/next assigned ackID value,
indicating that the devices are
synchronized.
Recovery is possible, so follow
recovery procedure.

8 stop_output fatal_error The link-response is received and
returned an ackID value that is not
outstanding, or timed out waiting for
the link-response.

Recovery is not possible, so start
error shutdown procedure.

9 recover recover Remain in this state until the internal
recovery procedure is completed.

The packet sent with the ackID value
returned in the link-response and all
subsequent packets shall be
retransmitted. All packets transmitted
with ackID values preceding the
returned value were received by the
attached device, so they are treated as
if packet-accepted control symbols
have been received for them. Output
port state machines and the
outstanding ackID scoreboard shall
be updated with this information,
then clear the “Output Error-stopped”
state and set the ‘Port Normal” state
to restart the output port.

10 recover wait_for_error The internal recovery procedure is
complete.

retransmission (if any was necessary)
has started, so return to the
wait_for_error state to wait for the
next error.

11 fatal_error fatal_error Remain in this state until error
shutdown procedure is completed.

Clear the “Output Error-stopped”
state, set the “Port Error” state, and
signal a system error.

Table C-4. Output Port Error Recovery State Machine Transition Table (Continued)

Arc Current State Next state Cause Comments
550 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
12 fatal_error wait_for_error Error shutdown procedure is
complete.

Return to the wait_for_error state.

13 stop_output fast_recovery Port has stopped transmitting new
packets, link-request/port-status has
been transmitted, cause of error was
receipt of a packet-not-accepted with
valid ackID status field, and Error
Recovery with PNA Ackid Enabled is
set.

This transition cannot be taken after
transition 16 has been taken and
before returning to wait_for_error.

14 fast_recovery fast_recovery Remain in this state until error
recovery has completed.

The packet sent with the ackID value
received in the Packet Not Accepted
and all subsequent packets shall be
retransmitted. All packets transmitted
with ackID values preceding the
returned value were received by the
attached device, so they are treated as
if packet-accepted control symbols
have been received for them. Output
port state machines and the
outstanding ackID scoreboard shall
be updated with this information,
then clear the “Output Error-stopped”
state and set the ‘Port Normal” state
to restart the output port.

15 fast_recovery wait_for_error Link-response is received retransmission (if any was necessary)
has started, so return to the
wait_for_error state to wait for the
next error.

16 fast_recovery stop_output2 Packet Accept, Packet Retry, or
Paclet Not Accepted is recevied, or a
recoverable error has been detected.

An input port associated error will not
cause this transition, only an output
port associated error.

17 fast_recovery fatal_error The link-response is received and
returned an ackID value that is not
outstanding, or timed out waiting for
the link-response.

Recovery is not possible, so start
error shutdown procedure.

18 stop_output2 stop_output2 Remain in this state until an exit
condition occurs.

Clear the “Port Normal” state, set the
“Output Error-stopped” state, stop
transmitting new packets, and send a
link-request/port-status control
symbol. Ignore all subsequent output
port errors.
The input on the attached device is in
the “Input Error-stopped” state and is
waiting for a link-request/port-status
in order to be re-enabled to receive
packets.
An implementation may wish to
timeout several times before
regarding a timeout as fatal using a
threshold counter or some other
mechanism.

Table C-4. Output Port Error Recovery State Machine Transition Table (Continued)

Arc Current State Next state Cause Comments
RapidIO.org 551

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
C.3.3 Changes in Error Recovery Behavior for CT

The basic states, as previously described, apply to the overall port. Each VC must
carry some independent state:

Packets in a transmitter’s VC queue are: pending transmission, sent-pending
acknowledgement, or acknowledged (and subsequently removed from the queue).
RT and CT VCs keep this same information, but behave slightly differently on error
recovery. In RT queues, packets sent-pending acknowledgment, are returned to the
pending transmission state. Packets pending acknowledgment in CT queues are
moved to the acknowledged state. In this way, the sent packets in the CT queue are
not resent.

(Note that it may not be necessary to keep the actual packet in a CT VC, only track
the needed acknowledges to keep the credit balance for transmitter flow control
accurate.)

19 stop_output2 recover The link-response is received and
returned an outstanding ackID value

An outstanding ackID is a value sent
out on a packet that has not been
acknowledged yet. In the case where
no ackID is outstanding the returned
ackID value shall match the next
expected/next assigned ackID value,
indicating that the devices are
synchronized.
Recovery is possible, so follow
recovery procedure.

20 stop_output fatal_error The link-response is received and
returned an ackID value that is not
outstanding, or timed out waiting for
the link-response.

Recovery is not possible, so start
error shutdown procedure.

Table C-4. Output Port Error Recovery State Machine Transition Table (Continued)

Arc Current State Next state Cause Comments
552 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex D Critical Resource Performance Limits
(Informative)

D.1 IDLE1 and IDLE2
The RapidIO LP-Serial Physical Layer is intended for use over links whose length
ranges from centimeters to tens of meters. The shortest length links will almost
certainly use copper printed circuit board traces. The longer lengths will usually
require the use of fiber optics (optical fiber and electro-optical converters) to
overcome the high frequency losses of long copper printed circuit board traces or
cable. Repeaters and/or retimers may also be inserted into longer length links. The
longer lengths will also have significant propagation delay which can degrade the
usable bandwidth of a link.

The serial protocol is a handshake protocol. Each packet transmitted by a port is
assigned an ID (the ackID) and a copy of the packet is retained by the port in a
holding buffer until the packet is accepted by the port’s link partner. The number of
packets that a port can transmit without acknowledgment is limited to the lesser of
the number of distinct ackIDs and the number of buffers available to hold
unacknowledged packets. Which ever is the limiting resource, ackIDs or holding
buffers, will be called the “critical resource”. The number of ackIDs is limited by the
number of bits provided to define them: 5 bits for Control Symbol 24, 6 bits for
Control Symbol 48, and 12 bits for Control Symbol 64. The number of holding
buffers may be more constrained by the size of memory provided for this purpose.

The concern is the time between the assignment of a critical resource to a packet and
the release of that resource as a consequence of the packet being accepted by the link
partner. Call this time the resource_release_delay. When the resource_release_delay
is less than the time it takes to transmit a number of packets equal to the number of
distinct critical resource elements, there is no degradation of link performance.
When the resource_release_delay is greater than the time it takes to transmit a
number of packets equal to the number of distinct critical resource elements, the
transmitter may have to stall from time to time waiting for a free critical resource.
This will degraded the usable link bandwidth. The onset of degradation will depend
on the average length of transmitted packets and the physical length of the link as
reflected in the resource_release_delay.

The following example provides some idea of the impact on link performance of the
interaction between link length and a critical resource for the case of operation with
RapidIO.org 553

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
IDLE1 or IDLE2. For purposes of this example, the following assumptions are
made.

1. The link is a 4 lane (4x) link with 8b/10b encoding for transmission and both
directions of the link have the same number of active lanes.

2. The link uses optical fiber and electro-optical transceivers to allow link
lengths of tens of meters. The fiber is assumed to be single mode with a
refraction index of 1.46. This may vary with the specific fiber, and those with
higher indexes will be more constraining to cable length.

3. The width of the data path within the port is 4 bytes, equivalent to 1 byte per
lane. The widths of the FIFOs that feed the lane transmitters and that are fed
by the receivers have a width in bytes equal to the number of serial lanes. For
the higher data rates, it may be advisable to increase this width to support a
lower clock speed.

4. The data path and logic within the port run at a clock rate equal to the
aggregate unidirectional data rate of the link divided by 32, based on the
defined data path width. This is referred to as the logic clock. One cycle of
this clock is referred to a one logic clock cycle. (If the aggregate
unidirectional baud rate of the link was used to compute the logic clock, the
baud rate would be divided by 40. With 8b/10b encoding, the baud rate is
1.25 times the data rate.) To support the higher link baud rates without
increasing the internal clock rate, it may be advisable to divide by 64 vs. 32
and use wider internal data buses. Doing so will increase latency, but allow
for longer cable lengths as the cable delay remains the same.

5. The minimum length packet header is used, reflecting Dev8
source/destination IDs and 34-bit addressing. Write request packets have a
length of 12 bytes including CRC for packets with a payload of <80 bytes
plus a payload containing an integer multiple of 8 bytes. Read request packets
also have a length of 12 bytes. Read response packets have a length of 8 bytes
reflecting Dev8 and independent of addressing and including CRC for a
payload length of <80 bytes, plus a payload containing an integer multiple of
8 bytes.

6. The beginning and end of each packet is delimited by a control symbol. A
single control symbol may delimit both the end of one packet and the
beginning of the next packet. The length of the delimited control symbol
changes between IDLE1 and IDLE2 from 4 to 8 bytes.

7. Packet acknowledgments are carried in packet delimiter control symbols
when ever possible to achieve the efficiency provided by the dual stype
control symbol. This implies that a packet acknowledgment must wait for an
end-of-packet control symbol if packet transmission is in progress when the
packet acknowledgment becomes available.
554 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
8. The logic cycle represents circuitry in the 8b/10b encoding and decoding
stages of the transmit/receive pipelines where one 8b/10b code word is
decoded per logic clock cycle.

9. Logic delays as shown are not based on any known physical implementation
and should be adjusted by the user as needed to reflect a given solution. It is
recommended to work with the suppliers of RapidIO products for assistance.
Composite delay data may be provided as opposed to individual values for
the delay elements.

10. Optical fiber delay is a function of the speed of light “c” and the refractive
index of the chosen cable medium.

The logic and propagation delay in the packet transmission direction is comprised
of the following components.

The logic and propagation delay in the packet acknowledgment direction is
comprised of the following.

Table D-1. Packet Transmission Delay Components

Delay Element Time required Comments

Generate non-CRC portion of delimited start-of-packet control symbol
(critical resource is available)

1 logic clock cycle

Generate the control symbol CRC with link width = 4 1 logic clock cycle

8b/10b encode the first N bytes of the delimited control symbol 1 logic clock cycle

Serialize the first N code-groups of the encoded delimited control symbol 1 logic clock cycle

Output register and output driver delay 2 ns

PCB copper and electro-optical transmitter delay 2 ns

Optical fiber delay fiber_length
(meters)/0.685c

Assumes
refraction index = 1.46

Electro-optical receiver and pcb copper delay 2 ns

Receiver delay 2 ns

Deserialize the first N code-groups of the delimited control symbol 1 logic clock cycle

8b/10b decode the delimited control symbol (control symbol
length/link width)
logic clock cycles

1 cycle for IDLE1,
2 cycles for IDLE2

8b/10b decode average length packet (average packet
length/link width)
logic clock cycles

8b/10b decode packet terminating delimited control symbol (control symbol
length/link width)
logic clock cycles

1 cycle for IDLE1,
2 cycles for IDLE2

Check control symbol CRC 1 logic clock cycle

Make packet acceptance decision 1 logic clock cycle
RapidIO.org 555

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The packet times in the above tables depend on packet length which in turn depends
on packet type and payload size. Since packet traffic will typically involve a mixture
of packet types and payload sizes, the traffic in each direction will be assumed to
contain an equal number of read, write and response packets and average payloads
of 8, 32, 64 and 128 bytes.

The number of logic clock cycles required to transmit or receive a packet is given in
the following table as a function of packet type and payload size.

Table D-2. Packet Acknowledgment Delay Components

Delay element Time required Comments

Average wait for the end of the current packet (1/2 of the packet
transmit time)

Function of packet
length

Generate non-CRC portion of the delimited acknowledgement control symbol 1 logic clock cycle

Generate the control symbol CRC (This cycle is needed for CRC generation if
the active link width N in lanes is equal to or greater than the length in bytes of
the delimited control symbol. Otherwise, the CRC can be generated while the
first N bytes of the delimited control symbol are being 8b/10b encoded)

1 logic clock cycle

8b/10b encode the first N bytes of the delimited control symbol 1 logic clock cycle

Serialize the first N code-groups of the encoded delimited control symbol 1 logic clock cycle

Output register and output driver delay 2 ns

PCB copper and electro-optical transmitter delay 2 ns

Optical fiber delay fiber_length
(meters)/0.685c

Assumes
refraction index = 1.46

Electro-optical receiver and pcb copper delay 2 ns

Receiver delay 2 ns

Deserialize the first N codewords of the delimited control symbol 1 logic clock cycle

8b/10b decode the delimited control symbol (control symbol
length/link width)
logic clock cycles

1 cycle for IDLE1,
2 cycles for IDLE2

Check control symbol CRC 1 logic clock cycle

Make decision to free critical resource 1 logic clock cycle

Table D-3. Packet Delays

Packet Type
Packet Header

bytes

CRC and
padding

bytes

Data Payload
bytes

Transmit/Receive Time
logic clock cycles

(IDLE1)

Transmit/Receive Time
logic clock cycles

(IDLE2)

Read 12 2 0 5 6

Response 8 2 8 6 7

2 32 10 11

2 64 18 19

10 6 128 37 38
556 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Using the above table and the assumed equal number of read, write and response
packets where the payload size in write and response packets is identical, the
average number of logic clock cycles to transmit or received a packet is 5, 9, 14.3
and 25.7 respectively for packet payloads of 8, 32, 64 and 128 bytes. The average
wait for the completion of a packet being transmitted is assumed to be 1/2 the
transmit time.

The following table gives the maximum length of the optical fiber before the packet
transmission rate becomes limited by the critical resource for a 4x link operating at
unidirectional data rates of 4.0, 8.0, 10.0, 16.0 and 20.0 Gb/s where the highest rate
makes use of IDLE2 control words and the four lower rates use IDLE1 control
words. An assumption is made that the number of ackIDs and buffers is the same.
Note that regardless of rate, the internal data path is assumed to be 32 bits wide. An
alternative might be to increase internal data width to 64 bits at the higher baud rates.

Write 12 2 8 7 8

2 32 10 11

2 64 18 19

14 6 128 38 39

Table D-4. Maximum Transmission Distances

Number of Critical
Resources
Available

(ackIDs or buffers)

Data Payload
(bytes)

Maximum Fiber Length Before
Critical Resource Limited (meters)

4.0 Gb/s link
(IDLE1)

8.0 Gb/s link
(IDLE1)

10.0 Gb/s link
(IDLE1)

16.0 Gb/s link
(IDLE1)

10.0 Gb/s link
(IDLE2)

4 8 - - - - -

32 3.7 1.0 0.5 - -

64 14.7 6.5 4.9 2.4 2.0

128 37.9 18.1 14.8 8.3 6.7

8 8 11.9 5.1 3.8 1.8 2.1

32 33.3 15.8 12.3 7.1 6.4

64 61.7 30.1 23.7 14.2 21.1

128 122.2 60.3 47.9 29.3 24.2

16 8 44.8 21.6 16.9 10.0 10.0

32 92.4 45.4 36.0 21.9 19.6

64 155.9 77.1 61.4 37.8 32.3

128 290.9 144.6 115.4 71.5 59.3

Table D-3. Packet Delays

Packet Type
Packet Header

bytes

CRC and
padding

bytes

Data Payload
bytes

Transmit/Receive Time
logic clock cycles

(IDLE1)

Transmit/Receive Time
logic clock cycles

(IDLE2)
RapidIO.org 557

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
When the information above is combined together, a single spreadsheet computation
can be developed to solve for fiber length. A spreadsheet with this capability is
located in the members only section of the RapidIO.org web site.

D.2 IDLE3
IDLE3 links are based on a different coding mechanism than IDLE1 and IDLE2,
using 64b/67b encoding. Separate tables are required to support IDLE3, which also
includes additional features.

The following example provides some idea of the impact on link performance of the
interaction between link length and a critical resource for the case of a IDLE3 link.
For purposes of this example, the following assumptions are made.

1. The link is a 4 lane (4x) link with 64b/67b encoding for transmission and the
both directions of the link have the same number of active lanes. As a result,
the example does not consider the effects of an asymmetric link.

2. The link uses optical fiber and electro-optical transceivers to allow link
lengths of tens of meters. The fiber is assumed to be single mode with a
refraction index of 1.46.

3. The width of the data path within the port is 16 bytes, equivalent to 4 bytes per
lane. This was used to allow for a lower speed clock within the protocol logic.

24 8 77.6 38.0 30.1 18.2 17.9

32 151.5 75.0 59.6 36.7 32.7

64 250.1 124.2 99.1 61.3 52.4

128 459.5 229.0 182.8 113.7 94.3

31 (max for IDLE1
- limited to 2N-1)

8 106.4 52.4 41.6 25.4 24.8

32 203.3 100.8 80.3 49.6 44.2

64 332.5 165.4 132.0 81.9 70.0

128 607.1 302.7 241.9 150.6 125.0

63 (max for IDLE2
- limited to 2N-1)

8 56.3

32 96.8

64 150.6

128 265.1

Table D-4. Maximum Transmission Distances

Number of Critical
Resources
Available

(ackIDs or buffers)

Data Payload
(bytes)

Maximum Fiber Length Before
Critical Resource Limited (meters)

4.0 Gb/s link
(IDLE1)

8.0 Gb/s link
(IDLE1)

10.0 Gb/s link
(IDLE1)

16.0 Gb/s link
(IDLE1)

10.0 Gb/s link
(IDLE2)
558 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
4. The data path and logic within the port run at a clock rate equal to the
aggregate unidirectional data rate of the link divided by 128, based on the
defined data path width. This is referred to as the logic clock. One cycle of
this clock is referred to a one logic clock cycle.

5. The minimum length packet header is used, reflecting Dev8
source/destination IDs and 34-bit addressing. Write request packets have a
length of 12 bytes including CRC for packets with a payload of <80 bytes
plus a payload containing an integer multiple of 8 bytes. Read request packets
also have a length of 12 bytes. Read response packets have a length of 8 bytes
reflecting Dev8 and independent of addressing and including CRC for a
payload length of <80 bytes, plus a payload containing an integer multiple of
8 bytes.

6. The beginning and end of each packet is delimited by a control symbol. A
single control symbol may delimit both the end of one packet and the
beginning of the next packet. The length of the delimited control symbol is 8
bytes for Baud Rate Class 3.

7. Packet acknowledgments are carried in packet delimiter control symbols
whenever possible to achieve the efficiency provided by the dual stype
control symbol. This implies that a packet acknowledgment must wait for an
end-of-packet control symbol if packet transmission is in progress when the
packet acknowledgment becomes available.

8. The multiple packet acknowledgement capability required for Baud Rate
Class 3 is not included in the example or the calculations. It is assumed that
the signal allowing this is de-asserted.

9. Logic delays as shown are not based on any known physical implementation
and should be adjusted by the user as needed to reflect a given solution. It is
recommended to work with the suppliers of RapidIO products for assistance.
Composite delay data may be provided as opposed to individual values for
the delay elements.

10. Optical fiber delay is a function of the speed of light “c” and the refractive
index of the chosen cable medium.

The logic and propagation delay for IDLE3 in the packet transmission direction is
comprised of the following components. The logic cycle represents circuitry in the
64b/67b encoding and decoding stages of the transmit/receive pipelines where one
64b/67b codeword is decoded per logic clock cycle.
RapidIO.org 559

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The logic and propagation delay for IDLE3 in the packet acknowledgment direction
is comprised of the following components.

Table D-5. IDLE3 Packet Transmission Delay Components

Delay Element Time required Comments

Generate non-CRC portion of delimited start-of-packet control symbol
(critical resource is available)

1 logic clock cycle

Generate the control symbol CRC (This cycle is needed for CRC
generation if the active link width N in lanes is equal to or greater than the
length in bytes of the delimited control symbol. Otherwise, the CRC can
be generated while the first N bytes of the delimited control symbol are
being 64b/67b encoded.)

1 logic clock cycle

Generate the link CRC-32, which is unique to IDLE3 (This cycle is
needed for CRC generation if the active link width N in lanes is equal to
or greater than the length in bytes of the delimited control symbol.
Otherwise, the CRC can be generated while the first N bytes of the
delimited control symbol are being 64b/67b encoded.)

1 logic clock cycle

64b/67b encode the first N bytes of the delimited control symbol 1 logic clock cycle

Serialize the first N codewords of the encoded delimited control symbol 1 logic clock cycle

Output register and output driver delay 2 ns

PCB copper and electro-optical transmitter delay 2 ns

Optical fiber delay fiber_length
(meters)/0.685c

Assumes
refraction index = 1.46

Electro-optical receiver and pcb copper delay 2 ns

Receiver delay (need 1 logic clock cycle to translate between the SerDes
data width and the 64b/67b encoded width)

1 logic clock cycle

Deserialize the first N codewords of the delimited control symbol 1 logic clock cycle

64b/67b decode the delimited control symbol (control symbol
length/link width)
logic clock cycles

64b/67bB decode average length packet (average packet
length/link width)
logic clock cycles

64b/67b decode packet terminating delimited control symbol (control symbol
length/link width)
logic clock cycles

Check control symbol CRC 1 logic clock cycle

Make packet acceptance decision 1 logic clock cycle

Table D-6. IDLE3 Packet Acknowledgment Delay Components

Delay element Time required Comments

Wait for multiple other packets, per the multiple packet acknowledge capability Average packet length *
number of packets
waited for

This is a new standard
capability, defaulted to
zero

Average wait for the end of the current packet (1/2 of the packet
transmit time)

Function of packet
length

Generate non-CRC portion of the delimited acknowledgement control symbol 1 logic clock cycle
560 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
The packet times in the above tables depend on packet length which in turn depends
on packet type and payload size. Since packet traffic will typically involve a mixture
of packet types and payload sizes, the traffic in each direction will be assumed to
contain an equal number of read, write and response packets and average payloads
of 8, 32, 64, and 128 bytes. The number of logic clock cycles required to transmit or
receive a packet is given in the following table as a function of packet type and
payload size.

Generate the control symbol CRC (This cycle is needed for CRC generation if
the active link width N in lanes is equal to or greater than the length in bytes of
the delimited control symbol. Otherwise, the CRC can be generated while the
first N bytes of the delimited control symbol are being 64b/67b encoded)

1 logic clock cycle

64b/67b encode the first N bytes of the delimited control symbol 1 logic clock cycle

Serialize the first N codewords of the encoded delimited control symbol 1 logic clock cycle

Output register and output driver delay 2 ns

PCB copper and electro-optical transmitter delay 2 ns

Optical fiber delay fiber_length
(meters)/0.685c

Assumes
refraction index = 1.46

Electro-optical receiver and pcb copper delay 2 ns

Receiver delay (need 1 logic clock cycle to translate between the SerDes data
width and the 64b/67b encoded width)

1 logic clock cycle

Deserialize the first N codewords of the delimited control symbol 1 logic clock cycle

64b/67b decode the delimited control symbol (control symbol
length/link width)
logic clock cycles

Check control symbol CRC 1 logic clock cycle

Make decision to free critical resource 1 logic clock cycle

Table D-7. IDLE3 Packet Delays

Packet Type
Packet Header

bytes

CRC and
padding

bytes

Data Payload
bytes

Transmit/Receive Time
logic clock cycles

Read 12 4 0 6

Response 8 4 8 7

4 32 11

4 64 19

10 4 128 38

Write 12 4 8 8

4 32 11

4 64 19

14 4 128 39

Table D-6. IDLE3 Packet Acknowledgment Delay Components

Delay element Time required Comments
RapidIO.org 561

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Using the above table and the assumed equal number of read, write and response
packets where the payload size in write and response packets is identical, the
average number of logic clock cycles to transmit or received a Class 3 packet is 7.3,
11.3, 16.7, and 28 respectively for packet payloads of 8, 32, 64, and 128 bytes. The
average wait for the completion of a packet being transmitted is assumed to be 1/2
the transmit time.

The following table gives the maximum length of the optical fiber before the packet
transmission rate becomes limited by the critical resource for a 4x link operating at
a unidirectional data rate of 40.0 Gb/s. An assumption is made that the number of
ackIDs and buffers is the same. Note that for Baud Rate Class 3, the internal data
path is assumed to be 128 bits wide. Because of the advanced technologies expected
for implementation of Baud Rate Class 3 interfaces and the very large number of
supported ackIDs, a minimum of 16 ackIDs is shown in the table.

When the information above is combined together, a single spreadsheet computation

Table D-8. IDLE3 Maximum Transmission Distances

Number of Critical
Resources
Available

(ackIDs or buffers)

Data Payload
(bytes)

Maximum Fiber
Length Before

Critical Resource
Limited (meters)

40.0 Gb/s link (IDLE3)

16 8 27.2

32 46.6

64 72.4

128 127.2

31 (max for IDLE1
- limited to 2N-1)

8 63.9

32 103.3

64 155.7

128 267.3

48 8 105.5

32 167.5

64 250.2

128 426.0

63 (max for IDLE2
- limited to 2N-1)

8 142.2

32 224.2

64 333.6

128 566.1

80 8 183.8

32 288.5

64 428.1

128 724.8
562 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
can be developed to solve for fiber length. A spreadsheet with this capability is
located in the members only section of the RapidIO.org web site. Different work
sheets are required for the IDLE3 calculation than for IDLE1 and IDLE2.
RapidIO.org 563

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
564 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex E Manufacturability and Testability
(Informative)

It is not possible in many cases for assembly vendors to verify the integrity of
soldered connections between components and the printed circuit boards to which
they are attached. Alternative methods to direct probing are needed to insure high
yields for printed circuit assemblies which include LP-Serial RapidIO devices.

It is recommended that component vendors support IEEE Std. 1149.6 (commonly
known as “AC-JTAG”) on all connections to LP-Serial RapidIO links. (Note: IEEE
Std. 1149.6 is needed, in addition to IEEE Std. 1149.1, due the fact that RapidIO
LP-Serial lanes are AC-coupled.) This provides boundary scan capability on all TD,
TDN, RD, and RDN pins on a component which supports one or more LP-Serial
RapidIO ports.

The IEEE Std. 1149.6 is available from the IEEE.
RapidIO.org 565

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
566 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex F Multiple Port Configuration Example
(Informative)

F.1 Introduction
This appendix contains flow-chart descriptions that illustrates the Port-Width
negotiation process described in Chapter 4, “8b/10b PCS and PMA Layers. They are
included as examples and are believed to be correct, however, actual
implementations and system design should not use the examples directly.

F.2 System with Different Port Width Capabilities
In a high-performance system, a high-bandwidth switch processing element is often
used to aggregate traffic; while the connecting agents can be ones of lower
bandwidth. Under this circumstance, the switch processing element has to identify
the discrepancy of port-widths between link partners and set up accordingly. Figure
shows a typical system with a switch processing element connected between the
System Host and two connecting Agents. The system is set up as follows:

• System Host is connected to Switch A

• Switch A has a 8x port which is capable of multiple port configuration.

• Agent B has a 4x port connected to Switch A lanes 4-7

• Agent C has a 2x port connected to Switch A lanes 0-3.

The following example is used to illustrate the negotiation that will take place
between Switch A and Agents B and C. It is assumed that the System Host and the
Switch A have already established error-free communication.

1. By default, the 8x-port of Switch A looks for an 8x connection but fails to
come up with its link partner; thus, falling to 1x mode on lane 0 or 2.

2. Agent B fails to establish 4x link with Switch A. It tries to fall back to 1x mode
on its lane 0 or 2 but still fails. Its 4x port has failed.

3. Agent C fails to establish a 2x link with Switch A. When it tries to fall back to
1x mode, it succeeds in lane 0 and re-establish communication with Switch
A on its lane 0.

4. System Host reads through the established 1x link between Switch A and
Agent C. From the Vendor Port-Width CAR of Agent C, System Host
discovers that Agent C can support 2x mode.
RapidIO.org 567

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
5. System Host checks Switch A for its support of 2x mode on its lower
quad-link.

6. System Host writes to the Port Width Override CSR to force both Switch A
lower quad-link.

7. System Host puts Agent C back to 2x mode.

8. A 2x-link is established between Switch A and Agent C.

9. System Host discovers from Vendor Port-Width CAR in Agent B (not through
Switch A because the link was not established yet) that Agent B supports 4x
mode. It also discovers that Switch A supports multiple port configuration
(from its Vendor Specific registers) and its extra port is available (Vendor

Port-Width CAR).1

10. System Host configures the new port on the upper-quad link of Switch A.

11. Agent B now recognizes a 4x link partner.

12. A 4x link is now established between Switch A and Agent B.

Figure F-1. Example system with asymmetric port-width capabilities

1Steps 9 to 12 are optional. Switch A is not required to support multiple-port configuration to be compliant.

4x2x

8x
0 1 2 30 1 2 3 4 5 6 74 5 6 7

0 1 2 30 1 2 30 10 1

Switch A

Agent C Agent B

System Host

sRIO linkssRIO links 1

23

4

5

7

6

8

9

10

11

12
568 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Annex G MECS Time Synchronization
(Informative)

G.1 Introduction
This annex provides examples and discussion that illustrate a possible approach to
configuration and operation of (S)MECS Time Synchronization. The examples are
considered to be correct; however, the requirements for individual system designs
may differ from the assumptions for these examples.

G.2 Detection of Missing MECS
It is possible for MECS or SMECS to be corrupted during transmission. RapidIO
standard error recovery procedures do not include retransmission of MECS or
SMECS. If an MECS or SMECS is lost, the loss of the “tick” associated with the
(S)MECS could cause timestamp generators in multiple nodes to become
unsynchronized with the rest of the system.

It should be possible to bound the jitter in the propagation of MECS and SMECS
through the fabric. Typically, the jitter should be quite small in comparison to the
time of a particular “tick”. One approach to detecting the loss of an (S)MECS is to
assume an (S)MECS should have been received if the current timestamp generator
value has surpassed the MECS Next Timestamp Value by a small binary fraction of
the tick interval.

Reaction to the loss of an MECS should be limited to updating the MECS Next
Timestamp Value. Implementation specific events related to detection of a lost
(S)MECS may be generated and reported.

G.3 MECS and SMECS Redundant Operation
When redundant sources for time synchronization exist in the system, ideally it
would be possible to fail over from one source to another while allowing the
timestamp generator to smoothly continue increasing. For single switch systems,
MECS and SMECS redundant operation is a simple problem, as MECS and SMECS
are propagated to all endpoints with the same latency. It is therefore possible to
closely synchronize the generation of MECS and SMECS. The fail over operation
is limited to selecting whether MECS or SMECS will drive the timestamp generator
in each slave.
RapidIO.org 569

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
In more complex fabrics, the MECS and SMECS sources may be connected to
different switches. As a result, the propagation delay from the MECS source to a
particular node may differ significantly from the propagation delay from the
SMECS source, so it is not possible to closely synchronize the arrival of the MECS
and SMECS at all nodes. The fail over operation is more complex for these fabrics.

For complex fabrics, two timestamp generators, one driven by MECS and the other
by SMECS, could be maintained. The most intuitive implementation would be to
incorporate two copies of the Timestamp Register Extension Block, both of which
support operation with MECS or SMECS.

During system initialization, the MECS master would set time on all nodes,
including the SMECS master. The SMECS master could then set up the SMECS
time on all nodes. Since the SMECS original time is the MECS time, the SMECS
time on all nodes should remain closely synchronized to the MECS time. Note that
the MECS master must also support an SMECS timestamp generator, and would act
as an SMECS slave. The fail over operation becomes a matter of selecting which
timestamp generator to use as the source of system time. It is also possible to
“repair” the failed timestamp generator by locally resynchronizing the failed
timestamp generator to the operable timestamp generator, and then changing the
failed timestamp generator to use the operable (S)MECS source.

G.4 Detection of (S)MECS Source Failure
If two consecutive MECS or SMECS control symbols are not received, the
(S)MECS slave can be confident that it is no longer connected to that source and/or
the source has failed.

The slave can then initiate a fail over, if necessary, as described in Section G.3,
“MECS and SMECS Redundant Operation”.
570 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

AC Coupling. A method of connecting two devices together that does not
pass DC.

Agent. A processing element that provides services to a processor.

ANSI. American National Standards Institute.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Byte. An 8-bit unit of information. Each bit of a byte has the value 0 or 1.

Capability registers (CARs). A set of read-only registers that allow a
processing element to determine another processing element’s
capabilities.

Code-group. A 10-bit entity produced by the 8b/10b encoding process and
the input to the 8b/10b decoding process.

Codeword. A 67-bit entity produced by the 64b/67b encoding process and
the input to the 64b/67b decoding process.

Command and status registers (CSRs). A set of registers that allow a
processing element to control and determine the status of another
processing element’s internal hardware.

Continuous Transmission (CT). A mode of packet transmission that allows
some packet loss to minimize latency by not retransmitting packets.

A

B

C

RapidIO.org 571

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Control symbol. A quantum of information transmitted between two linked
devices to manage packet flow between the devices.

CRC. Cyclic redundancy code

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Deferred or delayed transaction. The process of the target of a transaction
capturing the transaction and completing it after responding to the
source with a retry.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of a processing element connected to the RapidIO
interconnect.

Direct Memory Access (DMA). A process element that can independently
read and write system memory.

Distributed memory. System memory that is distributed throughout the
system, as opposed to being centrally located.

Double word. An eight byte quantity, aligned on eight byte boundaries.

EMI. Electromagnetic Interference.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

End point free device. A processing element which does not contain end
point functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Fabric. A series of interconnected switch devices, typically used in reference
to a switch fabric.

D

E

F

572 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

FIFO. First in, first out.

Full-duplex. Data can be transmitted in both directions between connected
processing elements at the same time.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16-bit quantity, aligned on two byte boundaries.

Header. Typically the first few bytes of a packet, containing control
information.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

IP. Intellectual Property

ITU. International Telecommunication Union.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LP. Link Protocol

LSB. Least significant byte.

LVDS. Low voltage differential signaling.

Message passing. An application programming model that allows processing
elements to communicate through special hardware instead of
through memory as with the globally shared memory programming
model.

MSB. Most significant byte.

G

H

I

L

M

RapidIO.org 573

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

Payload. The user data embedded in the RapidIO packet.

PCB. Printed circuit board.

PCS. Physical Coding Sublayer.

PMA. Physical Media Attachment.

Port-write. An address-less write operation.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

Reliable Transmission (RT). A mode of operation that guarantees packet
delivery by retransmitting packets when an error occurs.

Sender. The RapidIO interface output port on a processing element.

Semaphore. A technique for coordinating activities in which multiple
processing elements compete for the same resource.

Serializer. A device which converts parallel data (such as 8-bit data) to a
single bit-wide datastream.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

SRAM. Static random access memory.

N

O

P

R

S

574 RapidIO.org

RapidIO Part 6: LP-Serial Physical Layer Specification 3.2
Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

Write port. Hardware within a processing element that is the target of a port-
write operation.

T

W

RapidIO.org 575

3.2, 1/2016

© Copyright RapidIO.org

RapidIOTM Interconnect Specification
Part 7: System and Device

Inter-operability Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

Revision History

Revision Description Date

1.1 First public release. 04/06/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
004-05-00002.002
Converted to ISO-friendly templates

02/23/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.1 No technical changes. 07/09/2009

2.2 No technical changes. 05/05/2011

3.0 Changed RTA contact information. No technical changes 11/9/2013

3.1 Technical changes: Addition of Space device profiles. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Table of Contents

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11

Chapter 2 System Exploration and Initialization

2.1 Introduction... 13
2.2 Boot code access ... 13
2.3 Exploration and initialization.. 15
2.3.1 Exploration and initialization rules... 15
2.3.2 Exploration and initialization algorithm... 16
2.3.3 Exploration and initialization example ... 16

Chapter 3 RapidIO Device Class Requirements

3.1 Introduction... 21
3.2 Class Partitioning.. 22
3.2.1 Generic: All devices.. 22
3.2.1.1 General requirements.. 22
3.2.1.2 Operation support as target ... 23
3.2.1.3 Operation support as source.. 23
3.2.2 Class 1: Simple target device.. 24
3.2.2.1 General requirements.. 24
3.2.2.2 Operation support as target ... 24
3.2.2.3 Operation support as source.. 24
3.2.3 Class 2: Simple mastering device ... 24
3.2.3.1 General requirements.. 24
3.2.3.2 Operation support as target ... 24
3.2.3.3 Operation support as source.. 24
3.2.4 Class 3: Complex mastering device.. 25
3.2.4.1 General requirements.. 25
3.2.4.2 Operation support as target ... 25
3.2.4.3 Operation support as source.. 26
3.3 Space Device Definition ... 26
3.3.1 Basic Space Device Requirements ... 26
3.3.2 Enhanced Space Device Requirements... 27
3.3.3 Space-10xN Device Requirements ... 28
3.3.4 Space Switch Device Requirements ... 28
3.3.5 Space Endpoint Device Requirements.. 30
3.3.6 Space Endpoint-E Device Requirements.. 31
RapidIO.org 3

Table of Contents

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 4 PCI Considerations

4.1 Introduction... 33
4.2 Address Map Considerations .. 34
4.3 Transaction Flow .. 35
4.3.1 PCI 2.2 Transaction Flow ... 35
4.3.2 PCI-X Transaction Flow... 38
4.4 RapidIO to PCI Transaction Mapping .. 39
4.5 Operation Ordering and Transaction Delivery ... 41
4.5.1 Operation Ordering ... 41
4.5.2 Transaction Delivery Ordering ... 42
4.5.3 PCI-X Relaxed Ordering Considerations ... 42
4.6 Interactions with Globally Shared Memory.. 43
4.6.1 I/O Read Operation Details... 46
4.6.1.1 Internal Request State Machine .. 46
4.6.1.2 Response State Machine ... 46
4.6.2 Data Cache Flush Operation Details... 47
4.6.2.1 Internal Request State Machine .. 47
4.6.2.2 Response State Machine ... 47
4.7 Byte Lane and Byte Enable Usage ... 47
4.8 Error Management .. 47

Chapter 5 Globally Shared Memory Devices

5.1 Introduction... 49
5.2 Processing Element Behavior ... 49
5.2.1 Processor-Memory Processing Element ... 50
5.2.1.1 I/O Read Operations ... 50
5.2.1.1.1 Response State Machine... 50
5.2.1.1.2 External Request State Machine... 51
5.2.2 Memory-only Processing Element.. 52
5.2.2.1 Read Operations.. 52
5.2.2.1.1 Response State Machine... 52
5.2.2.1.2 External Request State Machine... 52
5.2.2.2 Instruction Read Operations ... 53
5.2.2.2.1 Response State Machine... 53
5.2.2.2.2 External Request State Machine... 54
5.2.2.3 Read for Ownership Operations ... 54
5.2.2.3.1 Response State Machine... 54
5.2.2.3.2 External Request State Machine... 55
5.2.2.4 Data Cache and Instruction Cache Invalidate Operations 56
5.2.2.4.1 Response State Machine... 56
5.2.2.4.2 External Request State Machine... 56
5.2.2.5 Castout Operations.. 57
5.2.2.5.1 External Request State Machine... 57
5.2.2.6 Data Cache Flush Operations ... 57
4 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2

Table of Contents
5.2.2.6.1 Response State Machine... 57
5.2.2.6.2 External Request State Machine... 58
5.2.2.7 I/O Read Operations ... 59
5.2.2.7.1 Response State Machine... 59
5.2.2.7.2 External Request State Machine... 59
5.2.3 Processor-only Processing Element.. 60
5.2.3.1 Read Operations.. 60
5.2.3.1.1 Internal Request State Machine.. 60
5.2.3.1.2 Response State Machine... 60
5.2.3.1.3 External Request State Machine... 61
5.2.3.2 Instruction Read Operations ... 61
5.2.3.2.1 Internal Request State Machine.. 61
5.2.3.2.2 Response State Machine... 61
5.2.3.2.3 External Request State Machine... 62
5.2.3.3 Read for Ownership Operations ... 63
5.2.3.3.1 Internal Request State Machine.. 63
5.2.3.3.2 Response State Machine... 63
5.2.3.3.3 External Request State Machine... 63
5.2.3.4 Data Cache and Instruction Cache Invalidate Operations 64
5.2.3.4.1 Internal Request State Machine.. 64
5.2.3.4.2 Response State Machine... 64
5.2.3.4.3 External Request State Machine... 65
5.2.3.5 Castout Operations.. 65
5.2.3.5.1 Internal Request State Machine.. 65
5.2.3.5.2 Response State Machine... 65
5.2.3.6 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations........ 66
5.2.3.6.1 Internal Request State Machine.. 66
5.2.3.6.2 Response State Machine... 66
5.2.3.6.3 External Request State Machine... 66
5.2.3.7 Data Cache Flush Operations ... 66
5.2.3.7.1 Internal Request State Machine.. 66
5.2.3.7.2 Response State Machine... 67
5.2.3.7.3 External Request State Machine... 67
5.2.3.8 I/O Read Operations ... 67
5.2.3.8.1 External Request State Machine... 68
5.2.4 I/O Processing Element .. 69
5.2.4.1 I/O Read Operations ... 69
5.2.4.1.1 Internal Request State Machine.. 69
5.2.4.1.2 Response State Machine... 69
5.2.4.2 Data Cache Flush Operations ... 70
5.2.4.2.1 Internal Request State Machine.. 70
5.2.4.2.2 Response State Machine... 70
5.2.5 Switch Processing Element... 70
5.3 Transaction to Priority Mappings ... 70
RapidIO.org 5

Table of Contents

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank page
6 RapidIO.org

List of Figures

RapidIO Part 7: System and Device Inter-operability Specification 3.2
2-1 Example system with boot ROM..14
2-2 Automatically finding the boot ROM...14
2-3 Example system ..16
2-4 Finding the adjacent device ..17
2-5 Finding the device on switch port 0..18
2-6 Finding the device on switch port 1..18
2-7 Finding the device on switch port 3..19
2-8 Final initialized system state...19
4-1 Example System with PCI and RapidIO...33
4-2 Host segment PCI Memory Map Example ...34
4-3 AMT and Memory Mapping...35
4-4 PCI Mastered Posted Write Transaction Flow Diagram ..36
4-5 PCI Mastered non-posted (delayed) Transaction Flow Diagram37
4-6 RapidIO Mastered Transaction ...38
4-7 PCI-X Mastered Split Response Transaction ...39
4-8 Traditional Non-coherent I/O Access Example..43
4-9 Traditional Globally Coherent I/O Access Example ..44
4-10 RapidIO Locally Coherent I/O Access Example ..45
RapidIO.org 7

List of Figures

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank Page
8 RapidIO.org

List of Tables

RapidIO Part 7: System and Device Inter-operability Specification 3.2
4-1 PCI 2.2 to RapidIO Transaction Mapping ..39
4-2 PCI-X to RapidIO Transaction Mapping..40
4-3 Packet priority assignments for PCI ordering...42
4-4 Packet priority assignments for PCI-X ordering...43
5-1 Transaction to Priority Mapping ..71
RapidIO.org 9

List of Tables

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank Page
10 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 7: System and Device
Inter-operability Specification document. This document assumes that the reader is
familiar with the RapidIO specifications, conventions, and terminology.

1.2 Overview
The RapidIO Architectural specifications set a framework to allow a wide variety of
implementations. This document provides a standard set of device and system
design solutions to provide for inter-operability.

Each chapter addresses a different design topic. This revision of the system and
device inter-operability specification document covers the following issues:

Chapter 2, “System Exploration and Initialization”

Chapter 3, “RapidIO Device Class Requirements”

Chapter 4, “PCI Considerations”

Chapter 5, “Globally Shared Memory Devices”
RapidIO.org 11

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank page
12 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 2 System Exploration and
Initialization

2.1 Introduction
There are several basic ways of exploring and initializing a RapidIO system. The
simplest method is to somehow define the power-up state of the system components
such that all devices have adequate knowledge of the rest of the system to
communicate as needed. This is frequently accomplished by shifting initialization
information into all of the devices in the machine at boot time from serial ROMs or
similar devices. This method is most applicable for relatively static systems and
systems where boot-up time is important. A second method, having processors
explore and configure the system at boot time, requires more time but is much more
flexible in order to support relatively fast changing plug-and-play or hot-swap
systems. This document describes a simple form of this second method. A much
more detailed multiple host exploration and configuration algorithm utilizing the
same system reset requirements is specified in the RapidIO Interconnect
Specification Annex 1: Software/System Bring Up Specification.

2.2 Boot code access
In most RapidIO applications system initialization requires software for exploring
and initializing devices. This is typically done by a processor or set of processors in
the system. The boot code for the processor(s) may reside in a ROM local to the
processor(s) or on a remote RapidIO agent device. A method of accessing the boot
code through an uninitialized system is required if the boot code is located on a
remote RapidIO agent device.

After resetting, a processor typically vectors to a fixed address and issues a code
fetch. The agent hardware between the processor and the RapidIO fabric is required
to take this read request and map it automatically to a NREAD transaction. The
transaction is also mapped to a dedicated device ID at the proper address offset to
find the boot code. All devices between the processor and the agent device where
the boot ROM resides shall default to a state that will route the NREAD transaction
to the boot ROM device and route the response back to the processor. The device ID
for the agent device where the boot ROM resides is device ID=0xFE (0x00FE for
16-bit device IDs). The processor default device IDs are assigned sequentially
starting at 0x00 (0x0000 for 16-bit device IDs).
RapidIO.org 13

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 2-1. Example system with boot ROM

Figure 2-1 shows an example system with the boot ROM residing on an Agent
device. The default routing state for the switch device between the processor and the
agent shall allow all requests to device ID=0xFE to get to the agent device and all
response packets to get from the agent device back to the processor. This means that
the switch may also have to know the device ID that the processor will be using
while fetching boot code (processor device IDs are assigned starting at 0x00 as
described above). For the example in Figure 2-2, the system processor defaults to
device ID=0x00, and the switch’s default state routes device ID=0x00 to port 2.

Figure 2-2. Automatically finding the boot ROM

Once the processor is able to begin running boot code, it can begin executing the
exploration and initialization of the rest of the system.

Processor

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

device ID=0x??

device ID=0xFE

device ID=0x??

device ID=0x??

boot ROM

Processor

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

device ID=0x00

device ID=0xFE

device ID=0x??

device ID=0x??

boot ROM

Request
Response
14 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
2.3 Exploration and initialization
This example algorithm addresses the simple case of a system with a single
processor that is responsible for exploring and initializing a system, termed a Host.
The exploration and initialization process starts with a number of rules that the
component and system designers shall follow.

2.3.1 Exploration and initialization rules
1. A Host shall be able to “reach” all agent devices that it is to be responsible for.

This may require mechanisms to generate third party transactions to reach
devices that are not transparently visible.

2. Maintenance responses generated by agent and switch devices shall be sent to
the port that the maintenance request was received on. For example, consider
a device that implements a 5 port switch. The system Host issues a
maintenance read request to the switch device, which is received on input
port 3. The switch, upon generating the maintenance response to the
maintenance read request, must route it to output port 3 even though the
switch may have been configured by default to route the response to a port
other than port 3 (when the switch is configured it should also route the
response to port 3).

3. All devices have CSRs to assist with exploration and initialization procedures.
The registers used in this example contain the following information:

– Base device ID register - This is the default device ID for the device,
and it resides in a standard register in the CSR space at offset 0x60. At
power-up, the base device ID defaults to logic 0xFF for all agent
devices (0xFFFF for 16-bit route fields), with the exception of the
boot code device and the Host device. The boot code device (if
present) will have it’s device ID default to 0xFE and the Host device
will have it’s device ID default to 0x00 as described in Section 2.2. A
device may have multiple device IDs, but only this architecturally
defined device ID is used in the exploration and initialization
procedure.

– Master Enable bit - the Master Enable bit is reset at power-up for agent
devices and set for Host devices. The Master Enable bit is located in
the RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification or
the RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification Port
General Control CSR at block offset 0x3C. If the Master Enable bit is
clear the agent device is not allowed to issue requests and is only able
to respond to received requests. This bit is used by the system Host to
control when agents are allowed to issue transactions into the system.
Switches are by default enabled and do not have a Master Enable bit.

– Discovered bit - the Discovered bit is reset at power-up for agent
devices and set for the Host device, and is located in the 8/16
LP-LVDS or 1x/4x LP-Serial physical layer Port General Control
RapidIO.org 15

RapidIO Part 7: System and Device Inter-operability Specification 3.2
CSR at block offset 0x3C. The system Host device sets this bit when
the device has been discovered through the exploration mechanism.
The Discovered bit is useful for detecting routing loops, and for hot
plug or swap environments.

2.3.2 Exploration and initialization algorithm

If the above rules are followed, all agent devices are now accessible either as an end
point that responds to any maintenance transaction or, for switches, via the
hop_count mechanism.

The basic algorithm is to explore the system through each end point in sequence by
first locating the adjacent device by sending a maintenance read to device ID=0xFF
and hop count= 0x00, which is guaranteed to cause the adjacent device to respond.
That device is then configured to reach the next device by assigning it a unique base
device ID other than 0xFF, setting up route tables to reach the next device, etc.

When all devices in the system have been identified and have unique base device
IDs assigned (no devices have a base device ID value=0xFF), the Host can then
complete the final device ID assignment and configuration required for the
application and enable agent devices to issue requests.

2.3.3 Exploration and initialization example

Figure 2-3 shows the previous example of a small single Host system.

Following the rules defined above, the base device ID value for all devices except
the Host and boot ROM device after reset is applied is 0xFF, the Host has it’s Master
Enable and Discovered bits set, and the agent devices have their Master Enable and
Discovered bits cleared.

Figure 2-3. Example system

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

device ID=0x00

device ID=0xFE

device ID=0xFF

device ID=0xFF

boot ROM
16 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Assigning the Host’s base device ID=0x00 is the first step in the process. The next
step is to find the adjacent device, so the Host sends a maintenance read of offset
0x00_0000 to device ID=0xFF and hop_count=0x00. The switch consumes the
request because the hop_count field is equal to zero and responds by sending the
contents of it’s Device Identity and Information CARs back to the port the request
came from. From the returned information, the software on the Host can identify this
as a switch. The Host then reads the switch port information CAR at offset
0x00_0014 to find out which port it is connected to. The response indicates a 4 port
switch (which the Host may have already known from the device information
register), connected to port 2.

The Host then examines the default routing tables for the switch to find the port route
for the boot device ID=0xFE so it can preserve the path to the boot code (which it
may still be running), and discovers that the boot device is located through port 1 of
the switch. It also sets the switch’s Discovered bit.

Figure 2-4. Finding the adjacent device

The next step is for the Host to configure the switch to route device ID=0xFF to port
0 and device ID=0x00 to port 2 (which it already was because of the boot device in
the system) via maintenance write requests to hop_count=0x00. The Host then
issues another maintenance read request, this time to device ID=0xFF and
hop_count=0x01. The switch discovers that it is not the final destination of the
maintenance request packet, so it decrements the hop_count and routes the packet to
port 0 and on to the attached agent device. The agent device responds, and the switch
routes the response packet to device ID=0x00 back through port 2 to the Host.
Again, software identifies the device, sets its Discovered bit, configures it as
required, and assigns the base device ID=0x01.

Host

Switch AgentAgent

Agent

Port 0

Port 1
Port 2

Port 3

Request
Response

device ID=0x00

device ID=0xFE

device ID=0xFF

device ID=0xFF

boot ROM
RapidIO.org 17

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 2-5. Finding the device on switch port 0

The Host then modifies the routing tables to now route device ID=0x01 to port 0.
Since the boot device is located through port 1, instead of modifying the routing
tables to route device ID=0xFF to port 1, the Host issues a maintenance read of
device ID=0xFE (the boot device) and hop_count=0x01. The response identifies the
agent on port 1, sets the agent’s Discovered bit, and configures it as necessary,
leaving the base device ID=0xFE so the Host can continue to execute the boot code.

Figure 2-6. Finding the device on switch port 1

For the next iteration, the Host sets the switch device routing table entry for device
ID=0xFF to route to port 3 (the Host already knows it is directly connected to port
2), and issues the maintenance read transaction as before.

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

Request
Response

base device ID=0x00

base device ID=0xFE

device ID=0xFF

base device ID=0xFF

boot ROM

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

Request
Response

base device ID=0x00

base device ID=0xFE

base device ID=0xFF

base device ID=0x01

boot ROM
18 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 2-7. Finding the device on switch port 3

When the end point only agent responds with the requested CAR information the
Host now knows that exploration is completed (there are no other paths to follow
through the fabric), and can finalize configuring the system as shown in Figure 2-8.
The agent devices can then have their Master Enable bits set so they can begin to
issue transactions into the initialized system. The boot device ID can be changed, if
desired, when the Host completes executing code from the boot ROM.

Figure 2-8. Final initialized system state

Variants to this procedure may be desirable. For example, a system may wish to
enable some devices before exploration has been completed.

More complex systems with multiple Hosts, failed Host recovery, and hot swap
requirements can be addressed with more complex algorithms utilizing the Host

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

Request
Response

base device ID=0x00

base device ID=0xFE

base device ID=0xFF

base device ID=0x01

boot ROM

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

base device ID=0x00

base device ID=0x04

base device ID=0x02

base device ID=0x01

boot ROM
RapidIO.org 19

RapidIO Part 7: System and Device Inter-operability Specification 3.2
base device ID Lock Register and the Component Tag Register in standard registers
in the CSR space at offsets 0x68 and 0x6C.
20 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 3 RapidIO Device Class Requirements

3.1 Introduction
The RapidIO Architecture specifications allow for a variety of implementations. In
order to form standard points of support for RapidIO, this chapter describes the
requirements for RapidIO devices adhering to the RapidIO Part 4: 8/16 LP-LVDS
Physical Layer Specification or the RapidIO Part 6: 1x/4x LP-Serial Physical Layer
Specification and corresponding to different measures of functionality. Three device
“classes” are defined, each with a minimum defined measure of support. The first
class defines the functionality of the least capable device, with subsequent classes
expanding the measure of support, in order to establish levels of inter-operability.

The RapidIO Architecture specifications allow for a variety of implementations.
This chapter defines these implementations using two orthogonal capability
dimensions.

The first dimension of measuring device capabilities is the logical layer capabilities
for the devices. Three device "classes" are defined, each with a minimum defined
measure of logical layer support. The first class defines the functionality of the least
capable device, with subsequent classes expanding the measure of support in order
to establish levels of inter-operability.

The second dimension of device capabilities is the ability of the device to support
space based applications, known as "Space" class devices. Capabilities for "Space"
devices are optional functions defined in other parts of the RapidIO specification.
"Space" devices make these optional functions mandatory, usually for reasons of
fault tolerance and robustness. "Space" device capability requirements are defined
using the following categories:

• Basic Space device requirements apply to all space device profiles

• Enhanced Space device requirements are additional physical layer features that
extend the Basic Space device requirements.

• Switch Space device requirements are specific to switch devices.

• Endpoint device requirements apply to all space endpoint devices.

• Endpoint-E device requirements are additional logical layer features that
extend the endpoint device requirements.

Due to the orthogonal nature of the device dimensions, it is possible to combine
these categories when describing a device. For example, it is possible to describe a
RapidIO.org 21

RapidIO Part 7: System and Device Inter-operability Specification 3.2
device as a "Class 3 Enhanced Space Endpoint-E".

Note that some requirements may be in conflict when combining orthogonal
categories. Space requirements shall be used to determine the capabilities of the
device in the event of such conflicts.

3.2 Class Partitioning
Each class includes the functionality defined in all previous class devices and
defines the minimum additional functionality for that class. A device is not required
to comply exactly with a class, but may optionally supply additional features as a
value-add for that device. All functions that are not required in any class list are also
optional value-adds for a device.

First is a set of requirements that are applicable to all RapidIO compliant devices,
including switch devices without end point functionality.

3.2.1 Generic: All devices

3.2.1.1 General requirements
• One or more 8/16 LP-LVDS and/or 1x/4x LP-Serial ports

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification
and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification)

• Support for small (8-bit) transport device ID fields

— (refer to RapidIO Part 3: Common Transport Specification, Section 2.4)

• Ability to accept requests with all sourceID and destinationID values on exit
from reset

— (refer to RapidIO Part 3: Common Transport Specification, Section 2.3)

• Support for recovery from a single corrupt packet or control symbol

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification,
Section 1.3.5) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer
Specification, Section 5.10.2)

• Support for packet retry protocol

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification,
Section 1.2.4) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer
Specification, Section 5.6)

• Support for throttle based flow control on 8/16 LP-LVDS physical layer ports

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification,
Section 2.3)

• Support for transaction ordering for flowID B

— (end point programmability for all flow levels is recommended)

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification,
22 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Section 1.2.2) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer
Specification, Section 5.3.3)

• Switch devices maintain error coverage internally

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification,
Section 1.3.6) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer
Specification, Section 5.5)

• Support for maximum size packets for switch devices:

— Switch devices that support Dev8 and/or Dev16 device IDs shall support
a maximum packet size of 276 bytes. See RapidIO Part 6: 1x/4x
LP-Serial Physical Layer Specification, Section 2.5

— Switch devices that support Dev32 device IDs shall support a maximum
packet size of 280 bytes. See RapidIO Part 6: 1x/4x LP-Serial Physical
Layer Specification, Section 2.5

• Support for maximum size (256 byte) data payloads for end point devices

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
3.1.2)

• Device must contain the following registers:

– Device Identity CAR

– Device Information CAR

– Assembly Identity CAR

– Assembly Information CAR

– Processing Element Features CAR

– Source Operations CAR

– Destination Operations CAR

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 4.4)

3.2.1.2 Operation support as target
• Maintenance read

— (switch targeted by hop_count transport field)

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.3.1, Section 3.1.10)

• Maintenance write

— (switch targeted by hop_count transport field)

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.3.1, Section 3.1.10)

3.2.1.3 Operation support as source
• <none>
RapidIO.org 23

RapidIO Part 7: System and Device Inter-operability Specification 3.2
3.2.2 Class 1: Simple target device

3.2.2.1 General requirements
• all Generic requirements

• Support for 34-bit address packet formats

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
4.4.5)

3.2.2.2 Operation support as target
• all Generic requirements

• Write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.2, Section 3.1.7)

• Streaming-write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.2, Section 3.1.8)

• Write-with-response

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.3, Section 3.1.7)

• Read

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.1, Section 3.1.5)

3.2.2.3 Operation support as source
• all Generic requirements

3.2.3 Class 2: Simple mastering device

3.2.3.1 General requirements
• all Class 1 requirements

3.2.3.2 Operation support as target
• all Class 1 requirements

3.2.3.3 Operation support as source
• all Class 1 requirements

• Maintenance read

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.3.1, Section 3.1.10)

• Maintenance write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.3.1, Section 3.1.10)
24 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
• Write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.2, Section 3.1.7)

• Streaming-write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.2, Section 3.1.8)

• Write-with-response

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.3, Section 3.1.7)

• Read

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.1, Section 3.1.5)

3.2.4 Class 3: Complex mastering device

3.2.4.1 General requirements
• all Class 2 requirements

3.2.4.2 Operation support as target
• all Class 2 requirements

• Atomic set

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.4, Section 3.1.7)

• Maintenance port-write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.3.1, Section 3.1.10)

• Data message mailbox 0, letter 0, single segment, 8 byte payload

— (refer to RapidIO Part 2: Message Passing Logical Specification, Section
2.2.2, Section 3.1.5)
RapidIO.org 25

RapidIO Part 7: System and Device Inter-operability Specification 3.2
3.2.4.3 Operation support as source
• all Class 2 requirements

• Atomic set

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section
2.2.4, Section 3.1.7)

• Data message mailbox 0, letter 0, single segment, 8 byte payload

— (refer to RapidIO Part 2: Message Passing Logical Specification, Section
2.2.2, Section 3.1.5)\

3.3 Space Device Definition

3.3.1 Basic Space Device Requirements
• Basic Space devices shall support Dev8 and Dev16 system sizes.

— Refer to RapidIO Part 3: Common Transport Specification

• Basic Space devices shall support Baud Rate Class 1 operation.

— Refer to RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification

— Lane speeds of 1.25, 2.5, and 3.125 Gbaud are allowed.

• Basic Space devices shall support VC0 packet priorities 0, 1, 2, and 3

— Refer to RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification,
Chapter 2 Packets

— Refer to RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification,
section 6.6.3 Packet Priority and Transaction Request Flows

— Refer to RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification,
Section 7.4.1 Processing Element Features CAR

• Basic Space devices shall not support baud rate discovery.

— Refer to RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification,
Section 4.12.3 Baud Rate Discovery

— Refer to RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification,
Section 7.6.9 Port n Control 2 CSRs

• Basic Space devices shall support Physical Layer Error Management
functionality.

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.2 Physical Layer Extensions

— Note that Hot Swap functionality is not required.

• Basic Space devices shall support the Port-Write error notification
functionality.

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, 1.4 System Software Notification of Error
26 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
• Basic Space devices shall support packet multicast for Dev8 and Dev16 system
sizes.

— Refer to RapidIO Part 11: Multicast Extensions Specification

3.3.2 Enhanced Space Device Requirements
• Enhanced Space devices shall be compliant to the RapidIO Revision 3.1

specification stack, or later versions.

• Enhanced Space devices shall support Baud Rate Class 1 and 2 operation

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification

— Lane speeds of 1.25, 2.5, 3.125, 5 and 6.25 Gbaud are allowed

• Enhanced Space devices shall support the Critical Request Flow bit.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Chapter 2 Packets

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 6.6.3 Packet Priority and Transaction Request Flows

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.4.1 Processing Element Features CAR

• Enhanced Space devices shall support the Miscellaneous Physical Layer
Register Block.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.10 Miscellaneous Physical Layer Extension Block

• Enhanced Space devices shall support Structurally Asymmetric Links.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 4.13 Structurally Asymmetric Links

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 5.18 Structurally Asymmetric Links

• When operating at 6.25 Gbaud lane rates, Enhanced Space devices shall
implement register control of the transmit emphasis coefficient set.

• Enhanced Space devices shall support the LP-Serial Lane Extended Features
Block.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.7 LP-Serial Lane Extended Features Block

• Enhanced Space devices shall support Physical Layer Error Management and
Hot Swap functionality.

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.2 Physical Layer Extensions

• Enhanced Space devices shall support PRBS diagnostics functionality.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 4.14 Pseudo Random Binary Sequence Testing
RapidIO.org 27

RapidIO Part 7: System and Device Inter-operability Specification 3.2
— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 5.20 Pseudo Random Binary Sequence Testing

• Enhanced Space Devices may support baud rate discovery.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 4.12.3 Baud Rate Discovery

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.6.9 Port n Control 2 CSRs

— Baud rate discovery functionality shall be compatible with devices that do
not support baud rate discovery

— It shall be possible to disable baud rate discovery functionality

• Enhanced Space Devices may support Multiple Event Capture functionality.

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.2.7 Physical Layer Multiple Event Capture

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.3.4 Logical/Transport Layer Multiple Event
Capture

3.3.3 Space-10xN Device Requirements
• Space-10xN devices shall support Baud Rate Class 3 operation

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification

— Support for 10.3125 Gbaud lane speed is required for Space-10xN devices

• Space-10xN devices may support Baud Rate Class 1 and 2 operation

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification

— Lane speeds of 1.25, 2.5, 3.125, 5, and 6.25 Gbaud are allowed

• When operating at 10.3125 or 6.25 Gbaud lane rates, Space-10xN devices shall
implement register control of the transmit emphasis coefficient set.

3.3.4 Space Switch Device Requirements
• Space Switches shall support packet routing for Dev8 and Dev16 system sizes.

— Refer to RapidIO Part 3: Common Transport Specification

— Space devices shall support at least 256 Device IDs (all of Dev8)

• Space Switches shall support standard registers to configure packet routing
functionality for Dev8 and Dev16 system sizes.

— Refer to RapidIO Part 3: Common Transport Specification, Section 3.4
Capability Registers (CARs)

— Refer to RapidIO Part 3: Common Transport Specification, Section 3.5
Command and Status Registers (CSRs)

• Space Switches shall support distribution of Multicast-Event Control Symbols
with predictable, low latency.
28 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification, 3.5.6.1
Multicast-Event Control Symbol and 6.5.3.4.1 Multicast-Event Control
Symbols

• Space Switches shall support the LP-Serial Extended Feature Block for
Generic Endpoint Free Devices, Software-assisted Error Recovery Option
for all switch ports.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification, section
7.5.4 Generic Endpoint Free Devices, Software-assisted Error Recovery
Option

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.5.5 Register Map - I

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.5.6 Register Map - II

— "Register Map - I" or "Register Map - II" may be used

— The Port n Initialization Status CSRs shall be supported by devices that
implement the "Register Map - II" layout.

– The encoding of the Lane Alignment, 1x/2x Mode Detection, and Port
Initialization State Machine fields shall be documented.

– The value of the Lane Alignment, 1x/2x Mode Detection, and Port
Initialization State Machine fields shall be consistent with the state of
the lane alignment, 1x/2x Mode Detection, and Port Initialization
State Machine implementations.

— Space Switches shall not support the Enable Inactive Lanes bit found in
the RapidIO Part 6: LP-Serial Physical Layer Specification, Section 7.6.9
Port n Control 2 CSRs.

— Space Switches shall not support the Data Scrambling Disable bit found
in the RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.6.9 Port n Control 2 CSRs.

— Space Switches shall not support the Port n Error and Status CSRs "Error
Checking Disable" bit.

• Space Switches shall support packet "Time to Live" functionality.

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.2.5 Packet Timeout Mechanism in a Switch
Device

• Space Switches shall support Logical and Transport Layer error detection
functionality for Maintenance packets.

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.3 Logical and Transport Layer Extensions

• Space Switches shall support standard registers used to manage multicast
functionality.

— Refer to RapidIO Part 11: Multicast Extensions Specification, Section 3.2
RapidIO.org 29

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Capability Registers (CARs)

— Refer to RapidIO Part 11: Multicast Extensions Specification, Section 3.3
Command and Status Registers (CSRs)

— The Multicast Support bit shall be set in the Processing Element Features
CAR.

• Space Switches shall support system implementation of MECS Time
Synchronization Protocol.

— Space Switches shall support low latency, low jitter distribution of
Multicast Event Control Symbols

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 6.5.3.6 MECS Time Synchronization Protocol

3.3.5 Space Endpoint Device Requirements
• Space Endpoints shall be capable of accepting packets whose destination ID

does not match that found in the standard Base Device ID CSR, in order to
support packet multicast.

— Refer to RapidIO Part 3: Common Transport Specification, Section 2.3
System Packet Routing

— Refer to RapidIO Part 3: Common Transport Specification, Section 3.5
Command and Status Registers (CSRs)

— Refer to RapidIO Part 11: Multicast Extensions Specification

• Space Endpoints shall support the LP-Serial Extended Feature Block for
Generic Endpoint Devices, Software-assisted Error Recovery Option for all
ports.

— Register Map - I or Register Map - II may be used

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.5.2 Generic Endpoint Devices, Software-assisted Error
Recovery Option

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.5.5 Register Map - I

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.5.6 Register Map - II

— Space Endpoints shall not support the Enable Inactive Lanes bit found in
RapidIO Part 6: LP-Serial Physical Layer Specification, Section 7.6.9
Port n Control 2 CSRs.

— Space Endpoints shall not support the Data Scrambling Disable bit found
in RapidIO Part 6: LP-Serial Physical Layer Specification, Section 7.6.9
Port n Control 2 CSRs.

— Space Endpoints shall not support the Port n Error and Status CSRs "Error
Checking Disable" bit.
30 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
• Space Endpoints shall support error detection functionality for the logical layer
functionality indicated in their Source Operations CAR and Destination
Operations CAR registers.

— Refer to RapidIO Part 1: Input/Output Logical Specification, Chapter 3
Operation Descriptions

— Refer to RapidIO Part 2: Message Passing Logical Specification,
Chapter 3 Operation Descriptions

— Refer to RapidIO Part 5: Globally Shared Memory Logical Specification,
Chapter 3 Operation Descriptions

— Refer to RapidIO Part 8: Error Management/Hot Swap Extensions
Specification, Section 1.3 Logical and Transport Layer Extensions

— Refer to RapidIO Part 10: Data Streaming Logical Specification,
Chapter 3 Operation Descriptions

— Refer to RapidIO Part 10: Data Streaming Logical Specification,
Section 5.4 Additions to Existing Registers

3.3.6 Space Endpoint-E Device Requirements
• Space Endpoint-E devices shall implement support for the LCS Disable Present

and LCS Disable bits.

— Refer to RapidIO Part 1: Input/Output Logical Specification,
Section 5.5.1 Processing Element Logical Layer Control CSR

• Space Endpoint-E devices shall support the MECS Time Synchronization
Protocol.

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 6.5.3.6 MECS Time Synchronization Protocol

• Space Endpoint-E devices shall support the Timestamp Generation register
extension block required for MECS Time Synchronization Protocol.

— At least one of the "MECS Slave Supported" and "MECS Master
Supported" bits shall be set in the Timestamp CAR

— Refer to RapidIO Part 6: LP-Serial Physical Layer Specification,
Section 7.9 Timestamp Generation Extension Block
RapidIO.org 31

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank page
32 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 4 PCI Considerations

4.1 Introduction
RapidIO contains a rich enough set of operations and capabilities to allow transport
of legacy interconnects such as PCI1. While RapidIO and PCI share similar
functionality, the two interconnects have different protocols thus requiring a
translation function to move transactions between them. A RapidIO to PCI bridge
processing element is required to make the necessary translation between the two
interconnects. This chapter describes architectural considerations for an
implementation of a RapidIO to PCI bridge processing element. This chapter is not
intended as an implementation instruction manual, rather, it is to provide direction
to the bridge processing element architect and aid in the development of
interoperable devices. For this chapter it is assumed that the reader has a thorough
understanding of the PCI 2.2 and/or the PCI-X 1.0 specifications.

Figure 4-1 shows a typical system with devices connected using various RapidIO
and PCI bus segments. A host bridge is connected to various peripherals via a PCI
bus. A RapidIO bridge is used to translate PCI formatted transactions to the
equivalent RapidIO operations to allow access to the rest of the system, including
additional subordinate PCI bus segments.

Figure 4-1. Example System with PCI and RapidIO

1For additional information on the Peripheral Component Interconnect PCI refer to the PCI 2.2 and the PCI-X 1.0
specifications.

Host
CPU Bridge

Host

Host
Mem

Periph 1

Periph 2

RapidIO
to

PCI
RapidIO
Switch

PCI 2

PCI 0

Periph 3

Periph 4

PCI 1Host Bus Segment

Periph 5

bridge

RapidIO
to

PCI
bridge

RapidIO
to

PCI
bridge
RapidIO.org 33

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Where RapidIO is introduced into a legacy system, it is desirable to limit changes to
software. For transactions which must travel between RapidIO and PCI it is
necessary to map address spaces defined on the PCI bus to those of RapidIO,
translate PCI transaction types to RapidIO operations, and maintain the
producer/consumer requirements of the PCI bus. This chapter will address each of
these considerations for both PCI version 2.2 and PCI-X.

4.2 Address Map Considerations
PCI defines three physical address spaces, specifically, the memory, I/O memory,
and configuration spaces. RapidIO, on the other hand, only addresses memory and
configuration space. This section discusses memory space. Configuration space is
discussed in Section 4.4. Figure 4-2 shows a simple example of the PCI memory and
I/O address spaces for a host bus segment. In order for devices on the PCI bus to
communicate with those connected through RapidIO, it is necessary to provide a
memory mapping function. The example PCI host memory map uses a 32-bit
physical address space resulting in 4 Gbytes of total address space. Host memory is
shown at the bottom of the address map and peripheral devices at the top. Consider
that the RapidIO to PCI bridge processing element contains a specified window(s)
of address space mapped to it using the PCI base address register(s)1. The example
shown in Figure 4-2 illustrates the RapidIO bridge address window located in an
arbitrary software defined location. Likewise, if it was desired to communicate with
PCI legacy I/O devices over RapidIO an I/O window would be assigned to the
RapidIO to PCI bridge as shown.

Figure 4-2. Host segment PCI Memory Map Example

Any transactions issued to the bus segment with an address that matches the
RapidIO bridge window will be captured by the RapidIO to PCI bridge for
forwarding. Once the transaction has been accepted by the RapidIO to PCI bridge
processing element it must be translated to the proper RapidIO context as shown in

1Refer to the PCI 2.2 Specification Chapter 6 for a discussion on PCI address maps and configuration registers

Host
Memory

0

RapidIO Bridge

Peripheral 1

Peripheral 2
4G

PCI Memory Space

RapidIO
Bridge

PCI I/O Space
0

Window

Window

4G
34 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 4-3. For the purposes of this discussion this function is called the Address
Mapping and Translation function (AMT). The AMT function is responsible for
translating PCI addresses to RapidIO addresses as well as the translation and
assignment of the respective PCI and RapidIO transaction types. The address space
defined by the RapidIO bridge window may represent more than one subordinate
RapidIO target device. A device on PCI bus segment 0 shown in Figure 4-1 may
require access to a peripheral on PCI bus 1, bus 2, or RapidIO Peripheral 5. Because
RapidIO uses source addressing (device IDs), the AMT is responsible for translating
the PCI address to both a target device ID and associated offset address. In addition
to address translation, RapidIO attributes, transaction types, and other necessary
delivery information are established.

Similarly, transactions traveling from a RapidIO bus to a PCI bus must also pass
through the AMT function. The address and transaction type are translated back into
PCI format, and the AMT selects the appropriate address for the transaction.
Memory mapping is relied upon for all transactions bridged between PCI and
RapidIO.

Figure 4-3. AMT and Memory Mapping

4.3 Transaction Flow
In considering the mapping of the PCI bus to RapidIO it is important to understand
the transaction flow of PCI transactions through RapidIO.

4.3.1 PCI 2.2 Transaction Flow

The PCI 2.2 specification defines two classes of transaction types, posted and
non-posted. Figure 4-4 shows the route taken by a PCI-RapidIO posted write
transaction. Once the request is sent from the PCI Master on the bus, it is claimed by

P3

I/O

CFG

PCI
Memory

P3

I/O

CFG

PCI
Memory

RapidIO bridge
Address block

Mem

I/O

CFG

Device ID
OxXX

RapidIO

AMTAMT
RapidIO.org 35

RapidIO Part 7: System and Device Inter-operability Specification 3.2
the bridge processing element which uses the AMT to translate it into a RapidIO
request. Only when the transaction is in RapidIO format can it be posted to the
RapidIO target. In some cases it may be desirable to guarantee end to end delivery
of the posted write transaction. For this case the RapidIO NWRITE_R transaction is
used which results in a response as shown in the figure.

Figure 4-4. PCI Mastered Posted Write Transaction Flow Diagram

A non-posted PCI transaction is shown in Figure 4-5. The transaction is mastered by
the PCI agent on the PCI bus and accepted by the RapidIO to PCI bridge. The
transaction is retried on the PCI bus if the bridge is unable to complete it within the
required timeout period. In this case the transaction is completed as a delayed
transaction. The transaction is translated to the appropriate RapidIO operation and
issued on the RapidIO port. At some time later a RapidIO response is received and
the results are translated back to PCI format. When the PCI master subsequently
retries the transaction, the delayed results are returned and the operation is
completed.

PCI
Master

PCI
Posted

RapidIO
Request

RapidIO
Target

Translation
to RapidIO

Request

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO Request

Response

RapidIO
Transaction
Completion

RapidIO
Optional
36 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 4-5. PCI Mastered non-posted (delayed) Transaction Flow Diagram

Because PCI allows unbounded transaction data tenures, it may be necessary for the
RapidIO to PCI bridge to break the single PCI transaction into multiple RapidIO
operations. In addition, RapidIO does not have byte enables and therefore does not
support sparse byte transactions. For this case the transaction must be broken into
multiple operations as well. “Section 4.7, Byte Lane and Byte Enable Usage” on
page 47 describes this situation in more detail.

A RapidIO mastered operation is shown in Figure 4-6. For this case the RapidIO
request transaction is received at the RapidIO to PCI bridge. The bridge translates
the request into the appropriate PCI command which is then issued to the PCI bus.
The PCI target may complete the transaction as a posted, non-posted, or delayed
non-posted transaction depending on the command type. Once the command is
successfully completed on the PCI bus the results are translated back into the
RapidIO format and a response transaction is issued back to the RapidIO Master.

PCI
Master

PCI
Transaction

RapidIO
Request

RapidIO
Response

RapidIO
Target

Translation
to RapidIO

Request

(Delayed)
Transaction

Results

RapidIO
to PCI

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO Request
RapidIO.org 37

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 4-6. RapidIO Mastered Transaction

4.3.2 PCI-X Transaction Flow

The flow of transactions described in the previous section applies to the PCI-X bus
as well. PCI-X supports split transactions instead of delayed transactions. The
example shown in Figure 4-7 illustrates a transaction completed with a PCI-X split
completion. The PCI-X master issues a transaction. The RapidIO to PCI-X bridge
determines that it must complete the transaction as a split transaction, and responds
with a split response. The transaction is translated to RapidIO and a request is issued
on the RapidIO port. The RapidIO target returns a response transaction which is
translated to a PCI-X Split Completion transaction completing the operation. PCI-X
allows up to a 4 Kilobyte request. Larger PCI-X requests must be broken into
multiple RapidIO operations. The RapidIO to PCI-X bridge may return the results
back to the PCI-X Master using multiple Split Completion transactions in a
pipelined fashion. Since PCI-X only allows devices to disconnect on 128 byte
boundaries it is advantageous to break the large PCI-X request into either 128 or 256
byte RapidIO operations.

PCI
Target

PCI
Translation

RapidIO
Request

RapidIO
Response

RapidIO
Master

RapidIO
Transaction

Request

(Delayed)
Transaction

Results

RapidIO
to

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO

Request
38 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Figure 4-7. PCI-X Mastered Split Response Transaction

4.4 RapidIO to PCI Transaction Mapping
The RapidIO I/O and GSM specifications include the necessary transactions types
to map all PCI transactions. Table 4-1 lists the map of transactions between PCI and
RapidIO. A mapping mechanism such as the AMT function described in Section 4.2
is necessary to assign the proper transaction type based on the address space for
which the transaction is targeted.

Table 4-1. PCI 2.2 to RapidIO Transaction Mapping

PCI Command RapidIO Transaction Comment

Interrupt-acknowledge NREAD

Special-cycle NWRITE

I/O-read NREAD

I/O-write NWRITE_R

Memory-read,
Memory-Read-Line,
Memory-Read-Multiple

NREAD or
IO_READ_HOME

The PCI memory read transactions can be represented by the NREAD
operation. If the operation is targeted to hardware maintained globally
coherent memory address space then the I/O Read operation must be
used (see “Section 4.6, Interactions with Globally Shared Memory” on
page 43.)

Memory-write,
Memory-write-and-
invalidate

NWRITE, NWRITE_R,
or FLUSH

The PCI Memory Write and Memory-Write-and-Invalidate can be
represented by the NWRITE operation. If reliable delivery of an
individual write transaction is desired then the NWRITE_R is used. If
the operation is targeted to hardware maintained globally coherent
memory address space then the Data Cache Flush operation must be used
(refer to “Section 4.6, Interactions with Globally Shared Memory” on
page 43.)

PCI-X
Master

RapidIO
Response(s)

RapidIO
Target

Translation
to RapidIO

Request

Split
Completion

Transaction(s)

RapidIO
to PCI-X

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO

PCI-X
Split

Response

PCI-X
Transaction

Request

RapidIO
Request(s)
RapidIO.org 39

RapidIO Part 7: System and Device Inter-operability Specification 3.2
PCI 2.2 memory transactions do not specify a size. It is possible for a PCI master to
read a continuous stream of data from a target or to write a continuous stream of data
to a target. Because RapidIO is defined to have a maximum data payload of 256
bytes, PCI transactions that are longer than 256 bytes must be broken into multiple
RapidIO operations.

Table 4-2 shows the transaction mapping between PCI-X and RapidIO.

Configuration-read NREAD

Configuration-write NWRITE_R

Table 4-2. PCI-X to RapidIO Transaction Mapping

PCI-X Command RapidIO Transaction Comment

Interrupt-acknowledge NREAD

Special-cycle NWRITE

I/O-read NREAD

I/O-write NWRITE_R

Memory-read DWORD NREAD or
IO_READ_HOME

The PCI-X memory read DWORD transactions can be represented by
the NREAD operation. If the operation is targeted to hardware
maintained coherent memory address space then the I/O Read operation
must be used (refer to “Section 4.6, Interactions with Globally Shared
Memory” on page 43.) This is indicated in PCI-X using the No Snoop
(NS) bit described in Section 2.5 of the PCI-X 1.0 specification.

Memory-write NWRITE, NWRITE_R,
or FLUSH

The PCI-X Memory Write and Memory-Write-and-Invalidate can be
represented by the NWRITE operation. If reliable delivery of an
individual write transaction is desired then the NWRITE_R is used. If
the operation is targeted to hardware maintained coherent memory
address space then the Data Cache Flush operation must be used (refer to
“Section 4.6, Interactions with Globally Shared Memory” on page 43.)
This is indicated in PCI-X using the No Snoop (NS) bit described in
Section 2.5 of the PCI-X 1.0 specification.

Configuration-read NREAD

Configuration-write NWRITE_R

Split Completion -- The Split Completion transaction is the result of a request on the PCI-X
bus that was terminated by the target with a Split Response. In the case
of the RapidIO to PCI-X bridge this would be the artifact of a transaction
that either the bridge mastered and received a split response or was the
target and issued a split response. This command is equivalent to a
RapidIO response transaction and does not traverse the bridge.

Table 4-1. PCI 2.2 to RapidIO Transaction Mapping

PCI Command RapidIO Transaction Comment
40 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
The PCI-X addendum to the PCI specification adds the ability to do split operations.
This results in an operation being broken into a Split Request and one or more Split
Completions. As a target of a PCI-X Split Request, the RapidIO to PCI bridge may
reply with a Split Response and complete the request using multiple RapidIO
operations. The results of these operations are issued on the PCI-X bus as Split
Completions. If the RapidIO to PCI-X bridge is the initiator of a Split Request, the
target may also indicate that it intends to run the operation as a split transaction with
a Split Response. In this case the target would send the results to the RapidIO to
PCI-X bridge using Split Completions.

4.5 Operation Ordering and Transaction Delivery
This section discusses what the RapidIO to PCI bridge must do to address the
requirements of the ordering rules of the PCI specifications.

4.5.1 Operation Ordering

Section 1.2.1 of the RapidIO Part 1: Input/Output Logical Specification describes a
set of ordering rules. The rules guarantee ordered delivery of write data and that
results of read operations will contain any data that was previously written to the
same location.

For bridge devices, the PCI 2.2 specification has the additional requirement that the
results of a read command push ahead posted writes in both directions.

In order for the RapidIO to PCI bridge to be consistent with the PCI 2.2 ordering
rules it is necessary to follow the transaction ordering rules listed in section 1.2.1 of
the I/O logical specification. In addition, the RapidIO to PCI bridge is required to
adhere to the following RapidIO rule:

Read responses must push ahead all write requests and write responses.

Memory-read-block NREAD or
IO_READ_HOME

The PCI-X memory read transactions can be represented by the NREAD
operation. If the operation is targeted to hardware maintained globally
coherent memory address space then the I/O Read operation must be
used (refer to “Section 4.6, Interactions with Globally Shared Memory”
on page 43.) This is indicated in PCI-X using the No Snoop (NS) bit
described in Section 2.5 of the PCI-X 1.0 specification.

Memory-write-block NWRITE, NWRITE_R,
or FLUSH

The PCI-X Memory Write and Memory-Write-and-Invalidate can be
represented by the NWRITE operation. If reliable delivery of an
individual write transaction is desired then the NWRITE_R is used. If
the operation is targeted to hardware maintained globally coherent
memory address space then the Data Cache Flush operation must be used
(refer to “Section 4.6, Interactions with Globally Shared Memory” on
page 43.) This is indicated in PCI-X using the No Snoop (NS) bit
described in Section 2.5 of the PCI-X 1.0 specification.

Table 4-2. PCI-X to RapidIO Transaction Mapping

PCI-X Command RapidIO Transaction Comment
RapidIO.org 41

RapidIO Part 7: System and Device Inter-operability Specification 3.2
4.5.2 Transaction Delivery Ordering

The RapidIO 8/16 LP-LVDS and 1x/4x LP-Serial physical layer specifications
describe the mechanisms by which transaction ordering and delivery occur through
the system. When considering the requirements for the RapidIO to PCI bridge it is
first necessary to follow the transaction delivery ordering rules in section 1.2.4.1 of
the 8/16 LP-LVDS specification and/or Section 5.8 of the 1x/4x LP-Serial
specification. Further, it is necessary to add additional constraints to maintain
programming model compatibility with PCI.

As described in Section 4.5.1 above, PCI has an additional transaction ordering
requirement over RapidIO. In order to guarantee inter-operability, transaction
ordering, and deadlock free operation, it is recommended that devices be restricted
to utilizing transaction request flow level 0. In addition, it is recommended that
response transactions follow a more strict priority assignment. Table 4-3 illustrates
the priority assignment requirements for transactions in the PCI to RapidIO
environment.

The PCI transaction ordering model requires that a RapidIO device not issue a read
request into the system unless it has sufficient resources available to receive and
process a higher priority write or response packet in order to prevent deadlock. PCI
2.2 states that read responses cannot pass write transactions. The RapidIO
specification provides PCI ordering by issuing priority 0 to read requests, and
priority 1 to read responses and PCI writes. Since read responses and writes are
issued at the same priority, the read responses will not pass writes.

4.5.3 PCI-X Relaxed Ordering Considerations

The PCI-X specification defines an additional ordering feature called relaxed
ordering. If the PCI-X relaxed ordering attribute is set for a read transaction, the
results for the read transaction are allowed to pass posted write transactions. PCI-X
read transactions with this bit set allow the PCI-X to RapidIO bridge to ignore the
rule described in Section 4.5.1. Table 4-4 shows the results of this additional

Table 4-3. Packet priority assignments for PCI ordering

RapidIO packet type priority comment

read request 0 This will push write requests and responses ahead

write request 1 Forces writes to complete in order, but allows write requests to bypass read requests

read response 1 Will force completion of preceding write requests and allows bypass of read requests

write response 2 Will prevent NWRITE_R request based deadlocks
42 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
function.

4.6 Interactions with Globally Shared Memory
Traditional systems have two notions of system or subsystem cache coherence. The
first, non-coherent, means that memory accesses have no effect on the caches in the
system. The memory controller reads and writes memory directly, and any cached
address becomes incoherent in the system. This behavior requires that all cache
coherence with I/O be managed using software mechanisms, as illustrated in
Figure 4-8.

The second notion of system cache coherence is that of global coherence. An I/O
access to memory causes a snoop cycle to be issued on the processor bus, keeping
all of the system caches coherent with the memory, as illustrated in Figure 4-9.

Table 4-4. Packet priority assignments for PCI-X ordering

RapidIO packet type priority comment

read request 0 This will push write requests and responses ahead

write request 1 Forces writes to complete in order, but allows write requests to bypass of read
requests

read response 1 When PCI-X Relaxed Ordering attribute is set to 0. Will force completion of
preceding write requests and allows bypass of read requests

read response 2, 3 When PCI-X Relaxed Ordering attribute is set to 1. The endpoint may promote the
read response to higher priority to allow it to move ahead of posted writes.

write response 2

Figure 4-8. Traditional Non-coherent I/O Access Example

Agent

Memory

Processor

Local Interconnect

Processor

Request
Response

cachecache

RapidIO
Interconnect

Fabric
RapidIO.org 43

RapidIO Part 7: System and Device Inter-operability Specification 3.2
With RapidIO globally shared systems, there is no common bus that can be used in
order to issue the snoop, so global coherence requires special hardware support
beyond simply snooping the bus. This leads to a third notion of cache coherence,
termed local coherence. For local coherence, a snoop on a processor bus local to the
targeted memory controller can be used to keep those caches coherent with that part
of memory, but not caches associated with other memory controllers, as illustrated
in Figure 4-10. Therefore, what once was regarded in a system as a “coherent
access” is no longer globally coherent, but only locally coherent. Typically, deciding
to snoop or not snoop the local processor caches is either determined by design or
system architecture policy (always snoop or never snoop), or by an attribute
associated with the physical address being accessed. In PCI-X, this attribute is the
No Snoop (NS) bit described in Section 2.5 of the PCI-X 1.0 specification.

Figure 4-9. Traditional Globally Coherent I/O Access Example

Agent

Memory

Processor

Local Interconnect

Processor

Request
Response

cache cache

snoop

RapidIO
Interconnect

Fabric
44 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
In order to preserve the concept of global cache coherence for a system, the RapidIO
Part 5: Globally Shared Memory Logical Specification defines several operations
that allow a RapidIO to PCI bridge processing element to access data in the globally
shared space without having to implement all of the cache coherence protocol.
These operations are the I/O Read and Data Cache Flush operations (globally shared
memory specification, sections 3.2.9 and 3.2.10). For PCI-X bridging, these
operations can also be used as a way to encode the NO SNOOP attribute for locally
as well as globally coherent transactions. The targeted memory controller can be
designed to understand the required behavior of such a transaction. These encodings
also are useful for tunneling PCI-X transactions between PCI-X bridge devices.

The data payload for an I/O Read operation is defined as the size of the coherence
granule for the targeted globally shared memory domain. However, the Data Cache
Flush operation allows coherence granule, sub-coherence granule, and
sub-double-word writes to be performed.

The IO_READ_HOME transaction is used to indicate to the GSM memory
controller that the memory access is globally coherent, so the memory controller
finds the latest copy of the requested data within the coherence domain (the
requesting RapidIO to PCI bridge processing element is, by definition, not in the
coherence domain) without changing the state of the participant caches. Therefore,
the I/O Read operation allows the RapidIO to PCI bridge to cleanly extract data from
a coherent portion of the system with minimal disruption and without having to be
a full participant in the coherence domain.

The Data Cache Flush operation has several uses in a coherent part of a system. One

Figure 4-10. RapidIO Locally Coherent I/O Access Example

Agent

Memory

Processor

Request
Response

cache

RapidIO
Interconnect

Fabric

snoop

Agent

Memory

Processor

cache

snoop
RapidIO.org 45

RapidIO Part 7: System and Device Inter-operability Specification 3.2
such use is to allow a RapidIO to PCI bridge processing element to write to globally
shared portions of the system memory. Analogous to the IO_READ_HOME
transaction, the FLUSH transaction is used to indicate to the GSM memory
controller that the access is globally coherent. The memory controller forces all of
the caches in the coherence domain to invalidate the coherence granule if they have
a shared copy (or return the data to memory if one had ownership of the data), and
then writes memory with the data supplied with the FLUSH request. This behavior
allows the I/O device to cleanly write data to the globally shared address space
without having to be a full participant in the coherence domain.

Since the RapidIO to PCI bridge processing element is not part of the coherence
domain, it is never the target of a coherent operation.

4.6.1 I/O Read Operation Details

Most of the complexity of the I/O Read operation resides in the memory controller.
For the RapidIO to PCI Bridge processing element the I/O Read operation requires
some additional attention over the non-coherent read operation. The necessary
portions of the I/O Read state machine description in Section 6.10 of the globally
shared memory specification are extracted below. Refer to Chapter 6 of the GSM
specification for state machine definitions and conventions. The GSM specification
takes precedence in the case of any discrepancies between the corresponding
portions of the GSM specification and this description.

4.6.1.1 Internal Request State Machine

This state machine handles requests to the remote globally shared memory space.

remote_request(IO_READ_HOME, mem_id, my_id);

4.6.1.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.

switch(remote_response)
case DONE:

return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
46 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
case RETRY:
remote_request(IO_READ_HOME, received_srcid, my_id);

default
error();

4.6.2 Data Cache Flush Operation Details

As with the I/O Read operation, the complexity for the Data Cache Flush operation
resides in the memory controller. The necessary portions of the Data Cache Flush
state machine description from Section 6.10 of the GSM logical specification are
extracted below. Refer to Chapters 2 and 3 of the GSM specification to determine
the size of data payloads for the FLUSH transaction. The GSM specification takes
precedence in the case of any discrepancies between the corresponding portions of
the GSM specification and this description.

4.6.2.1 Internal Request State Machine

This state machine handles requests to the remote globally shared memory space.

remote_request(FLUSH, mem_id, my_id, data);

4.6.2.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.

switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

default:
error();

4.7 Byte Lane and Byte Enable Usage
PCI makes use of byte enables and allows combining and merging of transactions.
This may have the result of write transactions with sparse valid bytes. In order to
save on transaction overhead, RapidIO does not include byte enables. RapidIO does,
however, support a set of byte encodings defined in Chapter 3 of the RapidIO Part
1: Input/Output Logical Specification. PCI to RapidIO operations may be issued
with sparse bytes. Should a PCI write transaction with byte enables that do not match
a RapidIO byte encoding be issued to a RapidIO to PCI bridge, that operation must
be broken into multiple valid RapidIO operations.

4.8 Error Management
Errors that are detected on a PCI bus are signaled using side band signals. The
treatment of these signals is left to the system designer and is outside of the PCI
specifications. Likewise, this document does not recommend any practices for the
delivery of error interrupts in the system.
RapidIO.org 47

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank page
48 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Chapter 5 Globally Shared Memory Devices

5.1 Introduction
Different processing elements have different requirements when participating in a
RapidIO GSM environment. The GSM protocols and address collision tables are
written from the point of view of a fully integrated processing element comprised of
a local processor, a memory controller, and an I/O controller. Obviously, the
complexity and implementation requirements for this assumed device are much
greater than required for a typical design. This chapter assumes that the reader is
familiar with the RapidIO Part 5: Globally Shared Memory Logical Specification.

Additionally, this chapter contains the 8/16 LP-LVDS and 1x/4x LP-Serial physical
layer transaction to priority mappings to guarantee that a system maintains cache
coherence and is deadlock free.

5.2 Processing Element Behavior
In Chapter 2 of the globally shared memory specification are a number of examples
of possible processing elements:

• A processor-memory processing element

• A memory-only processing element

• A processor-only processing element

• An I/O processing element

• A switch processing element

Of all of these, only the switch processing element does not have to implement
anything additional to exist in a GSM system or sub-system. All of the remaining
processing element types are of interest, and all are likely to exist in some form in
the marketplace. This chapter is intended to define the portions of the protocol
necessary to implement each of these devices. Other processing elements are
allowed by the globally shared memory specification, for example, a memory-I/O
processing element. The portions of the protocol necessary to implement these
devices are not addressed in this chapter.

The behaviors described in this chapter have been extracted directly from revision
1.1 of the globally shared memory specification, and may be out of date with respect
to the latest revision of that document. The GSM specification takes precedence in
RapidIO.org 49

RapidIO Part 7: System and Device Inter-operability Specification 3.2
the case that there are discrepancies between it and this chapter.

5.2.1 Processor-Memory Processing Element

This processing element is very nearly the same as the assumed processing element
used for the state machine description in Chapter 6, and requires nearly all of the
described functionality. The following operation behavior is not changed from the
Chapter 6 descriptions:

• Read

• Instruction read

• Read for ownership

• Data cache and instruction cache invalidate

• Castout

• TLB invalidate entry and TLB invalidate entry synchronize

• Data cache flush

This leaves the I/O Read operation. Since the processor-memory processing element
does not contain an I/O device, this processing element will not generate the I/O read
operation, but is required to respond to it. This removes the internal request state
machine and portions of the response state machine, requiring the behavior
described in Section 2.1.1 below. The only exception to this is the special case where
there exists multiple coherence domains. It is possible that a processor in one
coherence domain may wish to read data in another coherence domain and thus
would require support of the I/O Read operation.

5.2.1.1 I/O Read Operations

This operation is used for I/O reads of globally shared memory space.

5.2.1.1.1 Response State Machine

This machine handles responses to requests made to the RapidIO interconnect made
on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, mimic
// intervention

case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

remote_response(DATA_ONLY, original_srcid, my_id,
data);

remote_response(DONE_INTERVENTION, original_srcid,
my_id);

free_entry();
case REMOTE_MODIFIED: // spin or wait for castout
50 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();

default:
error();

5.2.1.1.2 External Request State Machine

This machine handles requests from the system to the local memory or the local
processor. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
elseif (IO_READ_HOME) // remote request to our local memory

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);

// after push completes
free_entry();

case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

default:
error();

else // IO_READ_OWNER request to our caches
assign_entry();
local_request(READ_LATEST); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
if (received_srcid == received_secid)

// original requestor is also home
// module

remote_response(INTERVENTION, received_srcid, my_id,
data);

else
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id);

endif;
case INVALID: // must have cast it out during

// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

free_entry();
endif;
RapidIO.org 51

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.2 Memory-only Processing Element

This processing element is simpler than the assumed processing element used in
Chapter 6, removing all of the internal request state machines and portions of all of
the external request and response state machines. A memory-only processing
element does not receive TLB invalidate entry or TLB invalidate synchronize
operations. The required behavior for each operation is described below.

5.2.2.1 Read Operations

This operation is a coherent data cache read.

5.2.2.1.1 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory,
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case REMOTE_MODIFIED: // spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();

5.2.2.1.2 External Request State Machine

This state machine handles read requests from the system to the local memory. This
may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // READ_HOME

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
52 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
update_state(SHARED, received_srcid);
// after possible push completes

remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,

my_id, received_srcid);
else

error(); // he already owned it;
// cache paradox (or I-fetch after d-
// store if not fixed elsewhere)

endif;
default:

error();
endif;

5.2.2.2 Instruction Read Operations

This operation is a partially coherent instruction cache read.

5.2.2.2.1 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory,
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();
RapidIO.org 53

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.2.2.2 External Request State Machine

This state machine handles instruction read requests from the system to the local
memory. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // IREAD_HOME

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,

my_id, received_srcid);
else // he already owned it in his

//data cache; cache paradox case
remote_request(READ_OWNER, mask_id, my_id, my_id);

endif;
default:

error();
endif;

5.2.2.3 Read for Ownership Operations

This is the coherent cache store miss operation.

5.2.2.3.1 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of a third party.

switch(received_response)
case DONE: // invalidates for shared

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id, data);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE

case INTERVENTION:
// remote_modified case

update_memory(); // for possible coherence error
// recovery

update_state(REMOTE_MODIFIED, original_id);
remote_response(DONE_INTERVENTION, original_id, my_id);
free_entry();

case NOT_OWNER: // data comes from memory, mimic
54 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
// intervention
switch(directory_state)
case LOCAL_SHARED:
case LOCAL_MODIFIED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
default:

error();
case RETRY:

switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid
// or error condition

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:

error();

5.2.2.3.2 External Request State Machine

This state machine handles requests from the interconnect to the local memory. This
may require making further external requests.

if (address_collision) // use collision tables
// in Chapter 7, “Address Collision Resolution

Tables”
else // READ_TO_OWN_HOME

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id, data);

// after possible push
update_state(REMOTE_MODIFIED, received_srcid);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

//intervention case
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,

received_srcid);
else

error(); // he already owned it!
endif;

case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)

//requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
RapidIO.org 55

RapidIO Part 7: System and Device Inter-operability Specification 3.2
remote_response(DONE, received_srcid, my_id, data);
// from memory

free_entry();
else //there are other remote sharers

remote_request(DKILL_SHARER, (mask ~= received_srcid),
my_id, my_id);

endif;
default:

error();
endif;

5.2.2.4 Data Cache and Instruction Cache Invalidate Operations

This operation is used with coherent cache store-hit-on-shared, cache operations.

5.2.2.4.1 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of a third party.

switch(received_response)
case DONE: // invalidates for shared

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE

case RETRY:
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,

my_id); // retry
default:

error();

5.2.2.4.2 External Request State Machine

This state machine handles requests from the system to the local memory. This may
require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // DKILL_HOME or IKILL_HOME

assign_entry();
if (DKILL_HOME)

switch (directory_state)
case LOCAL_MODIFIED, // cache paradoxes; DKILL is

// write-hit-on-shared
case LOCAL_SHARED,
case REMOTE_MODIFIED:

error();
case SHARED: // this is the right case, send

// invalidates to the sharing list
local_request(DKILL);
if (mask == received_srcid

// requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id);
free_entry();

else // there are other remote sharers
remote_request(DKILL_SHARER,
56 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
(mask ~= received_srcid), my_id, NULL);
endif;

default:
error();

else // IKILL goes to everyone except the
// requestor

remote_request(IKILL_SHARER,
(mask <= (participant_list ~=
(received_srcid AND my_id), my_id);

endif;

5.2.2.5 Castout Operations

This operation is used to return ownership of a coherence granule to home memory,
leaving it invalid in the cache.

5.2.2.5.1 External Request State Machine

This machine handles requests from the system to the local memory. This may
require making further external requests.

assign_entry();
update_memory();
state_update(LOCAL_SHARED, my_id); // may be LOCAL_MODIFIED if the

// default is owned locally
remote_response(DONE, received_srcid, my_id);
free_entry();

5.2.2.6 Data Cache Flush Operations

This operation returns ownership of a coherence granule to home memory and
performs a coherent write.

5.2.2.6.1 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of a third party.

switch(received_response)
case DONE: // invalidates for shared directory

// states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
remote_response(DONE, original_srcid, my_id, my_id);
if (received_data)

// with original request or response
update_memory();

endif;
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED
free_entry();

else
mask <= (mask ~= received_srcid);

// flip responder’s shared bit
endif; // and wait for next DONE

case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
RapidIO.org 57

RapidIO Part 7: System and Device Inter-operability Specification 3.2
free_entry();
case REMOTE_MODIFIED:

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, original_srcid);

default:
error();

case RETRY:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
case SHARED:

remote_request(DKILL_SHARER, received_srcid, my_id);
default:

error();
default:

error();

5.2.2.6.2 External Request State Machine

This state machine handles requests from the system to the local memory. This may
require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // FLUSH

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id);

// after snoop completes
if (received_data) // from request or local response

update_memory();
endif;
update_state(LOCAL_SHARED, my_id);

// or LOCAL_MODIFIED
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid) // owned elsewhere

remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
received_srcid);

else // requestor owned it; shouldn’t
// generate a flush

error();
endif;

case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid) // requestor is only remote sharer

remote_response(DONE, received_srcid, my_id);
// after snoop completes

if (received_data) // from request or response
update_memory();

endif;
update_state(LOCAL_SHARED, my_id); // or LOCAL_MODIFIED
free_entry();
58 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid), my_id,

my_id);
endif;

default:
error();

endif;

5.2.2.7 I/O Read Operations

This operation is used for I/O reads of globally shared memory space.

5.2.2.7.1 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, mimic
// intervention

case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

remote_response(DATA_ONLY, original_srcid, my_id,
data);

remote_response(DONE_INTERVENTION, original_srcid,
my_id);

free_entry();
case REMOTE_MODIFIED: // spin or wait for castout

remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();

default:
error();

5.2.2.7.2 External Request State Machine

This machine handles requests from the system to the local memory. This may
require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // IO_READ_HOME

assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);

// after push completes
free_entry();

case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();
RapidIO.org 59

RapidIO Part 7: System and Device Inter-operability Specification 3.2
default:
error();

endif;

5.2.3 Processor-only Processing Element

A processor-only processing element is much simpler than the assumed combined
processing described in Chapter 6. Much of the internal request, response, and
external request state machines are removed.

5.2.3.1 Read Operations

This operation is a coherent data cache read.

5.2.3.1.1 Internal Request State Machine

This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external request
// in progress or a cache

local_response(RETRY); // index hazard from a previous request
else // remote - we’ve got to go

// to another module
assign_entry();
local_response(RETRY); // can’t guarantee data before a

// snoop yet
remote_request(READ_HOME, mem_id, my_id);

endif;

5.2.3.1.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor.

switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTIONshould come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(READ_HOME, received_srcid, my_id);
default

error();
60 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.3.1.3 External Request State Machine

This state machine handles read requests from the system to the local processor. This
may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // READ_OWNER

assign_entry();
local_request(READ); // spin until a valid response

// from caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
cache_state(SHARED or INVALID);

// surrender ownership
if (received_srcid == received_secid)

// original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else

remote_response(DATA_ONLY, received_secid,
my_id, data);

remote_response(INTERVENTION, received_srcid,
my_id, data);

endif;
case INVALID: // must have cast it out

remote_response(NOT_OWNER, received_srcid, my_id);
default:

error();
free_entry();

endif;

5.2.3.2 Instruction Read Operations

This operation is a partially coherent instruction cache read.

5.2.3.2.1 Internal Request State Machine

This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external
 // request in progress or a cache

local_response(RETRY); // index hazard from a previous request
else // remote - we’ve got to go

// to another module
assign_entry();
local_response(RETRY);

// can’t guarantee data before a
// snoop yet

remote_request(IREAD_HOME, mem_id, my_id);
endif;

5.2.3.2.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor.

switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();
RapidIO.org 61

RapidIO Part 7: System and Device Inter-operability Specification 3.2
case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention; a
// DONE_INTERVENTION should come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IREAD_HOME, received_srcid, my_id);
default

error();

5.2.3.2.3 External Request State Machine

This state machine handles instruction read requests from the system to the local
processor.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // READ_OWNER request to our caches

assign_entry();
local_request(READ); // spin until a valid response

// from caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
cache_state(SHARED or INVALID);

// surrender ownership
if (received_srcid == received_secid)

// original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else

remote_response(DATA_ONLY, received_secid,
my_id, data);

remote_response(INTERVENTION, received_srcid,
my_id, data);

endif;
case INVALID: // must have cast it out

remote_response(NOT_OWNER, received_srcid, my_id);
default:

error();
free_entry();

endif;
62 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.3.3 Read for Ownership Operations

This is the coherent cache store miss operation.

5.2.3.3.1 Internal Request State Machine

This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external request
// in progress or a cache index

local_response(RETRY); // hazard from a previous request
else // remote - we’ve got to go to another

// module
assign_entry();
local_response(RETRY);
remote_request(READ_TO_OWN_HOME, mem_id, my_id);

endif;

5.2.3.3.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor.

switch (received_response)
case DONE:

local_response(EXCLUSIVE);
return_data();
free_entry();

case DONE_INTERVENTION:
set_received_done_message();
if (received_data_message)

free_entry();
else

// wait for DATA_ONLY
endif;

case DATA_ONLY:
set_received_data_message();
local_response(EXCLUSIVE);
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif; // and wait for a DONE
case RETRY: // lost at remote memory so retry

remote_request(READ_TO_OWN_HOME, mem_id, my_id);
default:

error();

5.2.3.3.3 External Request State Machine

This state machine handles requests from the interconnect to the local processor.

if (address_collision) // use collision tables
// in Chapter 7, “Address Collision Resolution

Tables”
elseif(READ_TO_OWN_OWNER // request to our caches

assign_entry();
local_request(READ_TO_OWN); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push

cache_state(INVALID);
// surrender ownership

if (received_srcid == received_secid)
RapidIO.org 63

RapidIO Part 7: System and Device Inter-operability Specification 3.2
//the original request is from the home
remote_response(INTERVENTION, received_srcid, my_id,

data);
else // the original request is from a

// third party
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id,

data);
endif;
free_entry();

case INVALID: // castout address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

else // DKILL_SHARER request to our caches
assign_entry();
local_request(READ_TO_OWN);

// spin until a valid response from the
// caches

switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases

cache_state(INVALID); // surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();

default:
error();

endif;

5.2.3.4 Data Cache and Instruction Cache Invalidate Operations

This operation is used with coherent cache store-hit-on-shared, cache operations.

5.2.3.4.1 Internal Request State Machine

This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external request in
// progress or a cache index

local_response(RETRY); // hazard from a previous request
else // remote - we’ve got to go to another

// module
assign_entry();
local_response(RETRY);
remote_request({DKILL_HOME, IKILL_HOME}, mem_id, my_id);

endif;

5.2.3.4.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor.

switch (received_response)
case DONE:

local_response(EXCLUSIVE);
free_entry();

case RETRY:
remote_request({DKILL_HOME, IKILL_HOME}, received_srcid,

my_id); // retry the transaction
default:

error();
64 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.3.4.3 External Request State Machine

This state machine handles requests from the system to the local processor.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // DKILL_SHARER or IKILL_SHARER request to our
caches

assign_entry();
local_request({READ_TO_OWN, IKILL});

// spin until a valid response from the
// caches

switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases

cache_state(INVALID); // surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();

default:
error();

endif;

5.2.3.5 Castout Operations

This operation is used to return ownership of a coherence granule to home memory,
leaving it invalid in the cache. A processor-only processing element is never the
target of a castout operation.

5.2.3.5.1 Internal Request State Machine

A castout may require local activity to flush all caches in the hierarchy and break
possible reservations.

assign_entry();
local_response(OK);
remote_request(CASTOUT, mem_id, my_id, data);

5.2.3.5.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor.

switch (received_response)
case DONE:

free_entry();
default:

error();
RapidIO.org 65

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.3.6 TLB Invalidate Entry, TLB Invalidate Entry Synchronize
Operations

These operations are used for software coherence management of the TLBs.

5.2.3.6.1 Internal Request State Machine

The TLBIE and TLBSYNC transactions are always sent to all domain participants
except the sender and are always to the processor, not home memory.

assign_entry();
remote_request({TLBIE, TLBSYNC}, participant_id, my_id);
endif;

5.2.3.6.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor. The responses are always from a coherence
participant, not a home memory.

switch (received_response)
case DONE:

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

free_entry();
else

mask <= (mask ~= received_srcid);
// flip the responder’s participant
// bit and wait for next DONE

endif;
case RETRY:

remote_request({TLBIE, TLBSYNC}, received_srcid, my_id, my_id);
default

error();

5.2.3.6.3 External Request State Machine

This state machine handles requests from the system to the local memory or the local
processor. The requests are always to the local caching hierarchy.

assign_entry();
local_request({TLBIE, TLBSYNC}); // spin until a valid response

// from the caches
remote_response(DONE, received_srcid, my_id);
free_entry();

5.2.3.7 Data Cache Flush Operations

This operation returns ownership of a coherence granule to home memory and
performs a coherent write.

5.2.3.7.1 Internal Request State Machine

This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external
// request in progress or a cache index

local_response(RETRY); // hazard from a previous request
else // remote - we’ve got to go to

// another module
assign_entry();
remote_request(FLUSH, mem_id, my_id, data);
66 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
// data is optional
endif;

5.2.3.7.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect
on behalf of the local processor.

switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

// data is optional
default:

error();

5.2.3.7.3 External Request State Machine

This state machine handles requests from the system to the local processor.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
elseif (READ_TO_OWN_OWNER) // remote request to our caches

assign_entry();
local_request(READ_TO_OWN); // spin until a valid response

// from the caches
switch (local_response)
case MODIFIED: // processor indicated a push,

// wait for it
cache_state(INVALID); // surrender ownership
remote_response(DONE, received_srcid, my_id, data);

case INVALID:
// must have cast it out during an
// address collision

remote_response(NOT_OWNER, received_srcid, my_id);
default:

error();
free_entry();

else // DKILL_SHARER remote request
// to our caches

assign_entry();
local_request(DKILL); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // cache paradox

remote_response(ERROR, received_srcid, my_id);
case INVALID:

remote_response(DONE, received_srcid, my_id);
default:

error();
free_entry();

endif;

5.2.3.8 I/O Read Operations

This operation is used for I/O reads of globally shared memory space. A
processor-only processing element never initiates an I/O read operation.
RapidIO.org 67

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.3.8.1 External Request State Machine

This machine handles requests from the system to the local memory or the local
processor. This may require making further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution

Tables”
else // IO_READ_OWNER request to our caches

assign_entry();
local_request(READ_LATEST); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
if (received_srcid == received_secid)

// original requestor is also home
// module

remote_response(INTERVENTION, received_srcid, my_id,
data);

else
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id);

endif;
case INVALID: // must have cast it out during

// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

free_entry();
endif;
68 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.4 I/O Processing Element

The simplest GSM processing element is an I/O device. A RapidIO I/O processing
element does not actually participate in the globally shared memory environment (it
is defined as not in the coherence domain), but is able to read and write data into the
GSM address space through special I/O operations that provide for this behavior.
These operations are the I/O Read and Data Cache Flush operations. Other than the
ability to read and write into the GSM address space, an I/O device has no other
operational requirements. Since the I/O processing element is not part of the
coherence domain, it is never the target of a coherence transaction and thus does not
have to implement any of the related behavior, including the address collision tables.

Requirements for a specific I/O processing element, a RapidIO to PCI/PCI-X
bridge, is discussed in Chapter 4, “PCI Considerations,” on page 4-33.

5.2.4.1 I/O Read Operations

This operation is used for I/O reads of globally shared memory space.

5.2.4.1.1 Internal Request State Machine

This state machine handles requests to remote memory.

remote_request(IO_READ_HOME, mem_id, my_id);

5.2.4.1.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.

switch(remote_response)
case DONE:

return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IO_READ_HOME, received_srcid, my_id);
default

error();
RapidIO.org 69

RapidIO Part 7: System and Device Inter-operability Specification 3.2
5.2.4.2 Data Cache Flush Operations

This operation returns ownership of a coherence granule to home memory and
performs a coherent write.

5.2.4.2.1 Internal Request State Machine

This state machine handles requests to remote memory.

remote_request(FLUSH, mem_id, my_id, data);

5.2.4.2.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.

switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

default:
error();

5.2.5 Switch Processing Element

A switch processing element is required to be able to route all defined packets. Since
it is not necessary for a switch to analyze a packet in order to determine how it
should be treated outside of examining the priority and the destination device ID, a
switch processing element does not have any additional requirements to be used in
a globally shared memory environment.

5.3 Transaction to Priority Mappings
The Globally Shared Memory model does not have the concept of an end point to
end point request transaction flow like the I/O programming model. Instead, all
transaction ordering is managed by the load-store units of the processors
participating in the globally shared memory protocol. The GSM logical
specification behaviors assume an unordered and resource unconstrained
communication fabric. The ordered fabric of the 8/16 LP-LVDS and the 1x/4x
LP-Serial physical layers requires the proper transaction to priority mappings to
mimic the effect of an unordered fabric to suit the GSM model. These mappings
leverage the physical layer ordering and deadlock avoidance rules that are required
by the I/O Logical layer. In addition, it is assumed that the latency-critical GSM
operations are of necessity higher priority than non-coherent I/O traffic, therefore
I/O operations are recommended to be assigned to the lowest system priority flow.
70 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Table 5-1 shows the GSM transaction to priority mappings.

Table 5-1. Transaction to Priority Mapping

Request transaction
Request

Packet Priority
Response

Packet Priority

READ_TO_OWN_HOME 1 2 or 3

READ_HOME 1 2 or 3

IO_READ_HOME 1 2 or 3

IREAD_HOME 1 2 or 3

DKILL_HOME 1 2 or 3

IKILL_HOME 1 2 or 3

FLUSH (without data) 1 2 or 3

FLUSH (with data) 1 2 or 3

TLBIE 1 2 or 3

TLBSYNC 1 2 or 3

READ_OWNER 2 3

READ_TO_OWN_OWNER 2 3

IO_READ_OWNER 2 3

DKILL_SHARER 2 3

IKILL_SHARER 2 3

CASTOUT 2 3
RapidIO.org 71

RapidIO Part 7: System and Device Inter-operability Specification 3.2
72 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Agent. A processing element that provides services to a processor.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache. In other words, a
write operation to an address in the system is visible to all other
caches in the system.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Control symbol. A quantum of information transmitted between two linked
devices to manage packet flow between the devices.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Delayed transaction. The process of the target of a transaction capturing the
transaction and completing it after responding to the source with a
retry.

A

B

C

D

RapidIO.org 73

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the
RapidIO interconnect.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Local memory. Memory associated with the processing element in question.

LVDS. Low voltage differential signaling.

Mailbox. Dedicated hardware that receives messages.

Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
GSM. Message senders do not write to a memory address in the
target.

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

E

F

G

H

I

L

M

N

74 RapidIO.org

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Port-write. An address-less maintenance write operation.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Remote memory. Memory associated with a processing element other than
the processing element in question.

ROM. Read-only memory.

Sender. The RapidIO interface output port on a processing element.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Symbol. A 16-bit quantity.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

O

P

R

S

T

RapidIO.org 75

RapidIO Part 7: System and Device Inter-operability Specification 3.2
Blank page
76 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 8: Error Management/Hot Swap

Extensions Specification
RapidIO.org

Revision History

Revision Description Date

1.2 First public release 09/13/2002

1.3 Technical changes: the following errata showings:
04-02-00002.001
and the following new features showings:
04-09-00022.002
Converted to ISO-friendly templates

02/23/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.1 Technical changes: errata showing 07-07-00000.004 07/09/2009

2.2 Technical changes: errata showing 10-08-00000.003 05/05/2011

3.0 Changed RTA contact information.
Technical Changes:
Standardized support for hot extraction and hot insertion, including register refinement/
additions.
Register additions/changes to support Dev32.
Register additions/changes to allow reuse of registers to latch information for packet
types previously unsupported by this part of the RapidIO standard, and to enable
latching control symbol information encoded using 64b/67b.

10/11/2013

3.1 Minor editorial changes.
Technical changes:
Added support for multiple error capture FIFO for physical layer and logical/transport
layer errors.
Register additions/changes for multiple error capture FIFO support.
Register field additions for MECS and SMECS time synchronization error reporting.

9/18/2014

3.2 Inclusion of errata 9: Port n Link Uninit Discard Timer CSR Change 01/28/2016
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.
RapidIO.org

RapidIO.org

Table of Contents

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Chapter 1 Error Management Extensions

1.1 Introduction... 9
1.2 Physical Layer Extensions .. 9
1.2.1 Port n Error Detect, Enable, and Capture CSRs ... 10
1.2.2 Error Reporting Thresholds .. 10
1.2.3 Error Rate Control and Status... 11
1.2.4 Port Behavior When Error Rate Failed Threshold is Reached 12
1.2.5 Packet Timeout Mechanism in a Switch Device .. 13
1.2.6 Hot Swap Extensions .. 13
1.2.7 Physical Layer Multiple Event Capture.. 14
1.3 Logical and Transport Layer Extensions .. 15
1.3.1 Logical/Transport Error Detect, Enable, and Capture CSRs 16
1.3.2 Message Passing Error Detection ... 16
1.3.3 Other Logical Layer Errors... 16
1.3.4 Logical/Transport Layer Multiple Event Capture .. 17
1.4 System Software Notification of Error ... 18
1.5 Mechanisms for Software Debug ... 18
1.6 IDLE3 Port_Status Extension... 19

Chapter 2 Error Management Registers

2.1 Introduction... 21
2.2 Additions to Existing Registers .. 21
2.2.1 Port n Control CSRs ... 21
2.2.2 Port n Error and Status CSRs.. 21
2.3 New Error Management Registers.. 22
2.4 Register Map... 23
2.5 Command and Status Registers (CSRs).. 26
2.5.1 Error Management Extensions Block Header .. 26
2.5.2 Error Management/Hot Swap Extension Block CAR 26
2.5.3 Logical/Transport Layer Error Detect CSR.. 27
2.5.4 Logical/Transport Layer Error Enable CSR ... 28
2.5.5 Logical/Transport Layer High Address Capture CSR...................................... 30
2.5.6 Logical/Transport Layer Address Capture CSR... 31
2.5.7 Logical/Transport Layer Device ID Capture CSR ... 31
2.5.8 Logical/Transport Layer Control Capture CSR.. 32
2.5.9 Logical/Transport Layer Dev32 Destination ID Capture CSR......................... 32
2.5.10 Logical/Transport Layer Dev32 Source ID Capture CSR................................ 33
2.5.11 Port-Write Target deviceID CSR.. 33
2.5.12 Packet Time-to-live CSR.. 34
2.5.13 Port-write Dev32 Target deviceID CSR... 34
RapidIO.org 5

Table of Contents

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.14 Port-Write Transmission Control CSR... 34
2.5.15 Port n Error Detect CSR ... 35
2.5.16 Port n Error Rate Enable CSR .. 37
2.5.17 Port n Attributes Capture CSR ... 40
2.5.18 Port n Capture 0 CSR ... 41
2.5.19 Port n Capture 1 CSR ... 41
2.5.20 Port n Capture 2 CSR ... 42
2.5.21 Port n Capture 3 CSR ... 42
2.5.22 Port n Capture 4 CSR ... 43
2.5.23 Port n Error Rate CSR .. 44
2.5.24 Port n Error Rate Threshold CSR ... 45
2.5.25 Port n Link Uninit Discard Timer CSR .. 46
2.5.26 Port n FIFO Error Detect CSR.. 46

Annex A Error Management Discussion (Informative)

A.1 Introduction... 49
A.2 Limitations of Error Management Discussion.. 49
A.3 Hot-insertion/extraction Discussion ... 50
A.4 Port-write Discussion.. 51
A.5 Physical Layer Fatal Error Recovery Discussion ... 52
6 RapidIO.org

List of Tables

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
1-1 Port Behavior when Error Rate Failed Threshold has been hit12
1-2 Port-Write Packet Data Payload for Error Reporting ...18
1-3 Port_status Field Definitions ..20
2-1 Bit Settings for Port n Control CSRs ..21
2-2 Bit Settings for Port n Error and Status CSRs ..22
2-3 Extended Feature Space Reserved Access Behavior ..22
2-4 Error Management/Hot Swap Extensions Register Requirements23
2-5 Bit Settings for Error Management Extensions Block Header26
2-6 Bit Settings for Error Management/Hot Swap Extension Block CAR...........................26
2-7 Bit Settings for Logical/Transport Layer Error Detect CSR ..27
2-8 Bit Settings for Logical/Transport Layer Error Enable CSR..29
2-9 Bit Settings for Logical/Transport Layer High Address Capture CSR30
2-10 Bit Settings for Logical/Transport Layer Address Capture CSR31
2-11 Bit Settings for Logical/Transport Layer Device ID Capture CSR31
2-12 Bit Settings for Logical/Transport Layer Control Capture CSR32
2-13 Bit Settings for Logical/Transport Layer Dev32 Destination ID Capture CSR32
2-14 Bit Settings for Logical/Transport Layer Dev32 Source ID Capture CSR.....................33
2-15 Bit Settings for Port-Write Target deviceID CSR ..33
2-16 Bit Settings for Packet Time-to-live CSR...34
2-17 Bit Settings for Port-Write Dev32 Target deviceID CSR...34
2-18 Bit Settings for Port-Write Transmission Control CSR..35
2-19 Bit Settings for Port n Error Detect CSRs ..35
2-20 Bit Settings for Port n Error Rate Enable CSRs ...37
2-21 Bit Settings for Port n Attributes Capture CSRs...40
2-22 Bit Settings for Port n Capture 0 CSRs...41
2-23 Bit Settings for Port n Capture 1 CSRs...41
2-24 Bit Settings for Port n Capture 2 CSRs...42
2-25 Bit Settings for Port n Capture 3 CSRs...42
2-26 Bit Settings for Port n Capture 4 CSRs...43
2-27 Bit Settings for Port n Error Rate CSRs ...44
2-28 Bit Settings for Port n Error Rate Threshold CSRs ..45
2-29 Bit Settings for Port n Link Uninit Discard Timer CSRs ...46
2-30 Bit Settings for Port n FIFO Error Detect CSRs...46
RapidIO.org 7

List of Tables

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Blank page
8 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Chapter 1 Error Management Extensions

1.1 Introduction
The error management extensions describe added requirements in all physical and
logical layers. These extensions add definitions to bits that were previously reserved
in the Port n Control CSRs and add new registers that are contained within the Error
Management Extended Features Block. This chapter describes the behavior of a
device when an error is detected and how the new registers and bits are managed by
software and hardware. Implementation of this specification is optional.

1.2 Physical Layer Extensions
The following registers and register bit extensions allow software to monitor and
control the reporting of physical layer errors:

• (Extensions to the) Port n Control CSRs defined in Section 2.2

• (Extensions to the) Port n Error and Status CSRs defined in Section 2.2

• Port-Write Target deviceID CSR defined in Section 2.5.11

• Port n Error Detect CSR defined in Section 2.5.15

• Port n Error Rate Enable CSR defined in Section 2.5.16

• Port n Attributes Capture CSR defined in Section 2.5.17

• Port n Capture 0 CSR through Port n Capture 4 CSR defined in Section 2.5.18
through Section 2.5.22

• Port n Error Rate CSR defined in Section 2.5.23

• Port n Error Rate Threshold CSR defined in Section 2.5.24

The Hot Swap Extensions consist of the following registers and register bit
extensions, which allow software to be notified of the addition and removal of
processing elements:

• Port-Write Target deviceID CSR defined in Section 2.5.11

• (Extensions to the) Port n Error Detect CSR defined in Section 2.5.15

• (Extensions to the) Port n Error Rate Enable CSR defined in Section 2.5.16

• Port n Link Uninit Discard Timer CSR defined in Section 2.5.25
RapidIO.org 9

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
1.2.1 Port n Error Detect, Enable, and Capture CSRs

Each detected occurrence of a physical layer error shall be logged by hardware in
the Port n Error Detect CSRs by setting the appropriate error indication bit. Each
detected error occurrence should set no more than one error indication bit, the bit
that most specifically identifies the detected error. The Port n Error Detect CSRs
does not lock when a detected error bit is set allowing each subsequent detected error
to also be logged in the register. By reading the register, software may see the types
of physical layer errors that have occurred since the register was last cleared.

Physical layer errors are enabled for error capture and error counting when the bit
corresponding to the error has been set in the Port n Error Rate Enable CSRs by
software. Error information is captured in the Port n Attributes Capture CSRs and
the Port n Capture 0-4 CSRs. The Capture Valid Info bit in the Port n Attributes
Capture CSRs indicates whether the error information in the capture CSRs is valid.

When the Capture Valid Info status bit is not set in the Port n Attributes Capture
CSRs, information about the next enabled physical layer error shall be saved to the
Port n Capture 0-4 CSRs. The Info Type and Error Type fields of the Port n
Attributes Capture CSRs shall be updated and the register’s Capture Valid Info
status bit shall be set by hardware to lock the error capture registers. Typically, the
first 16 or 20 bytes of a packet, the 4 bytes of a delimited Control Symbol 24, or the
8 bytes of a delimited Control Symbol 48 or Control Symbol 64 that have a detected
error are saved in the Port n Capture 0-4 CSRs. Packets smaller than 16 bytes are
captured in their entirety. The Port n Capture 0-4 CSRs and the Port n Attributes
Capture CSRs are not overwritten by hardware with error capture information for
subsequent errors until software writes a zero to the Capture Valid Info bit.

The characters used for data transfer by the 8b/10b encoded LP-Serial physical layer
protocol are 9 bit entities, but the specified formats for the Port n Capture 0-4 CSRs
allocate only 8 bits per character (4 characters per 32-bit CSR) for recording the
characters of a corrupted control symbol or the first 16 characters of a corrupted
packet. Therefore it is not possible to unambiguously capture all possible LP-Serial
control symbol and packet corruptions using the specified Port n Capture 0-4 CSRs
format. Examples of this are when a code-group encoding a data character is
changed by a transmission error into a code-group encoding a special character or a
code-group with no 8b/10b decoding (an invalid character).

1.2.2 Error Reporting Thresholds

Physical layer errors are normally hidden from system software since they may be
recovered with no loss of data and without software intervention. Two thresholds are
defined in the Port n Error Rate Threshold CSRs which can be set to force a report
to system software when the physical layer error rate reaches a level that is deemed
by the system to be either degraded or unacceptable. The two thresholds are
respectively the Degraded Threshold and the Failed Threshold. These thresholds are
10 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
used as follows.

When the error rate counter is incremented, the Error Rate Degraded Threshold
Trigger provides a threshold value that, when equal to or exceeded by the value in
the Error Rate Counter in the Port n Error Rate register, shall cause the error
reporting logic to set the Output Degraded-encountered bit in the Port n Error and
Status CSRs, and notify the system software as described in Section 1.4.

The Error Rate Failed Threshold Trigger, if enabled, shall be larger than the
degraded threshold trigger. It provides a threshold value that, when equal to or
exceeded by the value in the Error Rate Counter, shall trigger the error reporting
logic to set the Output Failed-encountered bit in the Port n Error and Status CSRs,
and notify system software as described in Section 1.4.

No action shall be taken if the Error Rate Counter continues to exceed either
threshold value after initial notification when additional errors are detected. No
action shall be taken when the Error Rate Counter drops below either threshold.

1.2.3 Error Rate Control and Status

The fields in the Port n Error Rate CSRs are used to monitor the error rate of the
port n physical layer.

The Error Rate Counter field contains the 8-bit Error Rate Counter. The Error Rate
Counter shall increment when a physical layer error is detected whose associated
enable bit is set in the Port n Error Rate Enable CSRs. The Error Rate Counter shall
decrement at the rate specified by the Error Rate Bias field of the Port n Error Rate
CSRs. The Error Rate Counter shall not underflow (shall not decrement when equal
to 0x00) and shall not overflow (shall not increment when equal to 0xFF). The
incrementing and decrementing of the Error Rate Counter are in no way affected by
the values in the Degraded and Failed threshold fields. Software may reset the Error
Rate Counter at any time.

The rate at which events are counted by the Error Rate Counter depends on the error
rates and the bits set in the Port n Error Rate Enable CSRs. If bit 11 “Received
packet-not-accepted control symbol enable” of the Port n Error Rate Enable CSRs
is not set, only errors detected by Port n and whose counting is enabled are counted.
If bit 11 is set, then errors detected by the connected port are also counted as the
reception of a packet-not-accepted control symbol, while not an error in itself, is an
indication that the connected port has detected a physical layer error. If in addition
to bit 11 being set, one or more of virtual channels 1-8 are enabled and are operating
in reliable transmission (RT) mode, packet retries requested by the connected port
will also be counted because packet-not-accepted control symbols are used in this
case to signal the rejection of an RT packet by the connected port due to a lack of
buffer space.

The Error Rate Bias field determines the rate at which the Error Rate Counter is
decremented and defines the acceptable error rate of the physical layer for error
RapidIO.org 11

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
reporting purposes. In the absence of additional counted physical layer errors, this
mechanism allows the system to recover from both Failed and Degraded levels of
operation without a software reset of the Error Rate Counter. If the error rate of the
physical layer errors being counted is less than the decrement rate specified in the
Error Rate Bias field, the value of the Error Rate counter will rarely be greater than
0x01 or 0x02.

The Error Rate Recovery field defines how far above the Error Rate Failed
Threshold Trigger in the Port n Error Rate Threshold Register the Error Rate
Counter is allowed to count. In the absence of additional counted errors, this allows
software to control the length of time required for the value of the Error Rate
Counter to drop below both the Failed and Degraded Thresholds.

The Peak Error Rate field shall contain the largest value encountered by the Error
Rate Counter since the field was last reset. This field is loaded whenever the current
value of the Peak Error Rate field is exceeded by the value of the Error Rate Counter.

1.2.4 Port Behavior When Error Rate Failed Threshold is
Reached

The behavior of a port when the Error Rate Counter in the Port n Error Rate CSRs
reaches the Error Rate Failed Threshold and the threshold is enabled depends upon
the values of the Stop on Port Failed-encountered Enable and the Drop Packet
Enable bits in the Port n Control CSRs. The Table 1-1 below defines the required
behavior.

Table 1-1. Port Behavior when Error Rate Failed Threshold has been hit

Stop on Port
Failed
Encountered
Enable

Drop Packet
Enable

Port Behavior Comments

0 0 The port shall continue to attempt to transmit
packets to the connected device if the Output
Failed-encountered bit is set and/or if the Error
Rate Failed threshold has been met or exceeded.

All devices

0 1 The port shall discard packets that receive a
Packet-not-accepted control symbol when the
Error Rate Failed Threshold has been met or
exceeded. Upon discarding a packet, the port
shall set the Output Packet-dropped bit in the
Port n Error and Status CSRs. If the output port
“heals”, the Error Rate Counter falls below the
Error Rate Failed Threshold, the output port shall
continue to attempt to forward all packets.

Switch Device Only
12 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
1.2.5 Packet Timeout Mechanism in a Switch Device

In some systems, it is either desirable or necessary to bound the length of time a
packet can remain in a switch. To enable this functionality, a switch shall monitor
the length of time each packet accepted by one of its ports has been in the switch.
The acceptance of a packet by a port is signaled by the port issuing a packet-accepted
control symbol for the packet. The timing begins when the port accepts the packet.

If a packet remains in a switch longer than the Time-to-Live time specified by the
Time-to-Live field of the Packet Time-to-live CSR as defined in Section 2.5.12, the
packet shall be discarded rather than forwarded, the Output Packet-Dropped bit shall
be set in the Port n Error and Status CSRs, and the system shall be notified as
described in Section 1.4.

1.2.6 Hot Swap Extensions

When a Field Replaceable Unit (FRU) is inserted into a running system, it may be
necessary to immediately inform system software. Similarly, when an FRU is
removed from a running system, it may be necessary to immediately inform system
software. The Link Uninit to OK Transition event can be used to inform system
software of the insertion or removal of an FRU.

In the event that an FRU is removed from a system unexpectedly, the number of
physical layer errors detected is uncertain. It is not possible to set the Physical Layer
Error Management extensions thresholds, as described in sections 1.2.2 and 1.2.3,
to differentiate between an expected bit error rate and FRU removal. The Hot Swap
Extensions uses a timeout period for link reinitialization, the Port n Link Uninit
Discard Timer CSRs, to detect when a link has been unavailable for a period of time
deemed excessive by the system. When the Port n Link Uninit Discard Timer period
expires, packets are discarded to avoid system congestion. Depending on the system
design, the congestion could prevent system software from handling the unexpected
FRU removal, which could lead to system failure.

1 0 The port shall stop attempting to send packets to
the connected device when the Output
Failed-encountered bit is set. The output port will
congest.

All devices.

1 1 The port shall discard all output packets without
attempting to send when the port’s Output
Failed-encountered bit is set. Upon discarding a
packet, the port shall set Output Packet-dropped
bit in the Port n Error and Status CSRs.

All devices.

Table 1-1. Port Behavior when Error Rate Failed Threshold has been hit

Stop on Port
Failed
Encountered
Enable

Drop Packet
Enable

Port Behavior Comments
RapidIO.org 13

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
A port-write may be sent to inform system software of a Hot Swap Extensions event.
The Hot Swap Extensions events are incorporated into the Port n Error Detect CSRs,
as the contents of this CSR are sent in a port-write. The Hot Swap Extensions events
are also included in the Port n Error Rate Enable CSRs, as this is the standard register
that controls notification and information capture for physical layer events.

However, unlike the Error Management Extensions physical layer events, the
removal or insertion of an FRU is not a correctable error. For this reason, unlike
Error Management Extensions events, Hot Swap Extension events shall not
contribute to the error reporting thresholds described in section 1.2.2/1.2.3, shall not
cause any error information to be latched, and shall not cause the Port n Capture 0-4
CSRs to lock.

1.2.7 Physical Layer Multiple Event Capture

Some fault tolerant applications require capture of multiple events to understand the
sequence of events that lead to a failure. It is possible to implement the capture of
multiple errors as a First-In-First-Out (FIFO) queue of events, where each entry in
the FIFO represents the six registers starting with the Port n Attributes Capture CSR
at the time of the entry. The Port n FIFO Error Detect CSR, also part of each FIFO
entry, captures information similar to the Port n Error Detect CSR. The Port n Error
Detect CSR behavior is constant, whether or not a FIFO is implemented.

The FIFO shall provide a queue of at least two entries, with the oldest entry at the
front of the queue and new entries added at the end of the queue.

A FIFO entry becomes occupied when that entry is added to the end of the FIFO
queue. The six registers starting with the Port n Attributes Capture CSR, and the Port
n FIFO Error Detect CSR, shall occupy the oldest unoccupied entry in the FIFO.

The oldest occupied FIFO entry shall become unoccupied when software writes a
zero to the Capture Valid Info bit. The FIFO shall be considered full if all entries are
occupied. The FIFO shall be considered empty if all entries are unoccupied.

The FIFO error capture function supplies the value that occupies a FIFO entry. The
FIFO error capture function operates on enabled and disabled events, which are
defined in 1.2.1, “Port n Error Detect, Enable, and Capture CSRs”. The FIFO error
capture function shall operate as follows:

• The FIFO error capture function value for the Port n FIFO Error Detect CSR
shall consist of all events detected since the last time the FIFO error capture
function value occupied an entry in the FIFO.

• The FIFO error capture function value for the Port n Attributes Capture CSR
shall be updated for every detected enabled event, and shall consist of
attributes information for the detected enabled event.

• The FIFO error capture function value for the five registers starting with the
Port n Capture 0 CSR shall be updated for every detected enabled event.
14 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
If the FIFO is not full and an enabled event has been detected, the current FIFO error
capture function value shall occupy the next entry in the FIFO. If multiple enabled
events occur simultaneously, at least one event shall occupy an entry in the FIFO.

The Capture Valid Info bit in the Port n Attributes Capture CSR shall be 1 when at
least one FIFO entry is occupied. The Capture Valid Info bit in the Port n Attributes
Capture CSR shall be 0 when all FIFO entries are unoccupied. The value of other
fields in the Port n Attributes Capture CSR, and the value of the Port n FIFO Error
Detect CSR and the five registers starting with the Port n Capture 0 CSR, is
undefined when all FIFO entries are unoccupied.

1.3 Logical and Transport Layer Extensions
While the RapidIO physical layer may be working properly, an end point processing
element may encounter logical or transport layer errors, or other errors unrelated to
its RapidIO ports, while trying to complete a transaction. The “ERROR” status
response transaction is the mechanism for the target device to indicate to the source
that there is a problem completing the request. Experiencing a timeout waiting for a
response is also a symptom of an end point or switch fabric with a problem. These
types of errors are logged and reporting enabled with a set of registers that are
separate from those used for the Physical Layer errors:

• Logical/Transport Layer Error Detect CSR defined in Section 2.5.3

• Logical/Transport Layer Error Enable CSR defined in Section 2.5.4

• Logical/Transport Layer Capture CSRs defined in Section 2.5.5 to Section
2.5.8
RapidIO.org 15

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
1.3.1 Logical/Transport Error Detect, Enable, and Capture
CSRs

When a logical or transport layer error is detected, the appropriate error bit shall be
set by the hardware in the Logical/Transport Layer Error Detect CSR. If the
corresponding bit is also set in the Logical/Transport Layer Error Enable CSR, the
detect register shall lock, the appropriate information is saved in the
Logical/Transport Layer Capture registers, all resources held by the transaction are
freed, and system software is notified of the error as described in Section 1.4. If
multiple enabled errors occur during the same clock cycle, multiple bits will be set
in the detect register and the contents of the Logical/Transport Layer Capture
registers are implementation dependent. Once locked, subsequent errors will not set
another error detect bit. The contents of the Logical/Transport Capture CSRs are
valid if the bitwise AND of the Logical/Transport Layer Error Detect CSR and the
Logical/Transport Layer Error Detect Enable CSR is not equal to zero
(0x00000000).

Software shall write the Logical/Transport Detect register with all logic 0s to clear
the error detect bits or a corresponding enable bit to unlock the register. Any other
recovery actions associated with these types of errors are system dependent and
outside the scope of this specification.

1.3.2 Message Passing Error Detection

Message passing is a special case of logical layer error recovery requiring error
detection at both the source and destination ends of the message. The source of the
message has the request-to-response timeout (defined in the Port Response Timeout
Control CSR in the RapidIO Physical Layer specifications) to detect lost request or
response packets in the switch fabric. However, in order to not hang the recipient
mailbox in the case of a lost request packet for a multiple packet message, the
recipient mailbox shall have an analogous response-to-request timeout. This timeout
is for sending a response packet to receiving the next request packet of a given
message operation, and has the same value as the request-to-response timeout that
is already specified. The Logical/Transport Layer Control Capture CSR contains the
‘msg info’ field to capture the critical information of the last received (or sent)
message segment before timeout.

1.3.3 Other Logical Layer Errors

The RapidIO specification contains many logical layer packet types beyond the
Logical I/O and Messaging types, which can be used in systems with greatly varying
complexity. The capabilities necessary to find the root cause of defects for these
packet types and systems also vary with customer requirements and the
implementation technology. While the need to find defects in these systems is
constant, it is not necessary to define standard methods of debugging them, as this
16 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
does not affect interoperability.

RapidIO devices should consider their users needs for defect determination, and
capture information appropriate to the scale and complexity of the system. Debug
needs should be considered both as the source of a request and the target. Debug
capabilities for customer field use may also be needed.

The basis of defect determination is information about detected errors. The
Logical/Transport layer capture registers may be used to capture such information.

1.3.4 Logical/Transport Layer Multiple Event Capture

Some fault tolerant applications require capture of multiple events to understand the
sequence of events that lead to a failure. It is possible to implement the capture of
multiple errors as a First-In-First-Out (FIFO) queue of events, where each entry in
the FIFO consists of the Logical/Transport Layer Error Detect CSR, and all
Logical/Transport Layer Capture CSRs, at the time of the entry.

The FIFO shall provide a queue of at least two entries, with the oldest entry at the
front of the queue and new entries added at the end of the queue.

A FIFO entry becomes occupied when that entry is added to the end of the FIFO
queue. The Logical/Transport Layer Error Detect CSR, and all Logical/Transport
Layer Capture CSRs shall access the oldest occupied entry in the FIFO.

The oldest occupied FIFO entry shall become unoccupied when software writes
0x00000000 to the Logical/Transport Layer Error Detect CSR. The FIFO shall be
considered full if all entries are occupied. The FIFO shall be considered empty if all
entries are unoccupied.

The FIFO error capture function supplies the value that occupies a FIFO entry. The
FIFO error capture function operates on enabled and disabled events, as defined in
1.3.1, “Logical/Transport Error Detect, Enable, and Capture CSRs”. The FIFO error
capture function shall operate as follows:

• The FIFO error capture function value for the Logical/Transport Layer Error
Detect CSR shall consist of all events detected since the last time the FIFO
error capture function value occupied an entry in the FIFO.

• The FIFO error capture function value for all Logical/Transport Layer Capture
CSRs shall be updated for every detected enabled event.

If the FIFO is not full and an enabled event has been detected, the current FIFO error
capture function value shall occupy the next entry in the FIFO. If multiple enabled
events occur simultaneously, at least one event shall occupy an entry in the FIFO.

The Logical/Transport Layer Error Detect CSR shall not be 0 when the FIFO is not
empty. The Logical/Transport Layer Error Detect CSR shall be 0 when the FIFO is
empty. The value for all Logical/Transport Layer Capture CSRs is undefined when
the FIFO is empty.
RapidIO.org 17

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
1.4 System Software Notification of Error
System software is notified of logical, transport, and physical layer errors in two
ways. An interrupt is issued to the local system by a device, the method of which is
not defined in this specification, or a Maintenance port-write operation is issued by
a device. Maintenance port-write operations are sent to a predetermined system host
(defined in the Port-write Target deviceID CSR in Section 2.5.11). The sending
device sets the Port-write Pending status bit in the Port n Error and Status CSRs. A
16 byte data payload of the Maintenance Port-write packet contains the contents of
several CSRs, the port on the device that encountered the error condition (for
port-based errors), and some optional implementation specific additional
information as shown in Table 1-2. Software indicates that it has seen the port-write
operation by clearing the Port-write Pending status bit.

The Component Tag CSR is defined in the RapidIO Part 3: Common Transport
Specification, and is used to uniquely identify the reporting device within the
system. The Port ID field, the Logical/Transport Layer Detect CSR defined in
Section 2.5.3, and the Port n Error Detect CSRs defined in Section 2.5.15, are used
to describe the encountered error condition.

1.5 Mechanisms for Software Debug
In most systems, it is difficult to verify the error handling software. The Error
management extensions make some registers writable for easier debug.

The Logical/Transport Layer Error Detect CSR and the six error capture registers
starting with Logical/Transport Layer High Address Capture CSR are writable by
software to allow software debug of the system error recovery mechanisms. For
software debug, software must write the desired information into the six error
capture registers starting with Logical/Transport Layer High Address Capture CSR.
If the Logical/Transport Layer Error Capture FIFO Implemented bit is set, the FIFO
error capture function value is updated by the register writes. The next step is to
write the Logical/Transport Layer Error Detect CSR to set an enabled error bit. If the
Logical/Transport Layer Error Capture FIFO Implemented bit is cleared, this will
lock the registers. If the Logical/Transport Layer Error Capture FIFO Implemented
bit is set and the FIFO is not full, this will cause the FIFO error capture function

Table 1-2. Port-Write Packet Data Payload for Error Reporting

Data
Payload

Byte
Offset

Word

0x0 Component Tag CSR

0x4 Port n Error Detect CSRs

0x8 Implementation specific Port ID (byte)

0xC Logical/Transport Layer Error Detect CSR
18 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
value to occupy a FIFO entry. When an error detect bit is set, the hardware will
inform the system software of the error using its standard error reporting
mechanism. After the error has been reported, the system software may read and
clear registers as necessary to complete its error handling protocol testing.

The Port n Error Detect CSR and the five registers starting with the Port n Capture
0 CSR are also writable by software to allow software debug of the system error
recovery and thresholding mechanism.

For debug when the Physical Layer Error Capture FIFO Implemented bit is cleared,
software must write the Port n Attributes Capture CSR to set the Capture Valid Info
bit and then the packet/control symbol information in the five registers starting with
the Port n Capture 0 CSR.

For debug when the Physical Layer Error Capture FIFO Implemented bit is set,
software must write the five registers starting with the Port n Capture 0 CSR, and
then write to the Port n Error Detect CSR to update the FIFO error capture function
values for these registers. When the Port n Attributes Capture CSR is written with a
value that sets the Capture Valid Info bit, and the FIFO is not full, the FIFO error
capture function value shall occupy a FIFO entry.

Each write of a non-zero value to the Port n Error Detect CSR shall cause the Error
Rate Counter to increment if the corresponding error bit is enabled in the Port n Error
Rate Enable CSR. When a threshold is reached, the hardware will inform the system
software of the error using its standard error reporting mechanism. After the error
has been reported, the system software may read and clear registers as necessary to
complete its error handling protocol testing.

1.6 IDLE3 Port_Status Extension
The Error Management and Hot Swap functions can affect the operation of a port’s
input and output directions. Some of these conditions prevent acceptance or
transmission of any packets by a processing element, causing errors to be detected
by the link partner. In response to these error conditions, the link partner will initiate
the standard error recovery protocol as defined in Part 6. Depending on the state of
both link partners, software intervention may be necessary to resume packet
exchange.

To enable software interrogation of link partner Error Management/Hot Swap status
without using packets, the link-response port_status field is extended for IDLE3
devices as defined in Table 1-3. IDLE1 and IDLE2 devices shall not use port_status
values other than those defined in Part 6.
RapidIO.org 19

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Table 1-3. Port_status Field Definitions

Port_status
bit number

Description

0-2 Reserved

3 Input Port Enabled
The conditions defined for this bit to be set are extended as follows:
- The Port n Control CSRs “Port Lockout” bit is cleared.

4-6 Reserved

7 Output Port Enabled
The conditions defined for this bit to be set are extended as follows:
- The Port n Control CSRs “Port Lockout” bit is cleared.

8 Reserved

9 Output Port Failed.
This bit shall be asserted when at least one of the following conditions is true, otherwise
de-asserted:
- The Port n Error and Status CSRs “Output Failed-Encountered” bit is set
- The Port n Error Detect CSRs “Link Uninit Packet Discard Active” bit is set
- An implementation specific condition exists which forces continuous output port packet
discard

10-11 Reserved
20 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Chapter 2 Error Management Registers

2.1 Introduction
This section describes the Error Management Extended Features block, and adds a
number of new bits to the existing standard physical layer registers. ‘End-point only’
and ‘switch only’ register bits shall be considered reserved when the registers are
implemented on devices for which these bits are not required.

2.2 Additions to Existing Registers

2.2.1 Port n Control CSRs

The following bits are added to the RapidIO Part 6: LP-Serial Physical Layer
Specification Port n Control CSRs.

2.2.2 Port n Error and Status CSRs

The following bits are added to the RapidIO Part 6: LP-Serial Physical Layer
Specification Port n Error and Status CSRs.

Table 2-1. Bit Settings for Port n Control CSRs

Bit Name
Reset
Value

Description

28 Stop on Port
Failed-encountered
Enable

0b0 This bit is used with the Drop Packet Enable bit to force certain behavior
when the Error Rate Failed Threshold has been met or exceeded. See
Section 1.2.4 of the Part 8: Error Management Extensions for detailed
requirements.

29 Drop Packet Enable 0b0 This bit is used with the Stop on Port Failed-encountered Enable bit to
force certain behavior when the Error Rate Failed Threshold has been met
or exceeded. See Section 1.2.4 of the Part 8: Error Management
Extensions for detailed requirements.

30 Port Lockout 0b0 When this bit is cleared, the packets that may be received and issued are
controlled by the state of the Output Port Enable and Input Port Enable bits
in the Port n Control CSR.
When this bit is set, this port is stopped and is not enabled to issue or
receive any packets; the input port can still follow the training procedure
and can still send and respond to link-requests; all received packets return
packet-not-accepted control symbols to force an error condition to be
signaled by the sending device
RapidIO.org 21

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2

2.3 New Error Management Registers
This section describes the Extended Features block (EF_ID=0x0007 or
EF_ID=0x0017) that allows an external processing element to manage the error
status and reporting for a processing element. This chapter only describes registers
or register bits defined by this extended features block. All registers are 32-bits and
aligned to a 32-bit boundary.

Table 2-3 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO Extended Features register space,

Table 2-2. Bit Settings for Port n Error and Status CSRs

Bit Name
Reset
Value

Description

5 Output Packet-dropped 0b0 Output port has discarded a packet. Once set remains set until written with
a logic 1 to clear.

6 Output
Failed-encountered

0b0 Output port has encountered a failed condition, meaning that the port’s
failed error threshold has been reached in the Port n Error Rate Threshold
register. Once set remains set until written with a logic 1 to clear.

Receipt of a reset-port request shall clear this bit to 0. State machines
associated with this bit shall be reset to their power-up state.

7 Output
Degraded-encountered

0b0 Output port has encountered a degraded condition, meaning that the port’s
degraded error threshold has been reached in the Port n Error Rate
Threshold register. Once set remains set until written with a logic 1 to
clear.

Table 2-3. Extended Feature Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value1

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

read - return logic 0

write - preserve current value2

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored
22 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.4 Register Map
The register map for the error management registers shall be as specified by
Table 2-4. This register map is currently only defined for devices with up to 16
RapidIO ports, but can be extended or shortened if more or less port definitions are
required for a device. For example, a device with four RapidIO ports is only required
to use register map space corresponding to offsets [EF_PTR+0x00] to
[EF_PTR+0x13C]. Register map offset [EF_PTR+0x140] can be used for another
Extended Features block.

The registers that appear in the Error Management/Hot Swap Extensions Register
Block vary based on the functionality indicated in the Error Management/Hot Swap
Extensions Block CAR. Table 2-4 describes what registers shall be implemented
based on the value of the Error Management/Hot Swap Extensions Block CAR. The
register offsets and names are listed, along with three columns that indicate which
registers must be implemented. An “X” in the column means that the register shall
be implemented.

Table 2-4. Error Management/Hot Swap Extensions Register Requirements

Block Byte
Offset

Register Name
Error
Mgmt
Only

Hot
Swap &
Error
Mgmt

Hot
Swap
Only

G
en

er
al

0x0 Error Management/Hot Swap Extensions Block Header X X X

0x4 Error Management/Hot Swap Extensions Block CAR X X X

0x8 Logical/Transport Layer Error Detect CSR X X -

0xC Logical/Transport Layer Error Enable CSR X X -

0x10 Logical/Transport Layer High Address Capture CSR X X -

0x14 Logical/Transport Layer Address Capture CSR X X -

0x18 Logical/Transport Layer Device ID Capture CSR X X -

0x1C Logical/Transport Layer Control Capture CSR X X -

0x20 Logical/Transport Layer Dev32 Destination ID Capture CSR X X -

0x24 Logical/Transport Layer Dev32 Source ID Capture CSR X X -

0x28 Port-write Target deviceID CSR X X X

0x2C Packet Time-to-live CSR X X X

0x30 Port-write Dev32 Target deviceID CSR X X X

0x34 Port-Write Transmission Control CSR X X X

0x38-3C Reserved
RapidIO.org 23

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
P
or

t 0

0x40 Port 0 Error Detect CSR X X X

0x44 Port 0 Error Rate Enable CSR X X X

0x48 Port 0 Attributes Capture CSR X X -

0x4C Port 0 Capture 0 CSR X X -

0x50 Port 0 Capture 1 CSR X X -

0x54 Port 0 Capture 2 CSR X X -

0x58 Port 0 Capture 3 CSR X X -

0x5C Port 0 Capture 4 CSR X X -

0x60-64 Reserved

0x68 Port 0 Error Rate CSR X X -

0x6C Port 0 Error Rate Threshold CSR X X -

0x70 Port 0 Link Uninit Discard Timer CSR - X X

0x74-78 Reserved

0x7C Port 0 Error Detect FIFO CSR X X

P
or

t 1

0x80 Port 1 Error Detect CSR X X X

0x84 Port 1 Error Rate Enable CSR X X X

0x88 Port 1 Attributes Capture CSR X X -

0x8C Port 1 Capture 0 CSR X X -

0x90 Port 1 Capture 1 CSR X X -

0x94 Port 1 Capture 2 CSR X X -

0x98 Port 1 Capture 3 CSR X X -

0x9C Port 1 Capture 4 CSR X X -

0xA0-A4 Reserved

0xA8 Port 1 Error Rate CSR X X -

0xAC Port 1 Error Rate Threshold CSR X X -

0xB0 Port 1 Link Uninit Discard Timer CSR - X X

0xB4-B8 Reserved

0xBC Port 1 Error Detect FIFO CSR X X

P
or

ts
 2

-1
4

0xC0–3FC Assigned to Port 2-14 CSRs
Register implementation requirements are the same as for port 0

Table 2-4. Error Management/Hot Swap Extensions Register Requirements

Block Byte
Offset

Register Name
Error
Mgmt
Only

Hot
Swap &
Error
Mgmt

Hot
Swap
Only
24 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
P
or

t 1
5

0x400 Port 15 Error Detect CSR X X X

0x404 Port 15 Error Rate Enable CSR X X X

0x408 Port 15 Attributes Capture CSR X X -

0x40C Port 15 Capture 0 CSR X X -

0x410 Port 15 Capture 1 CSR X X -

0x414 Port 15 Capture 2 CSR X X -

0x418 Port 15 Capture 3 CSR X X -

0x41C Port 15 Capture 4 CSR X X -

0x420-424 Reserved

0x428 Port 15 Error Rate CSR X X -

0x42C Port 15 Error Rate Threshold CSR X X -

0x430 Port 15 Link Uninit Discard Timer CSR - X X

0x434-438 Reserved

0x43C Port 15 Error Detect FIFO CSR X X

Table 2-4. Error Management/Hot Swap Extensions Register Requirements

Block Byte
Offset

Register Name
Error
Mgmt
Only

Hot
Swap &
Error
Mgmt

Hot
Swap
Only
RapidIO.org 25

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5 Command and Status Registers (CSRs)
Refer to Table 2-3 for the required behavior for access to reserved registers and
register bits.

2.5.1 Error Management Extensions Block Header
(Block Offset 0x0)

This register contains the EF_PTR to the next EF_BLK and the EF_ID that
identifies this as the error management extensions block header. The use and
meaning of the bits shall be as specified in Table 2-5. The register is read-only.

2.5.2 Error Management/Hot Swap Extension Block CAR
(Block Offset 0x4)

This register indicates the supported Error Management Extension and Hot Swap
Extension functionality. The use and meaning of the bits shall be as specified in
Table 2-6. The register is read-only.

Table 2-5. Bit Settings for Error Management Extensions Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard-wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0007
or
0x0017

Devices which implement the standard Error Management Registers, with or
without Hot Swap Extensions, shall use an EF_ID value of 0x07.
Devices which only implement the Hot Swap Extensions, shall use an EF_ID
value of 0x17.

Table 2-6. Bit Settings for Error Management/Hot Swap Extension Block CAR

Bit Name Reset Value Description

0 Error Management
Extensions Not
Implemented

Implementation
Specific

Indicates whether or not Error Management Extensions functionality
(and registers) is supported.
0b0 - all registers and bit fields specific to Error Management
Extensions shall be supported.
0b1 - all registers and/or bit fields specific to Error Management
Extensions may not be supported.

1 Hot Swap Extensions
Implemented

Implementation
Specific

Indicates whether or not Hot Swap functionality and registers are
supported.
0b0 - all registers and bit fields specific to Hot Swap Extensions
support may not be supported.
0b1 - all registers and bit fields specific to Hot Swap Extensions
support shall be supported.
26 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.3 Logical/Transport Layer Error Detect CSR
(Block Offset 0x08)

This register indicates the error that was detected by the Logical or Transport logic
layer. Multiple bits may get set in the register if simultaneous errors are detected
during the same clock cycle that the errors are logged. The use and meaning of the
bits shall be as specified in Table 2-7. Unless otherwise specified, the bits in this
register are read/write.

2 Physical Layer Error
Capture FIFO
Implemented

Implementation
Specific

Indicates whether or not a FIFO for capture of multiple physical
layer events is implemented.

0b0 - all registers, bit fields and behavior specific to FIFO capture of
multiple physical layer events may not be supported

0b1 - all registers, bit fields and behavior specific to FIFO capture of
multiple physical layer events shall be supported by all ports on the
device

3 Logical/Transport Layer
Error Capture FIFO
Implemented

Implementation
Specific

Indicates whether or not a FIFO for capture of multiple
logical/transport layer events is implemented.

0b0 - all registers, bit fields and behavior specific to FIFO capture of
multiple logical/transport layer events may not be supported

0b1 - all registers, bit fields and behavior specific to FIFO capture of
multiple logical/transport layer events shall be supported

4-31 — Reserved

Table 2-7. Bit Settings for Logical/Transport Layer Error Detect CSR

Bit Name
Reset
Value

Description

0 IO error response 0b0 Received a response of ‘ERROR’ for an IO Logical Layer Request.
(end point device only)

1 Message error response 0b0 Received a response of ‘ERROR’ for an MSG Logical Layer Request.
(end point device only)

2 GSM error response 0b0 Received a response of ‘ERROR’ for a GSM Logical Layer Request.
(end point device only)

3 Message Format Error 0b0 Received MESSAGE packet data payload with an invalid size or segment
(MSG logical)
(end point device only)

4 Illegal transaction
decode

0b0 Received a supported request/response packet with undefined field values
(IO/MSG/GSM logical)
(switch or endpoint device)

5 Illegal transaction target
error

0b0 Received a packet that contained a destination ID that is not defined for this
processing element. End points with multiple ports and a built-in switch
function may not report this as an error (Transport) (optional)
(switch or end point device)

Table 2-6. Bit Settings for Error Management/Hot Swap Extension Block CAR

Bit Name Reset Value Description
RapidIO.org 27

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.4 Logical/Transport Layer Error Enable CSR
(Block Offset 0x0C)

This register contains the bits that control if an error condition locks the
Logical/Transport Layer Error Detect and Capture registers and is reported to the
system host. Without exception, bit “b” of this register controls the capture and
reporting of the error whose occurrence is indicated by bit “b” of the
Logical/Transport Layer Error Detect CSR. The use and meaning of the bits shall be
as specified in Table 2-8. Unless otherwise specified, the bits in this register are
read/write.

6 Message Request
Timeout

0b0 A required message request has not been received within the specified
timeout interval (MSG logical)
(end point device only)

7 Packet Response
Timeout

0b0 A required response has not been received within the specified time out
interval (IO/MSG/GSM logical)
(end point device only)

8 Unsolicited Response 0b0 An unsolicited/unexpected Response packet was received (IO/MSG/GSM
logical; only Maintenance response for switches)
(switch or endpoint device)

9 Unsupported Transaction 0b0 A transaction is received that is not supported in the Destination Operations
CAR (IO/MSG/GSM logical; only Maintenance port-write for switches)
(switch or endpoint device)

10-21 — Reserved

22 Lost Tick Error Status 0b0 Indicates the current status of the MECS Tick Interval CSR Lost Tick Error
Status bit.

The Lost Tick Error Status bit must be cleared by writing to the MECS Tick
Interval CSR.

If the Lost Tick Error Status bit is not defined, this bit is reserved.
(end point device only)

23 Lost TSG Sync Error
Status

0b0 Indicates the current status of the MECS Tick Interval CSR Lost TSG Sync
Error Status bit.

The Lost TSG Sync Error Status bit must be cleared by writing to the MECS
Tick Interval CSR.

If the Lost TSG Sync Error Status bit is not defined, this bit is reserved.
(end point device only)

24-31 Implementation Specific
error

0x00 An implementation specific error has occurred.
(switch or end point device)

Table 2-7. Bit Settings for Logical/Transport Layer Error Detect CSR

Bit Name
Reset
Value

Description
28 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Table 2-8. Bit Settings for Logical/Transport Layer Error Enable CSR

Bit Name
Reset
Value

Description

0 IO error response enable 0b0 Enable reporting of an IO ‘ERROR’ response. Save and lock original request
transaction information in all Logical/Transport Layer Capture CSRs.
(end point device only)

1 Message error response
enable

0b0 Enable reporting of a Message ‘ERROR’ response. Save and lock original
request transaction information in all Logical/Transport Layer Capture CSRs.
(end point device only)

2 GSM error response
enable

0b0 Enable reporting of a GSM ‘ERROR’ response. Save and lock original
request transaction capture information in all Logical/Transport Layer
Capture CSRs.
(end point device only)

3 Message Format Error
enable

0b0 Enable reporting of a MESSAGE packet data payload with an invalid size or
segment (MSG logical). Save and lock transaction capture information in
Logical/Transport Layer Device ID and Control Capture CSRs.
(end point device only)

4 Illegal transaction
decode enable

0b0 Enable reporting of a supported request/response packet with undefined field
values (IO/MSG/GSM logical). Save and lock transaction capture
information in Logical/Transport Layer Device ID and Control Capture
CSRs.
(switch or end-point device)

5 Illegal transaction target
error enable

0b0 Enable reporting of a packet that contains a destination ID that is not defined
for this processing element. Save and lock transaction capture information in
Logical/Transport Layer Device ID and Control Capture CSRs. (optional)
(switch or end point device)

6 Message Request
timeout error enable

0b0 Enable reporting of a Message Request timeout error. Save and lock
transaction capture information in Logical/Transport Layer Device ID and
Control Capture CSRs for the last Message request segment packet received.
(end point device only)

7 Packet Response
Timeout error enable

0b0 Enable reporting of a packet response timeout error. Save and lock original
request address in Logical/Transport Layer Address Capture CSRs. Save and
lock original request Destination ID in Logical/Transport Layer Device ID
Capture CSR.
(end point device only)

8 Unsolicited Response
error enable

0b0 Enable reporting of receiving an unsolicited/unexpected Response packet
(IO/MSG/GSM logical; only Maintenance responses for switches). Save and
lock transaction capture information in Logical/Transport Layer Device ID
and Control Capture CSRs.
(switch or end-point device)

9 Unsupported Transaction
error enable

0b0 Enable reporting of an unsupported transaction error. Save and lock
transaction capture information in Logical/Transport Layer Device ID and
Control Capture CSRs.
(switch or end-point device)

10-21 — Reserved

22 Lost Tick Error Enable 0b0 Enable reporting of the current status of the MECS Tick Interval CSR Lost
Tick Error Status bit. The Logical/Transport Layer Device ID and Control
Capture CSRs shall not lock when this error is detected.

If the Lost Tick Error Status bit is not defined, this bit is reserved.
(end point device only)
RapidIO.org 29

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.5 Logical/Transport Layer High Address Capture CSR
(Block Offset 0x10)

This register contains error information. It is locked when a Logical/Transport error
is detected and the corresponding enable bit is set. This register is required for end
point devices that support 66 or 50 bit addresses, and for all switch devices which
support operation with IDLE3. The use and meaning of the bits shall be as specified
in Table 2-9. Unless otherwise specified, the bits in this register are read/write.

23 Lost TSG Sync Error
Enable

0b0 Enable reporting of the MECS Tick Interval CSR Lost TSG Sync Error
Status bit. The Logical/Transport Layer Device ID and Control Capture
CSRs shall not lock when this error is detected.

If the Lost TSG Sync Error Status bit is not defined, this bit is reserved.
(end point device only)

24-31 Implementation Specific
error enable

0x00 Enable reporting of an implementation specific error has occurred. Save and
lock capture information in appropriate Logical/Transport Layer Capture
CSRs.

Table 2-9. Bit Settings for Logical/Transport Layer High Address Capture CSR

Bit Name
Reset
Value

Description

0-31 address[0-31] All 0s For switch devices, this field may capture implementation specific
information for detected logical/transport layer errors.

When an endpoint detects an error related to a Logical I/O packet, this field
may capture implementation specific information when the address size is 34
bits or less.

When an endpoint detects an error related to a Logical I/O packet and the
address size is 50 bits, bits 0 to 15 of this field may capture implementation
specific information and bits 16 to 31 of this field shall contain address bits
2-17.

When an endpoint detects an error related to a Logical I/O packet and the
address size is 66 bits, this field shall capture address bits 2-33.

For all other logical/transport layer errors, this field may contain
implementation specific information.

Table 2-8. Bit Settings for Logical/Transport Layer Error Enable CSR

Bit Name
Reset
Value

Description
30 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.6 Logical/Transport Layer Address Capture CSR
(Block Offset 0x14)

This register contains error information. It is locked when a Logical/Transport error
is detected and the corresponding enable bit is set. The use and meaning of the bits
shall be as specified in Table 2-10. Unless otherwise specified, the bits in this
register are read/write.

2.5.7 Logical/Transport Layer Device ID Capture CSR
(Block Offset 0x18)

This register contains error information. It is locked when an error is detected and
the corresponding enable bit is set. The use and meaning of the bits shall be as
specified in Table 2-11. Unless otherwise specified, the bits in this register are
read/write.

Table 2-10. Bit Settings for Logical/Transport Layer Address Capture CSR

Bit Name
Reset
Value

Description

0-28 address[32-60] All 0s When a logical/transport error is detected for a maintenance packet which has
an offset, the offset is found in the least significant 21 bits of this field.
Otherwise, when a Logical/transport layer error is detected by a switch
device, this field may contain implementation specific information.

When an endpoint detects an error with a Logical I/O transaction, this field
contains the least significant 29 bits of the address field.

When an endpoint detects and error for any other transaction type, this field
may contain implementation specific information.

29 Implementation Specific 0b0 This field may contain implementation specific information.

30-31 xamsbs 0b00 When an endpoint detects an error with a logical I/O transaction, this field
shall contain the extended address bits of the address associated with the
error (for requests, for responses if available).

For all other errors detected by an endpoint, and in switch devices, this field
may contain implementation specific information.

Table 2-11. Bit Settings for Logical/Transport Layer Device ID Capture CSR

Bit Name
Reset
Value

Description

0-7 MSB destinationID 0x00 Most significant byte of the destinationID associated with the error (Dev16
systems only)

8-15 destinationID 0x00 The destinationID associated with the error (Dev8 and Dev16 systems only)

16-23 MSB sourceID 0x00 Most significant byte of the sourceID associated with the error (Dev16
systems only)

24-31 sourceID 0x00 The sourceID associated with the error (Dev8 and Dev16 systems only)
RapidIO.org 31

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.8 Logical/Transport Layer Control Capture CSR
(Block Offset 0x1C)

This register contains error information. It is locked when a Logical/Transport error
is detected and the corresponding enable bit is set. The use and meaning of the bits
shall be as specified in Table 2-12. Unless otherwise specified, the bits in this
register are read/write.

2.5.9 Logical/Transport Layer Dev32 Destination ID Capture
CSR
(Block Offset 0x20)

This register contains error information. It is locked when a Logical/Transport error
is detected and the corresponding enable bit is set. This register shall be
implemented for devices that have bit 19 (Dev32 Support) set in the Processing
Element Features CAR. The use and meaning of the bits shall be as specified in
Table 2-13. This register is read/write.

Table 2-12. Bit Settings for Logical/Transport Layer Control Capture CSR

Bit Name
Reset
Value

Description

0-3 ftype 0x0 Format type associated with the error

4-7 ttype 0x0 Transaction type associated with the error.

If the format type does not include a ttype field, this field may contain
implementation specific information.

8-15 msg info 0x00 letter, mbox, and msgseg for the last Message request received for the
mailbox that had an error (Message errors only).

For non-Message errors, this field may contain implementation specific
information.

16-31 Implementation specific 0x0000 Implementation specific information associated with the error

Table 2-13. Bit Settings for Logical/Transport Layer Dev32 Destination ID Capture CSR

Bit Name Reset Value Description

0-31 Dev32 DestID All 0’s The Dev32 destination ID associated with the error.
32 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.10 Logical/Transport Layer Dev32 Source ID Capture CSR
(Block Offset 0x24)

This register contains error information. It is locked when a Logical/Transport error
is detected and the corresponding enable bit is set. This register shall be
implemented for devices that have bit 19 (Dev32 Support) set in the Processing
Element Features CAR. The use and meaning of the bits shall be as specified in
Table 2-14. This register is read/write.

2.5.11 Port-Write Target deviceID CSR
(Block Offset 0x28)

This register contains the target Dev8 or Dev16 deviceID to be used when a device
generates a Maintenance port-write operation to report errors to a system host. The
use and meaning of the bits shall be as specified in Table 2-15. Unless otherwise
specified, the bits in this register are read/write.

Table 2-14. Bit Settings for Logical/Transport Layer Dev32 Source ID Capture CSR

Bit Name Reset Value Description

0-31 Dev32 SrcID All 0’s The Dev32 source ID associated with the error.

Table 2-15. Bit Settings for Port-Write Target deviceID CSR

Bit Name
Reset
Value

Description

0-7 Dev16_deviceID_msb 0x00 This is the most significant byte of the port-write target deviceID (Dev16
deviceIDs only).

8-15 Dev8_deviceID 0x00 This is the port-write target Dev8 deviceID, or least significant byte of the
Dev16 deviceID.

16 Dev8_or_16 0b0 Dev8 or Dev16 deviceID size to use for a port-write

0b0 - Port-writes originated by this device shall use Dev8 deviceIDs
0b1 - Port-writes originated by this device shall use Dev16 deviceIDs

This bit field controls the deviceID size to use for a port-write when
Dev32_PW is 0.

17 Dev32_PW 0b0 This bit field shall be implemented for devices that have bit 19 (Dev32
Support) set in the Processing Element Features CAR. This bit field
controls the use of Dev32 deviceID size for a port-write

0b0 - Port-write deviceID size shall be controlled by the Dev8_or_16 field
0b1 - Port-writes originated by this device shall use the Dev32 deviceID
defined in the 2.5.13, “Port-write Dev32 Target deviceID CSR

18-31 — Reserved
RapidIO.org 33

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.12 Packet Time-to-live CSR
(Block Offset 0x2C)

The Packet Time-to-live register specifies the length of time that a packet is allowed
to exist within a switch device. The maximum value of the Time-to-live variable
(0xFFFF) shall correspond to 100 msec. +/-34%. The resolution (minimum step
size) of the Time-to-live variable shall be (maximum value of Time-to-live)/(216-1).
The reset value is all logic 0s, which disables the Time-to-live function so that a
packet never times out. This register is not required for devices without switch
functionality. The use and meaning of the bits shall be as specified in Table 2-16.
Unless otherwise specified, the bits in this register are read/write.

2.5.13 Port-write Dev32 Target deviceID CSR
(Block Offset 0x30)

This register contains the Dev32 target deviceID to be used when a device generates
a Maintenance port-write operation to report errors to a system host and the
Dev32_PW bit is set. This register shall be implemented for devices that have bit 19
(Dev32 Support) set in the Processing Element Features CAR. The use and meaning
of the bits shall be as specified in Table 2-17. Unless otherwise specified, the bits in
this register are read/write.

2.5.14 Port-Write Transmission Control CSR
(Block Offset 0x34)

The Port-Write transmission control CSR determines whether port-write
notification is enabled or disabled for the device. The use and meaning of the bits
shall be as specified in Table 2-18. Unless otherwise specified, the bits in this
register are read/write.

Table 2-16. Bit Settings for Packet Time-to-live CSR

Bit Name
Reset
Value

Description

0-15 Time-to-live value 0x0000 Maximum time that a packet is allowed to exist within a switch device

16-31 — Reserved

Table 2-17. Bit Settings for Port-Write Dev32 Target deviceID CSR

Bit Name Reset Value Description

0-31 Dev32_deviceID All 0’s The port-write Dev32 target device ID.
34 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.15 Port n Error Detect CSR
(Block Offset 0x40, 80,..., 400)

The Port n Error Detect Register indicates the physical layer errors that have been
detected by the Port n hardware since the register was last cleared. The register is
cleared by software writing the register with the data 0x0000_0000.

The use and meaning of the bits shall be as specified in Table 2-19. Unless otherwise
specified, the bits in this register are read/write.

The two right-most columns in Table 2-19 indicate which bit fields must be
implemented for Error Management Extensions and Hot Swap Extensions. An “X”
in these columns means that the bit shall be implemented for that extension.

Table 2-18. Bit Settings for Port-Write Transmission Control CSR

Bit Name Reset Value Description

0-30 — Reserved

31 Port-write Transmission
Disable

0b0 0 - Enabled events for the device shall cause port-writes to be generated
1 - Enabled events for the device shall not cause new port-writes to be
generated. Previously generated port-writes may be transmitted after this
bit is set.

Table 2-19. Bit Settings for Port n Error Detect CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap

0 Implementation specific
error

0b0 An implementation specific error has been detected X -

1 Link OK to Uninit
Transition

0b0 The link has transitioned from a link initialized to
link uninitialized state.

- X

2 Link Uninit Packet
Discard Active

0b0 The Link Uninit Discard Timer CSR period has
expired.

- X

3 Link Uninit to OK
Transition

0b0 The link has transitioned from a link uninitialized to
link initialized state.

- X

4-7 — Reserved

8 Deprecated 0b0 Deprecated X -

9 Received corrupt
control symbol

0b0 Received a control symbol with a bad CRC value

or

Received an incorrect sequence of control symbol
codewords (for example, CSE or CSEB without a
preceding CSB, or a CSB or CSEB that is not
followed by a CSE or CSEB (IDLE3)

X -

10 Received acknowledge
control symbol with
unexpected ackID

0b0 Received a packet-accepted or packet-retry control
symbol with an unexpected ackID.

"Error Recovery with ackID in PNA Enabled" is set
in the Port n Latency Optimization CSR and a
packet-not-accepted control symbol is received with
an unexpected ackID.

X -
RapidIO.org 35

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
11 Received
packet-not-accepted
control symbol

0b0 Received packet-not-accepted control symbol X -

12 Received packet with
unexpected ackID

0b0 Received packet with unexpected ackID value -
out-of-sequence ackID

X -

13 Received packet with
bad CRC

0b0 Received packet with a bad CRC value X -

14 Received packet
exceeds maximum
allowed size

0b0 Received packet that exceeds the maximum allowed
size

X -

15 Received illegal or
invalid character

0b0 Received an 8b/10b code-group that is invalid (a
code-group that does not have a 8b/10b decode given
the current running disparity) or illegal (a code-group
that is valid but whose use is not allowed by the
LP-Serial protocol). This bit may be set in
conjunction with bit 29, Delineation error. The
implementation of this bit is optional, but strongly
recommended. (IDLE1 and IDLE2)

or

Bit Interleaved Parity (BIP) check failed on at least
one lane (IDLE3)

X -

16 Received data character
in IDLE1 sequence

0b0 Received a data character in an IDLE1 sequence.
This bit may be set in conjunction with bit, 29
Delineation error. The implementation of this bit is
optional, but strongly recommended.

X -

17 Loss of descrambler
synchronization

0b0 Loss of receiver descrambler synchronization while
receiving scrambled control symbol and packet data.
This bit shall be implemented only if port n supports
descrambling of packet and control symbol data.

X -

18 Invalid Ordered
Sequence

0b0 Received an invalid ordered sequence on at least one
lane (IDLE3)

X -

19-25 — Reserved

26 Non-outstanding ackID 0b0 When there are outstanding ackIDs, a link_response
was received with an ackID that is not outstanding

X -

27 Protocol error 0b0 An unexpected control symbol was received X -

28 Deprecated 0b0 Deprecated X -

29 Delineation error 0b0 Received an 8b/10b code-group that is invalid (a
code-group that does not have a 8b/10b decode given
the current running disparity), illegal (a code-group
that is valid, but whose use is not allowed by the
LP-Serial protocol) or that is in a position in the
received code-group stream that is not allowed by the
LP-Serial protocol (IDLE1 and IDLE2)
or
Received a 64b/67b codeword whose type and !type
bit values are the same (IDLE3)

X -

30 Unsolicited
acknowledgement
control symbol

0b0 An unsolicited packet acknowledgement control
symbol was received

X -

Table 2-19. Bit Settings for Port n Error Detect CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap
36 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.16 Port n Error Rate Enable CSR
(Block Offset 0x44, 84,..., 404)

The two right-most columns of Table 2-20 indicate which bit fields must be
implemented for Error Management Extensions and Hot Swap Extensions. An “X”
in these columns means that the bit shall be implemented for that extension.

If Hot Swap Extension is supported in this register, the Hot Swap bits enable the
event notification and packet discard for the detected event.

When the Error Management Extension is supported, the Error Management bits
when set cause specific detected errors to increment the error rate counter in the Port
n Error Rate Threshold Register and capture information about the error in, and then
lock, the Port n Capture 0-4 CSRs. Without exception, bit “b” of this register
controls the capture and counting of the detected error whose occurrence is indicated
by bit “b” of the Port n Error Detect CSR.

The use and meaning of the bits shall be as specified in Table 2-20. Unless otherwise
specified, the bits in this register are read/write.

31 Link timeout 0b0 A packet acknowledgement or link-response control
symbol was not received within the specified timeout
interval

X -

Table 2-20. Bit Settings for Port n Error Rate Enable CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap

0 Implementation specific
error enable

0b0 Enable error rate counting of implementation specific
errors

X -

1 Link OK to Uninit
Transition Enable

0b0 Enable event notification for when the link has
transitioned from a link initialized to link uninitialized
state.

- X

2 Link Uninit Packet
Discard Active Enable

0b0 Enable event notification for Link Uninit Packet
Discard Timer events.

- X

3 Link Uninit to OK
Transition Enable

0b0 Enable event notification for when the link has
transitioned from a link uninitialized to link initialized
state.

- X

4-7 — Reserved

8 Deprecated 0b0 Deprecated X -

9 Received corrupt
control symbol enable

0b0 Enable error rate counting of a corrupt control symbol X -

Table 2-19. Bit Settings for Port n Error Detect CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap
RapidIO.org 37

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
10 Received acknowledge
control symbol with
unexpected ackID
enable

0b0 Enable error rate counting of:

- packet-accepted or packet-retry control symbol is
received with an unexpected ackID

- If "Error Recovery with ackID in PNA Enabled" is
set in the Port n Latency Optimization CSR and a
packet-not-accepted control symbol is received with
an unexpected ackID

X -

11 Received
packet-not-accepted
control symbol enable

0b0 Enable error rate counting of received
packet-not-accepted control symbols.

X -

12 Received packet with
unexpected ackID
enable

0b0 Enable error rate counting of packet with unexpected
ackID value - out-of-sequence ackID

X -

13 Received packet with
bad CRC enable

0b0 Enable error rate counting of packet with a bad CRC
value

X -

14 Received packet
exceeds maximum
allowed size enable

0b0 Enable error rate counting of packet that exceeds the
maximum allowed size

X -

15 Received illegal or
invalid character enable

0b0 Enable error rate counting of reception of illegal or
invalid characters (IDLE1 or IDLE2), or failed BIP
check (IDLE3). This bit shall be implemented only if
bit 15 (Received illegal or invalid character) of the
Port n Error Detect CSR is implemented.

X -

16 Received data character
in an IDLE1 sequence
enable

0b0 Enable error rate counting of reception of a data
character in an IDLE1 sequence. This bit shall be
implemented only if bit 16 (Received data character in
IDLE1 sequence) of the Port n Error Detect CSR is
implemented.

X -

17 Loss of descrambler
synchronization enable

0b0 Enable error rate counting of loss of receiver
descrambler synchronization when scrambled control
symbol and packet data is being received. This bit
shall be implemented only if bit 17 (Loss of
descrambler synchronization) of the Port n Error
Detect CSR is implemented.

X -

18 Invalid ordered
sequence enable

0b0 Enable error rate counting of invalid ordered sequence
reception for all enabled lanes. This bit shall be
implemented only if bit 18 (Invalid ordered sequence)
of the Port n Error Detect CSR is implemented.
(IDLE3)

X -

19-25 — Reserved

26 Non-outstanding ackID
enable

0b0 Enable error rate counting of link-responses received
with an ackID that is not outstanding when there are
outstanding ackIDs

X -

27 Protocol error enable 0b0 Enable error rate counting of received unexpected
control symbol symbols

X -

28 Deprecated 0b0 Deprecated X -

Table 2-20. Bit Settings for Port n Error Rate Enable CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap
38 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
29 Delineation error enable 0b0 Enable error rate counting of:- Reception of an 8b/10b
code-group that is invalid, illegal, or is in a position in
the received code-group stream that is not allowed by
the LP-Serial protocol (IDLE1 and IDLE2)
- Reception of 64b/67b codeword whose type and
!type bits are the same (IDLE3)

X -

30 Unsolicited
acknowledgement
control symbol enable

0b0 Enable error rate counting of received unsolicited
packet acknowledgement control symbols

X -

31 Link timeout enable 0b0 Enable error rate counting of link timeout errors X -

Table 2-20. Bit Settings for Port n Error Rate Enable CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap
RapidIO.org 39

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.17 Port n Attributes Capture CSR
(Block Offset 0x48, 88,..., 408)

This register indicates the type of information captured in the Port n Capture 0-4
CSRs. If multiple errors are detected during the same clock cycle, one of the
detected errors shall be selected for capture and the captured error shall be indicated
in the Error type field. When multiple errors are detected during the same clock
cycle, the error selected for capture is implementation specific.

The use and meaning of the bits shall be as specified in Table 2-21. Bits 0-30 of this
register shall be valid and locked when the Capture valid info bit is set. Unless
otherwise specified, the bits in this register are read/write.

Table 2-21. Bit Settings for Port n Attributes Capture CSRs

Bit Name
Reset
Value

Description

0-2 Info type 0b000 Type of information logged

0b000 - packet
0b001 - reserved
0b010 - Control Symbol 24
0b011 - Control Symbol 48
0b100 - implementation specific (capture register contents are
implementation specific)
0b101 - Control Symbol 64
0b110 - deprecated
0b111 - reserved

3-7 Error type 0x00 The encoded value of the bit in the Port n Error Detect CSR that
describes the error captured in the Port n Capture 0-4 CSRs.

8-27 Implementation
Dependent

All 0s Implementation specific error information.
If port n is operating with IDLE1 or IDLE2, the following should
be implemented:

• If the Info_type is “packet”, the “control” bits of packet
characters 0-15 should be captured in bits 8-23, respectively.

• If the Info_type is “Control Symbol 24”, the “control” bits of
delimited control symbol characters 0-3 should be captured in
bits 8-11, respectively.

• If the Info_type is “Control Symbol 48 symbol”, the “control”
bits of delimited control symbol characters 0-7 should be
captured in bits 8-15, respectively.

If port n is operating with IDLE3, the following should be
implemented:

• The inverted, !type and type bits of the codewords that are
captured in the Port n Capture 0-4 CSRs should be captured
here.

28-30 — Reserved

31 Capture valid info 0b0 This bit is set by hardware to indicate that the Port n Capture 0-4
CSRs and the other bits in this register contain valid information
and are locked. This bit is cleared and the Port n Capture 0-4 CSRs
and the other bits in this register are unlocked when software
writes 0b0 to the bit.
40 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.18 Port n Capture 0 CSR
(Block Offset 0x4C, 8C,..., 40C)

The use and meaning of the bits shall be as specified in Table 2-22. The contents of
the register are valid and locked when the Capture Valid Info bit of the Port n
Attributes Capture CSR is set (0b1). Unless otherwise specified, the bits in this
register are read/write.

2.5.19 Port n Capture 1 CSR
(Block Offset 0x50, 90,..., 410)

The use and meaning of the bits shall be as specified in Table 2-23. The contents of
the register are valid and locked when the Capture Valid Info bit of the Port n
Attributes Capture CSR is set (0b1). Unless otherwise specified, the bits in this
register are read/write.

Table 2-22. Bit Settings for Port n Capture 0 CSRs

Bit Name
Reset
Value

Description

0-31 Capture 0 All 0s If the info_type field of the Port n Attributes Capture CSR is
“Control Symbol 24”, “Control Symbol 48” or “Control Symbol
64”,

Delimited Control Symbol 24, Delimitted Control Symbol 48
bytes 0-3, or Control Symbol 64 bytes 0-3.

If the info_type field of the Port n Attributes Capture CSR is
“packet”, packet bytes 0-3.
Otherwise, implementation specific.

Table 2-23. Bit Settings for Port n Capture 1 CSRs

Bit Name
Reset
Value

Description

0-31 Capture 1 All 0s If the info_type field of the Port n Attributes Capture CSR is
“Control Symbol 48” or “Control Symbol 64”, delimited control
symbol Bytes 4-7.
If the info_type field of the Port n Attributes Capture CSR is
“packet”, packet Bytes 4-7.
Otherwise, implementation specific.
RapidIO.org 41

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.20 Port n Capture 2 CSR
(Block Offset 0x54, 94,..., 414)

The use and meaning of the bits shall be as specified in Table 2-24. The contents of
the register are valid and locked when the Capture Valid Info bit of the Port n
Attributes Capture CSR is set (0b1). Unless otherwise specified, the bits in this
register are read/write.

2.5.21 Port n Capture 3 CSR
(Block Offset 0x58, 98,..., 418)

The use and meaning of the bits shall be as specified in Table 2-25. The contents of
the register are valid and locked when the Capture Valid Info bit of the Port n
Attributes Capture CSR is set (0b1). Unless otherwise specified, the bits in this
register are read/write.

Table 2-24. Bit Settings for Port n Capture 2 CSRs

Bit Name
Reset
Value

Description

0-31 Capture 2 All 0s If the info_type field of the Port n Attributes Capture CSR is
“packet”, packet Bytes 8-11.
Otherwise, implementation specific.

Table 2-25. Bit Settings for Port n Capture 3 CSRs

Bit Name
Reset
Value

Description

0-31 Capture 3 All 0s If the info_type field of the Port n Attributes Capture CSR is
“packet”, packet Bytes 12-15.
Otherwise, implementation specific.
42 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.22 Port n Capture 4 CSR
(Block Offset 0x5C, 9C,..., 41C)

The use and meaning of the bits shall be as specified in Table 2-26. This register
shall be implemented for devices that have bit 19 (Dev32 Support) set in the
Processing Element Features CAR. The contents of the register are valid and locked
when the Capture Valid Info bit of the Port n Attributes Capture CSR is set. Unless
otherwise specified, the bits in this register are read/write.

Table 2-26. Bit Settings for Port n Capture 4 CSRs

Bit Name
Reset
Value

Description

0-31 Capture 4 All 0s If the info_type field of the Port n Attributes Capture CSR is
“packet”, packet Bytes 16-19.
Otherwise, implementation specific.
RapidIO.org 43

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.23 Port n Error Rate CSR
(Block Offset 0x68, A8,..., 428)

This register is used in conjunction with the Port n Error Rate Threshold register to
monitor and control the reporting of Port n physical layer errors. The use and
meaning of the bits shall be as specified in Table 2-27. Unless otherwise specified,
the bits in this register are read/write.

Table 2-27. Bit Settings for Port n Error Rate CSRs

Bit Name
Reset
Value

Description

0-7 Error Rate Bias 0x80 This field specifies the rate at which the Error Rate Counter is decremented
(the error rate bias value)
0x00 - do not decrement the error rate counter
0x01 - decrement every 1ms (+/-34%)
0x02 - decrement every 10ms (+/-34%)
0x04 - decrement every 100ms (+/-34%)
0x08 - decrement every 1s (+/-34%)
0x10 - decrement every 10s (+/-34%)
0x20 - decrement every 100s (+/-34%)
0x40 - decrement every 1000s (+/-34%)
0x80 - decrement every 10000s (+/-34%)

other values are reserved

8-13 — Reserved

14-15 Error Rate Recovery 0b00 The value of this field limits the incrementing of the Error Rate Counter
above the failed threshold trigger.

0b00 - only count 2 errors above
0b01 - only count 4 errors above
0b10 - only count 16 error above
0b11 - do not limit incrementing the error rate count

16-23 Peak Error Rate 0x00 This field contains the peak value attained by the error rate counter since the
field was last reset.

24-31 Error Rate Counter 0x00 This field contains a count of the number of physical layer errors that have
been detected by the port, decremented by the Error Rate Bias mechanism,
to create an indication of the physical layer error rate.

Receipt of a reset-port request shall clear this field to 0x00. State machines
associated with this field shall be reset to their power-up state.
44 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.24 Port n Error Rate Threshold CSR
(Block Offset 0x6C, AC, ..., 42C)

This register controls the reporting of the link status to the system host. The use and
meaning of the bits shall be as specified in Table 2-28. Unless otherwise specified,
the bits in this register are read/write.

Table 2-28. Bit Settings for Port n Error Rate Threshold CSRs

Bit Name
Reset
Value

Description

0-7 Error Rate Failed
Threshold Trigger

0xFF This field contains the threshold value for reporting an error condition due
to a possible broken link.

0x00 - Disable the Error Rate Failed Threshold Trigger
0x01 - Set the error reporting threshold to 1
0x02 - Set the error reporting threshold to 2
...
0xFF - Set the error reporting threshold to 255

8-15 Error Rate Degraded
Threshold Trigger

0xFF This field contains the threshold value for reporting an error condition due
to a degrading link.

0x00 - Disable the Error Rate Degraded Threshold Trigger
0x01 - Set the error reporting threshold to 1
0x02 - Set the error reporting threshold to 2
...
0xFF - Set the error reporting threshold to 255

16-31 — Reserved
RapidIO.org 45

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2.5.25 Port n Link Uninit Discard Timer CSR
(Block Offset 0x70, 0xB0, ..., 0x430)

The maximum value of the Link Uninit Timeout variable (0xFFFFFF) shall
correspond to 6 to 12 seconds. The resolution of the Link Uninit Timeout variable
shall be (maximum Link Uninit Timeout interval)/(224-1). The use and meaning of
the bits shall be as specified in Table 2-29. Unless otherwise specified, the bits in
this register shall be readable and writable.

2.5.26 Port n FIFO Error Detect CSR
(Block Offset 0x7C, BC,..., 43C)

The Port n FIFO Error Detect Register shall be implemented when bit 2 of the Error
Management/Hot Swap Extension Block CAR is set. The behavior of the register
shall be as defined in Section 1.2.7 on page 14.

The use and meaning of the bits shall be as specified in Table 2-30. Unless otherwise
specified, the bits in this register are read/write.

The two right-most columns in Table 2-30 indicate which bit fields must be
implemented for Error Management Extensions and Hot Swap Extensions. An “X”
in these columns means that the bit shall be implemented for that extension.

Table 2-29. Bit Settings for Port n Link Uninit Discard Timer CSRs

Bit Name Reset Value Description

0-23 Link Uninit Timeout 0x000000 On IDLE1 and IDLE2 links, this timer shall start counting when
link_initialized is deasserted, and shall continue counting until
link_initialized is asserted. On IDLE3 links this timer shall start
when at least one of link_initialized, receive_enable, or
transmit_enable is deasserted, and shall continue counting until
link_initialized, receive_enable and transmit enable are all asserted.
When this timer expires, all packets directed to this port from inside
the device shall be discarded, and a “Link Uninit Packet Discard
Active” event shall be detected.
Packet discard shall occur until the “Link Uninit Packet Discard
Active” status bit is cleared.
The Link Uninit Discard Timer shall be disabled when Link Uninit
Timeout is 0.

24-31 — Reserved

Table 2-30. Bit Settings for Port n FIFO Error Detect CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap

0 Implementation specific
error

0b0 An implementation specific error has been detected X -

1 Link OK to Uninit
Transition

0b0 The link has transitioned from a link initialized to
link uninitialized state.

- X
46 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
2 Link Uninit Packet
Discard Active

0b0 The Link Uninit Discard Timer CSR period has
expired.

- X

3 Link Uninit to OK
Transition

0b0 The link has transitioned from a link uninitialized to
link initialized state.

- X

4-7 — Reserved

8 Deprecated 0b0 Deprecated X -

9 Received corrupt
control symbol

0b0 Received a control symbol with a bad CRC value

or

Received an incorrect sequence of control symbol
codewords (for example, CSE or CSEB without a
preceding CSB, or a CSB or CSEB that is not
followed by a CSE or CSEB (IDLE3)

X -

10 Received acknowledge
control symbol with
unexpected ackID

0b0 Received a packet-accepted or packet-retry control
symbol with an unexpected ackID.

"Error Recovery with ackID in PNA Enabled" is set
in the Port n Latency Optimization CSR and a
packet-not-accepted control symbol is received with
an unexpected ackID.

X -

11 Received
packet-not-accepted
control symbol

0b0 Received packet-not-accepted control symbol X -

12 Received packet with
unexpected ackID

0b0 Received packet with unexpected ackID value -
out-of-sequence ackID

X -

13 Received packet with
bad CRC

0b0 Received packet with a bad CRC value X -

14 Received packet
exceeds maximum
allowed size

0b0 Received packet that exceeds the maximum allowed
size

X -

15 Received illegal or
invalid character

0b0 Received an 8b/10b code-group that is invalid (a
code-group that does not have a 8b/10b decode given
the current running disparity) or illegal (a code-group
that is valid but whose use is not allowed by the
LP-Serial protocol). This bit may be set in
conjunction with bit 29, Delineation error. The
implementation of this bit is optional, but strongly
recommended. (IDLE1 and IDLE2)

or

Bit Interleaved Parity (BIP) check failed on at least
one lane (IDLE3)

X -

16 Received data character
in IDLE1 sequence

0b0 Received a data character in an IDLE1 sequence.
This bit may be set in conjunction with bit, 29
Delineation error. The implementation of this bit is
optional, but strongly recommended.

X -

17 Loss of descrambler
synchronization

0b0 Loss of receiver descrambler synchronization while
receiving scrambled control symbol and packet data.
This bit shall be implemented only if port n supports
descrambling of packet and control symbol data.

X -

18 Invalid Ordered
Sequence

0b0 Received an invalid ordered sequence on at least one
lane (IDLE3)

X -

19-25 — Reserved

Table 2-30. Bit Settings for Port n FIFO Error Detect CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap
RapidIO.org 47

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
26 Non-outstanding ackID 0b0 When there are outstanding ackIDs, a link_response
was received with an ackID that is not outstanding

X -

27 Protocol error 0b0 An unexpected control symbol was received X -

28 Deprecated 0b0 Deprecated X -

29 Delineation error 0b0 Received an 8b/10b code-group that is invalid (a
code-group that does not have a 8b/10b decode given
the current running disparity), illegal (a code-group
that is valid, but whose use is not allowed by the
LP-Serial protocol) or that is in a position in the
received code-group stream that is not allowed by the
LP-Serial protocol (IDLE1 and IDLE2)
or
Received a 64b/67b codeword whose type and !type
bit values are the same (IDLE3)

X -

30 Unsolicited
acknowledgement
control symbol

0b0 An unsolicited packet acknowledgement control
symbol was received

X -

31 Link timeout 0b0 A packet acknowledgement or link-response control
symbol was not received within the specified timeout
interval

X -

Table 2-30. Bit Settings for Port n FIFO Error Detect CSRs

Bit Name
Reset
Value

Description
Error
Mgmt

Hot
Swap
48 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Annex A Error Management Discussion
(Informative)

A.1 Introduction
This section is intended to provide useful information/background on the application
of the error management capabilities. This section is a guideline, not part of the
specification.

A.2 Limitations of Error Management Discussion
The RapidIO hardware that implements the Error Management extensions is able to
log physical layer errors and errors that occur at a higher level. Some error scenarios
require no software intervention and recovery procedures are done totally by the
hardware.

Some error scenarios detected require fault management software for recovery to be
successful. For example, some types of logical layer errors on a Read or Write
operation may be recoverable by killing the software process using the affected
memory space and removing the memory space from the available system resource
pool. It may also be possible for software to retry the operation, possibly through a
different path in the switch fabric. Since such fault management software is typically
tightly coupled to a particular system and/or implementation, it is considered outside
of the scope of this specification.

Another area of fault recovery that requires fault management software to be
implemented is correcting of system state after an error during an atomic operation.
The swap style Atomic operations are possibly recoverable through software and
require software convention to uniquely identify attempts to take locks. For
example, if the request is lost and times out, software can examine the current lock
value to determine if the request or the associated response was the transaction that
was lost in the switch fabric. For all other Atomic operations (such as the Atomic set
operation), it is impossible to correct the system state in the presence of a ‘lost
packet’ type of error.

The use of RapidIO message packets relies on the use of higher layer protocols for
error management. Since end points that communicate via messaging are typically
running a variety of higher layer protocols, error reporting of both request and
response timeouts is done locally by the message queue management controller.
RapidIO.org 49

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Note that side effect errors can occur, for example, ERROR responses or RETRY
responses during an active (partially completed) message, which may complicate
the recovery procedure. The recovery strategies for messages lost in this manner are
outside of the scope of this specification.

Globally Shared Memory systems that encounter a logical or transport layer error
are typically not recoverable by any mechanism as this usually means that the
processor caches are no longer coherent with the main memory system. Historically,
recovery from such errors requires a complete reboot of the machine after the
component that caused the error is repaired or replaced.

A.3 Hot-insertion/extraction Discussion
Hot-insertion can be regarded as an error condition in which a new part of the system
is detected, therefore, hot-insertion of a Field Replaceable Unit (FRU) can be
handled utilizing the above described mechanisms. This section describes two
approaches for hot insertion. The first generally applies to high availability systems,
or systems where FRUs need to brought into the system in a controlled manner. The
second generally applies to systems where availability is less of a concern, for
example, a trusted system or a system without a system host.

At system boot time, the system host identifies all of the unattached links in the
machine through system discovery and puts them in a locked mode, whereby all
incoming packets are to be rejected, leaving the drivers and receivers enabled. This
is done by setting the Discovered bit in the Port General Control CSR and the Port
Lockout bit in the Port n Control CSR. Note that whenever an FRU is removed, the
port lockout bit should be used to ensure that whatever new FRU is inserted cannot
access the system until the system host allows it. When a FRU is hot-inserted
connecting to a switch device, the now connected link will automatically start the
training sequence. When training is complete (the Port OK bit in the Port n Error and
Status CSR is now set), the locked port generates a Maintenance port-write
operation to notify the system host of the new connection, and sets the Port-write
Pending bit.

On receipt of the port-write, the system host is responsible for bringing the inserted
FRU into the system in a controlled manner. The system host can communicate with
the inserted FRU using Maintenance operations after clearing all error conditions, if
any, clearing the Port Lockout bit and clearing the Output and Input Port Enable bits
in the Port n Control CSR. This procedure allows the system host to access the
inserted FRU safely, without exposing itself to incorrect behavior by the inserted
FRU.

In order to issue Maintenance operations to the inserted FRU, the system host must
first make sure that the ackID values for both ends are consistent. Since the inserted
FRU has just completed a power-up reset sequence, both it’s transmit and receive
ackID values are the reset value of 0x00. The system host can set the switch device’s
50 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
transmit and receive ackID values to also be 0x00 through the Port n Local ackID
Status CSR if they are not already in that state, and can then issue packets normally.

The second method for hot insertion would allow the replaced FRU to bring itself
into the system, which is necessary for a system in which the FRU is the system host
itself. In this approach, the Port Lockout bit is not set and instead the Output and
Input Port Enable bits are set for any unconnected port, allowing inserted FRUs free
access to the system without reliance on a system host. Also, a port-write operation
is not generated when the training sequence completes and the link is active, so a
host is not notified of the event. However, this method leaves the system vulnerable
to corruption from a misbehaving hot-inserted FRU.

As with the first case, the inserted FRU must make the ackID values for both link
partners match in order to begin sending packets. In order to accomplish this, the
inserted FRU may send a reset-port request to reinitialize the connected port. If the
connected port does not support the reset-port request, the inserted FRU may
recover the link by generating a link-request/link-status to the attached device to
obtain it’s expected receiver value using the Port n Link Maintenance Request and
Response CSRs. It can then set its transmit ackID value to match. Next, the inserted
FRU generates a Maintenance write operation to set the attached device’s Port n
Local ackID Status CSR to set the transmit ackID value to match the receive ackID
value in the system host. Upon receipt of the maintenance write, the attached device
sets it’s transmit ackID value as instructed, and generates the maintenance response
using the new value. Packet transmission can now proceed normally.

Hot extraction from a port’s point of view behaves identically to a very rapidly
failing link and therefore can utilize the above described error reporting mechanism.
Hot extraction is ideally done in a controlled fashion by taking the FRU to be
removed out of the system as a usable resource through the system management
software so that extraction does not cause switch fabric congestion or result in a loss
of data. Note that the Port n Link Uninit Discard Timer CSR can be used to prevent
congestion in the case of an FRU removal which is not coordinated by the system
host.

The required mechanical aspects of hot-insertion and hot-extraction are not
addressed in this specification.

A.4 Port-write Discussion
The error management specification includes only one destination for port-write
operations, while designers of reliable systems would assume that two is the
minimum number. This section explains the rationale for only having one port-write
destination.

It is assumed that in the event of an error on a link that both ends of the link will see
the error. Thus, there are two parties who can be reporting on any error. In the case
that the sole link between an end point and a switch fails completely, the switch is
RapidIO.org 51

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
expected to see and report the error. When one of a set of redundant links between
an end point and a switch device fails, it is expected that the switch and possibly the
end point will report the failure.

When a link between two switches fails, it is assumed that there are multiple paths
to the controlling entity available for the port-write to travel. The switches will be
able to send at least one, and possibly two, reports to the system host. It is assumed
that it is possible to set up a switch’s routing parameters such that the traffic to the
system host will follow separate paths from each switch.

In some reliable systems, the system host is implemented as multiple redundant
subsystems. It is assumed in RapidIO that only one subsystem is actually in control
at any one time, and so should be the recipient of all port-writes. If the subsystem
that should be in control is detected to be insane, it is the responsibility of the rest of
the control subsystem to change the destination for port-writes to be the new
subsystem that is in control.

A.5 Physical Layer Fatal Error Recovery Discussion
Recovery from a fatal error under software control at the physical layer may be
possible under certain circumstances. An example of this would be if the transmitter
and receiver have lost synchronization of their ackIDs. This could occur if one end
of the link experienced a spurious reset. In this case a loss of packets may occur as
there may be outstanding unacknowledged packets between the transmitter and the
receiver.

Such an event would cause an error to be detected given the appropriate initial
conditions at the transmitter, and, eventually a port-write to the system host to be
generated if the system is properly configured:

• The reset state of the Input Port Enable bit in the Port n Control CSR set to
disabled throughout the system.

• All defined errors in the Port n Error Detect CSRs are enabled and will
increment the error rate counter throughout the system.

If a device experiences a reset event, numerous errors will be detected by the
transmitter over time, and eventually an error threshold is reached as described in
Section 1.2.2, “Error Reporting Thresholds”, and the system host is notified as
described in Section 1.4, “System Software Notification of Error”. The most likely
errors that will be detected are bits 12 (Received packet-not-accepted control
symbol) and 26 (Non-outstanding ackID) in the Port n Error Detect CSRs, but others
could be encountered depending upon the state of the link at the time of the reset
event.

Re-synchronizing the ackIDs must be done from the transmitter side as it is not
possible to communicate with the receiver with maintenance transactions in this
situation. Re-synchronizing the ackIDs can be done by sending a reset-port request
52 RapidIO.org

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
to those devices which support it. ackID re-synchronization can also be done by
resetting some of the physical layer state by writing the Port n Local ackID Status
CSR with the appropriate ackID values. It may be necessary to have the transmitter
drop outstanding packets using that CSR as well, depending upon the situation. It
may not be desirable, or it might not be possible, to resend the packets, depending
upon the state of the overall system and the transmitter implementation.

Therefore, the following sequence of events occur:

1. The system is configured as described above and is operating.

2. The receiver of a transmitter/receiver pair experiences a reset.

3. The transmitter enters error recovery mode and attempts to re-train the link.

4. Eventually the receiver comes back and link re-training completes.

5. The transmitter starts the error recovery sequence and begins to encounter
large numbers of errors due to a bad ackID for a link-response (which may
immediately cause a port-write transaction to be sent to the system host to
report the condition) or having all packets receive packet-not-accepted
control symbols. As noted earlier, other errors may also be detected.

6. At some point, an error threshold is reached and the system host is sent a
port-write maintenance transaction to report the condition, if one has not
already been sent.

7. The system host cleans up the machine using reset-port requests and/or
maintenance transactions, including resetting ackIDs in the transmitter and
rediscovering and reconfiguring the lost portion of the machine. This may be
a very complex and time-consuming task.

Note that it may be useful to implement resetting the ackIDs and restarting the link
in hardware for lab debug or for applications where frequent resets are expected and
software intervention is not required. This could leverage the standard port-reset
request function.
RapidIO.org 53

RapidIO Part 8: Error Management/Hot Swap Extensions Specification 3.2
Blank page
54 RapidIO.org

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations
used in this book.

Degraded threshold. Bits 8-15 of the Port n Error Rate Threshold
CSR. An application-specific level that indicates an
unacceptable error rate resulting in degraded throughput,
when equal to the error rate count.

Failed threshold. Bits 0-7 of the Port n Error Rate Threshold CSR. An
application-specific level that indicates an error rate due to a
broken link, when equal to the error rate count.

Hot-insertion. Hot-insertion is the insertion of a processing element
into a powered-up system.

Hot-extraction. Hot-extraction is the removal of a processing element
from a powered-up system.

Logical/Transport error. A logical/transport error is one that cannot
be resolved using the defined transmission error recovery
sequence, results in permanent loss of data or causes system
corruption. Recovery may possible under software control.

Non-reporting processing element. A non-reporting processing
element depends upon an attached device (usually a switch)
to report its logged errors to the system host on its behalf.

Operation. A set of transactions between end point devices in a
RapidIO system (requests and associated responses) such as a
read or a write.

Ownership. A processing element has the only valid copy of a
coherence granule and is responsible for returning it to home
memory.

Physical error. A physical error occurs only in the physical layer.

D

F

H

KL

N

O

P

RapidIO.org

Port healing. The process whereby software resets the error rate
count, or allows it to decrement as required by the error rate
bias field of the Port n Error Rate CSR.

Read operation. An operation used to obtain a globally shared copy
of a coherence granule.

Reporting processing element. A reporting processing element is
capable of reporting its logged errors to the system host.

Switch processing element. One of three processing elements, a
switch processing element, or switch, is capable of logging
and reporting errors to the host system.

Transmission error. A transmission error is one that can be resolved
using the defined transmission error recovery sequence,
results in no permanent loss of data and does not cause system
corruption. Recovery may also be possible under software
control using mechanisms outside of the scope of this
specification.

R

S

T

RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 9: Flow Control Logical Layer

Extensions Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

1.0 First release 06/18/2003

1.3 No technical changes, revision changed for consistency with other specifications
Converted to ISO-friendly templates

02/23/2005

2.0 Technical changes: new features showing 05-07-00001.003 06/14/2007

2.1 No technical changes 07/09/2012

2.2 Technical changes: errata showing 10-08-00000.003 05/05/2011

3.0 Changed RTA contact information.
Technical changes:
Addition of references to Dev32 in packet format descriptions.

10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Chapter 1 Flow Control Overview

1.1 Congestion Management .. 9
1.1.1 Introduction... 9
1.1.2 Requirements .. 10
1.1.3 Problem Illustration .. 10
1.2 Flow Arbitration ... 12
1.2.1 Fixed / Static Resource Allocation ... 13
1.2.2 Dynamic Resource Allocation Protocol ... 13

Chapter 2 Logical Layer Flow Control Operation

2.1 Fabric Link Congestion .. 15
2.2 Flow Arbitration ... 15
2.2.1 Arbitration Protocol .. 16
2.2.2 Number Of Outstanding Requests .. 18
2.3 Flow Control Operation .. 19
2.4 Physical Layer Requirements ... 20
2.4.1 Fabric Topology.. 20
2.4.2 Flow Control Transaction Transmission... 20
2.4.2.1 Orphaned XOFF Mechanism.. 21
2.4.2.2 Controlled Flow List... 21
2.4.2.3 XOFF/XON Counters... 22
2.4.3 Priority to Transaction Request Flow Mapping.. 22
2.4.4 Flow Control Transaction Ordering Rules.. 23
2.4.5 End Point Congestion Management Rules ... 23
2.4.6 Switch Congestion Management Rules .. 24
2.4.7 Endpoint Rules for the Arbitration Protocol... 24
2.4.8 Abnormal De-allocation of Resources.. 25

Chapter 3 Packet Format Descriptions

3.1 Introduction... 27
3.2 Logical Layer Packet Format.. 27
3.3 Flow Arbitration Message Fields (FAM) ... 29
3.4 Transport and Physical Layer Packet Format ... 29

Chapter 4 Logical Layer Flow Control Extensions Register Bits

4.1 Introduction... 31
4.2 Capability Registers (CARs) .. 31
4.2.1 Processing Elements Features CAR ... 31
RapidIO.org 3

Table of Contents

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
4.2.2 Port n Control CSR... 32

Annex A Flow Control Examples (Informative)

A.1 Congestion Detection and Remediation ... 33
A.2 Orphaned XOFF Mechanism Description .. 34
A.3 Discussion on Flow Arbitration.. 35
4 RapidIO.org

List of Figures

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
1-1 Interconnect Fabric Congestion Example...11
2-1 Single PDU Transfer Scenario..16
2-2 Multi-PDU Transfer Scenario...17
2-3 Multi-PDU scenario with receiver based de-allocation scheme.....................................18
2-4 Pipelined Requests ..19
2-5 Flow Control Operation ..20
3-1 Type 7 Packet Bit Stream Logical Layer Format ...28
3-2 LP-Serial Flow Control Packet ...30
RapidIO.org 5

List of Figures

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Blank page
6 RapidIO.org

List of Tables

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
2-1 Prio field to flowID Mapping ...23
3-1 Specific Field Definitions and Encodings for Type 7 Packets28
3-2 Flow Arbitration Protocol Commands..29
4-1 Bit Settings for Processing Elements Features CAR ..31
4-2 Bit Settings for Port n Control CSR..32
RapidIO.org 7

List of Tables

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Blank Page
8 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Chapter 1 Flow Control Overview
RapidIO transacts operations in “flows”. A flow is defined as the nexus of a source,
a destination, and a physical channel. The physical channel is a virtual channel
and/or a priority within a virtual channel. Since a large number of simultaneous
connections can exist within a fabric, resources within the fabric and at the endpoints
can be a constraint. The protocols defined in this specification permit the
management of resources on a flow basis.

The protocol consists of two functions, congestion management and flow
arbitration. Congestion management may be implemented by endpoints or switches
independent of the flow arbitration protocol. The flow arbitration protocol only
applies to endpoints. Implementation of this specification is optional.

1.1 Congestion Management

1.1.1 Introduction

A switch fabric based system can encounter several types of congestion,
differentiated by the duration of the event:

• Ultra short term

• Short term

• Medium term

• Long term

Congestion can be detected inside a switch, at the connections between the switch,
and other switches and end points. Conceptually, the congestion is detected at an
output port that is trying to transmit data to the connected device, but is receiving
more information than it is able to transmit. This excess data can possibly “pile up”
until the switch is out of storage capacity, and then the congestion spreads to other
devices that are connected to the switch’s inputs, and so on. Therefore, contention
for a particular connection in the fabric can affect the ability of the fabric to transmit
data unrelated to the contested connection. This is highly undesirable behavior for
many applications.

The length of time that the congestion lasts determines the magnitude of the effect
the congestion has upon the system overall.

Ultra short term congestion events are characterized as lasting a very small length of
RapidIO.org 9

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
time, perhaps up to 500 or so nanoseconds. In a RapidIO type system these events
are adequately handled by a combination of buffering within the devices on either
end of a link and the retry based link layer mechanism defined in the RapidIO Part
4: 8/16 LP-LVDS Physical Layer and RapidIO Part 6: 1x/4x LP-Serial Physical
Layer Specifications. This combination adds “elasticity” to each link in the system.
The impact of ultra short term events on the overall system is minor, if noticeable at
all.

Short term congestion events last much longer than ultra short term events, lasting
up into the dozens or hundreds of microseconds. These events can be highly
disruptive to the performance of the fabric (and the system overall), in both
aggregate bandwidth and end to end latency. Managing this type of congestion
requires some means of detecting when an ultra short term event has turned into a
short term event, and then using some mechanism to reduce the amount of data being
injected by the end points into the congested portion of the fabric. If this can be done
in time, the congestion stays localized until it clears, and does not adversely affect
other parts of the fabric.

Medium term congestion is typically a frequent series of short term congestion
events over a long period of time, such as seconds or minutes. This type of event is
indicative of an unbalanced data load being sent into the fabric. Alleviating this type
of congestion event requires some sort of software based load balancing mechanism
to reconfigure the fabric.

Long term congestion is a situation in which a system does not have the raw capacity
to handle the demands placed upon it. This situation is corrected by upgrading (or
replacing) the system itself.

This specification addresses the problem of short term congestion.

1.1.2 Requirements

The flow control mechanism shall fulfill the following goals:

• Simple - excess complexity will not gain acceptance

• React quickly - otherwise the solution won’t work

• Robust - same level of protection and recovery as the rest of RapidIO

• Scalable - must be able to extend to multi-layer switch systems

• Compatibility with all physical layers

1.1.3 Problem Illustration

The RapidIO Part 1: Input/Output Logical Specification defines a transaction
request flow as a series of packets that have a common source identifier and a
common destination identifier at some given priority. On a link, packets of a single
transaction request flow can be interleaved with packets from one or more other
10 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
transaction request flows.

No assumptions are made on the underlying switch architecture for this discussion
of the short term congestion problem. Also for the purposes of this discussion, an
idealized output queued switch is assumed, which in literature is also used to
compare the performance of a particular switch under study. Packet buffers are
associated with the output of the switch. An example switch topology showing
output buffers is illustrated in Figure 1-1 below. A point of congestion is therefore
associated with an output buffer of such a switch.

The problem that is to be addressed by this specification is caused by multiple
independent transaction request flows, each with burst and spatial locality
characteristics that typically do not exceed the bandwidth capacity of links or end
points. Due to the statistical combination of such transaction request flows, usually
in the middle of multistage topologies, the demand for bandwidth through a
particular link exceeds the link’s capacity for some period of time, for example, Data
Flows a, b, and c for an output port of Switch 3 as shown in Figure 1-1. As a result,
the output buffer for this port will fill up, causing the link layer flow control to be
activated on the links of the preceding switch stages. The output packet buffers for
Switches 1 and 2 then also fill up. Packets for transaction request flows, such as data
flow d, in these same output buffers not destined for the output port with the full
buffer in Switch 3 are now also waiting, causing additional system performance loss.
This phenomenon is known as higher order head of line blocking.

A second problem, less frequently a contributor to system performance loss, occurs
when an end point cannot process the incoming bandwidth and employs link layer
flow control to stop packets from coming in. This results in a similar sequence of
events as described above.

The problem described in this section is very well known in the literature. The
aggregate throughput of the fabric is reduced with increased load when congestion
control is not applied (see reference [1]). Such non-linear behavior is known as

Figure 1-1. Interconnect Fabric Congestion Example

 Switch
#1

EP

EP

 Switch
#2

EP

EP

 Switch
 #3

 Switch
#4

 Switch
#5

EP

EP

 Switch
 #6

EP

EPLINK

LINK

LIN
K

LINK

a

b

c

d
LINK

LINK

congestion point

a+b

c

d

a+b

c+
d

a+b+c

d

LINK LINK

LINK

 LINK

LINK

LINK

flows a,b,c,d output fifo
RapidIO.org 11

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
‘performance-collapse’. It is the objective of this specification to provide a logical
layer flow control mechanism to avoid this collapse. Research also shows that
relatively simple “XON/XOFF” controls on transaction request flows can be
adequate to control congestion in fabrics of significant size.

The reason for the described non-linear behavior is illustrated with a saturation tree.
The point at which a single transaction request flow that causes link bandwidth to be
exceeded and causes buffer overflow is referred to as the root of the saturation tree.
This tree grows backward towards the sources of all transaction request flows going
through these buffers, and all buffers that these transaction request flows pass
through in preceding stages, causing even more transaction request flows to be
affected.

An important design factor for interconnect fabrics is the latency between a
congestion control action being initiated and the transaction request flow source
acting in response. This latency determines, among other factors, the required buffer
sizes for the switches. To keep such buffers small, the latency of a congestion control
mechanism must be minimized. For example, 10 data flows contribute to a buffer
overflow (forming what is known as a “hotspot”). If it takes 10 packet transmission
times for the congestion notification to reach the sources and the last packets sent
from the sources to reach the point of congestion after the sources react to the
congestion notification, up to 100 packets could be added to the congested buffer.
The number of packets added may be much smaller depending on the rate of
oversubscription of the congested port.

Reference

[1] “Tree saturation control in the AC3 velocity cluster interconnect”, W. Vogels
et.al., Hot Interconnects 2000, Stanford.

1.2 Flow Arbitration
Protocols such as the RapidIO Data Streaming Logical Layer are designed to carry
Protocol Data Units (PDUs) of lengths greater than 256 bytes by utilizing
Segmentation and Reassembly (SAR). Coherency of the segmentation and
reassembly process is enforced by RapidIO’s ordering rules for a packet flow. Since
a flow (the nexus of a source, destination, and physical channel) must deliver
packets in order, an endpoint ensures coherency of a segmentation / reassembly
process by only introducing one complete PDU into a specific flow at a time.

However, an endpoint can potentially connect to up to 64K other endpoints, with 4
or 8 or even 16 physical channels available between each endpoint. As such, an
endpoint could have to potentially support millions of dedicated SAR contexts and
reassembly buffers. For large PDUs having dedicated reassembly buffers per
endpoint could be costly.

The Data Streaming Segmentation and Reassembly contexts are one example of
12 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
flow based resources that may be a limited resource. Other logical layer functions,
like DMA contexts, can also run into resource constraints.

Managing limited resources can be done in a variety of ways, the use of an
arbitration protocol is not mandatory:

1.2.1 Fixed / Static Resource Allocation

Fixed allocation of resources occurs by system design. Systems with smaller
topologies, or with endpoint resources sufficient for all anticipated flows, do not
require any specific management. In larger systems, some portion of the resources
can be fixed and assumed to be always available, reducing the number of resources
that might have to be further managed.

Resources may also be statically allocated on an individual connection basis. These
resources would only be allocated via the overall connection admission algorithm.
This additional layer of protection prevents flows from being admitted to the fabric
that do not have corresponding resources on the receiving end.

1.2.2 Dynamic Resource Allocation Protocol

The dynamic arbitration protocol is designed to arbitrate and allocate resources to
flows for short durations of time. It allows a fewer number of resources to be
dynamically shared among a larger number of flows. The system may still require
the use of these resources to be intelligently managed in order to achieve desired
system performance. The dynamic arbitration of resources will prevent data loss
caused by overrunning the receiver.

The congestion management commands affect flows on a packet boundary basis.
The arbitration protocol commands affect flows at PDU boundaries (a PDU can
consist of one or more packets). Endpoints must have the same understanding of
PDU boundaries.
RapidIO.org 13

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Blank page
14 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Chapter 2 Logical Layer Flow Control
Operation

This chapter describes the logical layer flow control mechanisms.

2.1 Fabric Link Congestion
In compliant devices, logical layer flow control methods shall be employed within
a fabric or destination end point for the purpose of short term congestion abatement
at the point in time and location at which excessive congestion is detected. This
remediation scheme shall be enacted via explicit flow control messages referred to
as transmit off (XOFF) and transmit on (XON) congestion control packets (CCPs)
which, like any other packet, require link-level packet acknowledgements. The
XOFF CCPs are sent to shut off select flows at their source end points. Later, when
the congestion event has passed, XON CCPs are sent to the same source end points
to restore those flows.

The method used to detect congestion is implementation specific and is heavily
dependent upon the internal packet buffering structure and capacity of the particular
switch device. In the example output port buffered switch from “Section 1.1.3,
Problem Illustration”, on page 10, congestion occurs when some output buffer
watermark is exceeded, but this is not the only way of detecting congestion. Several
possible implementation methods are described in Appendix A. These described
methods are purely exemplary and are not intended to be an exhaustive list of
possible methods.

2.2 Flow Arbitration
The flow arbitration protocol extends the Congestion Control Packet (CCP) protocol
first introduced in Revision 1.3 of this specification. In addition to the XON/XOFF
congestion management functionality the arbitration protocol adds the following
commands:

• REQUEST

• XOFF to indicate un-availability of resources.

• XON to allow and grant use of resources

• RELEASE
RapidIO.org 15

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
2.2.1 Arbitration Protocol

The protocol is illustrated in the following diagrams, using Data Streaming
allocation of SAR resources as examples. There are two request messages pertaining
to single PDU and multi-PDU transfers. The single PDU case is illustrated in
Figure 2-1. The transmitting endpoint sends a single PDU request. The receiving
endpoint will respond with either a XON(ARB) or XOFF(ARB) message depending
on whether it has buffer and context resources available.

Figure 2-1. Single PDU Transfer Scenario

In the single PDU transfer case, if the receiving endpoint responds with a
XOFF(ARB), the transmitting endpoint can send a new REQUEST message to ask
for resources. If the receiving endpoint responds with a XON(ARB), the
transmitting endpoint can start transmitting the PDU segments once it receives the
XON(ARB) message. The receiver will automatically de-allocate resources once it
receives the last packet for the PDU.

When the transmitting endpoint sends a request pertaining to the transfer of multiple
PDUs the receiving endpoint, similarly to the single PDU case, shall respond with
either the XON(ARB) or the XOFF(ARB) protocol depending on the availability of
buffering resources. If the receiving endpoint responds with a XON(ARB) message,
as shown in Figure 2-2, the transmitting endpoint can start sending the PDU
segments once it receives the XON(ARB) message. The transmitter can send
multiple PDUs without having to renegotiate the resources. The receiver will hold
the allocated resources until it receives a RELEASE message from the transmitting
endpoint.

Request (Single PDU)

Xon(ARB)

SOM

COM

EOM

T
im

e

TX RX

SAR Resources
allocated

SAR resources
de-allocated

TX starts transmission of
PDU segments upon

receiving the Xon(ARB)
SOM = Start of Msg
COM = Continuation
EOM = End of Msg

(see Data Streaming
Spec. for details)
16 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Figure 2-2. Multi-PDU Transfer Scenario

The receiver can also inform the transmitting endpoint of its desire to de-allocate the
resources, by sending a XOFF(ARB) message. The transmitting endpoint, after
sending the last packet at the current PDU boundary, will send a RELEASE
message. The receiver shall de-allocate the resources only when it has received the
RELEASE message. This scenario is illustrated in Figure 2-3.

Request (Multi-PDU)

Xon(ARB)

SOM

COM

EOMT
im

e

TX RX

SAR resources allocated

SAR resources de-
allocated upon receiving
the Release Message

TX starts transmission of
PDU segments upon

receiving the Xon(ARB)

SOM

COM

EOM

Release

TX continues to transmit
PDUs without having to

renegotiate SAR context
RapidIO.org 17

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Figure 2-3. Multi-PDU scenario with receiver based de-allocation scheme

2.2.2 Number Of Outstanding Requests

In the arbitration protocol the transmitting endpoint has to wait at least a round trip
time after it has sent the request message before it can start transmitting. This delay
may be undesirable in high performance systems. Therefore, in order to overlap the
request phase with the data transmission phase, the transmitter is allowed to have a
maximum of one outstanding request in the system, that is, it can pipeline requests
to increase the efficiency of the system. The requests and the corresponding
responses are identified by a 1 bit sequence number. This pipelining of requests is
allowed for both single PDU and multi-PDU requests.

Consider the exchange shown in Figure 2-4 below. The transmitting endpoint issues
a request. The request is processed by the receiving endpoint and a XON issued.
Once the transmitter receives the XON message, it can start transmitting the data and
it may also pipeline another request. The pipelined request shall not be honored until
the current transaction has been completely received and resources are available for
the next transaction. In Figure 2-4 Request_1 is sent after the transmitting endpoint
has received the XON_0(ARB) message for the previous request (Request_0). If the
receiving endpoint for some reason cannot queue/process the requests, it can send a
XOFF (ARB) message immediately to indicate lack of resources.

The pipelining of requests is managed by the source. It only issues the next request
when the current request has been acknowledged. The destination only

Request (Multi-PDU)

Xon(ARB)

SOM

COM

EOM

T
im

e

TX RX

Reassembly buffers and
SAR context allocated

Reassembly buffers and
SAR context de-allocated
upon receiving the
Release Message

TX starts transmission of
PDU segments upon

receiving the Xon(ARB)

COM

Release
Transmitter sends the

Release message as soon
as it is finished sending

the current PDU

Xoff(ARB)
Receiver expresses desire
to de-allocate SAR
resources
18 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
acknowledges the next request when the current request has completed. So, the
destination only has to queue up one outstanding request per flow. This pipelining
also offers the destination an opportunity to use the pending requests to get a look at
the incoming traffic and make better allocation decisions should there be limited
resources.

A single level of pipelining of requests is adequate because this is on a per flow
basis. flow may only have a single open context at a time, so the current context must
complete before the flow can be used for another transaction.

NOTE: Context Definition

As a reminder, a “context” is a group of individual transactions that
must remain ordered, and may not have intervening transactions from
a different context in the same flow.

Figure 2-4. Pipelined Requests

2.3 Flow Control Operation
The flow control operation consists of a single FLOW CONTROL transaction as
shown in Figure 2-5. The FLOW CONTROL transaction is issued by a switch or end

Request_0

Xon_0 (ARB)

SOM

COM

EOM

T
im

e

TX RX

Reassembly buffers and
SAR context allocated

Reassembly buffers and
SAR context de-allocated
upon receiving the EOM
Message. The receiver
processes the pipelined
request only when
previously allocated
resources have been de-
allocated and sends an
Xon message

TX starts transmission of
PDU segments upon

receiving the Xon(ARB)
and piplelines another
request at the receiver

COM

TX receives the response
to the outstanding request

and starts data
transmission

The receiver buffers the
second request

EOM

Request_1

Xon_1 (ARB)

SOM
RapidIO.org 19

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
point to control the flow of data. This mechanism is backward compatible with
RapidIO legacy devices in the same system.

While FLOW CONTROL packets do not contain response packets, the arbitration
protocol does consist of multiple transactions between the source of a data flow and
the destination. Some of the transactions flow from the destination to the source.

2.4 Physical Layer Requirements
This section describes requirements put upon the system physical layers in order to
support efficient logical layer flow control.

2.4.1 Fabric Topology

The interconnect fabric for a system utilizing the logical layer flow control
extensions must have a topology such that a flow control transaction can be sent
back to any transaction request flow source. This path through the fabric may be
back along the path taken by the transaction request flow to the congestion point or
it may be back along a different path, depending upon the requirements of the
particular system.

2.4.2 Flow Control Transaction Transmission

Flow control transactions are regarded as independent traffic flows. They are the
most important traffic flow defined by the system. Congestion management
transactions are always transmitted at the first opportunity at the expense of all other
traffic flows if possible. For the 8/16 LP-LVDS and 1x/4x LP-Serial physical layer
specifications, this requires marking flow control packets with a “prio” field value
of 0b11, and a “CRF” bit value of 0b1, if supported. Flow arbitration has additional
requirements for some transactions to be transmitted in the same flow as the data
packets. All of these transactions use a normal packet format for purposes of error
checking and format.

Because an implicit method of flow restoration was simulated and found to be
impractical for RapidIO fabrics due to lack of system knowledge in the end point,
an explicit restart mechanism using a XON transaction is used. In the CCP flow back
to the source end point, XOFF and XON CCPs may be dropped on input ports of
downstream elements in the event of insufficient buffer space.

Figure 2-5. Flow Control Operation

FLOW CONTROL1

Requestor Destination
20 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
2.4.2.1 Orphaned XOFF Mechanism

Due to the possibility of XON flow control packets being lost in the fabric, there
shall be an orphaned XOFF mechanism for the purpose of restarting orphaned flows
which were XOFF’d but never XON’d in end points. Details of this mechanism are
implementation specific, however the end point shall have sufficient means to avoid
abandonment of orphaned flows. A typical implementation of such a mechanism
would be some sort of counter. A description of a possible implementation is given
in Appendix A. The Orphaned XOFF Mechanism is intended to work with the rest
of the XON/XOFF CCPs to handle the short term congestion problem as previously
described, and so shall operate such that software intervention is not required or
inadvertently invoked.

Counter mechanisms for arbitrated flows are also an implementation decision, but
care should be taken before just enabling transmission on a flow. Unlike the
congestion management protocol, arbitrated flows are expected to remain off until
explicitly enabled. Timeouts at source end points should result in retrying requests,
not just arbitrarily starting a flow.

2.4.2.2 Controlled Flow List

It is required that elements which send XOFFs keep a list of flows they have
stopped, along with whatever flow-specific information is needed to select flows for
restart, such as per-flow XON watermark level, or relative shut off order. This
information shall be stored along with flow identification information in a
“controlled flow list”, a memory structure associated with the controlling element.
It shall be permissible in the time following the sending of a XOFF CCP for the flow
control -initiating element to re-evaluate system resources and modify the flow
restart ordering or expected XON watermark level within the controlled flow list to
better reflect current system state. It shall not however be permissible to abandon the
controlled flow by “forgetting” it, either due to lack of controlled flow list resources
or other factors. In the event that limited controlled flow list resources cause the
congested element to have insufficient room to issue another XOFF CCP which is
deemed more important than a previously-XOFF’d controlled flow, then that
previously-XOFF’d controlled flow may be prematurely XON’d and removed from
the controlled flow list. The new, more important flow may be XOFF’d and take its
place in the controlled flow list.

Details of the controlled flow list are implementation specific, though at the very
least it shall contain entries for each currently XOFF’d flow, including flow
identification information. It is likely that some state information will be required,
such as expected time of flow restart, or per-flow restart watermark levels. The
controlled flow list size is selected to provide coverage for short term congestion
events only. Remediation for medium and greater -term congestion events is beyond
the scope of logical layer flow control as these events likely indicate systemic
under-provisioning in the fabric.
RapidIO.org 21

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Arbitrated resources must also be associated with a flow list to keep track of the flow
the resources are allocated to. Should the source fail to utilize the resource in an
expected interval, the destination may take action to recover the resource. The
arbitration protocol provides a method to attempt to deallocate the resource in
concert with the source to avoid packet loss (see “Section 2.2.1, Arbitration
Protocol”, on page 16). Should that fail, asynchronous de-allocation of the resource
may be used, with the understanding that packet loss could result. The
implementation of such a mechanism is not specified here. Care should be taken to
account for fabric latencies and not cause excessive packet loss during higher
latency intervals.

2.4.2.3 XOFF/XON Counters

XOFF/XON counters shall be instantiated for some number of output flows at the
end point. Since the number of flows may be large or unpredictable, the number of
counters and how flows are aggregated to a particular counter is implementation
dependant. However, all flows must be associated with a counter. For simplicity, the
following behavioral description assumes a single flow associated with a single
counter. The counter is initialized to zero at start up or when a new DestinationID
and given Priority is initialized. The counter increments by one for each associated
XOFF CCP and decrements by one for each associated XON CCP, stopping at zero.
Only when this counter is equal to zero is the flow enabled. In no event shall the
counter wrap upon terminal count. If the orphaned XOFF mechanism activates, the
counter is reset to zero and the flow is restarted.

2.4.3 Priority to Transaction Request Flow Mapping

When a switch or end point determines that it is desirable to generate a flow control
transaction, it must determine the associated flowID for the (non-maintenance and
non-flow control) packet that caused the flow control event to be signalled.
Maintenance and flow control transaction request flows must never cause the
generation of a flow control transaction. For the 8/16 LP-LVDS and the 1x/4x
LP-Serial physical layer specifications, the flowID of a transaction request flow is
mapped to the “prio” bits as summarized in Table 1-3 of the 8/16 LP-LVDS
specification and Table 5-1 of the 1x/4x LP-Serial specification. Determining the
original transaction request flow for the offending packet requires the switch to do a
reverse mapping.

It is recognized that mapping a particular response to a particular transmission
request may be inaccurate because the end point that generated the response is
permitted in the physical layer to promote the response to a priority higher than
would normally be assigned. Deadlock avoidance rules permit this promotion. For
this reason the choice of which flow to XOFF is preferably made using request
packets, not response packets, as responses release system resources, which also
may help alleviate system congestion.
22 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Additionally, the CRF bit should also be used in conjunction with flowID to decide
whether or not a particular transaction request flow should be targeted with a XOFF
flow control transaction. A switch may select for shut off a packet with CRF=0 over
a packet with CRF=1 if there are two different flows of otherwise equal importance.
Correspondingly, an end point may choose to ignore a flow control XOFF request
for a transaction request flow that it regards as critical.

The reverse mappings from the transaction request flow prio field to the CCP flowID
field for the 8/16 LP-LVDS and 1x/4x LP-Serial physical layers are summarized in
Table 2-1.

2.4.4 Flow Control Transaction Ordering Rules

The ordering rules for flow control transactions within a system are analogous to
those for maintenance transactions.

1. Ordering rules apply only between the source (the original issuing switch
device or destination end point) of flow control transactions and the
destination of flow control transactions.

2. There are no ordering requirements between flow control transactions and
maintenance or non-maintenance request transactions.

3. A switch processing element must pass through flow control transactions
between an input and output port pair in the order they are received.

4. An end point processing element must process flow control transactions from
the same source (the destination of the packet that caused the flow control
event) in the order they are received.

2.4.5 End Point Congestion Management Rules

There are a number of rules related to flow control that are required of an end point
that supports the logical layer flow control extensions.

Table 2-1. Prio field to flowID Mapping

Transaction
Request flow

prio Field

Transaction
Type

System Priority CCP flowID

0b00 request Lowest A

0b00 response Illegal

0b01 request Next B

0b01 response Lowest A

0b10 request Highest C or higher

0b10 response Lowest or Next A or B

0b11 request Illegal

0b11 response Lowest or Next
or Highest

A, B, C or higher
RapidIO.org 23

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
1. A XOFF flow control transaction stops all transaction request flows of the
specified priority and lower targeted to the specified destination and
increments the XON/XOFF counter associated with the specified flowID.

2. A XON flow control transaction decrements the XON/XOFF counter
associated with the specified flowID. If the resulting value is zero, the
transaction request flows for that flowID and flowIDs of higher priority are
restarted.

3. An end point must be able to identify an orphaned XOFF’d flow and restart it.

4. A destination end point issuing a XOFF Flow Control transaction must
maintain the information necessary to restart the flow with a XON flow
control transaction when congestion abates.

5. Upon detection of congestion within one of its ports, the destination end point
shall send required CCP(s) as quickly as possible to reduce latency back to
the source end point.

2.4.6 Switch Congestion Management Rules

There are a number of rules related to flow control that are required of a switch that
supports the logical layer flow control extensions.

1. Upon detection of congestion within a port, the switch shall send a CCP
(XOFF) for each congested flow to their respective end points.

2. If a switch runs out of packet buffer space, it is permitted to drop CCPs.

3. A switch issuing a XOFF Flow Control transaction must maintain the
information necessary to restart the flow with a XON flow control transaction
when congestion abates.

2.4.7 Endpoint Rules for the Arbitration Protocol

Transmitters shall not transmit on an arbitrated flow unless a resource is available
for reception of the PDU. Assumption of an available resource can either be fixed,
statically allocated, or dynamically allocated. If dynamically allocated, the protocol
must obey the following rules:

1. The transmitter shall issue a REQUEST when it wishes the receiver to allocate
a resource to a particular flow. Note that this does not imply a PDU is
immediately ready for transmission. The algorithms for resource allocation
are up to the implementation.

2. The receiver shall respond to all REQUEST messages with a XOFF(ARB) or
XON(ARB) depending on the availability of resources and the arbitration
policy at the receiver.

3. The transmitter may send a new REQUEST message if: 1) it did not receive a
response to the previous REQUEST message and timed out, or 2) it received
a XOFF(ARB) message from the receiving endpoint.
24 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
4. Sequence numbers shall remain coherent for each individual flow. The
sequence number shall remain the same for REQUESTs reissued for a given
flow, without having received a response. The sequence number shall
advance for any new REQUESTs on a given flow.

5. If a single PDU request is granted, the receiver may deallocate the resources
at any time after: 1) it receives the last segment for the PDU, or 2) it does not
receive a packet and an idle counter for the session times out (see rule l). The
transmitter shall assume the context is no longer available upon sending the
last segment for the PDU.

6. If the resources were granted in response to a multi-PDU request the
transmitter may transmit PDUs continuously on that flow until the resource
is de-allocated.

7. The transmitter may relinquish a multi-PDU context by sending a RELEASE
message after completion of the current PDU.

8. The receiver may send a XOFF(ARB) message during the multi-PDU transfer
to indicate its desire to deallocate resources. The transmitter, upon receiving
a XOFF(ARB) message during the multi-PDU transfer, shall complete
transmission of the current PDU and send a RELEASE message to allow the
receiver to de-allocate the resources. The receiver may not deallocate the
resources until the RELEASE message is received.

9. The receiver may delay sending responses to the REQUEST commands to
consider which REQUESTs to grant or reject. There is no ordering
requirement for processing requests from different flows.

10. Only a single instance of resources shall be allocated to a flow at any point
in time.

11. The transmitter may issue a single additional REQUEST in advance of
completion of the current PDU. However, the transmitter shall not have more
than one outstanding REQUEST at any point in time.

12. REQUEST, XON(ARB), and XOFF(ARB) messages may be sent in any
flow (such as a high priority channel). RELEASE messages shall be sent in
the same flow that the context is allocated for.

2.4.8 Abnormal De-allocation of Resources

Abnormal de-allocation of Resources will occur under the following circumstances:

1. If the resources were allocated in response to a single PDU request:

– The PDU may be aborted according to the exceptions defined in the logical layer
rules for the segmentation process. An aborted PDU results in the de-allocation of the
resources.

– If the receiver does not receive a packet from the transmitter before the idle counter
for the session times out, the resources would be de-allocated. Note that the use of a
timer is implementation specific. Incorrect use of a timer may result in packet loss.
RapidIO.org 25

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
2. If the resources were allocated in response to a Multi-PDU request:

– A PDU may be aborted according to the exceptions defined in the logical layer. The
resources will still not be de-allocated until a RELEASE message is received.

– If the receiver does not receive a packet from the transmitter before the idle counter
for the session times out, the receiver shall first attempt to use the XOFF(ARB) /
RELEASE handshake to deallocate the context. If a subsequent timeout is
encountered, the SAR resources are asynchronously de-allocated.

NOTE: Timeouts for Arbitration Protocol are Optional

Use of timers with the arbitration protocol is optional. Timer intervals
are specific to system implementation and performance goals.
Aggressive timer intervals may result in retrying operations that were
simply slowed down due to system congestion. Aggressive recovery
of resources may also result in packet loss. Conservative time
intervals may result in poor performance if transactions are lost or
corrupted. It is up to the implementer to determine the correct
behavior for the specific system environment.
26 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Chapter 3 Packet Format Descriptions

3.1 Introduction
This chapter contains the definition of the flow control packet format. The type 7
FLOW CONTROL packets are used by the switch or the end points to signal
congestion buildup within the node (switch or endpoint) or exchange flow
arbitration protocol messages.

3.2 Logical Layer Packet Format
The type 7 FLOW CONTROL packet formats (Flow Control Class) are used by a
RapidIO switch or end point processing element to stop (XOFF) and start (XON) the
flow of traffic to it from a targeted RapidIO end point processing element. A single
transaction request flow is targeted with a CCP. Type 7 packets do not have a data
payload and do not generate response packets. The origin of a flow control packet
shall set the SOC (Source of Congestion) bit to (SOC=0) if it is a switch or (SOC=1)
if it is an end point. The SOC bit is informational only but may be useful for system
software in identifying a failing end point.

The Flow Arbitration Message (FAM) field is used to modify the XON or XOFF
message for the purposes of flow arbitration.

Definitions and encodings of fields specific to type 7 packets are provided in
Table 3-1.
RapidIO.org 27

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Figure 3-1 displays a CCP packet with all its fields. The field value 0b0111 in
Figure 3-1 specifies that the packet format is of type 7. Dev8 (tt=0b00) and Dev16
(tt=0b01) Transport Formats are shown in the figure, additionally there is the Dev32
(tt=0b10) transport size.

Table 3-1. Specific Field Definitions and Encodings for Type 7 Packets

Type 7 Fields Encoding Definition

XON/XOFF 0b0 XOFF
For devices not supporting flow arbitration:
Stop issuing requests for the specified and lower priority transaction request flows

For devices supporting flow arbitration (see Table 3-2)

0b1 XON
For devices not supporting flow arbitration:
Start issuing requests for the specified and higher priority transaction request flows

For devices supporting flow arbitration (see Table 3-2)

flowID
0000000 (Flow0A)
0000001 (Flow 0B)
0000010 (Flow 0C)
0000011 (Flow 0D)
0000100 (Flow 0E)
0000101 (Flow 0F)

1000001 (Flow 1A)
1000010 (Flow 2A)
1000011 (Flow 3A)
1000100 (Flow 4A)
1000101 (Flow 5A)
1000110 (Flow 6A)
1000111 (Flow 7A)
1001000 (Flow 8A)

Highest priority affected transaction request flow for VC0
transaction request flow A
transaction request flow B
transaction request flow C
transaction request flow D
transaction request flow E
transaction request flow F and higher

For VC1-VC8 the following flow IDs will result in the VC1-VC8 flow control
Flow 1A and higher for VC1
Flow 2A and higher for VC2
Flow 3A and higher for VC3
Flow 4A and higher for VC4
Flow 5A and higher for VC5
Flow 6A and higher for VC6
Flow 7A and higher for VC7
Flow 8A and higher for VC8
Remaining encodings are reserved for the 8/16 LP-LVDS and the 1x/4x LP-Serial
physical layers.

destinationID — Indicates which end point the CCP is destined for (sourceID of the packet which caused
the generation of the CCP).

tgtdestinationID — Combined with the flowID field, indicates which transaction request flows need to be
acted upon (destinationID field of the packet which caused the generation of the CCP).

SOC 0b0 Source Of Congestion is a Switch

0b1 Source Of Congestion is an End Point

FAM See Section 3.3

rsrv 0b0000 Reserved

Figure 3-1. Type 7 Packet Bit Stream Logical Layer Format

0 1 1 1

4

XON/XOFF

18(tt=0b00),16(tt=0b01)

tgtdestinationID

7

flowID

1

SOC

4

rsrvFAM

3

28 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
3.3 Flow Arbitration Message Fields (FAM)
The flow arbitration protocol uses the 3 FAM bits along with the XON/XOFF bit to
identify the messages. A device that does not support the SAR protocol ignores the
FAM bits. It should be noted that a device which supports the flow arbitration
protocol when communicating with an end point that does not support SAR protocol
should default to the congestion management (XON/XOFF) functionality and not
send other messages as they would be mis-interpreted. The CAR bits define whether
the device supports the flow arbitration protocol or not. The bit “Y” is the sequence
number bit previously described.

Table 3-2. Flow Arbitration Protocol Commands

3.4 Transport and Physical Layer Packet Format
Figure 3-2 shows a complete flow control packet, including all transport and 1x/4x
LP-Serial physical layer fields except for delineation characters. The destinationID
field of the CCP packet is the sourceID field from packets associated with the
congestion event, and is the target of the flow control transaction. The
tgtdestinationID field is the destinationID field from packets associated with the
congestion event, and was the target of those packets. The tgtdestinationID field is
used by the target of the flow control packet to identify the transaction request flow
that needs to be acted upon. For all undefined flowID encodings, there is no action
required and the tgtdestinationID is ignored. Field size differences for 8 bit address
Dev8 Transport Format (tt=0b00) vs. 16 bit address Dev16 Transport Format
(tt=0b01) are shown, additionally the Dev32 (tt=0b10) format can be used. Note:
when tt=0b01 there will be a pad after the CRC.

XON/XOFF FAM Definition

0 0b000 XOFF: Transmit off (Congestion management) Stop issuing requests for the specified
and lower priority transaction request flows

0b010 XOFF(ARB): Flow Request Rejected. Message with sequence number 0 (LSB) in
response to REQUEST with sequence number 0.

0b011 XOFF(ARB):Flow Request Rejected. Message with sequence number 1(LSB) in
response to REQUEST with sequence number 1.

0b10Y RELEASE: Release message informs the receiving endpoint to de-allocate the buffer
space reserved by the receiving endpoint. The release message should be used in
conjunction with the request.

1 0b000 XON: Transmit on. (Congestion management) Start issuing requests for the specified
and higher priority transaction request flows

0b01Y XON(ARB): Flow Request Granted. Reassembly buffer space is now available and
allocated.

0b10Y REQUEST: Request Flow Single PDU. Buffer space will be de-allocated once the end
transaction is received for that PDU.

0b11Y REQUEST: Request Flow Multi-PDU. This request message informs the receiving
endpoint to reserve the buffer space until it receives the release message. The buffer
space will be de-allocated once the release command is received by the receiver.
RapidIO.org 29

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Figure 3-2. LP-Serial Flow Control Packet

crf=1

1

rsrv=0

1

ftype=0 1 1 1tt=0 m

destinationID

XON/XOFF flowID

CRC

42

rsrv=0 0 0 0

8 (tt=0b00) or 16 (tt=0b01)

4

tgtdestinationID

8 (tt=0b00) or 16 (tt=0b01)

1 7

Following bits

16

time

prio=1 1

2

SOC

1

ackID

5 1

VC

3

FAM

Preceding bits
30 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Chapter 4 Logical Layer Flow Control
Extensions Register Bits

4.1 Introduction
This section describes the Logical Layer Flow Control Extensions CAR and CSR
bits that allow an external processing element to determine if a switch or end point
device supports the flow control extensions defined in this specification, and to
manage the transmission of flow control transactions for a switch processing
element. This chapter only describes registers or register bits defined by this
specification. Refer to the other RapidIO logical, transport, physical, and extension
specifications of interest to determine a complete list of registers and bit definitions
for a device. All registers are 32-bits and aligned to a 32-bit boundary.

4.2 Capability Registers (CARs)

4.2.1 Processing Elements Features CAR
(Offset 0x10 Word 0)

The Processing Elements Features CAR contains 31 processing elements features
bits defined in various RapidIO specifications, as well as the Flow Control Support
bit, and Flow Arbitration Participant bit are defined here.

* Implementation dependant

Table 4-1. Bit Settings for Processing Elements Features CAR

Bit Name
Reset
Value

Description

0-19 — Reserved (defined elsewhere)

20 Flow Arbitration Support * Support for flow arbitration
0b0 - does not support flow arbitration
0b1 - supports flow arbitration

21-23 — Reserved (defined elsewhere)

24 Flow Control Support * Support for flow control extensions
0b0 - Does not support flow control extensions
0b1 - Supports flow control extensions

26-31 — Reserved (defined elsewhere)
RapidIO.org 31

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
4.2.2 Port n Control CSR
(Block Offsets 0x5C, 7C, ... , 23C)

The Port n Control CSR contains 30 bits specifying individual port controls defined
in various RapidIO specifications, as well as the Flow Control Participant and Flow
Arbitration Participant bits.

Table 4-2. Bit Settings for Port n Control CSR

Bit Name
Reset
Value

Description

0-12
(serial)

— Reserved (defined elsewhere)

13
(serial)

Flow Control Participant 0b0 Enable flow control transactions

0b0 - Do not route or issue flow control transactions to this port
0b1 - Route or issue flow control transactions to this port

14
(serial

— Reserved (defined elsewhere)

15
(serial)

Flow Arbitration
Participant

0b0 Enable Flow Arbitration Transactions:

0b0 - do not route or issue flow arbitration transactions to this port

0b1 - route or issue flow arbitration transaction to this port

16-31
(serial

— Reserved (defined elsewhere)
32 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Annex A Flow Control Examples (Informative)

A.1 Congestion Detection and Remediation
The method used to detect congestion is implementation specific and is heavily
dependent upon the internal packet buffering structure and capacity of the particular
switch device. In the example output port buffered switch from “Section 1.1.3,
Problem Illustration” on page 10, congestion occurs when some output buffer
watermark is exceeded. As long as the watermark is exceeded the output port is said
to be in a congested state. The watermark can have different levels when entering
the congested state and leaving the congested state.

Fabric elements should monitor their internal packet buffer levels, comparing them
on a packet by packet basis to pre-established, locally-defined watermark levels.
These levels likely would be configurable depending upon the local element's
position within the fabric relative to source endpoints and its particular architecture.
On the high watermark side, a level should be selected which is low enough that the
remaining buffer space is adequate to provide ample storage for packets in-flight,
given a worse-case latency for XOFF CCPs to travel back to the source endpoint and
shut off the flow in the endpoint. On the low watermark side (if a watermark is used
for XON), a yet-lower level should be selected which meets the following criteria;

a) Provides sufficient hysteresis. When considered in context with the high
watermark, it should not be so close as to provide a high flow of XON/XOFF
CCP traffic back to the source endpoint.

b) Is set high enough that the switch output buffer does not run dry (underflow)
in the typical live-flow case (one or more packets are present in the source
endpoint output buffer waiting to be sent when the flow is restarted), given
the latency of XON CCP travel back to the source endpoint and restoration
of the shut-off flow in the endpoint.

The following two examples are provided to show possible methods for detecting
and reacting to congestion:

1. Histogram analysis:

— The switch keeps track of packet quantities for the different transaction
request flows for which packets are stored in its output buffer.

— The switch sorts the transaction request flows according to the number of
packets.

— The switch selects the 1 to 5 transaction request flows with the most
RapidIO.org 33

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
packets stored in the buffers.

— The switch sends an XOFF flow control request to those transaction
request flow sources when the watermark threshold is exceeded, as long
as flow control transaction routing is enabled on that switch port.
Handling of system critical flows intending to bypass the flow control
operation is outside the scope of this document.

— The CCP-targeted sources stop transmitting packets for the indicated
transaction request flow and all lower priority transaction request flows.

— The switch sends a flow control XON request to those transaction request
flow sources when the watermark drops below the threshold.

— The CCP-targeted sources begin to transmit packets for the indicated
transaction request flow and all higher priority transaction request flows.

2. Simple threshold:

— The switch sends an XOFF flow control to the source of every new
transaction flow it receives as long as the watermark is exceeded,
provided flow control transaction routing is enabled on that switch port.
Handling of system critical flows intending to bypass the flow control
operation is outside the scope of this document.

— The CCP-targeted sources stop transmitting packets for the indicated
transaction request flow and all lower priority transaction request flows.

— The switch sends a flow control XON request to those transaction request
flow sources when the watermark drops below the threshold.

— The CCP-targeted sources begin to transmit packets for the indicated
transaction request flow and all higher priority transaction request flows.

Note that the first method is reasonably fair in that it targets the source of the data
flows that are consuming most of the link bandwidth, and that the second method is
unfair in that it indiscriminately targets any source unfortunate enough to have a
packet be transmitted while the link is congested.

A.2 Orphaned XOFF Mechanism Description
This timer may take the form of a low precision counter in the end point which
monitors the oldest XOFF’d flow at any given time. When a flow first becomes the
oldest flow (reaches top of an XOFF’d flow FIFO list within the end point) the timer
is reset to its programmed value and begins to count down with time. If it is allowed
to elapse without a change to the oldest XOFF’d flow, that flow will be presumed to
be orphaned due to lost XON CCP and be restarted as if an XON CCP had been
received, with the orphaned flow entry removed from the top of the list and the
counter reset to count down for the next oldest XOFF’d flow. The length of the count
should be long enough to insure that significant degradation of the flow control
function does not occur, on the order of several times the width of the fabric
expressed in terms of packet transit time, yet not so large that it would fail to elapse
34 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
between uncorrelated congestion events. The length of this count shall be
programmable through an implementation-dependent register in the end point. The
orphaned XOFF mechanism is intended solely as a last-resort mechanism for
restarting orphaned flows. It will not be adequate for the purpose of implicit
controlled flow reinstatement owing to inherent fairness issues as well as burstyness
due to uncontrolled simultaneous multi-flow restart.

A.3 Discussion on Flow Arbitration
The objectives of the flow arbitration protocol are:

1) Conserve resources at the end point, and allow for limited resources to be utilized in a
larger system context.

2) Conserve system resources, minimizing protocol overhead.

3) Provide robustness against failures and lost messages as well as provide for low
implementation complexity.

Flow arbitration allows for managing resources that are critical to “flows”. A flow
is a nexus of a source, a destination, and a physical channel. With the priorities and
virtual channels that exist at the physical layer, even a medium system with a few
nodes could have 100s or 1000s of flows. Most RapidIO transactions are self
contained (as with an IO_WRITE) and thus have a limited “context”. But the data
streaming logical type can have a context that spans multiple transactions, and thus
needs a persistent resource. The segmentation/reassembly resource is one example
of a resource that may be in limited supply in a large system. But, SAR resource
management is not the only use of this protocol. Any resource provided by the
logical interface to help offload the system may use contexts that span multiple
transactions.

As described in the introduction, resources may be managed in three ways:

• The system designer can use end points with enough resources for the worst
case combination of flows (fixed)

• The system designer can provide enough resources for the worst case number
of flows based on expected traffic, allocating them on a connection by
connection basis (static)

• The limited resources can be shared among a larger number of connections on
a PDU by PDU basis (dynamic)

It is important to provide some management of resources because an overrun will
cause packet loss, at least for the data streaming protocol.

Dynamic allocation is what the protocol defined in this specification provides, but it
is not expected to be the sole method of resource allocation. If all the contexts were
to use a dynamic protocol, goals #2 and #3, as stated above, might not be met. It is
expected that some number of flows will be fixed or static, and only a portion of the
lower quality of service flows will arbitrate for some portion of the resources.
RapidIO.org 35

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
System designers are responsible for selecting components that match their strategy
for resource management.
36 RapidIO.org

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Congestion. A condition found in output ports of switch and bridge elements
characterized by excessive packet buildup in the buffer, when packet
entry rate into the buffer exceeds packet exit rate for a long enough
period of time.

CCP. (Congestion Control Packet). A packet sent from the point of
congestion in the fabric back to the source endpoint of particular
flows instructing the source to either turn on or off the flow.

Controlled Flow List. A memory structure associated with controlling
elements which holds a list of currently controlled flows, used by the
element to turn back on controlled flows.

CRF. Critical Request Flow. For packets or packets of a given priority, this
bit further defines which packet or notice should be moved first from
the input queue to the output queue (see RapidIO Part 4: 8/16 LP-
LVDS Physical Layer Specification, Section 1.2.2 and RapidIO Part
6: 1x/4x LP-Serial Physical Layer Specification, Section 5.3.3).

flowID. Transaction request flow indicator (see RapidIO Part 1:
Input/Output Logical Specification, Section 1.2.1).

Long Term Congestion. A severe congestion event in which a system does
not have the raw capacity to handle the demands placed upon it in
actual use.

Medium Term Congestion. A congestion event in which a frequent series of
short term congestion events occur over a long period of time such
as seconds or minutes, handled in RapidIO systems by
reconfiguration of the fabric by system-level software.

C

F

L

M

RapidIO.org 37

RapidIO Part 9: Flow Control Logical Layer Extensions Specification 3.2
Orphaned XOFF Mechanism. A mechanism in an end point which is used
to restart the oldest controlled flow within the end point after a
certain period of time has elapsed without the flow being XON’d.

Performance Collapse. Non-linear behavior found in non- congestion
controlled fabrics, whereby reduced aggregate throughput is
exhibited with increased load.

Saturation Tree. A pattern of congestion identified within the fabric which
grows backward from the root buffer overflow towards the sources
of all transaction request flows passing through this buffer.

Short Term Congestion. A congestion event lasting up into the dozens or
hundreds of microseconds, handled in RapidIO by Logical Layer
Flow Control.

Topology. The structure represented by the physical interconnections of a
switch fabric.

Transaction Request Flow. A series of packets that have a common source
identifier and a common destination identifier at some given priority.

Ultra Short Term Congestion. A congestion event lasting from dozens to
hundreds of nanoseconds, handled in RapidIO by Link Level Flow
Control.

Underflow. A condition within output buffers of switches in which the buffer
runs dry.

Watermark. A predetermined buffer occupancy level indicating either
congestion (high watermark) or abatement of congestion (low
watermark).

XOFF (Transmit Off). A congestion control packet sent from the point of
congestion back to the source of a particular flow, telling the source
endpoint to shut off the flow.

XON (Transmit On). A congestion control packet sent from the point of
congestion back to the source of a particular flow, telling the source
endpoint to restart a controlled flow.

O

P

S

T

U

W

X

38 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 10: Data Streaming Logical

Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

1.3 First release 06/09/2004

1.3.a No technical changes
Converted to ISO-friendly templates

02/23/2005

2.0 Technical changes: errata showing 06-04-00002.004; new features showing 06-01-
00000.002

06/14/2007

2.1 Technical changes: errata showing 07-07-00000.004 07/09/2009

2.2 Technical changes: errata showing 10-08-00000.003, 10-08-00001.005,
Consolidated Comments on 11-01-00000.000

05/05/2011

3.0 Changed RTA contact information. No technical changes. 10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction... 9
1.2 Overview... 9
1.3 Features of the Data Streaming Specification... 10
1.3.1 Functional Features... 10
1.3.2 Physical Features .. 10
1.3.3 Performance Features ... 11
1.4 Contents .. 11
1.5 Terminology.. 12
1.6 Conventions .. 13
1.7 Useful References ... 13

Chapter 2 Data Streaming Systems

2.1 Introduction... 15
2.2 System Example.. 15
2.3 Traffic Streams.. 16
2.4 Operation Ordering ... 17
2.5 Class of Service and Virtual Queues .. 19
2.6 End-to-end Traffic Management... 20
2.7 Deadlock Considerations .. 21

Chapter 3 Operation Descriptions

3.1 Introduction... 23
3.2 Data Streaming Protocol ... 23
3.2.1 Data Streaming Operation .. 23
3.2.2 Virtual Streams ... 24
3.2.3 PDU Sequences Within Streams... 25
3.2.4 Segments within a PDU.. 25
3.2.5 Rules for Segmentation and Reassembly.. 28
3.3 Class of Service and Traffic Streams.. 29
3.4 Traffic Management.. 30
3.4.1 Traffic Management Operand... 31
3.4.2 On/Off Traffic Management... 31
3.4.3 Rate Base Traffic Management .. 31
3.4.4 Credit Based Traffic Management.. 32
3.4.5 Rules for Traffic Management.. 35
RapidIO.org 3

Table of Contents

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 4 Packet Format Descriptions

4.1 Introduction... 37
4.2 Type 9 Packet Format (Data-Streaming Class) .. 37
4.3 Type 9 Extended Packet Format ... 40
4.3.1 TM Operand.. 42
4.3.2 Basic Traffic Management.. 42
4.3.3 Rate Based Traffic Management .. 43
4.3.4 Credit Based Traffic Management.. 44

Chapter 5 Data Streaming Registers

5.1 Introduction... 45
5.2 Register Summary... 45
5.3 Reserved Register, Bit and Bit Field Value Behavior .. 46
5.4 Additions to Existing Registers .. 48
5.5 Capability Registers (CARs)... 50
5.5.1 Source Operations CAR.. 50
5.5.2 Destination Operations CAR .. 51
5.5.3 Data Streaming Information CAR .. 52
5.6 Command and Status Registers (CSRs).. 53
5.6.1 Data Streaming Logical Layer Control CSR .. 53

Annex A VSID Usage Examples

A.1 Introduction... 55
A.2 Background ... 55
A.3 Packet Classification... 55
A.3.1 Sub-port Addressing at the Destination .. 56
A.3.1.1 DSLAM application.. 56
A.3.1.2 VOIP application .. 56
A.3.2 Virtual Output Queueing - Fabric On-ramp ... 56
A.4 System Requirements.. 57
A.4.1 UTOPIA to RapidIO ATM bridge.. 57
A.4.2 Network processor .. 57
A.4.3 CSIX to RapidIO interface ... 57
A.4.4 10Gb Metropolitan Area Network interface... 58
4 RapidIO.org

List of Figures

RapidIO Part 10: Data Streaming Logical Specification 3.2
1-1 End to End Communication Circuit..10
2-1 Example of a RapidIO-Based Networking System ..15
2-2 Mapping Virtual Streams at the System Ingress...19
2-3 Mapping Virtual Streams at the System Egress..20
2-4 Class Based and Stream Base Traffic Management ...21
3-1 Data Streaming Operation...24
3-2 Virtual Streams ...24
3-3 PDU Segmentation and Reassembly Example 1 ..27
3-4 PDU Segmentation and Reassembly Example 2 ..28
3-5 Traffic Sorting Based on CoS ID..30
3-6 Typical Credit Based Flow Control Example...34
3-7 Credit Based Protocol Example ..35
4-1 Single Segment Type 9 Packet Bit Stream Format Example ...38
4-2 Start Segment Type 9 Packet Bit Stream Format Example ..39
4-3 Continuation Segment Type 9 Packet Bit Stream Format Example...............................39
4-4 End Segment Type 9 Packet Bit Stream Format ..40
4-5 Traffic Management Bit Stream Format...40
RapidIO.org 5

List of Figures

RapidIO Part 10: Data Streaming Logical Specification 3.2
Blank page
6 RapidIO.org

List of Tables

RapidIO Part 10: Data Streaming Logical Specification 3.2
4-1 Specific Field Definitions and Encodings for Type 9 Packets37
4-2 Specific Field Definitions and Encodings for Type 9 Packets38
4-3 Extended Header Fields ..41
4-4 Basic Traffic Management Message Formats...42
4-5 Rate Based Traffic Management Message Formats ...43
4-6 Credit Based Traffic Management Message Formats...44
5-1 Data Streaming Register Map...45
5-2 Configuration Space Reserved Access Behavior..46
5-3 Bit Settings for Logical/Transport Layer Error Detect CSR ..48
5-4 Bit Settings for Logical/Transport Layer Error Enable CSR..48
5-5 Bit Settings for Source Operations CAR ..50
5-6 Bit Settings for Destination Operations CAR...51
5-7 Bit Settings for Data Streaming Information CAR...52
5-8 Bit Settings for Data Streaming Logical Layer Control CSR...53
RapidIO.org 7

List of Tables

RapidIO Part 10: Data Streaming Logical Specification 3.2
Blank page
8 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 10: Data Streaming Logical
Specification. The goal of the specification is to combine the need for efficiency,
flexibility, and protocol independence in order to minimize the resources necessary
to support a data plane interconnect fabric, and to maintain compatibility and fully
inter-operate with the rest of the RapidIO specifications. Implementation of this
specification is optional.

The rationale for this optimization is based upon the assumption that platforms are
expected to produce many times more revenue than the initial cost of the platform.
For example, a platform is expected to produce 10 times the revenue vs. its initial
capital costs. If that same platform could cost 10% more but allow 10% more
resources for producing revenue rather than doing fabric support, the result would
be a significant net gain on the investment. Therefore, enabling more intelligence
within the system fabric and relieving the system processing resources to produce
revenue, even if that fabric is more expensive, is believed to be a good trade-off.

The features of the data streaming specification define virtual mechanisms in simple
forms for building cost sensitive systems and also provides for complex high
functioning fabrics for more demanding applications.

It is assumed that the reader has a thorough understanding of the other RapidIO
specifications and of data plane equipment and applications in general.

1.2 Overview
Standard encapsulation schemes have been developed for the transmission of
datagrams over most popular LANs. A number of different proposals currently exist
for the encapsulation of one protocol over another protocol [RFC1226, RFC1234,
RFC1701]. The data streaming logical specification defines a mechanism for
transporting an arbitrary protocol over a standard RapidIO interface, and addresses
interconnection between elements in an end-to-end data communications circuit.
The protocol has been carefully designed to provide complete compatibility and
inter-operability with existing RapidIO specifications.
RapidIO.org 9

RapidIO Part 10: Data Streaming Logical Specification 3.2
Figure 1-1. End to End Communication Circuit

The defined encapsulation methodology provides for the multiplexing of different
network-layer protocols simultaneously over the same link and provides a common
solution for easy connection of a wide variety of hosts, bridges and switches. It is
envisioned that a RapidIO system will be capable of carrying a wide variety of data
types, supporting a diverse set of protocol regimens concurrently.

The Data Streaming Protocol also includes a methodology for end-to-end traffic
management. Loosely coupled systems with individual traffic managers admitting
traffic to a fabric have to rely on statistical performance and back pressure to try and
optimize use of the fabric resources. End-to-end traffic management allows traffic
mangers at the ingress endpoints to work in concert with egress endpoints to
coordinate traffic flows.

1.3 Features of the Data Streaming Specification
The following are features of the RapidIO data streaming specification designed to
satisfy the needs of various applications and systems:

1.3.1 Functional Features
• Protocol encapsulation, independent of the protocol being encapsulated.

• Support for Protocol Data Units (PDUs) of up to 64k bytes through
Segmentation and Reassembly (SAR).

• Support for hundreds of traffic classes.

• Support for thousands of data streams between end points.

• Support for concurrent interleaved PDUs between end points.

• Seamless inter-operability with other RapidIO specifications.

1.3.2 Physical Features
• Packet definition is independent of the choice of physical layer interconnection

to other devices on the interconnect fabric.
10 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
• The protocols and packet formats are independent of the physical interconnect
topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• No dependencies exist on the bandwidth or latency of the physical fabric.

• The protocol requires in-order packet transmission and reception; out-of-order
packet delivery is not tolerated.

• Certain devices have bandwidth and latency requirements for proper operation.
The data streaming logical layer specification does not preclude an
implementation from imposing these constraints within the system.

1.3.3 Performance Features
• Packet headers are small to minimize the control overhead and be organized for

fast, efficient assembly and disassembly.

• Multiple transactions are allowed concurrently in the system, otherwise a
majority of the potential system throughput is wasted.

• Multiple end point to end point concurrent data streams are supported for high
fabric utilization.

• Optional end-to-end traffic management for advanced fabric designs.

1.4 Contents
Following are the contents of the RapidIO Part 10: Data Streaming Logical
Specification:

• Chapter 1, “Overview,” is an overview of the data streaming logical
specification.

• Chapter 2, “Data Streaming Systems,” introduces system issues such as
transaction ordering and deadlock prevention.

• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO data streaming protocol.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the data streaming specification.

• Chapter 5, “Data Streaming Registers,” describes the visible register set that
allows an external processing element to determine the data streaming
capabilities, configuration, and status of a processing element using this
logical specification. Only registers or register bits specific to the data
streaming logical specification are explained. Refer to the other RapidIO
logical, transport, and physical specifications of interest to determine a
complete list of registers and bit definitions.

• Annex A, “VSID Usage Examples,” contains a number of examples of how the
virtual stream identifier can be used in a system.
RapidIO.org 11

RapidIO Part 10: Data Streaming Logical Specification 3.2
1.5 Terminology
The data streaming logical specification introduces some new terms:

Protocol Data Unit - (PDU) A self contained unit of data transfer comprised of data
and protocol information that defines the treatment of that data.

Virtual Stream ID - (VSID) an identifier comprised of several fields in the protocol
to identify individual data streams.

Virtual input Queue (ViQ), Virtual output Queue (VoQ) - an intermediate point
in the system where one or more virtual streams may be concentrated.

Class of service - (cos) a term used to describe different treatment (quality of
service) for different data streams. Support for class of service is provided by a class
of service field in the data streaming protocol. The class of service field is used in
the virtual stream ID and in identifying a virtual queue.

StreamID - a specific field in the data streaming protocol that is combined with the
data streams’s transaction request flow ID and the source ID or destination ID from
the underlying packet transport fabric to form the virtual stream ID.

Segment - A portion of a PDU.

Segmentation - a process by which a PDU is transferred as a series of smaller
segments.

Segmentation context - Information that allows a receiver to associate a particular
packet with the correct PDU.

Ingress - Ingress is the device or node where traffic enters the system. The ingress
node also becomes the source for traffic into the RapidIO fabric. The terms ingress
and source may or may not be used interchangeably when considering a single end
to end connection.

Egress - Egress is the device or node where traffic exits the system. The egress node
also becomes the destination for traffic out of the RapidIO fabric. The terms egress
and destination may or may not be used interchangeably when considering a single
end to end connection.

Physical Channel ID - Identifies a physical channel using the virtual channel,
critical request flow, and priority physical layer fields. The physical channel ID is
used to determine how to treat a packet with respect to priority, bandwidth
allocation, and transaction ordering.

RapidIO flow - A RapidIO flow is a nexus of the source ID, destination ID and
physical channel.

Refer to the Glossary at the back of this document for additional definitions.
12 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits

ACTIVE_HIGHNames of active high signals are shown in uppercase text with no
overbar. Active-high signals are asserted when high and not
asserted when low.

ACTIVE_LOWNames of active low signals are shown in uppercase text with an
overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets.

TRANSACTIONTransaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the number of
digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care.

1.7 Useful References
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC791, September 1981

[RFC1226] Kantor, B. "Internet Protocol Encapsulation of AX.25 Frames",
RFC1226, University of California, San Diego, May 1991.

[RFC1234] Provan, D. "Tunneling IPX Traffic through IP Networks", RFC 1234,
Novell, Inc., June 1991.

[RFC1700] J. Reynolds and J. Postel, "Assigned Numbers", RFC1700, October
1994.

[RFC2460] S. Deering, R. Hinden, "Internet Protocol, Version 6 (IPv6)", RFC2460,
December 1998.

[RFC1884] Hinden, R., and S. Deering, Editors, "IP Version 6 Addressing
Architecture", RFC1884, Ipsilon Networks, Xerox PARC, December 1995.
RapidIO.org 13

RapidIO Part 10: Data Streaming Logical Specification 3.2
[RFC2004] C. Perkins, "Minimal Encapsulation within IP", RFC2004, October
1996.
14 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 2 Data Streaming Systems

2.1 Introduction
This overview introduces the role of the data streaming logical layer in an overall
system. It provides some possible use examples. See Annex A, “VSID Usage
Examples”, for more example details.

2.2 System Example
Figure 2-1 shows a block diagram of an example RapidIO-based networking system
in which protocol encapsulation is required. A number of typical data path type
devices are connected with a variety of proprietary and/or somewhat standard
interfaces and the entire system is tied together with a RapidIO switching fabric of
some topology.

Figure 2-1. Example of a RapidIO-Based Networking System

MAC Traffic
ManagerXAUI xMII

Framer
Network
Processor

Fabric
InterfaceSFIx SPIx

Framer
Comm

Processor
Traffic

ManagerSFIx SPIx

CSIX,
NPSI

Utopia,
xMII,

Proprietary
RapidIO,

R
a
p
i
d
I
O

I
n
t
e
r
c
o
n
n
e
c
t

F
a
b
r
i
c

Comm
ProcessorxMII
RapidIO.org 15

RapidIO Part 10: Data Streaming Logical Specification 3.2
Data “streams” represent logical connections between an ingress port and an egress
port. A connection spans the transfer of multiple PDUs. The transfer of PDUs may
be separated by discrete intervals of time, based on the arrival of data at the ingress.
Transfer between an ingress process and an egress process is unidirectional. An I/O
device may be bi-directional, containing both an ingress process and an egress
process. These processes are usually completely independent consisting of separate
streams in each direction.

A given ingress may service hundreds, thousands, even millions of streams at any
given time depending on how specifically a PDU is classified. Traffic may be
lumped into a single stream, or classified by user and application to form millions of
data streams.

Data streaming transactions differ from most other RapidIO transactions in two
ways: they must accommodate larger variably sized data transfers, and the
transactions are not acknowledged with a response packet. The data streaming
logical layer is intended to support data from a variety of hardware and processing
devices. These devices have a variety of different interfaces, protocols, and degrees
of sophistication. This specification is intended to enable these kinds of devices to
exist on the RapidIO interconnect.

2.3 Traffic Streams
A stream identifier identifies independent streams of traffic between the end
producer (for example, a web server) and end consumer (for example, a home
personal computer) of the encapsulated data. Stream identifiers vary with protocol
and may include multiple fields from the various networking layers included in the
protocol. A unit of data that contains a discrete identifier is called a Protocol Data
Unit, or PDU. A PDU may or may not have an ordering relationship with another
PDU being transmitted between that same producer and consumer, depending upon
the higher layer protocol being carried. A traffic stream is a series of PDUs that have
an ordering relationship between each other. A PDU has no ordering relationship
with a PDU from different producers and consumers pairs.

The data streaming logical layer uses a virtual stream identifier (VSID) to allow
multiple end to end traffic streams of PDUs to be uniquely identified and managed
concurrently within the RapidIO system. Creation of a VSID is done by performing
a protocol specific classification process on a PDU. The complexity of the
classification process is directly proportional to the sophistication of the system as
required by the application. The VSID allows the traffic to be reassociated with an
appropriate application at the egress without having to perform a second
protocol-specific classification. A VSID is comprised of fields from the data
streaming protocol: source and destination ID from the underlying packet transport
fabric, class of service, and streamID.
16 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
2.4 Operation Ordering
A transaction request flow is defined as an ordered sequence of request transactions
comprising a specific PDU from a given source ID to a given destination ID. Each
packet in a transaction request flow has the same source identifier and the same
destination identifier. All traffic streams are mapped onto transaction request flows.
These flows may also be shared with other RapidIO logical layers transactions, and
therefore the relationship between streams, traffic classes, virtual queues, and all
RapidIO transaction request flows are implementation specific.

There may be multiple transaction request flows between a given source ID and
destination ID pair. When multiple flows exist between a source ID and destination
ID pair, the flows are distinguished by a flow indicator referred to as a “flowID”,
introduced in the RapidIO Part 1: Input/Output Logical Specification. RapidIO
allows multiple transaction request flows between any source ID and destination ID
pair. Any number of transaction request flows may exist between the two IDs. The
flowID represents the lowest level of traffic management in a RapidIO system as
that is the construct mapped directly on to the switch fabric itself.

The transaction request flows between each source and destination ID pair may be
allocated to different virtual channels in the underlying fabric and may also be
prioritized within a channel. The flows are labeled and identified alphabetically as
in the other logical layer specifications, and the channels labeled and identified
numerically with channel then priority, starting with 0 as first channel or lowest
priority, then 1 as second channel or next lowest priority, etc. For example, flowID
0A is channel 0 flow A, flowID 1C is channel 1 flow C, flowID 3E is channel 3 flow
E, and so on. This flow information provides class of service information when
mapped by the application to the switch fabric.

Allocation of transaction request flows to virtual channels and the relative priority
within each channel is application dependent. A special case is a single virtual
channel application which must follow the same prioritization of flows and labeling
as the other logical layers (flowID A, flowID B, flowID C, etc.). The channel label
(0) is dropped. This channel may include traffic from the other logical layers.

At the link level, when multiple transaction request flows within the same virtual
channel exist between a given connected source and destination ID pair, transactions
of a higher priority flow may pass transactions of a lower priority flow, but
transactions of a lower priority flow may not pass transactions of a higher priority
flow. There are no ordering rules for flows in different channels. A traffic stream
being transmitted between a source and a destination ID pair must utilize the same
flowID value so that the ordering of the traffic stream is maintained. As a class of
service indicator, the physical channel ID is used by the underlying RapidIO fabric
to determine how to treat a packet with respect to other packets with respect to
priority and ordering. It is expected that in a mixed control and data plane
application that both I/O logical and data streaming transaction request flows will
exist in a RapidIO system simultaneously, possibly between the same ID pairs.
RapidIO.org 17

RapidIO Part 10: Data Streaming Logical Specification 3.2
To support transaction request flows, all devices that support the RapidIO data
streaming logical specification shall comply as applicable with the following Fabric
Delivering Ordering and End point Completion Ordering rules. Note that these rules
are very similar and complementary to the rules specified in RapidIO Part 1:
Input/Output Logical Specification.

Fabric Delivery Ordering Rules

1. Transactions within a transaction request flow (same source identifier,
same destination identifier, same flowID, same PDU) shall be delivered
to the logical layer of the destination in the same order that they were
issued by the logical layer of the source.

2. Request transactions that have the same source (same source identifier)
and the same destination (same destination identifier) within the same
virtual channel but with different flowIDs shall be delivered to the
logical layer of the destination as follows.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source before a transaction of a
lower priority transaction request flow shall be delivered to the
logical layer of the destination before the lower priority
transaction.

– A transaction of a higher priority transaction request flow that was
issued by the logical layer of the source after a transaction of a
lower priority transaction request flow may be delivered to the
logical layer of the destination before the lower priority
transaction.

3. Request transactions that have different sources (different source
identifiers) or different destinations (different destination identifiers) or
different virtual channels are unordered with respect to each other.

End point Completion Ordering Rules

1. Request transactions in a transaction request flow shall be completed at
the logical layer of the destination in the same order that the transactions
were delivered to the logical layer of the destination.

It may be necessary to impose additional rules in order to provide for
inter-operability with other interface standards or programming models. However,
such additional rules are beyond the scope of this specification.
18 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
2.5 Class of Service and Virtual Queues
Data streaming systems may support thousands, even millions of active data
streams. These streams are eventually interleaved onto the single underlying packet
transport fabric. The process for deciding which streams may share common
resources is sometimes referred to as virtual queueing. To facilitate virtual queueing
at the ingress and/or egress of the fabric, and to provide for more sophisticated
management of traffic streams, the data streaming logical layer provides a class of
service (cos) identifier. The cos field exists to provide a common semantic as to how
the traffic stream is to be treated. The relationship between the ingress/egress cos
and the end to end flowID assigned to the traffic stream is implementation specific.

At the ingress to the fabric, thousands of streams may be combined into fewer virtual
output queues (VoQs) using just the destination ID and the class of service portions
of the VSID as shown in Figure 2-2. The cos field defined by this specification is
comprised of one byte. The number of bits utilized by a particular device depends
upon the number of data buffering structures implemented, but are always from the
most significant bit of the cos field to the least significant bit. For example, a device
with two buffering structures (or “bins”) maps a packet to a bin using bit 0, a device
with four bins maps a packet to a bin using bits 0 and 1, and so on.

Figure 2-2. Mapping Virtual Streams at the System Ingress

As shown in Figure 2-2, as the virtual output queues are mapped on to the flowIDs
and then on to the underlying packet transport fabric, they may be intermingled with
other logical layer transactions. The use of the transport fabric must account for the
needs of the total environment and is application and implementation specific. End
points designed to support a wide variety of applications for data streaming should
offer some flexibility in how virtual queues are mapped down on to the transport
fabric in the implementation.

A reverse process (virtual input queueing) may or may not occur at the destination.
If there is a critical resource needed to process traffic on egress from the fabric, the
system designer may choose to fan the traffic back out into virtual queues. This
allows the fabric egress processing to re-prioritize utilization of the critical resource.

Data Streaming Logical Layer

Other Logical Layers

Flow A

Flow B

Flow C

Transport Fabric

S
ch

ed
ul

in
g

Virtual Streams VoQs
VSID = dest. ID+cos+streamID
VoQ = dest. ID+cos
Flow = dest. ID+transport
RapidIO.org 19

RapidIO Part 10: Data Streaming Logical Specification 3.2
This is illustrated in Figure 2-3.

Figure 2-3. Mapping Virtual Streams at the System Egress

A switch device may choose to utilize the information carried in the cos field by
acting as a “virtual” end point, removing the traffic streams from the underlying
packet transport fabric, reassembling the individual PDUs, and fanning the streams
back out into some larger number of queues. It then re-injects the traffic streams
back into the underlying transport fabric re-ordering the traffic using the cos. This
permits intervening devices to participate in the overall assurance of quality of
service in the system.

2.6 End-to-end Traffic Management
Other RapidIO specifications provide for traffic management at the physical layer,
and for flows at the logical layer. The traffic management for Data Streaming allows
endpoints to coordinate traffic flows between class based queues and stream based
queues. The protocol includes a hierarchy of methods and field specifiers to be
adaptable to a wide variety of queueing and management designs. The use of Data
Streaming’s traffic management is optional, and may be inter-operable only between
endpoints with similar capabilities. Endpoints that support the same traffic
management capabilities will be able to exchange traffic management packets
related to those capabilities. The implementation specific nature of the algorithms
which determine traffic management in different endpoints may lead to unexpected
system behavior.

Data Streaming Logical Layer

Other Logical Layers

S
ch

ed
ul

in
g

Virtual StreamsViQs

Flow A

Flow B

Flow C

Transport Fabric

VSID = src. ID+cos+streamID
ViQ = src. ID+cos
Flow = src. ID+transport
20 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Figure 2-4. Class Based and Stream Base Traffic Management

2.7 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The data streaming logical specification does not have any dependency loops since
the defined operations do not require responses. However, a real RapidIO system is
required to support the I/O logical maintenance operation, and will very likely
require the use of other logical operations for control functions. Support for these
other logical operations may have significant deadlock considerations for
processing element and system designs.

Data Streaming Logical Layer

S
ch

ed
ul

in
g

Virtual StreamsViQs

Data Streaming Logical Layer
S

ch
ed

ul
in

g

Virtual Streams VoQs

Class Based TM

Stream Based TM
RapidIO.org 21

RapidIO Part 10: Data Streaming Logical Specification 3.2
Blank page
22 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the RapidIO data streaming protocol. The field encodings and
packet formats are described in Chapter 4, “Packet Format Descriptions.”

Data path data movement through a machine has requirements that are significantly
different than those for control path and traditional DMA functions. Many times this
data is encapsulated data, which also many times contains further encapsulated data.
For example, the data moving through the system may be encapsulated Ethernet
packets, which may in turn be encapsulating TCP/IP packets.

This style of data movement is typically not address-based as with DMA type I/O,
and consequently follows a queue based message passing paradigm. Data path data
movement also has much more complex requirements in the area of class (or quality)
of service than control path communications, and generally requires managing a
number of queues at the egress of the system. There is also a need to be able to
identify and manage many thousands of data traffic streams that pass through a
RapidIO based data path system. The data being passed through the RapidIO system
may not be directly generated or consumed by the device connected to the RapidIO
portion of the machine, but instead by a distant end user, such as a personal computer
attached to a LAN. This necessitates the addition of a new protocol to the RapidIO
logical layers, the data streaming protocol.

The RapidIO data streaming protocol uses request transactions through the
interconnect fabric as with other RapidIO operation protocols. Since many data
movement protocols guarantee data delivery in an upper layer protocol, the
generation of responses indicating completion are not needed. Such upper layer
protocols may also allow data to be discarded if necessary, for example, under error
or fabric congestion conditions.

3.2 Data Streaming Protocol
This section describes the RapidIO data streaming protocol.

3.2.1 Data Streaming Operation

A data stream represents a logical connection between a source and a destination
pair. A stream may consist of multiple transactions and requires the allocation of
RapidIO.org 23

RapidIO Part 10: Data Streaming Logical Specification 3.2
resources at both the source and the destination. This may be done in advance of any
data transfer, or in response to receiving a new transaction. Since streams are virtual
constructs between source and destination pairs, they may be reused for different
data transfers at any time as long as the source and destination pair are both
synchronized as to the stream usage.

A data streaming operation consists of individual data streaming transactions, as
shown in Figure 3-1. A series of transactions is used to send PDUs between two end
points. The data streaming protocol is completely independent of the PDU’s native
protocol.

Data streaming transactions do not receive responses, so there is no notification to
the sender when the transaction has completed at the destination.

Figure 3-1. Data Streaming Operation

3.2.2 Virtual Streams

A stream is represented by a unique virtual stream identifier, or VSID. This
identifier represents the handling of all PDUs within the stream for the duration of a
PDU’s transit of the RapidIO fabric. The identifier is created by performing some
form of protocol specific classification of the PDU. The classification can be as
complex or as simple as the application warrants. The VSID allows this protocol
specific classification to take place one time at the ingress to the fabric. After that,
the handling of the PDU is protocol independent.

Figure 3-2. Virtual Streams

The VSID is used at the destination to “reclassify” the PDU. This sorts the data back
into contexts that can now be protocol specific again. This virtual addressing model
eliminates the need for the source and the destination to align the use of buffers and
other resources. Therefore, the VSID can be used to carry a wide variety of
information about a stream through the system, such as the protocol being
encapsulated, de-multiplexing exit port IDs instructions, very fine grained buffer

DATA STREAMING, data1

Source Destination

Protocol Type A

Classification
VSIDPDU

Destination

Demux
Protocol Type B

Classification

FABRIC

VSIDPDU
24 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
management, etc., as required for a specific application.

The VSID is a “key” comprised of multiple fields. These fields are the
source/destination ID, cos, and streamID.
From the source’s viewpoint: destination ID+cos+streamID represents a unique
stream.
From the destination’s viewpoint: source ID+cos+streamID represents a unique
stream.

By using the complete key, each source and destination pair is free to allocate the
use of these fields independently. Some examples of how the VSID may be applied
in a system are described in Appendix A, “VSID Usage Examples,” on page 55.

NOTE:VSIDs

Destinations are permitted to define their use of Virtual Stream IDs to
pre-associate certain kinds of traffic with certain end processes.
Sources shall be able to label a stream with any VSID necessary to
inter-operate with the largest number of possible destination
implementations.

3.2.3 PDU Sequences Within Streams

As described earlier, a traffic stream may consist of a sequence of related PDUs that
have ordering requirements between each other. A stream of PDUs is transmitted
one PDU at a time to preserve the required ordering. PDUs that do not have an
ordering relationship may be separated into different streams or may be interleaved
in common streams. A stream is identified by the interconnect fabric by the
combination of the destination ID and either the cos field or the flowID, depending
upon the complexity of the fabric, as described in “Section 2.5, Class of Service and
Virtual Queues” on page 19.

Only one PDU from any given stream will be transmitted at a time at the source, but
fabric conditions may result in multiple PDUs in transit. The fabric must guarantee
that delivery of PDUs (and segments of PDUs as described below) remain in order.
A fabric may load balance traffic through multiple paths on a stream by stream basis.

3.2.4 Segments within a PDU

The basic mechanism of segmentation defines a general methodology to provide for
larger PDUs than are accommodated by the standard 256 byte limit on a RapidIO
data payload. The standard industry term for this function is “Segmentation and
Reassembly”, or SAR. A PDU that is to be transmitted from the initial producer to
the final consumer is broken up (segmented) into a series of blocks of data. The
consumer “reassembles” that data back into the original PDU. The maximum size of
a PDU that a particular destination can accept is specified in a CAR (see Chapter 5,
“Data Streaming Registers”). The system must be configured in accordance with
RapidIO.org 25

RapidIO Part 10: Data Streaming Logical Specification 3.2
these limitations.

The block size used for the segmentation process is specified by the Maximum
Transmission Unit, or MTU, parameter. The MTU is defined in Chapter 5, “Data
Streaming Registers”. The MTU is a system-wide parameter agreed to by all
processing elements participating in the SAR process. By managing the MTU size
for the system, the variability in latency for the system can be controlled.

A data streaming transaction is also referred to as a segment. The transmission of a
PDU for any given stream may result in one or more transactions (segments). A
typical sequence is made up of three types of transactions, a start segment, some
number of continuation segments, and an end segment. Start segments and
continuation segments are always filled to the MTU size. End segments are variable
in size containing the remainder of the PDU. If a PDU is equal to or less than the
MTU size, it is carried in a single segment. A single segment may also be variable
in size, matching the PDU payload. Since flowIDs and the cos are assigned on a
PDU basis, all segments of a PDU must also have that same flowID and cos
assignments.

A start segment contains the necessary fields to identify the VSID and “open” a
segmentation context. The segmentation context for a stream is defined as the
combination of the source ID and the flowID, and is used by a receiver to reassociate
the segments of a particular PDU. Using source ID+physical channel ID allows
each source and destination pair to have one PDU for each physical channel ID that
is explicitly supported by the system interleaved in the fabric at any one point in
time. Note that for a destination device that can be a multicast target and/or supports
multiple destination device IDs, the destination ID for a PDU must also be included
as part of the segmentation context in order to prevent possible PDU corruption at
the destination device. The VSID is used when opening a segmentation process at
the destination to associate the PDU with its stream since the continuation and end
segments do not carry that information. After the receipt of the end segment, the
segmentation context is “closed” (the sending processing element has an analogous
definition for open and closed). The stream and PDU associated with a segmentation
context is not permitted to change during the time that the context is open.

Since there may be a large number of PDU sources and concurrent contexts per
source, the amount of context state that a destination may have to handle can
potentially get very large. The number of contexts that can be supported by a
particular destination end point is specified in a CAR (see Chapter 5, “Data
Streaming Registers”). These segmentation contexts must be allocated to sources by
system software.

For efficiency, information as to which block of the PDU is contained in a specific
packet is not included in the header. This requires that the transmitter issue the
sequence starting with the first block of the PDU and proceeding sequentially
through the PDU, and requires the underlying transport fabric to deliver the
sequence to the data streaming logical layer in the issued order.
26 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Figure 3-3 shows a 24 byte PDU that is to be segmented for transmission, with an
eight byte MTU (note that an eight byte MTU is not permitted in this specification;
it is used to simplify the illustration). Since the PDU is divisible by the size specified
as the MTU, all data payloads are exactly that size and no padding is necessary. The
sender takes byte 0 (the first byte of the PDU) through byte 7 as the data payload to
transmit in the start segment. The second data payload consists of bytes 8 through
15, which is transmitted in a continuation segment. The last data payload consists of
bytes 16 through 23, which is transmitted in the end segment. Since the data
payloads are required to be delivered to the receiver’s data management hardware in
order of transmission, the receiver can correctly reassemble the original PDU when
all three packets have arrived.

To guarantee the packet ordering, all packets making up an individual PDU
and all PDUs in a stream must be in the same transaction request flow, as
described in “Section 2.4, Operation Ordering” on page 17.

Figure 3-4 shows an example of a similar situation, except that this time the PDU is
21 bytes. In this case, the end segment has a data payload that is less than the
specified MTU, and also has a pad byte to round out the data payload to be a multiple
of half-words. A bit in the end segment (the “P” bit) indicates the presence of the
pad byte. An additional bit (the “O” bit) indicates that the data payload has an odd
number of half-words and is therefore oddly aligned. The number of half-words in
the data payload as well as the presence of a pad byte can be determined from a PDU
length field contained in the end segment header.

Figure 3-3. PDU Segmentation and Reassembly Example 1

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

byte 8 byte 10 byte 11byte 9 byte 12 byte 13 byte 14 byte 15

byte 16 byte 18 byte 21byte 20byte 19 byte 22 byte 23byte 17

Bytes for the start
segment data payload

Bytes 8 through 15
are the continuation

Bytes 16 through 23
are the end segment

segment data payload

data payload

First Byte of PDU

Last Byte of PDU
RapidIO.org 27

RapidIO Part 10: Data Streaming Logical Specification 3.2
3.2.5 Rules for Segmentation and Reassembly

Segmentation (source)

1. In order to limit implementation complexity due to possible PDU ordering
issues, the following conditions must be met:

– No more than one PDU from a given stream shall be segmented at a
time

– No more than one PDU from a given RapidIO flow shall be segmented
at a time

– PDUs associated with different RapidIO flows may be segmented
concurrently

2. Segments are filled with bytes from the PDU in order as shown in Figure 3-3
and Figure 3-4.

3. The first segment is marked as start segment (see section 4).

4. The start segment is filled to the end of the PDU data or to the MTU size.

5. If the end of the PDU data is encountered, the start segment then re-marked as
a single segment.

6. If the start segment reaches MTU size (and there is remaining PDU data), the
start segment is encapsulated, and a continuation segment is opened.

7. Continuation segments are filled to MTU size from the PDU data, in order.

8. When the end of PDU data is encountered, the segment is marked as the end
segment. The end segment data payload size may be less than or equal to the
MTU size.

9. If the source wishes to abort a PDU transmission, it sends an end segment with
no data payload and with the length field set to zero.

Reassembly (destination)

Figure 3-4. PDU Segmentation and Reassembly Example 2

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

byte 8 byte 10 byte 11byte 9 byte 12 byte 13 byte 14 byte 15

byte 16 byte 18 padbyte 20byte 19byte 17

Bytes for the start
segment data payload

Bytes 8 through 15
are the continuation

Bytes 16 through 20
plus the pad byte is

segment data payload

the end segment data
payload

First Byte of PDU

Last Byte of PDU
28 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
1. Upon receiving a segment with a start bit, the reassembly unit opens a
“context” containing the virtual stream ID and associates it with the
segmentation context consisting of the source ID, the destination ID, and the
physical channel ID. (The destination ID is only required for devices
supporting multicast and/or multiple destination IDs.)

2. The reassembly process transfers the entire payload into the reassembly buffer
in order. The amount of data transferred is counted for comparison to the
length field.

3. If the packet is a single segment, the amount of payload data must be equal to
or less than the MTU size or the PDU is defective.

4. If the packet is a start segment and the payload data does not match the MTU
size the PDU is defective.

5. Reassembly continues with continuation packets. All continuation packets
must match the MTU size or the PDU is defective. All data transferred to the
reassembly buffer is counted.

6. An end segment terminates the reassembly process. An end segment may be
received immediately after a start segment. The data payload size must be
less than or equal to the MTU size or the PDU is defective. The data from the
end segment is transferred according to the data payload size and counted.

7. Once all the data has been reassembled, the length (provided by the end
segment packet header) is checked against the received data count. A
mismatch indicates a lost continuation segment and the PDU is defective.

8. Receiving a continuation or end segment on a closed context indicates a lost
start segment and the PDU is defective.

9. Receiving a start or single segment on an open context indicates a lost end
segment and the PDU is defective. The existing context is closed, and the new
context is opened.

In all cases, a defective PDU results in discarding the entire PDU. The method used
for reporting the discard event is beyond the scope of this specification. It may be
desirable for a destination to have a timeout as part of the lost packet detection
mechanism, but the definition and time interval are also outside of the scope of this
specification.

3.3 Class of Service and Traffic Streams
A virtual stream ID is partitioned into three pieces as previously discussed: port
(identified by the source/destination ID), class (the cos field), and the stream
identifier (the streamID field). These fields form a specific hierarchy for
transitioning packets from highly individualized streams to coarser groupings of
traffic. At the fabric ingress, egress, and potentially at interim points (where
competition for resources may occur) the traffic may be resegregated and queued by
class. In the packet transport fabric, switching is done by destination ID and the
RapidIO.org 29

RapidIO Part 10: Data Streaming Logical Specification 3.2
mapped flowID, as described in Section 2.4. The full class of service identifier (CoS
ID) is a subset of the VSID. It consists of the source/destination ID (or ingress/egress
port) plus the cos field.
Ingress queueing should be based on: destination ID+cos
Egress queueing should be based on: source ID+cos
as shown in Figure 3-5.

Including the source or destination ID in the CoS ID allows the class of service to
be specific to the source and destination pairing.

Figure 3-5. Traffic Sorting Based on CoS ID

The cos field shall be used beginning with the MSB (bit 0) using the necessary
number of bits for the number of classes supported.

Bit 0 - 2 Classes of Service

Bits 0, 1 - 4 Classes of Service

Bits 0, 1, 2 - 8 Classes of Service supported

etc.

3.4 Traffic Management
Data Streaming Traffic Management (TM) supports end-to-end flow control
through multiple mechanisms. The protocol includes On/Off, Rate based and Credit
based schemes. There is also room in the protocol for user defined operations.
Traffic Management uses the extended packet format for Type 9 (see Chapter 4 for
packet definitions). The traffic management format makes up a message that
contains:

<VSID><Wildcard+Mask> <Message XType><Parameter 1><Parameter 2>

The VSID (from the standard type 9 header) plus the wildcard and mask fields in the
extended packet header forms the operand (the queue or queues) for the traffic
management message. The message type and type specific parameters form the
operation.

Streams
Queues

Port 2

Class

Fabric

Egress

Egress

Ingress

Port 4

Queues

Traffic
Prioritized
by Class
30 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
3.4.1 Traffic Management Operand

All Data Streaming traffic management protocols use a common mechanism for
queue designation. The message overloads the data streaming VSID fields to define
the stream to which to apply the message. In addition, the extended header format
includes modifiers, in the form of a wild card and a mask to expand the scope of the
message beyond a single stream. The message can apply to:

• A single stream, identified by <Dest><cos><streamID>

• A group of streams in a class identified by <Dest><cos>

• A group of classes, identified by <Dest><cos><mask>

• All classes for a given port, identified by <Dest>

Note that the operand is always based on a VSID that is the target (intended
destination) of the data. The egress is not responsible for knowing the mapping of
queues taking place at the ingress.

Example: Endpoint 21 sends <cos 3> XOFF to endpoint 6
Endpoint 6 would stop all streams to VSID: DestID 21, class 3.

3.4.2 On/Off Traffic Management

The messages supported are:

Egress to Ingress:
<Q> XOFF (where <Q> is any operand described in 3.4.1)
<Q> XON

Ingress to Egress:
<Q> Q_STATUS <Level> (see Section 4.3.2 for message and parameter formats)

Basic On/Off traffic management consists of egress to ingress messages that direct
the operand <Q> be stopped (XOFF) or started (XON). The ingress may signal the
need for service with the Q_STATUS message, with level indicating the relative
fullness of the queue.

Ingress devices may admit traffic based on any ingress specific scheduling
algorithm. This message does not modify the algorithm except to suspend/resume
traffic flow.

When traffic management is enabled and set to TM Type 0 (basic), the messages
shall be supported by the egress and honored by the ingress according to the rules in
Section 3.2.5.

3.4.3 Rate Base Traffic Management

The messages supported are:

From Egress to Ingress
RapidIO.org 31

RapidIO Part 10: Data Streaming Logical Specification 3.2
<Q> XON (where <Q> is any operand described in Section 3.4.1)
<Q> XOFF
<Q> INCREASE <Amount>
<Q> DECREASE <Amount>

From Ingress to Egress
<Q> Q_STATUS <Level> (see Section 4.3.3 for message and parameter formats)

XON and XOFF messages are as defined in Section 3.4.2.

Rate based flow control is a relative control protocol. <Amount> is a ratio relative
to the current rate of traffic flow (see Chapter 4 for field definitions). The ingress is
pre-configured with a specific traffic scheduling algorithm. The egress uses the
INCREASE / DECREASE mechanism to modify the ingress’ scheduling process,
usually based on the egress’ ability to move the traffic to its next destination.

DECREASE<0> is a special message meaning MAINTAIN current rate, and
INCREASE<max> is a special message to DOUBLE the current rate.

The ingress may use the Q_STATUS message to indicate the status of its queues,
with level indicating the relative fullness of the queue, allowing a closed loop
decision process. For example, if the ingress sends successive messages indicating
rising queue levels, the egress may choose to increase the rate at which the ingress
has permission to admit traffic from that queue.

When the traffic management mode is set to TM Type 1 (rate), the XON, XOFF
messages are included to carry forward the basic operation (the type 0 messages no
longer need to be used).

3.4.4 Credit Based Traffic Management

Credit based traffic management permits the egress to control traffic on a PDU by
PDU basis. In this mode PDUs are only transmitted when an ingress is given an
allocation of credits for a specific queue (identified by the operand <Q>). Traffic
flow stops when the allocation of credits reaches zero.

The basic message formats are:

Egress to Ingress:

<Q> XON (where <Q> is any operand described in Section 3.4.1)
<Q> XOFF
<Q> ALLOCATE <AU> <Credits>

Ingress to Egress:
<Q> CREDIT STATUS <AU> <Credits>
<Q> Q_STATUS <Level> (see Section 4.3.4 for message and parameter formats)

Allocate is used by an egress endpoint to tell an ingress endpoint that it has <some
number of> credits available for use. The credits are assigned to an allocation unit
32 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
<AU>. The allocation unit allows blocks of resources to be grouped, permitting
coarser management, and requiring less precision in the synchronization between an
ingress and the egress.

When the credits in an allocation unit are consumed, the ingress begins to use credits
in the next allocation unit. The egress assigns credits in allocation units on a rotating
basis. Allocation units have local scope. The allocation unit value has local scope to
the <Q> designation.

The protocol allows or pipelining up to 16 allocation units. Endpoints do not have
to use 16 allocation units. The number used is a function of how far in advance
credits need to be issued. The minimum implementation is 2 to ping-pong buffer
groups and keep some credit available at the ingress. The egress may issue any
number of allocation units (starting with 0) and rolling over at whatever limit it
supports. It is up to the egress to be sure an AU is unused before reusing that number.

<Q> ALLOCATE <AU> <0> is used to retire an allocation. It may be used by an
egress endpoint to free a block of buffering for a number of reasons. It can be used
to pause a transmission by forcing the only credits to zero. It can be used to clean up
memory allocation by forcing an ingress onto the next allocation unit.

Credit Status: is sent by the ingress to delimit the use of allocation units, and to
indicate status to trigger new allocations. <Q> CREDIT STATUS <AU> <nn>,
where nn is the number of initial credits for an AU, is sent ahead of the first packet
to delimit the beginning of the use of that AU.

<Q> CREDIT STATUS <AU> <00> is always sent after the last packet resulting in
the number of credits going to 0 for that AU. The egress can close out that chunk of
buffering, even if its notion of the number of PDUs received does not agree with the
ingress (a PDU has been lost somewhere). <Q> CREDIT STATUS <AU> <00> is
also sent in response to an <Q> ALLOCATE <AU> <00> acknowledging that the
ingress will send no more PDUs for that allocation, delimiting any PDUs in the
pipeline.

<Q> CREDIT STATUS <AU> <xx>, where xx is some number of remaining
credits, may be sent by an ingress to indicate a low level of credit allocation as a
trigger to request more credits. The egress may also track the number of incoming
PDUs from an ingress keeping a local credit balance. Either or both mechanisms can
be used to sequence allocations. Note that the egress is not required to keep a
specific credit balance, it can allocate and retire allocation units using the delimiting
messages.

Queue Status: provides a means to indicate the overall status of a specific queue.
The source can use this message to get attention for a queue that has become active,
needing credits (transitioning from empty). It can be used to indicate a queue that
has gone empty, allowing the destination to deallocate the remaining credits and
retire the AU. It can also be used to indicate that the current rate of credits being
issued is not keeping up with incoming traffic.
RapidIO.org 33

RapidIO Part 10: Data Streaming Logical Specification 3.2
XOFF and XON are used to pause / resume transmission without changing the state
of credit allocation.

In the example shown in Figure 3-6, the ingress initiates activity with queue status,
indicating traffic available. The egress responds with an allocation of 16 credits.

Figure 3-6. Typical Credit Based Flow Control Example

At a level of 2 credits remaining, the ingress sends a credit status of <2> indicating
a low level of credits. It proceeds with sending the last two PDUs.

The egress responds to the request for more credits with an allocation of 16
additional PDUs. The ingress indicates the last PDU has been sent on the first
allocation, and that new PDUs are being sent on the new allocation with the two
sequential credit status messages. This is a “typical” scenario.

In the scenario shown in Figure 3-7, the egress moves the traffic from AU 0 to AU
1 by first allocating more credits with AU 1, then terminating the credits for AU 0.

The ingress responds by sending credit status of 0 for AU 0, and credit status to
indicate the beginning of AU 1.

There are many ways to use this protocol. An ingress may use the credit status <0>
to asynchronously relinquish credits for a stream if an activity timer indicates that
there’s been no new traffic for a period of time (or the egress may do the same).

The size of the allocations can be varied using the Queue Status message, allocating
larger blocks for fuller queues. An ingress endpoint might have prescribed
thresholds for sending queue status message.

The ingress might also have adjustable thresholds for sending Credit Status
messages to adjust for pipeline delays, or algorithmically move that threshold up or
down based on gaps in allocation.
34 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Figure 3-7. Credit Based Protocol Example

3.4.5 Rules for Traffic Management

Supported Functionality

1. Supporting traffic management is entirely optional.

2. Any endpoint advertising support for traffic management shall support the
basic mode of operation.

3. An endpoint may or may not support rate or credit based modes of operation.

4. Any supported modes shall be supported fully, incorporating all defined
message formats (use of user defined fields is optional).

Therefor the valid combinations for supporting traffic management are:

• Basic Only

• Basic + Rate

• Basic + Credit

• Basic + Rate + Credit

Protocol Rules

1. All TM transactions use the VSID in the type 9 header, so by definition, all
TM transactions occur in the same flows as the data. When wild cards are
used, the don’t care fields shall be set to values that put the message in the
same flow as the affected data.
RapidIO.org 35

RapidIO Part 10: Data Streaming Logical Specification 3.2
2. Any rules used by the ingress to associate traffic with a specific VSID shall
be used in reverse to associate the VSID in the message from the egress with
the at least one queue. Beyond that, any internal hierarchies of queues and
relationships to different messages are up to the implementation.

3. Endpoints may implement <Amount>, or <Level> with less precision than
described. Receiving endpoints shall support the full range of values by
rounding to the desired precision.

4. An ingress shall not overrule a TM directive from the egress. The ingress may
discard traffic should the egress not adequately permit that traffic onto the
fabric. Any discard algorithm is implementation specific.

Error Handling

5. There are no requirements for timers. An ingress may “insist” by sending
repeated Q_STATUS messages.

6. Lost messages are recovered by sending duplicates. Endpoints shall
recognize duplicates as such and not behave inappropriately.

An XOFF to a <Q> already in the off state is ignored.

An XON to a <Q> already in the on state is ignored.

A lost Rate DECREASE message results in the egress sending a second
DECREASE with a larger requested decrease amount.

A lost Rate INCREASE message results in the ingress issuing more urgent
Q_STATUS messages and an the egress issuing additional INCREASE
messages.

7. The exception to rule 6 is the sequencing of allocation units with the CREDIT
STATUS message:

If the <Q> CREDIT STATUS <AU> <0> message is lost, the allocation unit
will be assumed closed when the <Q> CREDIT STATUS <AU+1> <N> is
received opening operation on the next allocation unit.

If the <Q> CREDIT STATUS <AU+1> <N> message is lost, the next
allocation unit is assumed to be opened when the next PDU for that stream is
received.

Also, as an exception to rule 6, ALLOCATE messages are never duplicated.
If an allocation unit message is lost, the egress may recover it with a
<Q> ALLOCATE <AU><0> message, insuring it is de-allocated before
reusing it.
36 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 4 Packet Format Descriptions

4.1 Introduction
This chapter contains the definition of the data streaming packet format.

4.2 Type 9 Packet Format (Data-Streaming Class)
The type 9 packet format is the DATA STREAMING transaction format. Type 9
packets always have a data payload, unless terminating the PDU. Unlike other
RapidIO logical specifications, the data payload length is defined as a multiple of
half-words rather than double-words. A pad bit allows a sender to transmit an odd
number of bytes in a packet. An odd bit indicates that the data payload has an odd
number of half-words. This bit makes it possible for the destination to determine the
end of a data payload if packet padding is done by the underlying transport. An
extended header bit allows future expansion of the functionality of the type 9 packet
format.

Definitions and encodings of fields specific to type 9 packets are provided in
Table 4-1.

Table 4-1. Specific Field Definitions and Encodings for Type 9 Packets

Field Definition

cos class of service - This field defines the class of service to be applied by the destination end point
(and possibly intervening switch processing elements) to the specified traffic stream.

S Start - If set, this packet is the first segment of a new PDU that is being transmitted. The new
PDU is identified by the combination of the source of the packet and the flowID.

E End - If set, this packet is the last segment of a PDU that is being transmitted. Both S and E set
indicates that the PDU is fully contained in a single packet.

rsrv Reserved - Assigned to logic 0s by the sender, ignored by the receiver

xh Extended header - There is an extended header on this packet. The extended header is used for
traffic management.

O Odd - If set, the data payload has an odd number of half-words

P Pad - If set, a pad byte was used to pad to a half-word boundary
RapidIO.org 37

RapidIO Part 10: Data Streaming Logical Specification 3.2
Table 4-1 details the O and P bit combinations.

There are three type 9 packet headers, determined by the value of the Start and End
bits, which determine if the header is a Start/Single header, a Continuation header,
or an End header. The following set of figures shows examples of type 9 packets.
Field sizes are specified in bits.

Figure 4-1 is an example of a Single Segment type 9 packet with all of its fields. The
data payload size may or may not match the MTU size, so n and m are determined
by the size of the PDU itself. In this example, the data payload is un-padded and
there are an even number of half-words. The value 0b1001 in Figure 4-1 specifies
that the packet format is of type 9. This is the only type 9 packet that has the xh field.

Figure 4-2 is an example of a Start Segment type 9 packet with all of its fields. The
data payload that matches the MTU, so n and m are determined by the MTU size.
The value 0b1001 in Figure 4-2 specifies that the packet format is of type 9.

streamID traffic stream identifier - This is an end to end (producer to consumer) traffic stream identifier.

length PDU length - This is the length in bytes of the segmented PDU.
0x0000 - 64kbytes
0x0001 - 1 byte
0x0002 - 2 bytes
0x0003 - 3 bytes
...
0xFFFF - 64kbytes - 1

Table 4-2. Specific Field Definitions and Encodings for Type 9 Packets

O bit P bit Definition

0b0 0b0 Even number of half-words and no pad byte

0b0 0b1 Even number of half-words and a pad byte

0b1 0b0 Odd number of half-words and no pad byte

0b1 0b1 Odd number of half-words and a pad byte

Figure 4-1. Single Segment Type 9 Packet Bit Stream Format Example

Table 4-1. Specific Field Definitions and Encodings for Type 9 Packets (Continued)

Field Definition

• • •

1 0 0 1

4 3

rsrv

1 1

S=1 E=1cos

8

half-word n (byte m-1 || byte m)

16

streamID

161

xh=0

half-word 0 (byte 0 || byte 1)

16

half-word 1 (byte 2 || byte 3)

16

1 1

O=0 P=0
38 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Figure 4-3 is an example of a Continuation Segment type 9 packet with all of its
fields. The size of the data payload must match the MTU size. The half-words (and
correspondingly, bytes) are contiguous in the manner shown in the preceding
examples. The value 0b1001 in Figure 4-3 specifies that the packet format is of type
9.

Figure 4-4 is an example of an End Segment type 9 packet with all of its fields. The
size of the data payload is determined by the remainder of the size of the PDU (the
length field) divided by the size of the MTU. For convenience at the destination, the
O and P bits are used as they are for a single segment. In this example, the data
payload size does not match the PDU size, has a pad byte, and is an odd number of
half-words. The half-words (and correspondingly, bytes) are contiguous in the
manner shown in the preceding examples. A length value of 0 and no data payload
can be used to force the PDU to be discarded. The value 0b1001 in Figure 4-4
specifies that the packet format is of type 9.

Figure 4-2. Start Segment Type 9 Packet Bit Stream Format Example

Figure 4-3. Continuation Segment Type 9 Packet Bit Stream Format Example

1 0 0 1

4 3

rsrv

1 1

S=1 E=0 streamID

162

rsvcos

8

• • •

half-word n (byte m-1 || byte m)

16

half-word 0 (byte 0 || byte 1)

16

half-word 1 (byte 2 || byte 3)

16

1

0

1 0 0 1

4 3

rsrv

1 1

S=0 E=0cos

8

• • •

half-word

16

half-word

16

half-word

16

2

rsv

1

0

RapidIO.org 39

RapidIO Part 10: Data Streaming Logical Specification 3.2
4.3 Type 9 Extended Packet Format
The type 9 extended packet format for traffic management between two data
streaming endpoints is shown below.

Figure 4-5. Traffic Management Bit Stream Format

The extended type 9 packet is identified first by the XH bit equal to 1. The Class of
Service field and the StreamID are included from the data packet format. The
segmentation bits, Start and End are not used, or are the Odd and Pad fields. Those
are left 0s. The 3 bit reserved field, is defined for the extended packet format as
defining the type of extended packet. Type 0 is a traffic management packet.

The TM packet adds a fixed 4 bytes to the packet as shown above and defined below:

Figure 4-4. End Segment Type 9 Packet Bit Stream Format

1 0 0 1

4 3

rsrv

1 1

S=0 E=1cos

8

• • •

half-word (last byte || pad=0x00)

16

length

16

half-word

16

half-word

16

1

0

1 1

O=1 P=1

1 0 0 1

4 3

Xtype = 000

2

rsrvcos

8

streamID

161

xh=1

2

rsrv

4

TM OP

3

wildcard

1

rsrv

8

mask

8

parameter 1

8

parameter 2
40 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Table 4-3. Extended Header Fields

Type 9 Fields Encoding Definition

cos — Class Of Service: This field defines the class of service assigned to the stream that is being
managed with this message. See Section 4.3.1.

rsrv — Reserved

xtype 0b000 Traffic Management Packet

0b001 - 0b111 Reserved

xh 0b1 Extended Header: There is an extended header on this packet. Currently the extended header
is only used for stream management messages. It is always assigned to 0b1 for type 9
extended packets.

streamID — Traffic Stream Identifier: This is an end to end (producer to consumer) traffic stream identifier
that is being managed with this message. See Section 4.3.1.

TM OP 0b0000 Basic Stream Management Message: message specifying base level XON/XOFF
functionality. This message flows from one endpoint to another. See Section 4.3.2.

0b0001 Rate Control Stream Management Message: Rate flow control messages to support the rate
control protocol. See Section 4.3.3.

0b0010 Credit Control Stream Management Message: Credit Control messages to support the credit
based flow control protocol. Section 4.3.4

0b0011 Application Defined Stream Management Message: A message from one end point to another
end point. The use of this message is application defined.

0b0100-1111 Reserved

wildcard 0bnxx VSID dest wildcard: If this bit is set, the message applies to all destinations. If clear, the
message applies to the specified destination. See Section 4.3.1.

0bxnx VSID class wildcard: If this bit is set the message applies to all classes. If clear, the message
applies to the specified class or classes as specified by the mask bits. See Section 4.3.1.

0bxxn VSID stream wildcard: If this bit is set the message applies to all streams. If clear, the
message applies to the specified stream. See Section 4.3.1.

mask — Class Mask: Used to mask portions of the class of service (COS) field to allow groups of
classes to be included in the message. The mask is left justified to identify specific class bits
as don’t cares:

Mask Class
0b00000000 0bnnnnnnnn 256 classes n = valid class bits
0b00000001 0bnnnnnnnx 128 classes x = don’t cares
0b00000011 0bnnnnnnxx 64 classes
0b00000111 0bnnnnnxxx 32 classes
0b00001111 0bnnnnxxxx 16 classes
0b00011111 0bnnnxxxxx 8 classes
0b00111111 0bnnxxxxxx 4 classes
0b01111111 0bnxxxxxxx 2 classes
0b11111111 0bxxxxxxxx 1 class

Parameter1 — Parameter1: Argument specific to the TM message operation. See below

Parameter2 — Parameter2: Argument specific to the TM message operation. See below
RapidIO.org 41

RapidIO Part 10: Data Streaming Logical Specification 3.2
4.3.1 TM Operand

The operand for the specific TM operation is defined by the following fields:

<Source or Destination ID> <CoS> <StreamID> + <wild cards> + <Mask>

The follow operands are valid:

Specific Stream:
<DestID><CoS><StreamID> + <wc=000> + <m = 0x00>

All Streams in a specific class:
<DestID><CoS>< xx > + <wc = 001> + <m = 0x00>
where StreamID is a don’t care

All Streams in a group of classes:
<DestID><CoS>< xx > + <wc = 001> + <m = 0xnn>
where mask is one of the non-zero values identified in table 4-3

All Streams and Classes (all traffic) to a specific destination
<DestID>< xx >< xx > + <wc = 011> + <m = xx>
where CoS, StreamID and mask are don’t cares

All traffic from this source
< xx >< xx >< xx > + <wc = 111> + <m = xx>

No other combinations of these fields is permitted.

4.3.2 Basic Traffic Management

Basic traffic management message formats are as follows:

All other parameter 1 values are reserved.

The implementer may overload the parameter 2 field (Parameter1 = 0) for other
messages. Only 0x00 shall be assured to be XOFF, and 0xFF shall assured to be
XON.

Table 4-4. Basic Traffic Management Message Formats

TM OP Parameter 1 Parameter 2 Definition

0b0000 0b0000 0000 0b0000 0000 XOFF: Transmit off

0b1111 1111 XON: Transmit on.

0b0000 0001-
0b1111 1110

User/application defined

0b0000 0011 0b0000 0000 -
0b1111 1111

Q_Status: Source queue is n/255 full (where n is parameter 2).
0 = empty, 0xFF = full
42 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
4.3.3 Rate Based Traffic Management

Rate based traffic management messages are as follows:

For ’Y’ = 0 (Param 1 = 0x01, 0x02) the messages apply to average rate.

For ’Y’ = 1 (Param 1 = 0x05, 0x06) the messages apply to peak rate.

All other parameter 1 values are reserved.

The implementer may overload the parameter 2 field (Parameter1=0) for other
messages. Only 0x00 shall be assured to be XOFF, and 0xFF shall assured to be
XON.

Notes on reducing precision:

REDUCE values should be rounded UP to the nearest precision.
Example: for n/16 precision - 0b0000 0011 would be rounded to 0b0001 xxxx

INCREASE values should be rounded DOWN to the nearest precision.
Example for n/32 precision 0b1100 1110 would be rounded to 0b1100 1xxx

Q_STATUS values should be rounded UP to the nearest precision.

Whatever the minimum precision the ingress uses for rate scheduling, a decrease
must never reduce the rate completely to zero. The egress must use XOFF to stop
the flow completely.

Table 4-5. Rate Based Traffic Management Message Formats

TM OP Parameter 1 Parameter 2 Definition

0b0001 0b0000 0000 0b0000 0000 XOFF: Transmit off

0b1111 1111 XON: Transmit On. Start transmitting at the rate prior to receiving the XOFF

0b0000 0001 -
0b1111 1110

User Defined: May be overloaded with any implementation specific message.

0b0000 0Y01 0b0000 0000 Maintain_Rate: Maintain the current rate

0b0000 0001 REDUCE: Reduce the current rate to = CurrentRate x (1-1/256)

0b0000 0010 REDUCE: Reduce the current rate to = CurrentRate x (1-2/256)

0b0000 0011-
0b1111 1111

REDUCE: Reduce the current rate to = CurrentRate x (1-n/256)
(where n is parameter 2)

0b0000 0Y10 0b0000 0001-
0b1111 1110

INCREASE: Increase the current rate to = CurrentRate x (1+ n/256) (additive
increase where n is parameter 2)

0b1111 1111 DOUBLE: Double the current rate.

0b0000 0011 0b0000 0001-
0b1111 1111

Q_Status: Source queue is n/255 full (where n is parameter 2).
0x00 = Empty, 0xFF = Full
RapidIO.org 43

RapidIO Part 10: Data Streaming Logical Specification 3.2
4.3.4 Credit Based Traffic Management

The message formats for credit based traffic management are as follows:

All other parameter 1 values are reserved.

The implementer may overload the parameter 2 field (Param1=0) for other
messages. Only 0x00 shall be assured to be XOFF, and 0xFF shall assured to be
XON.

Table 4-6. Credit Based Traffic Management Message Formats

TM OP Parameter 1 Parameter 2 Description

0b0010 0b00000000 0b00000000 XOFF: Transmit off

0b11111111 XON: Transmit On. Start transmitting at the rate prior to receiving the XOFF

0b0000 0001 -
0b1111 1110

User Defined: May be overloaded with any implementation specific message.

0b0001 nnnn 0b0000 0000 -
0b1111 1111

Allocate: nnnn - Allocation Unit
Parameter 2 - number of credits

0b0010 nnnn 0b0000 0000 -
0b1111 1111

Credit Status: nnnn - allocation Unit
Parameter 2 - number of Credits

0b0011 0000 0b0000 0000 -
0b1111 1111

Queue Status: Source Queue is n/255 full (where n is parameter 2)
0 = Empty; 0xFF = Full
44 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Chapter 5 Data Streaming Registers

5.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, physical, and extension specifications of interest to determine a complete
list of registers and bit definitions. All registers are 32 bits and aligned to a 32 bit
boundary.

5.2 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
RapidIO Interconnect Specification Part 1: Input/Output Logical Specification
maintenance operations. Any register offsets not defined are considered reserved for
this specification unless otherwise stated. Other registers required for a processing
element are defined in other applicable RapidIO specifications and by the
requirements of the specific device and are beyond the scope of this specification.
Read and write accesses to reserved register offsets shall terminate normally and not
cause an error condition in the target device. Writes to CAR (read-only) space shall
terminate normally and not cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. Data Streaming Register Map

Configuration
Space Byte

Offset
Register Name

0x0-14 Reserved

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20–38 Reserved

0x3C Data Streaming Information CAR
RapidIO.org 45

RapidIO Part 10: Data Streaming Logical Specification 3.2
5.3 Reserved Register, Bit and Bit Field Value Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x40–44 Reserved

0x48 Data Streaming Logical Layer Control CSR

0x4C–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. Data Streaming Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
46 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
When a writable bit field is set to a reserved value, device behavior is
implementation specific.

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO.org 47

RapidIO Part 10: Data Streaming Logical Specification 3.2
5.4 Additions to Existing Registers
The following bits are added to the Logical/Transport Layer Error Detect CSR (see
RapidIO Interconnect Specification Part 8: Error Management Extensions
Specification).

The following bits are added to the Logical/Transport Layer Error Enable CSR (see
RapidIO Interconnect Specification Part 8: Error Management Extensions
Specification).

Table 5-3. Bit Settings for Logical/Transport Layer Error Detect CSR

Bit Name
Reset
Value

Description

10 Missing data streaming
context

0b0 A continuation or end data streaming segment was received for a closed or
non-existent segmentation context
(end point device only)

11 Open existing data
streaming context

0b0 A start or single data streaming segment was received for an already open
segmentation context
(end point device only)

12 Long data streaming
segment

0b0 Received a data streaming segment with a payload size greater than the MTU
(end point device only)

13 Short data streaming
segment

0b0 Received a start or continuation data streaming segment with a payload size
less than the MTU
(end point device only)

14 Data streaming PDU
length error

0b0 The length of a reassembled PDU differs from the PDU length carried in the
end data streaming segment packet header
(end point device only)

Table 5-4. Bit Settings for Logical/Transport Layer Error Enable CSR

Bit Name
Reset
Value

Description

10 Missing data streaming
context error enable

0b0 Enable reporting of a continuation or end data streaming segment received
for a closed or non-existent segmentation context. Save and lock capture
information in the appropriate Logical/Transport Layer Capture CSRs.
(end point device only)

11 Open existing data
streaming context error
enable

0b0 Enable reporting of a start or single data streaming segment received for an
already open segmentation context. Save and lock capture information in the
appropriate Logical/Transport Layer Capture CSRs.
(end point device only)

12 Long data streaming
segment error enable

0b0 Enable reporting of a any data streaming segment received with a payload
size greater then the MTU. Save and lock capture information in the
appropriate Logical/Transport Layer Capture CSRs.
(end point device only)
48 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
13 Short data streaming
segment error enable

0b0 Enable reporting of a start or continuation data streaming segment received
with a payload size less that the MTU. Save and lock capture information in
the appropriate Logical/Transport Layer Capture CSRs.
(end point device only)

14 Data streaming PDU
length error enable

0b0 Enable reporting of a reassembled PDU length that differs from the PDU
length carried in the end data streaming segment packet header. Save and
lock capture information in the appropriate Logical/Transport Layer Capture
CSRs.
(end point device only)

Table 5-4. Bit Settings for Logical/Transport Layer Error Enable CSR

Bit Name
Reset
Value

Description
RapidIO.org 49

RapidIO Part 10: Data Streaming Logical Specification 3.2
5.5 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities through maintenance read
operations. All registers are 32 bits wide and are organized and accessed in 32 bit (4
byte) quantities, although some processing elements may optionally allow larger
accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 and Word 0 respectively the most significant bit
and word.

5.5.1 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO data streaming logical operations that can be
issued by this processing element; see Table 5-5. It is assumed that a processing
element can generate I/O logical maintenance read and write requests if it is required
to access CARs and CSRs in other processing elements. The Source Operations
CAR is applicable for end point devices only. RapidIO switches shall be able to
route any packet.

Table 5-5. Bit Settings for Source Operations CAR

Bit Field Name Description

0–11 — Reserved

12 Data streaming traffic
management

PE can support data streaming traffic management

13 Data streaming PE can support a data streaming operation

14-15 Implementation defined Defined by the device implementation

16-29 — Reserved

30–31 Implementation defined Defined by the device implementation
50 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
5.5.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO data streaming operations that can be
supported by this processing element; see Table 5-6. It is required that all processing
elements can respond to maintenance read and write requests in order to access these
registers. The Destination Operations CAR is applicable for end point devices only.
RapidIO switches shall be able to route any packet.

Table 5-6. Bit Settings for Destination Operations CAR

Bit Field Name Description

0-11 — Reserved

12 Data streaming traffic
management

PE can support data streaming traffic management

13 Data streaming PE can support a data streaming operation

14-15 Implementation defined Defined by the device implementation

16-29 — Reserved

30-31 Implementation defined Defined by the device implementation
RapidIO.org 51

RapidIO Part 10: Data Streaming Logical Specification 3.2
5.5.3 Data Streaming Information CAR
(Configuration Space Offset 0x3C)

This register defines the data streaming capabilities of a processing element. It is
required for destination end point devices.

Table 5-7. Bit Settings for Data Streaming Information CAR

Bit Field Name Description

0–15 MaxPDU Maximum PDU - The maximum PDU size in bytes supported by the destination
end point
0x0000 - 64kbytes
0x0001 - 1 byte
0x0002 - 2 bytes
...
0xFFFF - 64kbytes - 1

16–31 SegSupport Segmentation Support - The number of segmentation contexts supported by the
destination end point
0x0000 - 64k segmentation contexts
0x0001 - 1 segmentation context
0x0002 - 2 segmentation contexts
...
0xFFFF - 64k - 1 segmentation contexts
52 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
5.6 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs)
that allows an external processing element to control and determine the status of its
internal hardware. All registers are 32 bits wide and are organized and accessed in
the same way as the CARs. Refer to Table 5-2 for the required behavior for accesses
to reserved registers and register bits.

5.6.1 Data Streaming Logical Layer Control CSR
(Configuration Space Offset 0x48)

The Data Streaming Logical Layer Control CSR is used for general command and
status information for the logical interface.

Table 5-8. Bit Settings for Data Streaming Logical Layer Control CSR

Bit Field Name Description

0-3 TM Types Supported (read only) Bit 0 = 1, Basic Type Supported
Bit 1 = 1, Rate Type Supported
Bit 2 = 1, Credit Type Supported
Bit 3 = Reserved
Valid Combinations: 0b1000, 0b1100, 0b1010, 0b1110.
All others invalid

4 - 7 TM Mode Traffic Management Mode of operation
0b0000 = TM Disabled
0b0001 = Basic
0b0010 = Rate
0b0011 = Credit
0b0100 = Credit + Rate
0b0101 - 0b0111 = Reserved
0b1000 - 0b1111 = allowed for user defined modes

8 - 23 Reserved

24-31 MTU Maximum Transmission Unit - controls the data payload size for segments of an
encapsulated PDU. Only single segment PDUs and end segments are permitted to
have a data payload that is less than this value. The MTU can be specified in
increments of 4 bytes. Support for the entire range is required.
0b0000_0000 - reserved
...
0b0000_0111 - reserved
0b0000_1000 - 32 byte block size
0b0000_1001 - 36 byte block size
0b0000_1010 - 40 byte block size
...
0b0100_0000 - 256 byte block size
0b0100_0001 - Reserved
...
0b1111_1111 - Reserved

All other encodings reserved
RapidIO.org 53

RapidIO Part 10: Data Streaming Logical Specification 3.2
Blank page
54 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Annex A VSID Usage Examples

A.1 Introduction
The virtual stream identification (VSID) mechanism provides multiple features
condensed in a single 32 bit key. These features include:

• A mechanism to manage traffic for ingress to the fabric

• A mechanism to manage traffic in transit within the fabric

• A protocol independent tag to reclassify packets on fabric egress

• A flexible "sub-port" addressing mechanism

• Independence in buffer management

A.2 Background
The VSID is a composite of the port, class, and streamID fields as described in
Section 3.2.2. The port address used in the VSID is either the destination ID or the
source ID depending on which side of the fabric the packet is on. At the ingress to
the fabric (source) the destination IDs are unique. At the egress from the fabric, the
source IDs are unique.

By including the source/destination IDs in the VSID, these keys are unique for each
source and destination pairing. This allows the other fields (class and streamID) to
be set up independently without consideration of how these fields are used with any
other port pairings.

The usage of the VSID can vary depending on the sophistication of the fabric and
the demands of the application, from very simplistic port or queue steering to
conveying significant amounts of information (requiring intensive computation) as
to the content of the PDU.

A.3 Packet Classification
All PDUs require some form of classification for ingress to the fabric. Fields in the
PDU specific to the protocol are examined and routing information is produced. The
VSID produced is a 32 bit tag as opposed to just a port address. At the destination,
this 32 bit tag can be used to re-associate the PDU with a target buffer. This can be
done by direct addressing, or using a single key table lookup.
RapidIO.org 55

RapidIO Part 10: Data Streaming Logical Specification 3.2
This mechanism provides a finely grained and protocol independent way to sort
traffic, and a virtual mechanism for buffer pool management. Without a virtual tag,
the packet would have to undergo a re-classification based on the protocol specific
portion of the PDU. In multi-service platforms, this could involve numerous and
elaborate processes, duplicating what was already done at the source.

The following sections illustrate in degrees of increasing complexity, the versatility
of the VSID scheme.

A.3.1 Sub-port Addressing at the Destination

The simplest use of the VSID is to de-multiplex the traffic into coarse sub-ports at
the destination. These may be to separate traffic by protocol, or into multiple
sub-ports of the same protocol.

A.3.1.1 DSLAM application

Assume that each line card contain 128 user ports. The system could expose each of
these as independent destinations to the RapidIO fabric, requiring the use of an
excessively large number of destination IDs in the system, and imposing the
associated cost in overhead. Alternatively the ATM traffic can be encapsulated into
128 VSIDs, one for each port. The line card would then expose a single port to the
RapidIO fabric. The VSID would be used as the address to fan out the traffic on
various UTOPIA busses to the user ports. This also has an advantage for fault
recovery. Should a line card fail, a single port entry in routing tables in the fabric
needs to be updated rather than all 128 sub-ports.

A.3.1.2 VOIP application

The VSID can be used to separate the traffic into just 2 channels, one destined for a
control processor to handle control messages and one channel that goes to a network
processor to be distributed to DSPs. The VSID could contain the address of the
target DSP, to further off-load the network processor on distribution. The VSID
could also contain the user channel within the DSP de-multiplexing the traffic even
further.

A.3.2 Virtual Output Queueing - Fabric On-ramp

Applications involving larger numbers of flows can use the class field to regulate the
ingress to the fabric (known as virtual output queueing). For example, the RapidIO
fabric interface could contain 256 queues for 64 destination ports with 4 traffic
classes. Traffic for each destination of the same class is fairly weighted. The
weighting between classes can be application unique.

The traffic is kept sorted by destination. If traffic was just dumped into 4 queues, and
a destination port was to fail, the traffic could head of line block the traffic to the
other ports, or it would have to be discarded while the port is being recovered or
56 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
re-routed. By keeping the traffic sorted by destination at the fabric ingress, that
destination can be re-routed with minimal traffic loss.

Virtual output queueing can be expanded to 2K or even 16K buffers depending on
how large the fabric is, and how many different traffic classes are involved. This
fabric ingress management can be a simple mechanism to add some quality of
service to a system using the destination ID and the class portion of the VSID. Note
that this can be done separately from the use of the streamID at the destination for
de-multiplexing.

A.4 System Requirements
The use of the VSID is determined by all three elements in a system, the source, the
fabric, and the destination. This section contains descriptions of some example
source devices.

A.4.1 UTOPIA to RapidIO ATM bridge

The UTOPIA to RapidIO ATM bridge classifies traffic using the VPI field as the
destination port, and the VCI as a sub-port address. It maps all (type 9) traffic to a
single RapidIO flow, setting the class to 0 and the streamID to the VCI. The fabric
switches on flows. The destination uses the streamID portion of the VSID as a
hard-wired sub-port address.

A.4.2 Network processor

The network processor (NP) contains a OC-48 link aggregating traffic to and from
multiple 1MB/s ports distributed on line cards. The NP classifies traffic for each user
into two classes: high priority for voice (using RTP) and low priority for all others.
It sets the class field to 0 or 1, the port to the proper line card, and the streamID to
the desired sub-port.

A.4.3 CSIX to RapidIO interface

The CSIX packet contains the destination and class fields (the source is a preset
parameter in the interface chip). The streamID is the first 16 bits of the CSIX
payload. The RapidIO packet is easily constructed from this information. The fabric
interface contains multiple virtual output queues, 2 per destination port. Since the
CSIX to NP interface is also a segmented interface, PDUs are reassembled in the
virtual queues until enough information is available to form the required MTU on
the RapidIO fabric.

The fabric maps the class to a higher or lower priority flow. The destination uses the
streamID to map the traffic to the correct user sub-port. Each sub-port contains two
class queues to collect traffic as it is reassembled.
RapidIO.org 57

RapidIO Part 10: Data Streaming Logical Specification 3.2
A.4.4 10Gb Metropolitan Area Network interface

A specialized classification processor creates the 32 bit VSID based on IP,
TCP/UDP, and application information. The tag is prepended to a SPI4.2 packet.
The interface to the fabric is a SPI4.2 to RapidIO bridge, which contains virtual
output queues.

The destination is a processor that only supports memory and IO logical
transactions. The RapidIO to processor interface bridge contains the segmentation
and reassembly buffers and look up tables and associated engines that maps the
VSID to a DMA buffer address (and vice-versa).

The system contains multiple of these processing cards to support address
translation, encryption, or firewall processing. The source classifies traffic based on
which of these applications applies. A connection is created by allocating a buffer
address in the destination, and assigning a streamID. The source table is created with
the search tree requirements for the protocol, and setting up the VSID result.

Destinations may use the VSID in a hard-wired method, or it may be a flexible
mapping to virtual buffers. In either case, the source must be flexible to assign the
VSID according the destination's needs. This is normally not an issue as the source
needs to classify the packet to determine the destination anyway. The use of the
VSID can be to separate the traffic by protocol, sub-port, service class, or into as
many virtual queues as necessary. If the destination is managing a large number of
buffers, the VSID allows the destination to use a single protocol independent key to
re-map the traffic and completely abstract any buffer management.
58 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Class of service (cos) a term used to describe different treatment (quality of
service) for different data streams. Support for class of service is
provided by a class of service field in the data streaming protocol.
The class of service field is used in the virtual stream ID and in
identifying a virtual queue.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

Double-word. An eight byte or 64 bit quantity, aligned on eight byte
boundaries.

B

C

D

RapidIO.org 59

RapidIO Part 10: Data Streaming Logical Specification 3.2
Egress - Egress is the device or node where traffic exits the system. The
egress node also becomes the destination for traffic out of the
RapidIO fabric. The terms egress and destination may or may not be
used interchangeably when considering a single end to end
connection.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

Ingress - Ingress is the device or node where traffic enters the system. The
ingress node also becomes the source for traffic into the RapidIO
fabric. The terms ingress and source may or may not be used
interchangeably when considering a single end to end connection.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PDU. Protocol Data Unit, the OSI term for a packet.

E

F

H

I

O

PP
60 RapidIO.org

RapidIO Part 10: Data Streaming Logical Specification 3.2
Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

SAR. Segmentation and Reassembly, a mechanism for encapsulating a PDU
within multiple packets.

Segmentation. A process by which a PDU is transferred as a series of smaller
segments.

Segmentation Context. Information that allows a receiver to associate a
particular packet with the correct PDU.

Sender. The RapidIO interface output port on a processing element.

Sequence. Sequentially ordered, uni-directional group of messages that
constitute the basic unit of data delivered from one end point to
another.

StreamID. A specific field in the data streaming protocol that is combined
with the data stream’s transaction request flow ID and the sourceID
or destinationID from the underlying packet transport fabric to form
the virtual stream ID.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the

R

S

T

RapidIO.org 61

RapidIO Part 10: Data Streaming Logical Specification 3.2
destination processing element. There are no ordering requirements
between transaction request flows.

Virtual Stream ID (VSID). An identifier comprised of several fields in the
protocol to identify individual data streams.

Virtual input Queue (ViQ), Virtual output Queue (VoQ). An intermediate
point in the system where one or more virtual streams may be
concentrated.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

V

W

62 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 11: Multicast Extensions

Specification
RapidIO.org

Revision History

Revision Description Date

1.3 First release 06/09/2004

1.3.1 Technical changes:
the following new features showings:
04-08-00015.003
Converted to ISO-friendly templates

02/23/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.1 No technical changes 07/09/2009

2.2 No technical changes 05/05/2011

3.0 Changed RTA contact information.
Technical Changes:
Addition of standard register block to support Dev32 multicast programming model.
Note that if Dev32 is supported, some registers are deprecated.

10/11/2013

3.1 No Technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.
RapidIO.org

RapidIO.org

Table of Contents

RapidIO Part 11: Multicast Extensions Specification 3.2
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.3 Requirements .. 12

Chapter 2 Multicast Extensions Behavior

2.1 Introduction... 13
2.2 Packet Replication .. 13
2.3 Multicast Operation .. 13
2.4 Multicast Transaction Ordering Requirements... 17

Chapter 3 Multicast Extensions Registers

3.1 Introduction... 19
3.2 Capability Registers (CARs)... 20
3.2.1 Processing Elements Features CAR ... 20
3.2.2 Switch Multicast Support CAR .. 20
3.2.3 Switch Multicast Information CAR.. 21
3.3 Command and Status Registers (CSRs).. 22
3.3.1 Multicast Mask Port CSR ... 22
3.3.2 Multicast Associate Select CSR ... 23
3.3.3 Multicast Associate Operation CSR ... 24
3.4 Switch Routing Table Register Block... 25
3.4.1 Register Map... 25
3.4.2 Broadcast Routing Table Control CSR... 26
3.4.3 Broadcast Multicast Info CSR .. 29
3.4.4 Port n Routing Table Control CSR... 29
3.4.5 Port n Multicast Info CSR .. 30
3.4.6 Broadcast Multicast Mask x Set Register y CSR ... 30
3.4.7 Broadcast Multicast Mask x Clear Register y CSR.. 31
3.4.8 Port n Multicast Mask x Set Register y CSR.. 32
3.4.9 Port n Multicast Mask x Clear Register y CSR .. 32

Chapter 4 Configuration Examples

4.1 Introduction... 35
4.2 Configuring Multicast Masks ... 35
4.2.1 Clearing Multicast Masks ... 35
4.2.2 Assigning Ports to Multicast Masks ... 36
4.2.3 Removing a Port from a Multicast Mask.. 36
RapidIO.org 5

Table of Contents

RapidIO Part 11: Multicast Extensions Specification 3.2
4.2.4 Querying a Multicast Mask... 36
4.3 Simple Association ... 37
4.3.1 Restrictions on Block Size.. 37
4.3.2 Restrictions on Block Associate ... 38
4.3.3 Restrictions on Associations... 38
4.4 Configuring Associations.. 38
4.4.1 Basic Association.. 38
4.4.2 Using Per-Ingress Port Association .. 39
4.4.3 Using Block Association .. 40
4.4.4 Using Per-Ingress Port and Block Association... 41
4.4.5 Removing a Destination ID to Multicast Mask Association 42
4.4.6 Querying an Association... 42

Annex A End Point Considerations (Informative)

A.1 Introduction... 47
A.2 Multicast Destination ID... 47
A.3 End Point Multicast Channels... 47

Annex B Multicast Applications (Informative)

B.1 Introduction... 49
B.2 Example 1 - Static Multicast Masks ... 50
B.3 Example 2 - Linking Multicast Masks to Destination IDs 57
6 RapidIO.org

List of Figures

RapidIO Part 11: Multicast Extensions Specification 3.2
2-1 Multicast System Example ...14
2-2 Multicast Association Example ..15
2-3 Multicast Configuration Example...16
4-1 Example System using Multicast..49
RapidIO.org 7

List of Figures

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
8 RapidIO.org

List of Tables

RapidIO Part 11: Multicast Extensions Specification 3.2
3-1 Multicast Register Map...19
3-2 Bit Settings for Processing Elements Features CAR ..20
3-3 Bit Settings for Switch Multicast Support CAR...20
3-4 Bit Settings for Switch Multicast Information CAR ..21
3-5 Bit Settings for Multicast Mask Port CSR..22
3-6 Bit Settings for Multicast Associate Select CSR ..23
3-7 Bit Settings for Multicast Associate Operation CSR..24
3-8 Switch Routing Table Register Map...25
3-9 Bit Settings for Broadcast Routing Table Control CSR ...26
3-10 Mask 0-7 Set/Clear Registers, Mask_size = 0 ..27
3-11 Mask 0-3 Set/Clear Registers, Mask_size = 1 ..27
3-12 Mask 0-1 Set/Clear Registers, Mask_size = 2 ..28
3-13 Mask 0 Set/Clear Registers, Mask_size = 3 ...28
3-14 Bit Settings for Broadcast Multicast Info CSR...29
3-15 Bit Settings for Port n Routing Table Control CSR..29
3-16 Bit Settings for Port n Multicast Info CSR ...30
3-17 Bit Settings for Broadcast Multicast Mask x Set Register y CSR31
3-18 Bit Settings for Broadcast Multicast Mask x Clear Register y CSR...............................31
3-19 Bit Settings for Port n Multicast Mask x Set Register y CSR ..32
3-20 Bit Settings for Port n Multicast Mask x Clear Register y CSR.....................................33
4-1 Multicast Masks for Switch A1 ..50
4-2 Multicast Masks for Switch B1...51
4-3 Multicast Masks for Switch B2...53
RapidIO.org 9

List of Tables

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
10 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Part 11: Multicast Extensions
Specification. The goal of this specification is to add a simple mechanism to the
existing RapidIO specifications that provides multicast functionality to a system.
This specification assumes that the reader has a working understanding of the other
RapidIO specifications. Implementation of this specification is optional.

1.2 Overview
The concept of duplicating a single message and sending it to multiple selected
destinations is known as ‘multicast’, and is found to be useful in many computing
systems. This can be accomplished by a variety of means. The most efficient and
highest performance method is to have hardware support for the duplication of
messages.

Within a RapidIO system, the ability to duplicate messages should scale with the
number of end points in a system. Since the number of end points scales with the
number of switches in the system, the multicast extensions are defined for switches
only and end points are largely unaffected. Possible end point design considerations
are described in Annex A.

The multicast specification is limited to request transactions that do not require
responses, for example, RapidIO Part 1: Input/Output Logical Specification
SWRITE transactions. This is because implementing support for collecting the
response transactions within a switch device, which are typically not aware of
RapidIO logical layer protocols, is problematic and complex.

The ability for a switch to send a single message to a variety of destinations can be
implemented in a wide variety of ways, depending on system needs. There are two
reasons, however, that motivate definition of a common interface and behavior for
multicast in a system. Without a standard interface and behavioral definition, the
wide variety of possible implementations would not allow a common multicast
software driver to exist. The second reason is that without a standard definition for
interface and behavior it is impossible to guarantee inter-operability of different
components which support multicast.

In defining a common interface for a wide variety of implementations, it is necessary
RapidIO.org 11

RapidIO Part 11: Multicast Extensions Specification 3.2
to define the standard interface with some level of abstraction in order to avoid
limiting implementation flexibility. Therefore, several examples of the use of the
interface have been included.

1.3 Requirements
The multicast mechanism shall fulfill the following goals:

• Simple - excess complexity will not gain acceptance

• Compact - Does not cost excessive silicon area in a switch

• Robust - same level of protection and recovery as the rest of RapidIO

• Scalable - must be able to extend to multi-layer switch systems

• Compatibility with all physical layers
12 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Chapter 2 Multicast Extensions Behavior

2.1 Introduction
This chapter describes the multicast extensions rules of operation in a RapidIO
system. A RapidIO switch which does not support multicast can co-exist in a
RapidIO fabric with other switches that do support multicast. The only requirement
is that the switch be capable of routing the destination IDs used for multicast
transactions.

2.2 Packet Replication
A RapidIO multicast operation consists of the replication of a single packet so that
it can be received by multiple end points. This replication is performed by the switch
devices in the fabric rather than by the end point itself, so that the capability to
replicate packets expands with the number of switches (and hence possible end
points) in a system. Each switch may be individually programmed to control which
egress ports of the switch the replicated packets are sent to, and thus indirectly which
specific set of end point devices receive the replicated packet. The packets
themselves are not modified by the replication process, merely transmitted out
through the appropriate ports.

This specification only addresses multicasting request packets for transactions
which do not require responses. This greatly simplifies multicast support for
RapidIO switches, which will therefore have no need to aggregate responses from
other types of RapidIO operations. Examples of transactions which can be multicast
are I/O logical specification NWRITE and SWRITE transactions. Multicasting
transactions which require responses have implementation defined behavior.

2.3 Multicast Operation
Multicast operations have two control value types - multicast masks and multicast
groups. The set of target end points which all receive a particular multicast packet
is known as a multicast group. Each multicast group is associated with a unique
destination ID. The destination ID of a received packet allows a RapidIO switch
device to determine that a packet is to be replicated for a multicast.

A multicast mask is a value that controls which egress ports one or more multicast
groups are associated with. Conceptually, a multicast mask is a register with one
RapidIO.org 13

RapidIO Part 11: Multicast Extensions Specification 3.2
enable bit for each possible switch egress port. There is one set of multicast masks
for the entire switch. All multicast masks in a switch are assigned unique sequential
ID numbers beginning with 0. Figure 2-1 shows an example of the use of multicast
in a RapidIO system.

Figure 2-1. Multicast System Example

In this example, the end point assigned destination ID 0x0 uses destination ID 0x80
to perform multicast operations to the multicast group comprised of end points 0x10,
0x15, 0x16, and 0x17, arbitrarily called group A. Software configures the switch
devices in the fabric to associate the destination IDs that represent multicast groups
with multicast masks. For Figure 2-1 switch M associates destination ID 0x80 with
egress ports 1 and 2, and switch N associates destination ID 0x80 with ports 1, 2,
and 3. Figure 2-2 shows a possible relationship between the multicast group, the
multicast masks for the switches, and the global system address map.

Switch M

End point
dest. ID=0x16Port 2

Port 1

Port 0

Port 3

End point
dest. ID=0x0

End point
dest. ID=0x10

End point
dest. ID=0x12

Switch N

Port 2

Port 1

Port 0

Port 3

End point
dest. ID=0x15

End point
dest. ID=0x17
14 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Figure 2-2. Multicast Association Example

Configuring a RapidIO switch to replicate packets for a multicast group is a two-step
process. First, a list of egress ports is set in a multicast mask list. Second, one or
more destination IDs which represent the multicast groups are associated with the
multicast mask in the switch. During normal system operation, any time a switch
receives a packet with a destination ID which has been associated with a multicast
mask it will send that packet to all egress ports enabled by that multicast mask.

Switch M dest. ID lookup table

Group A

System address map

dest. ID=0x10

dest. ID=0x15-17

Port 1

Port 2

dest. ID=0x80

System address map

dest. ID=0x15
dest. ID=0x16

Port 1
Port 2

Switch N dest. ID lookup table

Group A
dest. ID=0x80

dest. ID=0x17Port 3
RapidIO.org 15

RapidIO Part 11: Multicast Extensions Specification 3.2
Figure 2-3. Multicast Configuration Example

Figure 2-3 shows a control unit connected to switch port 0 which needs to multicast
to destinations A, B, C and D. A multicast mask, in this case arbitrarily picked as
multicast mask 2, is set up to select which ports in the switch are part of the multicast
group of destinations A, B, C, and D. A destination ID, in this case arbitrarily
assigned 0x80, is associated with multicast mask 2 as the destination ID that the
control unit should use to multicast to the multicast group. The associate operation
is done using the CSRs defined in Chapter 3, “Multicast Extensions Registers”.

The defined CSRs allow a switch to associate destination IDs with multicast masks
using a small number of maintenance write operations. The number of unique
destination IDs that can be associated with a multicast mask is also defined in a CSR.

While each destination ID is associated with a unique multicast group, the
programming model allows a destination ID to be mapped to a different multicast
mask for each port on the switch. However, for each port a destination ID can be
associated with at most one multicast mask. The last association operation
performed for a specific port and destination ID dictates which multicast mask the
destination ID is associated with. It is also possible to map a given destination ID to
the same multicast mask for all ports.

A RapidIO switch may be capable of supporting large numbers of multicast groups
by dedicating a sequential range of destination ID’s to an equal number of
sequentially numbered multicast masks. A switch may also be designed which does
not require all multicast destination IDs to be sequential. The programming model
supports both of these implementations.

A packet will never be multicast back out of the port it was received on even if it is
included in the multicast mask for that destination ID. This allows a group of end
points which need to multicast to each other to share the same multicast mask.
Packets using a multicast mask which has no egress ports selected will be dropped
without error notification. A device may have implementation specific error
notification in this situation, depending on system requirements.

Switch

Multicast Group

Multicast Mask 2
Port 0 excluded
Port 1,2,3,4 included

dest. ID=0x80

Control Unit
Port 0

Destination A, Port 1
Destination B, Port 2
Destination C, Port 3
Destination D, Port 4

Associated to dest. ID 0x80
16 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
The default state after a reset for multicast masks is that all multicast masks have no
ports selected. Additionally, after reset no associations exist between any multicast
group/destination ID and the multicast masks. However, implementation specific
capabilities may modify the multicast mask values and associations after reset
without software intervention.

For more information and examples on the use of the programming model for
multicast refer to Annex B, “Multicast Applications (Informative)”.

2.4 Multicast Transaction Ordering Requirements
RapidIO packets which are in the same multicast group (the same destination ID)
with the same flowID and are received on the same ingress port must be multicast
on the egress ports in the same order that they were received. There are no ordering
requirements between multicast packets and non-multicast packets, or between
multicast packets in different multicast groups. Maintaining ordering between
transactions in the same transaction request flow for a multicast group allows an
application to multicast a completion flag at the end of a potentially large data
transfer which was sent to the same multicast group.
RapidIO.org 17

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
18 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Chapter 3 Multicast Extensions Registers

3.1 Introduction
This section describes the Multicast Extensions CAR and CSR registers that allow
an external processing element to determine if a switch supports the multicast
extensions defined in this specification, and to manage the configuration of
multicast groups for a switch processing element. This chapter only describes
registers or register bits defined by this specification. Refer to the other RapidIO
logical, transport, physical, and extension specifications of interest to determine a
complete list of registers and bit definitions for a device. All registers are 32-bits and
aligned to a 32-bit boundary. The behavior of reserved register bits and register
offsets and access rules and requirements are described in the RapidIO Part 1:
Input/Output Logical Specification.

Table 3-1. Multicast Register Map

Configuration
Space Byte

Offset
Register Name

0x0-C Reserved

0x10 Processing Element Features CAR

0x14-2C Reserved

0x30 Switch Multicast Support CAR

0x34 Reserved

0x38 Switch Multicast Information CAR

0x3C-7C Reserved

0x80 Multicast Mask Port CSR

0x84 Multicast Associate Select CSR

0x88 Multicast Associate Operation CSR

0x8C–FC Reserved

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space
RapidIO.org 19

RapidIO Part 11: Multicast Extensions Specification 3.2
3.2 Capability Registers (CARs)

3.2.1 Processing Elements Features CAR
(Configuration Space Offset 0x10)

The Processing Elements Features CAR contains 31 processing elements features
bits defined in various RapidIO specifications, as well as the Multicast Support bit,
defined here.

* Implementation dependant

3.2.2 Switch Multicast Support CAR
(Configuration Space Offset 0x30)

This register shall not be implemented if Bit 19 “Dev32 Support” of the Processing
Element Features CAR is set.

The Switch Multicast Support CAR defines support for a simple multicast model
and the additional limits on multicast mask resources.

* Implementation dependant

Table 3-2. Bit Settings for Processing Elements Features CAR

Bit Name
Reset
Value

Description

0-20 - Reserved (defined elsewhere)

21 Multicast Support * Support for multicast extensions
0b0 - Does not support multicast extensions
0b1 - Supports multicast extensions

22-31 - Reserved (defined elsewhere)

Table 3-3. Bit Settings for Switch Multicast Support CAR

Bit Name
Reset
Value

Description

0 Simple_Assoc * Support for a simple multicast association model
0b0 - Does not support simple association
0b1 - Supports simple association
If this bit is set, the Block_Assoc bit in the Switch Multicast Information
CAR must also be set.

1-31 - Reserved (defined elsewhere)
20 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
3.2.3 Switch Multicast Information CAR
(Configuration Space Offset 0x38)

This register shall not be implemented if Bit 19 “Dev32 Support” of the Processing
Element Features CAR is set.

The Switch Multicast Information CAR defines the methods for associating
destination IDs with multicast masks supported by a RapidIO switch device. It also
defines the limits on multicast mask resources.

Table 3-4. Bit Settings for Switch Multicast Information CAR

Bits Name Description

0 Block_Assoc Block association support - allows equal sized blocks of destination IDs and
multicast masks to be associated with each other with a single operation rather than
one at a time.
0b0 - block association is not supported
0b1 - block association is supported
If the Simple_Assoc bit in the Switch Multicast Support CAR is set, this bit must
also be set.

1 Per_Port_Assoc Per ingress port association support - allows a destination ID to be associated with a
multicast mask on a per-ingress port basis rather than a single association for the
entire switch.
0b0 - per port association is not supported
0b1 - per port association is supported

2-15 MaxDestIDAssoc The maximum number of destination IDs associations per multicast mask
0x0000 - 1 destination ID
0x0001 - 2 destination IDs
...
0x3FFF - 16384 destination IDs

16-31 MaxMcastMasks The number of multicast egress port masks available. This field also defines the
largest block of destination IDs that can be block associated.
0x0000 - [reserved]
0x0001 - 1 multicast mask
0x0002 - 2 multicast masks
...
0xFFFF - 65535 multicast masks
RapidIO.org 21

RapidIO Part 11: Multicast Extensions Specification 3.2
3.3 Command and Status Registers (CSRs)

3.3.1 Multicast Mask Port CSR
(Configuration Space Offset 0x80)

This register shall not be implemented if Bit 19 “Dev32 Support” of the Processing
Element Features CAR is set.

The Multicast Mask Port CSR allows configuration of the egress port list for each
of the switch’s multicast masks.

Writing the Write_to_Verify command sets up a Mcast_Mask and
Egress_Port_Num pair to verify. The presence of the specified egress port in the
specified multicast mask is indicated by the Port_Present bit on a subsequent read of
the register.

Writing the Add_Port or Delete_Port commands adds or deletes the specified egress
port to or from the specified multicast mask.

Writing the Add_All_Ports or Delete_All_Ports commands adds or deletes all of the
egress ports in the specified multicast mask.

The result of illegal values or combinations for an operation is implementation
dependent. For examples of how to use this register, refer to Section 4.2,
“Configuring Multicast Masks”.

Table 3-5. Bit Settings for Multicast Mask Port CSR

Bits Name
Reset
Value

Description

0-15 Mcast_Mask 0x0000 Specifies the multicast mask which is to be modified or queried as determined by
the Mask_Cmd field.

16-23 Egress_Port_Num 0x00 Specifies the port number to be added, deleted, or queried with the Mask_Cmd
field.

24 - 0b0 Reserved

25-27 Mask_Cmd 0b000 Specifies the mask action on a write.
0b000 - Write_to_Verify
0b001 - Add_Port
0b010 - Delete_Port
0b011 - reserved
0b100 - Delete_All_Ports
0b101 - Add_All_Ports
0b110 - reserved
0b111 - reserved

28–30 - 0b000 Reserved

31 Port_Present 0b0 Indicates the existence of the egress port and multicast mask pair as a result of the
last preceding Write_to_Verify command.
0b0 - Port was not enabled as an egress port in the specified multicast mask
0b1 - Port was enabled as an egress port in the specified multicast mask.
This bit is reserved on a write.
22 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
3.3.2 Multicast Associate Select CSR
(Configuration Space Offset 0x84)

This register shall not be implemented if Bit 19 “Dev32 Support” of the Processing
Element Features CAR is set.

This register specifies the destination ID and multicast mask number for a
subsequent associate operation controlled with the Multicast Associate Operation
CSR. If block association is supported, this register specifies the start of the block to
associate. For examples of how this register is used, refer to Section 4.4,
“Configuring Associations”.

Table 3-6. Bit Settings for Multicast Associate Select CSR

Bits Name
Reset
Value

Description

0-7 Large_DestID 0x00 Selects the most significant byte of a large transport destination ID for an
association operation

8-15 DestID 0x00 Selects the destination ID for an association operation

16-31 Mcast_Mask_Num 0x0000 Selects the multicast mask number for an association operation
RapidIO.org 23

RapidIO Part 11: Multicast Extensions Specification 3.2
3.3.3 Multicast Associate Operation CSR
(Configuration Space Offset 0x88)

This register shall not be implemented if Bit 19 “Dev32 Support” of the Processing
Element Features CAR is set.

The Multicast Associate Operation CSR specifies three operations for associating
destination IDs with multicast masks. The affected destination ID and multicast
mask is specified in the Multicast Associate Select CSR. The specified operation is
executed when this register is written. When this register is read and the Assoc_Cmd
field it set to Write_to_Verify the specified operation is executed and the updated
register state is returned. If this register is read and the Assoc_Cmd field is not set
to Write_to_Verify the resulting behavior is implementation dependent. Block
association operations assign associations sequentially starting with the destination
ID and multicast mask specified in the Multicast Associate Select CSR.

Writing the Write_To_Verify command checks for an association between the
destination ID and multicast mask specified in the Multicast Associate Select CSR.
The result of the check is indicated by the state of the Assoc_Present bit on a read of
this register. This command cannot be executed on a block.

Writing the Add_Assoc or Delete_Assoc command adds or deletes the association
between the destination ID and the multicast mask (or block of associations, if block
association is supported) specified in the Multicast Associate Select CSR.

The result of illegal values or field combinations for an association operation is
implementation dependent. For examples of how this register is used, refer to
Section 4.4, “Configuring Associations”.

Table 3-7. Bit Settings for Multicast Associate Operation CSR

Bits Name
Reset
Value

Description

0-15 Assoc_Blksize 0x0000 This field specifies the number of sequential DestinationIDs to be associated
with an equal number of sequential multicast mask numbers if block
association is supported. This field is ignored on a Write_to_Verify
command.
0x0000 - one association
0x0001 - two sequential associations
...
0xFFFF - 65536 sequential associations

16-23 Ingress_Port 0x00 This field specifies the ingress port association to affect if per-port ingress
association is supported

24 Large_Transport 0b0 0b0 - the association is for small transport destination IDs
0b1 - the association is for large transport destination IDs

25-26 Assoc_Cmd 0b00 This field specifies the command to execute when this register is written.
0b00 - Write_To_Verify
0b01 - reserved
0b10 - Delete_Assoc
0b11 - Add_Assoc
24 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
3.4 Switch Routing Table Register Block
A switch device which has bits 19 “Dev32 Support” and 21 “Multicast Support” set
in the Processing Element Features CAR shall implement this register block. Note
that this definition is a refinement of the Switch Routing Table Register block
defined in RapidIO Part 3: Common Transport Specification.

3.4.1 Register Map

The register map for the routing table registers shall be as specified by Table 3-8.
This register map is currently only defined for devices with up to 16 RapidIO ports,
but can be extended or shortened if more or less port definitions are required for a
device. For example, a device with four RapidIO ports is only required to use
register map space corresponding to offsets [EF_PTR+0x00] through
[EF_PTR+0xBC]. Register map offset [EF_PTR+0x140] can be used for another
Extended Features block.

27-30 - 0b0000 reserved

31 Assoc_Present 0b0 This bit contains the result of the last Write_to_Verify command executed.
0b0 - no association present
0b1 - association present
This bit is reserved on write.

Table 3-8. Switch Routing Table Register Map

Block Byte
Offset

Register Name

G
en

er
al 0x0 Routing Table Register Block Header

0x4-0x1C Reserved

B
ro

ad
ca

st

0x20 Broadcast Routing Table Control CSR

0x24 Reserved

0x28 Broadcast Multicast Info CSR

0x2C-
0x3C

Reserved

P
or

t 0

0x40 Port 0 Routing Table Control CSR

0x44 Reserved

0x48 Port 0 Multicast Info CSR

0x4C-
0x5C

Reserved

Table 3-7. Bit Settings for Multicast Associate Operation CSR (Continued)

Bits Name
Reset
Value

Description
RapidIO.org 25

RapidIO Part 11: Multicast Extensions Specification 3.2
3.4.2 Broadcast Routing Table Control CSR
(Block Offset 0x20)

The use and meaning of the bits and bit fields of this register shall be as specified in
Table 3-9. Unless otherwise specified, the bits and bit fields in this register are write
only.

The following illustrates the arrangement of Multicast Mask x Set/Clear Register y
CSRs for various Mask_size values.

P
or

t 1
0x60 Port 1 Routing Table Control CSR

0x64 Reserved

0x68 Port 1 Multicast Info CSR

0x6C-
0x7C

Reserved

P
or

ts
 2

-1
4

0x80–21C Assigned to Port 2-14 CSRs

P
or

t 1
5

0x220 Port 15 Routing Table Control CSR

0x224 Reserved

0x228 Port 15 Multicast Info CSR

0x22C-
0x23C

Reserved

Table 3-9. Bit Settings for Broadcast Routing Table Control CSR

Bit Name
Reset
Value

Description

0-5 ___ Reserved

6-7 Mask_size see
footnote1

1The Mask_size reset value is implementation dependent

A multicast mask shall consist of the number of registers indicated by this
value, encoded as follows:
0b00 - One set register, one clear register (8 bytes)
0b01 - Two set registers, two clear registers (16 bytes)
0b10 - Four set registers, four clear registers (32 bytes)
0b11 - Eight set registers, eight clear registers (64 bytes)
This bit field shall be read only.

8-31 ___ Reserved

Table 3-8. Switch Routing Table Register Map

Block Byte
Offset

Register Name
26 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Table 3-10. Mask 0-7 Set/Clear Registers, Mask_size = 0

Register Name Offset

Multicast Mask 0 Set Register 0 0x000000

Multicast Mask 0 Clear Register 0 0x000004

Multicast Mask 1 Set Register 0 0x000008

Multicast Mask 1 Clear Register 0 0x00000C

Multicast Mask 2 Set Register 0 0x000010

Multicast Mask 2 Clear Register 0 0x000014

Multicast Mask 3 Set Register 0 0x000018

Multicast Mask 3 Clear Register 0 0x00001C

Multicast Mask 4 Set Register 0 0x000020

Multicast Mask 4Clear Register 0 0x000024

Multicast Mask 5 Set Register 0 0x000028

Multicast Mask 5 Clear Register 0 0x00002C

Multicast Mask 6 Set Register 0 0x000030

Multicast Mask 6 Clear Register 0 0x000034

Multicast Mask 7 Set Register 0 0x000038

Multicast Mask 7 Clear Register 0 0x00003C

Table 3-11. Mask 0-3 Set/Clear Registers, Mask_size = 1

Register Name Offset

Multicast Mask 0 Set Register 0 0x000000

Multicast Mask 0 Set Register 1 0x000004

Multicast Mask 0 Clear Register 0 0x000008

Multicast Mask 0 Clear Register 1 0x00000C

Multicast Mask 1 Set Register 0 0x000010

Multicast Mask 1 Set Register 1 0x000014

Multicast Mask 1 Clear Register 0 0x000018

Multicast Mask 1 Clear Register 1 0x00001C

Multicast Mask 2 Set Register 0 0x000020

Multicast Mask 2 Set Register 1 0x000024

Multicast Mask 2 Clear Register 0 0x000028

Multicast Mask 2 Clear Register 1 0x00002C

Multicast Mask 3 Set Register 0 0x000030

Multicast Mask 3 Set Register 1 0x000034

Multicast Mask 3 Clear Register 0 0x000038

Multicast Mask 3 Clear Register 1 0x00003C
RapidIO.org 27

RapidIO Part 11: Multicast Extensions Specification 3.2
Table 3-12. Mask 0-1 Set/Clear Registers, Mask_size = 2

Register Name Offset

Multicast Mask 0 Set Register 0 0x000000

Multicast Mask 0 Set Register 1 0x000004

Multicast Mask 0 Set Register 2 0x000008

Multicast Mask 0 Set Register 3 0x00000C

Multicast Mask 0 Clear Register 0 0x000010

Multicast Mask 0 Clear Register 1 0x000014

Multicast Mask 0 Clear Register 2 0x000018

Multicast Mask 0 Clear Register 3 0x00001C

Multicast Mask 1 Set Register 0 0x000020

Multicast Mask 1 Set Register 1 0x000024

Multicast Mask 1 Set Register 2 0x000028

Multicast Mask 1 Set Register 3 0x00002C

Multicast Mask 1 Clear Register 0 0x000030

Multicast Mask 1 Clear Register 1 0x000034

Multicast Mask 1 Clear Register 2 0x000038

Multicast Mask 1 Clear Register 3 0x00003C

Table 3-13. Mask 0 Set/Clear Registers, Mask_size = 3

Register Name Offset

Multicast Mask 0 Set Register 0 0x000000

Multicast Mask 0 Set Register 1 0x000004

Multicast Mask 0 Set Register 2 0x000008

Multicast Mask 0 Set Register 3 0x00000C

Multicast Mask 0 Set Register 4 0x000010

Multicast Mask 0 Set Register 5 0x000014

Multicast Mask 0 Set Register 6 0x000018

Multicast Mask 0 Set Register 7 0x00001C

Multicast Mask 0 Clear Register 0 0x000020

Multicast Mask 0 Clear Register 1 0x000024

Multicast Mask 0 Clear Register 2 0x000028

Multicast Mask 0 Clear Register 3 0x00002C

Multicast Mask 0 Clear Register 4 0x000030

Multicast Mask 0 Clear Register 5 0x000034

Multicast Mask 0 Clear Register 6 0x000038

Multicast Mask 0 Clear Register 7 0x00003C
28 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
3.4.3 Broadcast Multicast Info CSR
(Block Offset 0x28)

This register shall communicate the location of the Broadcast Multicast Mask 0 Set
Register 0 CSR. The use and meaning of the bits and bit fields of this register shall
be as specified in Table 3-14. This register shall be read only.

3.4.4 Port n Routing Table Control CSR
(Block Offset 0x40 + (0x20 * n))

This register shall indicate the number of registers in a multicast mask for all ports
whose Port n Multicast Info CSR Mask_Ptr field value is the same. The use and
meaning of the bits and bit fields of this register shall be as specified in Table 3-15.
Unless otherwise specified, the bits and bit fields in this register are read/write.

Table 3-14. Bit Settings for Broadcast Multicast Info CSR

Bit Name
Reset
Value

Description

0-7 Num_Masks see
footnote1

1The Num_Masks reset value is implementation dependent

Num_Masks shall indicate the number of Broadcast Multicast Masks,
encoded as follows:
0x00 - 256 Masks
0x01 - 1 Masks
0x02 - 2 Masks
0x03 - 3 Masks
...
0xFF - 255 Masks

8-21 Mask_Ptr see
footnote2

2The Mask_Ptr reset value is implementation dependent

The Mask_Ptr value shall be the maintenance offset of the Broadcast
Multicast Mask 0 Set Register 0 CSR, divided by 1024.The maintenance
offset of the Broadcast Multicast Mask 0 Set Register 0 CSR shall be a 1024
byte aligned address. The Mask_Ptr value shall indicate an address in
Implementation Defined register space.
Writes to the Broadcast Multicast Mask registers pointed to by this register
shall cause the corresponding Port n Multicast Mask registers for all ports to
assume the value written.

22-31 ___ 0b00 Reserved

Table 3-15. Bit Settings for Port n Routing Table Control CSR

Bit Name
Reset
Value

Description

0-5 ___ Reserved
RapidIO.org 29

RapidIO Part 11: Multicast Extensions Specification 3.2
3.4.5 Port n Multicast Info CSR
(Block Offset 0x48 + 20 * n)

This register shall communicate the location of Port n Multicast Mask 0 Register 0
CSR. The use and meaning of the bits and bit fields of this register shall be as
specified in Table 3-16. This register shall be read only.

3.4.6 Broadcast Multicast Mask x Set Register y CSR
(Offset = (Mask_Ptr * 0x400) + (x*8*2Mask_size) + (y*4))

Writes to the Broadcast Multicast Mask x Set Register y CSRs shall cause the
corresponding Port n Multicast Mask x Set Register y CSRs for all ports to assume
the value written. The use and meaning of the bits and bit fields of this register shall
be as specified in Table 3-17. Unless otherwise specified, the bits and bit fields in
this register are write only.

6-7 Mask_size see
footnote1

A multicast mask shall consist of the number of registers indicated by this
value, encoded as follows:
0b00 - One set register, one clear register (8 bytes)
0b01 - Two set registers, two clear registers (16 bytes)
0b10 - Four set registers, four clear registers (32 bytes)
0b11 - Eight set registers, eight clear registers (64 bytes)
This bit field shall be read only.

8-31 ___ Reserved

1The Mask_size reset value is implementation dependent

Table 3-16. Bit Settings for Port n Multicast Info CSR

Bit Name
Reset
Value

Description

0-7 Num_Masks see
footnote1

1The Num_Masks reset value is implementation dependent

Communicates the number of multicast masks for this port.
Num_Masks is encoded as follows:
0x00 - 256 Masks
0x01 - 1 Masks
0x02 - 2 Masks
0x03 - 3 Masks
...
0xFF - 255 Masks

8-21 Mask_Ptr see
footnote2

2The Mask_Ptr reset value is implementation dependent

The Mask_Ptr value shall be the maintenance offset of the Port n Multicast
Mask 0 Set Register 0 CSR, divided by 1024.The maintenance offset of the
Port n Multicast Mask 0 Set Register 0 CSR shall be a 1024 byte aligned
address. The Mask_Ptr value shall indicate an address in Implementation
Defined register space.

22-31 ___ 0b00 Reserved

Table 3-15. Bit Settings for Port n Routing Table Control CSR

Bit Name
Reset
Value

Description
30 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
3.4.7 Broadcast Multicast Mask x Clear Register y CSR
(Offset = (Mask_Ptr * 0x400) + (x * 8*2Mask_size) +
(4*2Mask_size) + (y*4))

Writes to the Broadcast Multicast Mask x Clear Register y CSRs shall cause the
corresponding Port n Multicast Mask x Clear Register y CSRs for all ports to assume
the value written. The use and meaning of the bits and bit fields of this register shall
be as specified in Table 3-18. Unless otherwise specified, the bits and bit fields in
this register are write only.

Table 3-17. Bit Settings for Broadcast Multicast Mask x Set Register y CSR

Bit Name Reset Value Description

0-31 Mcast_ctl All 0’s This register controls which ports do and do not receive packets when
routed according to this multicast mask.
The multicast mask functionality for ports (y*32) to (y*32+31) shall be
controlled by this register. Bits shall be assigned to ports sequentially as
the port number increases. The lowest numbered port shall be assigned
to Bit 31.
Each bit shall be encoded as follows:
0b0 - Do not multicast to this port
0b1 - Multicast to this port
Writing 0 to a bit shall not change the bit value.
Writing 1 to a bit shall set the bit value.
Bits corresponding to ports which do not exist in the device shall be
reserved.

Table 3-18. Bit Settings for Broadcast Multicast Mask x Clear Register y CSR

Bit Name Reset Value Description

0-31 Mcast_ctl All 0’s This register controls which ports do and do not receive messages when
routed according to this multicast mask.
The multicast mask functionality for ports (y*32) to (y*32+31) shall be
controlled by this register. Bits shall be assigned to ports sequentially as
the port number increases. The lowest numbered port shall be assigned
to Bit 31.
Each bit shall be encoded as follows:
0b0 - Do not multicast to this port
0b1 - Multicast to this port
Writing 0 to a bit shall not change the bit value.
Writing 1 to a bit shall clear the bit value.
Bits corresponding to ports which do not exist in the device shall be
reserved.
RapidIO.org 31

RapidIO Part 11: Multicast Extensions Specification 3.2
3.4.8 Port n Multicast Mask x Set Register y CSR
(Offset = (Mask_Ptr * 400) + (x * 8*2Mask_size) + (y*4))

This register shall control the multicast behavior for all ports whose Port n Multicast
Info CSR Mask_Ptr field value is the same. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-19. Unless otherwise specified,
the bits and bit fields in this register are read/write.

3.4.9 Port n Multicast Mask x Clear Register y CSR
(Offset = (Mask_Ptr * 400) + (x * 8*2Mask_size) + (4*2Mask_size)
+ (y*4))

This register shall control the multicast behavior for all ports whose Port n Multicast
Info CSR Mask_Ptr field value is the same. The use and meaning of the bits and bit
fields of this register shall be as specified in Table 3-20. Unless otherwise specified,
the bits and bit fields in this register are read/write.

Table 3-19. Bit Settings for Port n Multicast Mask x Set Register y CSR

Bit Name Reset Value Description

0-31 Mcast_ctl All 0’s This register controls which ports do and do not receive messages when
routed according to this multicast mask.
The multicast mask functionality for ports (y*32) to (y*32+31) shall be
controlled by this register. Bits shall be assigned to ports sequentially as
the port number increases. The lowest numbered port shall be assigned
to Bit 31.
Reading this register returns the current multicast value for the assigned
ports.
Each bit shall be encoded as follows:
0b0 - Do not multicast to this port
0b1 - Multicast to this port
Writing 0 to a bit shall not change the bit value.
Writing 1 to a bit shall set the bit value.
Bits corresponding to ports which do not exist in the device shall be
reserved.
32 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Table 3-20. Bit Settings for Port n Multicast Mask x Clear Register y CSR

Bit Name Reset Value Description

0-31 Mcast_ctl All 0’s This register controls which ports do and do not receive messages when
routed according to this multicast mask.
The multicast mask functionality for ports (y*32) to (y*32+31) shall be
controlled by this register. Bits shall be assigned to ports sequentially as
the port number increases. The lowest numbered port shall be assigned
to Bit 31.
Reading this register returns the current multicast value for the assigned
ports.
Each bit shall be encoded as follows:
0b0 - Do not multicast to this port
0b1 - Multicast to this port
Writing 0 to a bit shall not change the bit value.
Writing 1 to a bit shall clear the bit value.
Bits corresponding to ports which do not exist in the device shall be
reserved.
RapidIO.org 33

RapidIO Part 11: Multicast Extensions Specification 3.2
34 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Chapter 4 Configuration Examples

4.1 Introduction
This chapter provides several examples of how to use the multicast programming
interface. The given examples build upon each other while proceeding through the
sections. References to the order of operations within the examples run from the top
of a list to the bottom unless otherwise stated.

Initially assume a switch with 8 ports which supports 4 or more multicast masks with
two or more destination IDs allowed per multicast group so that a total of 8
destination IDs minimum can be associated with the multicast masks. The system
has the following requirements:

• Three sources of traffic (ports 0, 1, and 2) must be multicast to two destinations
(ports 6 and 7).

• Three ports (ports 3, 4 and 5) need to multicast signals between each other.

• All ports occasionally need to multicast to every other port.

Assume that the switch does not require any other multicast functions and therefore
multicast masks 0, 1, and 2 will be used.

4.2 Configuring Multicast Masks
This section discusses assigning an egress port list to a multicast mask.

4.2.1 Clearing Multicast Masks

Suppose that the state of the multicast masks is unknown, and therefore the masks
must be cleared before being configured. In order to clear the masks the following
register accesses are made. (The accesses to the Multicast Mask Port CSR can be
performed in any order.)

• Remove all ports from multicast mask 0

— Write the value 0x0000_0040 to the Multicast Mask Port CSR

• Remove all ports from multicast mask 1

— Write the value 0x0001_0040 to the Multicast Mask Port CSR

• Remove all ports from multicast mask 2

— Write the value 0x0002_0040 to the Multicast Mask Port CSR
RapidIO.org 35

RapidIO Part 11: Multicast Extensions Specification 3.2
4.2.2 Assigning Ports to Multicast Masks

To configure mask 0 to multicast to ports 6 and 7, mask 1 to multicast to ports 3, 4
and 5, and mask 2 to multicast to every port, requires the following series of register
accesses. (The accesses to the Multicast Mask Port CSR can be performed in any
order.)

• Add port 6 to multicast mask 0

— Write the value 0x0000_0610 to the Multicast Mask Port CSR

• Add port 7 to multicast mask 0

— Write the value 0x0000_0710 to the Multicast Mask Port CSR

• Add port 3 to multicast mask 1

— Write the value 0x0001_0310 to the Multicast Mask Port CSR

• Add port 4 to multicast mask 1

— Write the value 0x0001_0410 to the Multicast Mask Port CSR

• Add port 5 to multicast mask 1

— Write the value 0x0001_0510 to the Multicast Mask Port CSR

• Add all ports to multicast mask 2

— Write the value 0x0002_0050 to the Multicast Mask Port CSR

4.2.3 Removing a Port from a Multicast Mask

Suppose that the device attached to port 4 needs to be removed from the system. The
following register accesses are used to modify multicast masks 1 and 2 to stop port
4 from being a multicast destination. (The accesses may be performed in any order.)

• Remove port 4 from multicast mask 1

— Write the value 0x0001_0420 to the Multicast Mask Port CSR

• Remove port 4 from multicast mask 2

— Write the value 0x0002_0420 to the Multicast Mask Port CSR

4.2.4 Querying a Multicast Mask

In this section suppose that a system designer needs to determine which of the 8
ports are included in multicast mask 2. The following accesses are to be performed
to provide this information. (In each case, the write operation setting up the ‘Write
to Verify’ operation must be performed before the subsequent read to check the Port
Present bit status. The individual multicast masks may be queried in any order.)

• Verify that port 0 is included in mask 2

— Write the value 0x0002_0000 to the Multicast Mask Port CSR

— Read the value 0x0002_0001 from the Multicast Mask Port CSR
36 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
• Verify that port 1 is included in mask 2

— Write the value 0x0002_0100 to the Multicast Mask Port CSR

— Read the value 0x0002_0101 from the Multicast Mask Port CSR.

• Verify that port 2 is included in mask 2

— Write the value 0x0002_0200 to the Multicast Mask Port CSR

— Read the value 0x0002_0201 from the Multicast Mask Port CSR

• Verify that port 3 is included in mask 2

— Write the value 0x0002_0300 to the Multicast Mask Port CSR

— Read the value 0x0002_0301 from the Multicast Mask Port CSR

• Verify that port 4 is not included in mask 2

— Write the value 0x0002_0400 to the Multicast Mask Port CSR

— Read the value 0x0002_0400 from the Multicast Mask Port CSR

• Verify that port 5 is included in mask 2

— Write the value 0x0002_0500 to the Multicast Mask Port CSR

— Read the value 0x0002_0501 from the Multicast Mask Port CSR

• Verify that port 6 is included in mask 2

— Write the value 0x0002_0600 to the Multicast Mask Port CSR

— Read the value 0x0002_0601 from the Multicast Mask Port CSR

• Verify that port 7 is included in mask 2

— Write the value 0x0002_0700 to the Multicast Mask Port CSR

— Read the value 0x0002_0701 from the Multicast Mask Port CSR

4.3 Simple Association
If the Simple_Assoc bit is set in the Switch Multicast Support CAR, the device
supports the simple multicast programming model. This model allows for basic
multicast support for devices with a limited number of multicast masks, and requires
a fixed relationship between those masks and sequential multicast groups.

4.3.1 Restrictions on Block Size

If the Simple_Assoc bit is set the device has a limited number of masks. Therefore,
the number of sequential associations equals the maximum number of masks.

The Assoc_BlkSize field in the Multicast Associate Operation CSR must be set to
the value of (MaxMCastMasks - 1). The MaxMCastMasks field is in the Switch
Multicast Information CAR.
RapidIO.org 37

RapidIO Part 11: Multicast Extensions Specification 3.2
4.3.2 Restrictions on Block Associate

If the Simple_Assoc bit is set, non-block associations are precluded.

4.3.3 Restrictions on Associations

If the Simple_Assoc bit is set the device requires a fixed relationship between the
sequential mask numbers and sequential destination IDs. This must be taken into
account when the masks are associated.

The Multicast Associate Select CSR is set with the Mcast_Mask_num value set to
0x0000 and the Large_DestID and DestID fields set to an integer multiple of the
MaxMCastMasks value.

Hardware that sets the new Simple_Assoc CAR bit could implement a single block
associate for all of the masks that it supports with the requirement that they all be
sequential destination IDs.

4.4 Configuring Associations
This section describes how to associate destination IDs with multicast masks,
including examples of how to use the block association and per-port association
functions.

4.4.1 Basic Association

For the assumed system it is now necessary to associate a destination ID with each
multicast mask from the preceding examples. How this can be accomplished may
vary depending on the capabilities of the switch. For this section, assume that neither
block association nor per-ingress-port association is supported by the switch.

Following upon the previous example, assume the following additional system
requirements.

• the 16 bit destination ID 0x1234 needs to be associated with multicast mask 0.

• the 8 bit destination ID 0x44 needs to be associated with multicast mask 1.

• the 16 bit destination ID 0xFEED needs to be associated with multicast mask 2.

In order to accomplished the desired associations, the following register accesses are
required. (The individual association operations can be performed in any order.)

• Set up the operation to associate destination ID 0x1234 with multicast mask 0

— Write the value 0x1234_0000 to the Multicast Associate Select CSR

• Associate destination ID 0x1234 with multicast mask 0

— Write the value 0x0000_00E0 to the Multicast Associate Operation CSR

• Set up the operation to associate destination ID 0x44 with multicast mask 1
38 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
— Write the value 0x0044_0001 to the Multicast Associate Select CSR

• Associate destination ID 0x44 with multicast mask 1

— Write the value 0x0000_0060 to the Multicast Associate Operation CSR

• Set up the operation to associate destination ID 0xFEED with multicast mask 2

— Write the value 0xFEED_0002 to the Multicast Associate Select CSR

• Associate destination ID 0xFEED with multicast mask 2

— Write the value 0x0000_00E0 to the Multicast Associate Operation CSR

4.4.2 Using Per-Ingress Port Association

For the associations discussed in the preceding section, if the switch supports
per-ingress-port association (destination IDs are associated with multicast masks on
a per ingress port basis), the required programming operations change. The
associations for each multicast mask are grouped into a write to the Multicast
Associate Select CSR, followed by a write to the Multicast Associate Operation
CSR for each ingress port that must be aware of the association. (The writes to the
Multicast Associate Operation CSR can occur in any order but must occur after the
related writes to the Multicast Associate Select CSR. The individual association
operations can be performed in any order.)

• Set up the operation to associate destination ID 0x1234 with multicast mask 0

— Write the value 0x1234_0000 to the Multicast Associate Select CSR

• Associate destination ID 0x1234 with multicast mask 0 on ingress port 0

— Write the value 0x0000_00E0 to the Multicast Associate Operation CSR

• Associate destination ID 0x1234 with multicast mask 0 on ingress port 1

— Write the value 0x0000_01E0 to the Multicast Associate Operation CSR

• Associate destination ID 0x1234 with multicast mask 0 on ingress port 2

— Write the value 0x0000_02E0 to the Multicast Associate Operation CSR

• Set up the operation to associate destination ID 0x44 with multicast mask 1

— Write the value 0x0044_0001 to the Multicast Associate Select CSR

• Associate destination ID 0x44 with multicast mask 1 on ingress port 3

— Write the value 0x0000_0360 to the Multicast Associate Operation CSR

• Associate destination ID 0x44 with multicast mask 1 on ingress port 4

— Write the value 0x0000_0460 to the Multicast Associate Operation CSR

• Associate destination ID 0x44 with multicast mask 1 on ingress port 5

— Write the value 0x0000_0560 to the Multicast Associate Operation CSR

• Set up the operation to associate destination ID 0xFEED with multicast mask 2

— Write the value 0xFEED_0002 to the Multicast Associate Select CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 0
RapidIO.org 39

RapidIO Part 11: Multicast Extensions Specification 3.2
— Write the value 0x0000_00E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 1

— Write the value 0x0000_01E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 2

— Write the value 0x0000_02E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 3

— Write the value 0x0000_03E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 4

— Write the value 0x0000_04E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 5

— Write the value 0x0000_05E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 6

— Write the value 0x0000_06E0 to the Multicast Associate Operation CSR

• Associate destination ID 0xFEED with multicast mask 2 on ingress port 7

— Write the value 0x0000_07E0 to the Multicast Associate Operation CSR

4.4.3 Using Block Association

In this section assume that the switch supports block association rather than
per-ingress-port association. With this feature sequential destination IDs can be
quickly associated to sequential multicast masks. In order to take advantage of this
feature, different destination IDs assignments are required for the system than for the
preceding examples. The starting destination 0xFF00 is arbitrarily selected.

• the 16 bit destination ID 0xFF00 is used to multicast from ports 0, 1 and 2 to
ports 6 and 7, so destination ID 0xFF00 needs to be associated with multicast
mask 0.

• the 16 bit destination ID 0xFF01 identifies the multicast group including ports
3, 4 and 5, so destination ID 0xFF01 needs to be associated with multicast
mask 1.

• the 16 bit destination ID 0xFF02 identifies the multicast group that includes all
ports, so destination ID 0xFF02 needs to be associated with multicast mask 2.

Note that the number of accesses needed to accomplish the desired associations is
reduced to two. (The accesses must be performed in the order given.)

• Set up the associate operation starting with destination ID 0xFF00 and
multicast mask 0

— Write the value 0xFF00_0000 to the Multicast Associate Select CSR

• Associate three sequential destination IDs starting at 0xFF00 with three
sequential multicast masks starting at 0

— Write the value 0x0002_00E0 to the Multicast Associate Operation CSR
40 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
4.4.4 Using Per-Ingress Port and Block Association

Next, if both block association and per-ingress port association are supported by the
switch, then the following sequence of operations is required. (The write to the
Multicast Associate Select CSR must occur before the corresponding write to the
Multicast Associate Operation CSR. The individual association operations can be
performed in any order.)

• Set up the associate operations starting with destination ID 0xFF00 and
multicast mask 0

— Write the value 0xFF00_0000 to the Multicast Associate Select CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 0

— Write the value 0x0002_00E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 1

— Write the value 0x0002_01E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 2

— Write the value 0x0002_02E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 3

— Write the value 0x0002_03E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 4

— Write the value 0x0002_04E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 5

— Write the value 0x0002_05E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 6

— Write the value 0x0002_06E0 to the Multicast Associate Operation CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 7

— Write the value 0x0002_07E0 to the Multicast Associate Operation CSR

For this example, suppose that ingress port 4 needs a second destination ID to be
mapped to each of the three multicast masks and the switch also has this capability.
The second destination would be added to port 4 with the following association
operation. (The write to the Multicast Associate Select CSR must occur before the
write to the Multicast Associate Operation CSR.
RapidIO.org 41

RapidIO Part 11: Multicast Extensions Specification 3.2
• Set up the associate operations starting with destination ID 0xFF03 and
multicast mask 0

— Write the value 0xFF03_0000 to the Multicast Associate Select CSR

• Associate three sequential destination IDs with three sequential multicast
masks for ingress port 4

— Write the value 0x0002_04E0 to the Multicast Associate Operation CSR

4.4.5 Removing a Destination ID to Multicast Mask Association

Now assume that packets from destination ID 0xFF02 on port 4 should no longer be
allowed to multicast to all nodes (multicast mask 2). To remove destination ID
0xFF02 from being associated with multicast mask 2 on port 4, the following
register accesses need to be performed in order.

• Set up the operation to remove the association between destination ID 0xFF02
and multicast mask 2

— Write the value 0xFF02_0002 to the Multicast Associate Select CSR

• Remove the association between destination ID 0xFF02 and multicast mask 2
on ingress port 4

— Write the value 0x0000_04C0 to the Multicast Associate Operation CSR

4.4.6 Querying an Association

There are three scenarios for querying destination ID to multicast mask associations
in a switch. For the first scenario assume that a system designer wants to know
which multicast masks are associated with destination ID 0xFF01 on port 4. Note
that since a read of the Multicast Associate Operation CSR causes the last command
written to be executed, that register is only written at the beginning of the sequence.
(The individual associations can be queried in any order.)

• Set up the associate operations for destination ID 0xFF01 and multicast mask 0

— Write the value 0xFF01_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF01 is not associated with multicast mask 0 for
port 4

— Write the value 0x0000_0480 to the Multicast Associate Operation CSR

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF01 and multicast mask 1

— Write the value 0xFF01_0001 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF01 is not associated with multicast mask 1 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR
42 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
• Set up the associate operations for destination ID 0xFF01 and multicast mask 2

— Write the value 0xFF01_0002 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF01 is associated with multicast mask 2 for port 4

— Read the value 0x0000_0481 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF01 and multicast mask 3

— Write the value 0xFF01_0003 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF01 is not associated with multicast mask 3 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

For the second scenario assume that the system designer wants to know which
destination IDs from 0xFF00 through 0xFF07 are associated with multicast mask 0
on Port 4. (The individual associations may be queried in any order.)

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF00_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF00 is associated with multicast mask 0 for port 4

— Write the value 0x0000_0480 to the Multicast Associate Operation CSR

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF01_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF01 is not associated with multicast mask 0 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF02_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF02 is not associated with multicast mask 0 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF03_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 0 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR
RapidIO.org 43

RapidIO Part 11: Multicast Extensions Specification 3.2
• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF04_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF04 is not associated with multicast mask 0 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF05_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF05 is associated with multicast mask 0 for port 4

— Read the value 0x0000_0481 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF06_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF06 is not associated with multicast mask 0 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Set up the associate operations for destination ID 0xFF00 and multicast mask 0

— Write the value 0xFF07_0000 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF07 is not associated with multicast mask 0 for
port 4

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

For the last scenario assume that the system designer now wants to know whether or
not destination ID 0xFF03 is mapped to multicast mask 3 on all ports. (The
individual associations may be queried in any order.)

• Set up the associate operations for destination ID 0xFF03 and multicast mask 3

— Write the value 0xFF03_0003 to the Multicast Associate Select CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 0

— Write the value 0x0000_0080 to the Multicast Associate Operation CSR

— Read the value 0x0000_0080 from the Multicast Associate Operation
CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 1

— Write the value 0x0000_0180 to the Multicast Associate Operation CSR

— Read the value 0x0000_0180 from the Multicast Associate Operation
CSR
44 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 2

— Write the value 0x0000_0280 to the Multicast Associate Operation CSR

— Read the value 0x0000_0280 from the Multicast Associate Operation
CSR

• Verify that destination ID 0xFF03 is associated with multicast mask 3 for port 3

— Write the value 0x0000_0380 to the Multicast Associate Operation CSR

— Read the value 0x0000_0381 from the Multicast Associate Operation
CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 4

— Write the value 0x0000_0480 to the Multicast Associate Operation CSR

— Read the value 0x0000_0480 from the Multicast Associate Operation
CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 5

— Write the value 0x0000_0580 to the Multicast Associate Operation CSR

— Read the value 0x0000_0580 from the Multicast Associate Operation
CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 6

— Write the value 0x0000_0680 to the Multicast Associate Operation CSR

— Read the value 0x0000_0680 from the Multicast Associate Operation
CSR

• Verify that destination ID 0xFF03 is not associated with multicast mask 3 for
port 7

— Write the value 0x0000_0780 to the Multicast Associate Operation CSR

— Read the value 0x0000_0780 from the Multicast Associate Operation
CSR
RapidIO.org 45

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
46 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Annex A End Point Considerations
(Informative)

A.1 Introduction
This appendix provides implementation considerations for end points that are
intended to be used in a multicast RapidIO system.

A.2 Multicast Destination ID
The transport layer requirement that processing elements be capable of accepting
requests regardless of destinationID means that all end points are capable of
accepting multicast traffic for all possible multicast destinationIDs. The
destinationID of a multicast request may be checked by implementation-specific
means.

A.3 End Point Multicast Channels
It may be valuable for an end point to have support for one or more multicast
channels. Multicast channels are address ranges in RapidIO address space for which
an end point may accept a multicast packet and possibly translate the RapidIO write
address to another local address region. This is necessary if the recipient of a
multicast transaction does not have valid address space at the address received. The
size and quantity of multicast channels depend on the requirements of the
application. It may also be necessary to link multicast channels to particular
multicast groups.

A multicast channel valid bit can be implemented to control whether an address
out-of-range error occurs for a received address which falls inside a multicast
channel address range. A multicast channel enable bit can control whether an end
point silently ignores the packet when an address is received which falls inside the
channel address range. The enable bit allows software finer control over which end
points for a particular multicast ID will actually process the multicast write without
modifying switch settings in the fabric.
RapidIO.org 47

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
48 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Annex B Multicast Applications (Informative)

B.1 Introduction
In a multi-switch RapidIO fabric, each switch which supports multicast in the fabric
will have it’s own set of multicast masks. The particular multicast mask in each
switch device associated with a multicast group is very likely to have a different
egress port pattern enabled, depending upon where that switch is in the switch fabric
topology.

As an example, refer to the following system, where data streams entering switch
A1 need to be sent to a set of destinations. There are several possible approaches to
implementing this system. The first example is based on the number of different
multicast groups that must be supported. Destinations are linked to a destination ID
which in turn is associated with static multicast mask values. In the second example,
a specific multicast mask in each switch is associated with each possible destination.
The destinations are linked statically to destination IDs.

Figure 4-1. Example System using Multicast

Switch
B1

Switch
B2

Switch
A1

Port 0

Port 1

Port 0 - dest. A
Port 1 - dest. B
Port 2 - dest. C
Port 3 - dest. D

Port 0 - dest. E
Port 1 - dest. F
Port 2 - dest. G
Port 3 - dest. H
RapidIO.org 49

RapidIO Part 11: Multicast Extensions Specification 3.2
B.2 Example 1 - Static Multicast Masks
If there are 256 combinations of destinations to receive a data stream, multicast
requires 256 multicast groups, associated with 256 destination IDs. This means that
an 8 bit destination ID could be used, but then there would be no destination IDs left
over for control traffic in the system. As a result, this example assumes that the
system needs to use 16 bit destination IDs in order to support multicast.

It is possible to use the least significant 4 bits of the 16 bit destination ID to identify
which ports in Switch B1 need to be multicast to, and the next most significant 4 bits
for the ports on B2. Arbitrarily selecting the value of 0x04 for the upper byte of the
destination ID, then all multicast destination IDs have a format of 0x04XY, where X
selects the ports in switch B2 and Y selects the ports in switch B1.

Switch A1 therefore needs two multicast masks as shown in Table 4-1.

Destination IDs of the form 0x040Y, where Y is non-zero, or 0x04X0, where X is
non zero, do not have to be replicated. They can be routed directly to either port 0
(for 0x040Y) or port 1 (0x04X0) using the standard switch routing tables since there
is only a single egress port.

Because Multicast Mask 1 must have 223 ((256 total) - (16 for X) - (16 for Y) - (1
for none)) destination IDs associated with it, the Switch Multicast Information CAR
MaxDestIDAssociations field must contain a value of at least 222. In this particular
case, the easiest internal implementation for the selection of packets to be multicast
may be the use of a non-existent port in the routing table. For example, since Switch
A1 has three ports, make use of a non-existent port value in the routing table to
signify that the packet is subject to multicast.

Switches B1 and B2 must have 16 multicast masks, each associated with a particular
combination of their egress ports 0 through 3. Each multicast mask may have 16
destination IDs associated with it, so the Switch Multicast Information CAR
MaxDestIDAssociations field must contain a value of at least 15.

Table 4-2 describes which destination IDs must be associated with each multicast
group for Switches B1. Note that for index 0, if the routing tables in Switch A1 are
set up correctly, no packets with those multicast groups should reach switch B1.

Table 4-1. Multicast Masks for Switch A1

Multicast Mask Index Egress Ports Description

0 None Associated with destination ID 0x0400, indicating that no
destination is to receive this data stream. Packets
multicast with destination ID of 0x0400 are dropped
without notification.

1 Port 0 and port 1 Associated with destination IDs 0x04XY, where both X
and Y is not 0. These represent all destination IDs which
need only be multicast to both Switch B1 and switch B2.
50 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Table 4-2. Multicast Masks for Switch B1

Multicast Mask Index Egress Ports Description

0 None Associated with the following destination IDs:
0x0400
0x0410
0x0420
...
0x04E0
0x04F0

1 Port 0 Associated with the following destination IDs:
0x0401
0x0411
0x0421
...
0x04E1
0x04F1

2 Port 1 Associated with the following destination IDs:
0x0402
0x0412
0x0422
...
0x04E2
0x04F2

3 Ports 1and 0 Associated with the following destination IDs:
0x0403
0x0413
...
0x04E3
0x04F3

4 Port 2 Associated with the following destination IDs:
0x0404
0x0414
0x0424
...
0x04E4
0x04F4

5 Ports2 and 0 Associated with the following destination IDs:
0x0405
0x0415
0x0425
...
0x04E5
0x04F5

6 Ports2 and 1 Associated with the following destination IDs:
0x0406
0x0416
0x0426
...
0x04E6
0x04F6
RapidIO.org 51

RapidIO Part 11: Multicast Extensions Specification 3.2
7 Ports 2, 1 and 0 Associated with the following destination IDs:
0x0407
0x0417
0x0427
...
0x04E7
0x04F7

8 Port 3 Associated with the following destination IDs:
0x0408
0x0418
0x0428
...
0x04E8
0x04F8

9 Ports 3 and 0 Associated with the following destination IDs:
0x0409
0x0419
0x0429
...
0x04E9
0x04F9

10 Ports 3 and 1 Associated with the following destination IDs:
0x040A
0x041A
0x042A
...
0x04EA
0x04FA

11 Ports 3, 1 and 0 Associated with the following destination IDs:
0x040B
0x041B
0x042B
...
0x04EB
0x04FB

12 Ports3 and2 Associated with the following destination IDs:
0x040C
0x041C
0x042C
...
0x04EC
0x04FC

13 Ports 3, 2 and 0 Associated with the following destination IDs:
0x040D
0x041D
0x042D
...
0x04ED
0x04FD

Table 4-2. Multicast Masks for Switch B1

Multicast Mask Index Egress Ports Description
52 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Table 4-2 describes which destination IDs must be associated with each multicast
group for Switches B1. Note that for index 0, if the routing tables in Switch A1 are
set up correctly, no packets with those multicast groups should reach switch B2.

14 Ports 3, 2 and 1 Associated with the following destination IDs:
0x040E
0x041E
0x042E
...
0x04EE
0x04FE

15 Ports 3, 2, 1 and 0 Associated with the following destination IDs:
0x040F
0x041F
0x042F
...
0x04EF
0x04FF

Table 4-3. Multicast Masks for Switch B2

Multicast Mask Index Egress Ports Description

0 None Associated with the following destination IDs:
0x0400
0x0401
0x0402
...
0x040E
0x040F

1 Port 0 Associated with the following destination IDs:
0x0410
0x0411
0x0412
...
0x041E
0x041F

2 Port 1 Associated with the following destination IDs:
0x0420
0x0421
0x0422
...
0x042E
0x042F

3 Ports 1and 0 Associated with the following destination IDs:
0x0430
0x0431
0x0432
...
0x043E
0x043F

Table 4-2. Multicast Masks for Switch B1

Multicast Mask Index Egress Ports Description
RapidIO.org 53

RapidIO Part 11: Multicast Extensions Specification 3.2
4 Port 2 Associated with the following destination IDs:
0x0440
0x0441
0x0442
...
0x044E
0x044F

5 Ports2 and 0 Associated with the following destination IDs:
0x0450
0x0451
0x0452
...
0x045E
0x045F

6 Ports2 and 1 Associated with the following destination IDs:
0x0460
0x0461
0x0462
...
0x046E
0x046F

7 Ports 2, 1 and 0 Associated with the following destination IDs:
0x0470
0x0471
0x0472
...
0x047E
0x047F

8 Port 3 Associated with the following destination IDs:
0x0480
0x0481
0x0482
...
0x048E
0x048F

9 Ports 3 and 0 Associated with the following destination IDs:
0x0490
0x0491
0x0492
...
0x049E
0x049F

10 Ports 3 and 1 Associated with the following destination IDs:
0x04A0
0x04A1
0x04A2
...
0x04AE
0x04AF

Table 4-3. Multicast Masks for Switch B2

Multicast Mask Index Egress Ports Description
54 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
It is up to the application whether either of the switch routing tables should be used
for the destination IDs associated with multicast masks 1, 2, 4, and 8, as packets for
these destination IDs do not have to be replicated.

Configuring each of the 16 multicast masks for switches B1 and B2 should require
a maximum of 2 writes to the Multicast Mask Load CSR. Multicast masks with one
or two ports require a number of register writes equal to the number of ports.
Multicast masks with three egress ports to be selected should add all of the ports and
then remove the port which doesn’t belong in the multicast mask, thus requiring a
maximum of two register writes. The multicast mask with all ports selected requires
1 register write. Thus, to configure all 16 of the multicast masks requires a maximum
of (0 + (5*1) + (10*2))=25 register write operations.

For the destination ID to multicast mask association operations for Switch B1, it

11 Ports 3, 1 and 0 Associated with the following destination IDs:
0x04B0
0x04B1
0x04B2
...
0x04BE
0x04BF

12 Ports3 and2 Associated with the following destination IDs:
0x04C0
0x04C1
0x04C2
...
0x04CE
0x04CF

13 Ports 3, 2 and 0 Associated with the following destination IDs:
0x04D0
0x04D1
0x04D2
...
0x04DE
0x04DF

14 Ports 3, 2 and 1 Associated with the following destination IDs:
0x04E0
0x04E1
0x04E2
...
0x04EE
0x04EF

15 Ports 3, 2, 1 and 0 Associated with the following destination IDs:
0x04F0
0x04F1
0x04F2
...
0x04FE
0x04FF

Table 4-3. Multicast Masks for Switch B2

Multicast Mask Index Egress Ports Description
RapidIO.org 55

RapidIO Part 11: Multicast Extensions Specification 3.2
would make sense to implement block association operations since this would
greatly reduce the amount of effort required to associate destination IDs with
multicast masks. This feature makes possible in this example to associate a
sequential block of 16 destination IDs with the 16 multicast masks with only 32
register writes. Refer to Table 4.4.3, “Using Block Association,” on page 40 for
details of the pair of writes required for each block of 16 destination IDs.

For the destination ID to multicast mask association operations for Switch B2 there
is no pattern that leverages the programming model to speed the association of
destination IDs to multicast masks. In Switch B2, it would make sense to use the
regular switch routing tables rather than a multicast mask for the destination IDs
associated with multicast masks 1, 2, 4 and 8 in order to minimize the number of
writes required. The remaining 12 multicast groups each require 32 register write
operations to complete their associations with the appropriate destination IDs, for a
total of 384 writes. Designers who prefer speed of initialization over reliability may
reduce this to 352 register writes by ignoring the destination IDs associated with
multicast mask 0.

For switch B2, it may make sense in some systems to implement application specific
configuration registers to reduce the number of operations required for
configuration.

There can be significant limitations to using static multicast masks. Assume, of the
8 destinations, destinations A, B, C, D, and E are receiving one data stream using
destination ID 0x041F, and destinations F, G, and H are receiving a second data
stream using destination ID 0x0420.

If destination E switches wishes to change to the second data stream, two things
must happen. The destination ID for the first data stream must change from 0x041F
to 0x040F in order to have the proper multicast mask for switches B1 and B2, and
the destination ID for the second data stream must correspondingly change from
0x0420 to 0x0430.

Because the destination IDs have changed, the switches are now allowed to reorder
packets sent to destination IDs 0x041F, 0x040F, 0x0420 and 0x0430, which may
change the behavior of the system in unexpected or undesirable ways.

Another issue with static multicast masks is that the latency difference for a data
stream between different destinations depends upon whether the data stream is
routed using the regular switch routing table or multicast through a particular switch.
The different destinations will see different performance characteristics.

These characteristics could have undesirable side effects for latency and jitter
sensitive applications like Voice over Internet Protocol (VoIP).
56 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
B.3 Example 2 - Linking Multicast Masks to Destination
IDs

As an alternative implementation, again suppose that there are 256 possible
destinations which need to be multicast, numbered 0 through 255. Each destination
has a number of data streams it can receive, up to 256, which is always associated
with a 16 bit destination ID of the form 0x04<destination stream>. This requires 256
multicast masks in switches A1, B1, and B2.

When a destination changes the data stream it wants to receive, the multicast masks
for that data stream need to be changed. First, the multicast mask in each switch
associated with the stream currently being received needs to be modified to stop
multicasting to this destination. Next, the multicast mask for the new data stream
needs to be modified in each switch to enable multicast to that destination.

Depending on system requirements, there are many ways to implement the multicast
capabilities in this system. For example, switch A1 could always multicast all data
streams to both switch B1 and switch B2. In this case, switch A1 would require 1
multicast mask that could have all 256 destination IDs associated with it. Switch B1
and B2 may receive a lot of undesired traffic in this case.

Initial programming of the multicast masks is not a requirement as with example 1.
No ports should be selected in any mask after reset. Multicast masks will be
modified during system operation as destinations request to receive a particular data
stream. Removing the data streams from one multicast mask and adding a data
stream to a multicast mask can be performed in two register writes for each switch.

The destination ID associations with multicast masks can be done far more
effectively in this example if the switch devices support block associate operations.
Refer to Section 3.2.3, “Switch Multicast Information CAR”, and the programming
examples in Section 4.4, “Configuring Associations” for more information and
examples.
RapidIO.org 57

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
58 RapidIO.org

RapidIO Part 11: Multicast Extensions Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Associate, Association. A defined relationship between a destination ID and
a group of end point devices, or, in a switch, a defined relationship
between a destination ID and a multicast mask.

Multicast. The concept of sending a single message to multiple destinations
in a system.

Multicast group. The group of end point devices in a system that is the target
of a multicast operation.

Multicast mask. The group of egress ports in a switch that are the targets of
a replicated multicast packet.

A

M

RapidIO.org 59

RapidIO Part 11: Multicast Extensions Specification 3.2
Blank page
60 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Part 12: Virtual Output Queueing

Extensions Specification

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

2.0 First public release 03/06/2008

2.1 No technical changes 07/09/2009

2.2 No technical changes 05/05/2011

3.0 Changed RTA contact information.
Technical changes:
Added 64b/67b encoding of VoQ Backpressure control symbols.
Redefined Control Symbol 48 VoQ Backpressure control symbol format.
Allowed the number of bits allocated to port group and port status to be programmable.
Added register fields to support communication of capabilities and control of the
number of port group bits in each VoQ backpressure control symbol.
Note that VoQ Backpressure as defined in this specification is not backwards
compatible with previous revisions of the specification.

10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016

Table of Contents

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Chapter 1 Introduction

1.1 Problem Illustration .. 9
1.2 Terminology.. 10
1.3 Conventions .. 10

Chapter 2 Overview

2.1 Congestion Message ... 13
2.2 Traffic Staging .. 14
2.3 Adding Device Independence ... 15
2.4 Relationship With Virtual Channels ... 16
2.5 Additional Queueing Considerations.. 16

Chapter 3 Control Symbol Format

3.1 Stype2 Control Symbol 48.. 19
3.2 Control Symbol 64 VoQ Backpressure... 20
3.3 VoQ Backpressure per VC.. 22

Chapter 4 Rules

4.1 Implementation Rules ... 23
4.2 Rules for Generating Backpressure Control Symbols .. 23
4.3 Rules for Interpreting Backpressure Control Symbols ... 24

Chapter 5 Register Definitions

5.1 VoQ Backpressure Extended Features Block ... 25
5.1.1 Register Map... 25
5.1.2 VoQ Backpressure Control Block Registers .. 26
5.1.2.1 LP-Serial VC Register Block Header ... 26
5.1.2.2 Port n VoQ Control Status Register.. 27
RapidIO.org 3

Table of Contents

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Blank page
4 RapidIO.org

List of Figures

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
1-1 Basic Head-of-Line Blocking ...9
1-2 Effective Backpressure ...10
2-1 Congestion Message Information ...13
2-2 Adding Egress Staging..14
2-3 Mapping Staging Queues..15
2-4 Associating a VC with VoQ Backpressure...16
3-1 Control Symbol 48 Format ...19
3-2 Stype2 Field Format..19
3-3 Control Symbol 64 Format ...20
3-4 Control Symbol 64 VoQ Backpressure Parameter 0 and 1 Usage..................................20
3-5 Control Symbol 48 Associating a VC with VoQ Backpressure22
RapidIO.org 5

List of Figures

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Blank page
6 RapidIO.org

List of Tables

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
3-1 Stype2 Field Format..19
3-2 Control Symbol 48 Example Port Status Bit Assignment ..20
3-3 VoQ Backpressure Control Symbol VC_IND Field Definition21
3-4 Control Symbol 64 Example Port Status Bit Assignment ..21
5-1 VoQ Register Block..25
5-2 Bit Settings for LP-Serial Register Block Header ..26
5-3 Port n VoQ Backpressure CSR...27
5-4 Port Status Control..29
RapidIO.org 7

List of Tables

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Blank page
8 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Chapter 1 Introduction

1.1 Problem Illustration
In the basic switch model shown below, head-of-line blocking occurs when a packet
for port 3 cannot be transmitted on the link because of congestion in port 2. The link
effectively stalls causing the congestion in port 2 to spread to traffic on other ports.
The backpressure method described here helps alleviate congestion spreading
caused by transient blockages of queueing structures.

Figure 1-1. Basic Head-of-Line Blocking

The example is simplistic, but any queueing mechanism can become congested,
head-of-line block, and stall the link to the upstream device. The VoQ Backpressure
Process defines a congestion message that informs the upstream port about the
congestion, allowing traffic to be sidelined (in a virtual output queue) in favor of
traffic with a clear path ahead.

Port 1

Port 2

Port 3

Port 4

-
2
 -

-
3
 -

Egress Queue

Ingress

(Full)

Queue
(Stopped)
RapidIO.org 9

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Figure 1-2. Effective Backpressure

Effective backpressure is achieved when the following elements exist:

a) The congested device can communicate congestion information to upstream
devices.

b) The upstream device can segregate traffic and allow traffic to re-order based
on that congestion information.

These two properties are essential. To keep the operation at the physical layer, the
method described uses port identification for both the staging of traffic and the
congestion status. Implementation of this specification is optional.

1.2 Terminology
Upstream Device - A device ahead of another device in the traffic flow. The

upstream device is the recipient of the backpressure messages.

Downstream Device - The device later in the traffic flow. The downstream device
is the originator of backpressure messages.

Port - a port is a local value associated with a specific physical interface. Every
device with more than 1 port is responsible for mapping the destination ID to
a local port.

Congestion Message - A bit, or group of bits indicating the congestion status of one
or more ports.

Backpressure Symbol - A specific field in a RapidIO control symbol that contains
the congestion message.

1.3 Conventions
All fields and message formats are described using big endian format.

|| Concatenation, used to indicate that two fields are physically
associated as consecutive bits

Port 1

Port 2

Port 3

Port 4

- 2 -

- 3 -

Egress Queue

Ingress
 Queue
10 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets.

TRANSACTIONTransaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the number of
digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care.

<variable> Identifies a logical variable that may be a specific field of a register
or packet or data structure.
RapidIO.org 11

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Blank page
12 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Chapter 2 Overview
The purpose of this backpressure method is to maintain system performance during
temporary congestion caused when statistical peaks in traffic flow oversubscribe the
ability of a port and its associated buffering to handle the peak load. The
backpressure avoids blocking of crossing traffic that competes for common
resources. As such, the scope of the message is limited to a device and its
immediately adjacent upstream devices. The system may be designed such that
sustained congestion will cause a cascade of backpressure messages, but the ability
to avoid degradation of performance drops as the radius of affected devices
increases. RapidIO has other flow control methods to manage more systemic traffic
impediments. Implementation of this specification is optional.

2.1 Congestion Message
Two key considerations for the message format described here are the efficiency and
latency of the message, and independence for the two devices involved in the
exchange from implementation differences. The congestion message uses a packed
format to convey the status of multiple ports in a single message. The contents of the
congestion message are shown in Figure 2-1.

Figure 2-1. Congestion Message Information

The VC_IND indicates the virtual channel (VC0–8) that the congestion message
applies to. Port Status is a bit vector that indicates the congestion status of ports,
where a port is congested if its status is 1 and uncongested if its status is 0. The Port
Group field identifies the subset of ports whose port status is found in this
congestion message. The size of the Port Group field is programmable to support
sending more or less Port Status in each message, and to support fewer or more ports
on a device. The first port in the Port Status vector is the Port Group value multiplied
by the port group size. The lowest numbered port in the Port Status vector occupies
the least significant bit in the Port Status field. Smaller devices may be able to
communicate port status in one or two messages. A congestion message is typically
transmitted when at least one of the ports’ status changes. The congestion message
is embedded in a field in the RapidIO control symbol. The symbol containing this

Port GroupPort StatusVC_IND
RapidIO.org 13

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
message is defined as the backpressure symbol.

2.2 Traffic Staging
For the congestion message to be useful, the upstream device must segregate or
stage traffic prior to committing it to the RapidIO link to the downstream device, or
any critical resource (like a buffer) that could block other traffic. To stage the
packets, the upstream device must have knowledge about the routing configuration
of the downstream device. A typical RapidIO switch will lookup incoming traffic
and switch it to a port based on its destination ID. To support this backpressure
method, that lookup must produce the egress port for the current device as well as
the egress port for the next device. It is straightforward to align the routing tables,
but it does require additional entries.

Figure 2-2. Adding Egress Staging

In the figure above, output staging is created by adding a second parameter to the
routing table for the next hop port value. That value is the same value that has to be
put in the downstream device’s routing table. In the upstream device it is used to
identify what queue to stage the traffic in, and what queue to act on when a

<DestID> <Port> <DestID> <Port>

<DestID> <Port> <Port>
Egress Port

Egress Queue

Table Table

Table
14 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
congestion message is received. The value is specified in an
implementation-dependant fashion.

For end points, there is normally no routing table. To use this form of backpressure,
the end point would need a method to associate a destination ID with the
downstream egress port.

2.3 Adding Device Independence
In the basic structure above, the traffic is staged in a queue that corresponds to a port
in the downstream device. A difficulty arises to match the number of queues to the
number of possible ports that might exist in the next device. It is inconsistent with
RapidIO’s goal of allowing devices to implement cost and complexity as needed by
their market to require every device to have hundreds of queues to support a
maximum sized device, so an additional abstraction is required.

A device may combine traffic into fewer queues by reverse mapping the incoming
port congestion message. In the figure below, the egress port supports 4 staging
queues. The downstream device has 16 ports. So traffic for several ports are staged
in a common queue. When a port specific message is received it is reverse mapped
to the same queue that the forward lookup used to stage the data.

Figure 2-3. Mapping Staging Queues

In this example, as long as the forward/reverse mapping corresponds to the right
downstream device’s egress port, any implementation can be used, as it is all internal
to a single device. This mapping requires that only enough bits for the number of
queues be added to the forward table, which can be very large. In the reverse
direction, the mapping can be RAM based for maximum flexibility (in the above
example requiring a 256 x 2 bit RAM), or a straight decoder. This specification does
not prescribe a specific method.

The only other requirement, when mapping multiple ports to a single queue, is that
the queue must be shut down when any of those ports are congested. This will reduce
the benefits of this backpressure method, but a significant amount of benefit is
achieved with just a few queues.

<destID><port><queue>

Port N

Reverse Map

Port Message<queue>
RapidIO.org 15

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
2.4 Relationship With Virtual Channels
The staging method illustrated above uses queues in the output stage of the upstream
device. Devices implementing multiple Virtual Channels will have additional
queueing structures for the VCs. The staging queues may be before the traffic is
sorted into its VC, or each VC may have a set of staging queues. When the output
queueing is not tied to the implementation of VCs, the congestion message is not
associated with VC operation, and the backpressure symbol can be combined with
any valid combinations of RapidIO symbols.

If the output queueing is embedded within the VC structure, the VoQ congestion
message can be associated with VC operation. Both message formats are described
in the next section. The congestion message may be associated with a specific VC.
A CSR bit is provided to enable or disable transmission of VoQ backpressure per
VC.

Figure 2-4. Associating a VC with VoQ Backpressure

2.5 Additional Queueing Considerations
If the downstream (originating) device is using queues in its output stage to
determine congestion, then congestion messages will have to be sent to all ports that
might be sources of incoming traffic.

If the downstream device is using virtual output queues, presorting traffic by egress
port at the input, then it has the ability to reflect congestion status on only those ports
that are receiving traffic for the congested output. Input queued switches do require
N2 queues (where N is the number of ports).

Devices using some combination of input and output queueing, or shared memory
architectures, may make congestion decisions based on whatever resource allocation
algorithm is being employed. It is important to consider some of the following
boundary conditions:

• If the congestion message is issued with too little room in the port’s egress to
account for packets that might be in flight, head-of-line blocking can still
occur.

VoQ Staging VC Queues

S
ch

ed
ul

in
g

D
is

tr
ib

ut
io

n

V
C

2
V

C
1

V
C

0

S
ch

ed
ul

in
g

Port Based Staging
Prior to VC Scheduling

Port Based Staging
Embedded in Each VC

VoQ Staging
16 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
• If very small queueing structures are used, a lot of on/off chatter can occur. This
is not necessarily bad as long as the additional utilization of link bandwidth
is accounted for.

The generation and application of the congestion message defined in this
specification will be highly dependent on the queueing and switch design of the
device, and as such, is left to the implementer.
RapidIO.org 17

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
18 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Chapter 3 Control Symbol Format
The VoQ congestion message adds a control symbol to the RapidIO Interconnect
Specification Part 6: LP-Serial Physical Layer Specification. Refer to that
specification for the definitions of control symbols, packet delimiting, and the
definitions of the fields not defined here. The VoQ backpressure symbol uses the
Control Symbol 48 defined for use on Baud Rate Class 2 links, and the Control
Symbol 64 format defined for use on Baud Rate Class 3 links. Baud Rate Class 1
links can be designed to support the Control Symbol 64. For more information, see
RapidIO Interconnect Specification Part 6: LP-Serial Physical Layer Specification.

3.1 Stype2 Control Symbol 48
The Control Symbol 48 is defined as follows in the RapidIO Interconnect
Specification Part 6: LP-Serial Physical Layer Specification:

Figure 3-1. Control Symbol 48 Format

The stype2 field uses the 14 reserved bits in Control Symbol 48, and has an
operation code (CMD) field and a parameter field. The VoQ backpressure symbol
defines the following usage for the Stype2 field:

Figure 3-2. Stype2 Field Format

Table 3-1 shows the Stype2 field format definitions.

The combined size of the Port Group and Port Status Bits is 13 bits. The size of the

Table 3-1. Stype2 Field Format

Function
CMD
(Bit 0)

Parameter
(Bits 1–13)

Reserved 0b0 Reserved

VoQ Backpressure 0b1 Port Status Bits Port Group

stype0

3 6

stype1

3

parameter1

6

cmd

3

CRC-13

13

parameter0

0 2 3 8 9 14 15 17 18 20 47bits

reserved

14

353421

parameter

1 13

CMD

0 1 13bits
RapidIO.org 19

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
The Port Group field is determined by the Port n VoQ Control Status Register’s TX
Port Group Size and RX Port Group Size fields. For example, suppose that the RX
Port Group Size field value is 0b001, indicating that the Port Group field size is 1
bit. The Port Status bits would be assigned as shown in Table 3-2.

3.2 Control Symbol 64 VoQ Backpressure
The Control Symbol 64 is defined as follows in the RapidIO Interconnect
Specification Part 6: LP-Serial Physical Layer Specification:

Figure 3-3. Control Symbol 64 Format

VoQ Backpressure messages are encoded as Control Symbol 64 Stype 0 control
symbols using an stype0[0:3] field value of 0b1101. The parameter0 and parameter1
fields are combined into one contiguous format that includes the VC_IND, Port
Status, and Port Group fields, as shown in Figure 3-4.

Figure 3-4. Control Symbol 64 VoQ Backpressure Parameter 0 and 1 Usage

The VC_IND value is defined as shown in Table 3-3. Reception of a reserved value
in the VC_IND field shall cause the receiving endpoint to ignore the VoQ
Backpressure control symbol without error.

Table 3-2. Control Symbol 48 Example Port Status Bit Assignment

Port Group Value
Port Number for Port Status Bit

0 1 2 3 4 5 6 7 8 9 10 11

0x0 11 10 9 8 7 6 5 4 3 2 1 0

0x1 23 22 21 20 19 18 17 16 15 14 13 12

st
yp

e1
[0

:1
]

st
yp

e0
[0

:3
]

st
yp

e1
[2

:7
]

pa
ra

m
et

er
0

pa
ra

m
et

er
1

CRC-24

24 12 24612

0 31 32 63

0b
00

2

0b
00

2

Port GroupPort StatusVC_IND

Bits 0-3 Bits 4-(23-N) Bits (24-N)-23

Parameter0
0

Parameter1
011 11
20 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
The combined size of the Port Group and Port Status Bits is 20 bits. The size of the
Port Group field is determined by the Port n VoQ Control Status Register’s TX Port
Group Size and RX Port Group Size fields. For example, suppose that the RX Port
Group Size field value is 0b100, indicating that the Port Group field size is 4 bits.
The Port Status field is 16 bits long. In this case, the Port Status bits shall be assigned
to ports as shown in Table 3-4.

Table 3-3. VoQ Backpressure Control Symbol VC_IND Field Definition

VC_IND Value VC Comments

0b0000 VC1 This encoding scheme was
chosen to allow the Control
Symbol 64 VC_IND value
to be an extension of the
Control Symbol 48
VC_Status control symbol
VCID encoding.

0b0001 VC2

0b0010 VC3

0b0011 VC4

0b0100 VC5

0b0101 VC6

0b0110 VC7

0b0111 VC8

0b1000 VC0

0b1001–0b1110 Reserved

0b11111 All VCs This value shall be used
when VoQ backpressure
per VC is disabled.

Table 3-4. Control Symbol 64 Example Port Status Bit Assignment

Port Group
Value

Port Number for Port Status Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

2 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

3 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

4 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

5 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80

6 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96

7 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112

8 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128

9 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144

10 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160

11 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176

12 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192

13 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208
RapidIO.org 21

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
3.3 VoQ Backpressure per VC
Note that the VC_IND field discussed in Section 2.1 is not defined in the Control
Symbol 48 VoQ backpressure message. By default, VoQ backpressure Port Status
applies to all VCs on a port.

The association of VoQ backpressure with a specific port within a VC is known as
VoQ Backpressure per VC. When Control Symbol 48 is used, VoQ Backpressure per
VC is accomplished by transmitting a VC_Status symbol or Status symbol with
every VoQ backpressure symbol. The VC_Status VCID, or VC0 for the Status
symbol, identifies the specific VC that is congested for that port.

Figure 3-5. Control Symbol 48 Associating a VC with VoQ Backpressure

When Control Symbol 64 is used, VoQ Backpressure per VC is accomplished by
using VC_IND field values other than 0b11111 (all VCs).

VoQ Backpressure per VC only works if both upstream and downstream devices use
port staging within VC structures. If either device does not have a corresponding
capability, VoQ Backpressure per VC Transmission shall be disabled in the CSR. A
device with queueing within VCs shall flow control corresponding port queues in all
VCs when VoQ Backpressure per VC Transmission is disabled.

When VoQ Backpressure per VC Transmission is set in the Port n VoQ Control
Status Register and the stype2 field contains a VoQ Backpressure Symbol, the
upstream device shall flow control just the per-port queue within the corresponding
VC. When VoQ Backpressure per VC is enabled, the VoQ backpressure symbol shall
be combined with a VC_Status or Status symbol.

When the VoQ Backpressure per VC Transmission field is clear, the VoQ
backpressure symbol shall apply to all VCs, even if the VoQ backpressure message
is combined with a VC_Status or Status control symbol.

14 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224

15 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240

Table 3-4. Control Symbol 64 Example Port Status Bit Assignment

Port Group
Value

Port Number for Port Status Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0b100

3

 ACK_ID

6

buf_status

6

VoQ Backpressurestype 1

14

0b101

3

 000, VCID

6

buf_status

6

VoQ Backpressurestype 1

14

Association

Association
w/ VC_Status

w/ Status
22 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Chapter 4 Rules

4.1 Implementation Rules
a) Implementation of VoQ backpressure is entirely optional.

b) Devices may implement VoQ backpressure on a port by port basis.

c) Devices may support only the generation of backpressure messages without
the ability to honor messages, or vice versa.

d) Devices using VoQ backpressure shall support Control Symbol 48 and/or
Control Symbol 64.

4.2 Rules for Generating Backpressure Control Symbols
a) The VoQ backpressure symbol shall only be transmitted to an upstream device

if generation is enabled for a given port. If a congested port requests a symbol
be sent to all upstream devices, only ports enabled for this feature shall
actually transmit the symbol.

b) VoQ backpressure symbols may indicate congestion on any VC when VoQ
Backpressure per VC is disabled.

c) VoQ backpressure symbols shall indicate congestion on a specific VC when
VoQ Backpressure per VC is enabled.

d) Ports shall be grouped in order. Ports numbered 0 through N-1 shall occupy
Port Group 0 in the backpressure message, ports numbered N to 2N-1 shall
occupy port group 1, and so on, where N is controlled by the Port n VoQ
Control Status Register’s TX Port Group Size field and the number of bits
available in the control symbol format.

e) The backpressure symbol shall be generated any time the status of at least one
of the ports in the group changes. It is up to the implementer to define what
constitutes a status change.

f) The backpressure symbol may be generated at arbitrary intervals, based on a
timer. The timer may be the same timer used for VC_status, or it may be a
separate timer. Use of a timer is implementation specific.

g) The backpressure symbol may be generated after link recovery to avoid
orphaned congestion states.
RapidIO.org 23

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
4.3 Rules for Interpreting Backpressure Control Symbols
a) Devices shall have a mechanism to associate traffic with the downstream

device’s egress port.

b) Devices shall have a mechanism to associate the incoming congestion
message with traffic destined for the indicated port. All traffic identified for
that port shall not be committed to a critical resource when that port is
identified as congested, allowing other traffic to pass. A critical resource is
any resource that can block other traffic like a link or a buffer in a VC.

c) Traffic that is still eligible for transmission is still subject to existing RapidIO
ordering rules.

d) Traffic that has been segregated shall be re-introduced to the data stream with
the same ordering requirements that existed when it was segregated.

e) Devices may deliberately co-mingle traffic (traffic destined to different ports)
to simplify implementations. When such co-mingling loses the ability to
further discriminate among the ports, any congestion for any of the ports
associated with the co-mingled traffic results in all that traffic being stopped.
Co-mingled traffic may only be committed to the link if all ports represented
by the traffic are not congested.
24 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Chapter 5 Register Definitions

5.1 VoQ Backpressure Extended Features Block
This section describes the registers for all RapidIO LP-Serial devices supporting
virtual channels. This Extended Features register block is assigned Extended
Features block ID=0x000B.

5.1.1 Register Map

Table 5-1 shows the VoQ backpressure register map for all RapidIO LP-Serial
devices. The Block Offset is the offset relative to the 16-bit Extended Features
Pointer (EF_PTR) that points to the beginning of the block.

The address of a byte in the block is calculated by adding the block byte offset to
EF_PTR that points to the beginning of the block. This is denoted as [EF_PTR+xx]
where xx is the block byte offset in hexadecimal.

Table 5-1. VoQ Register Block

Block Byte
Offset

Register Name

0x0 LP-Serial Port - VoQ Backpressure Register Block Header

0x4–0x1C Reserved

0x20 Port 0 VoQ Control Register

0x24 Port 1 VoQ Control Register

0x28 Port 2 VoQ Control Register

0x2C Port 3 VoQ Control Register

0x30–0x418 Port n VoQ Control Registers

0x41C Port 255 VoQ Control Register
RapidIO.org 25

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
5.1.2 VoQ Backpressure Control Block Registers

Multiport devices implementing VoQ backpressure shall implement one register per
port, even if the port does not support backpressure. Single port end points
implement the port 0 register only

5.1.2.1 LP-Serial VC Register Block Header
(Block Offset 0x0)

The LP-Serial VC register block header register contains the EF_PTR to the next
extended features block, and the EF_ID that identifies this as the LP-Serial virtual
channel register block header.

Table 5-2. Bit Settings for LP-Serial Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x000B Hard wired Extended Features ID
26 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
5.1.2.2 Port n VoQ Control Status Register
(Block Offset - 0x20 + (4* n))

This register is used by each port to configure VoQ backpressure operation.

Table 5-3. Port n VoQ Backpressure CSR

Bit Name
Reset
Value

Description

0 VoQ Backpressure
Symbol Generation
Supported

see
footnote1

0b0 = generation of VoQ backpressure is not supported by this port
0b1 = generation of VoQ backpressure supported
(read-only)

1 VoQ Backpressure
Symbol Reception
Supported

see
footnote1

0b0 = reception of VoQ backpressure is not supported by this port
0b1 = reception of VoQ backpressure supported
(read-only)

2 VoQ Backpressure Per
VC Supported

see
footnote1

0b0 = VoQ backpressure messages shall indicate, and be interpreted to
mean, that all VCs on a port are congested.
0b1 = VoQ backpressure messages shall indicate, and shall be interpreted
to mean, that a specific VC on a port is congested.
(read-only)

3-7 reserved 0b0

8 Enable VoQ Symbol
Generation

0b0 0b0 = No VoQ backpressure symbols will be transmitted
0b1 = VoQ backpressure symbol generation is enabled

9 Enable VoQ
Participation

0b0 0b0 = this port’s status will not be included in any VoQ symbols
transmitted, nor cause symbols to be generated (the port’s status will
always be reflected as enabled).
0b1 = this port’s status shall be reflected in VoQ backpressure symbols and
will cause symbols to be generated

10 Port XOFF 0b0 0b0 = Port status will reflect current state of the port.
0b1 = Port status will always reflect congested (= 0b1)
This field should be set to 1 if the Port n Status and Control CSR Port
Unavailable bit is set for this port.

11 Enable VoQ
Backpressure Per VC
Transmission

0b0 0b0 = The Port Status in VoQ backpressure messages shall aggregate the
congestion status of all VCs
0b1 = The Port Status in VoQ backpressure messages shall communicate
the congestion status of individual VCs

This field shall be reserved when VoQ Backpressure per VC Supported is
0.

When this bit is set for links using Control Symbol 48, VoQ backpressure
messages shall only be transmitted with VC_Status and Status control
symbols.

12 Port Group Size 0
Supported

0b1 0b0 = A port group size of zero bits is not supported
0b1 = A port group size of zero bits is supported for both transmission and
reception

13 Port Group Size 1
Supported

see
footnote1

0b0 = A port group size of one bit is not supported
0b1 = A port group size of one bit is supported for both transmission and
reception

14 Port Group Size 2
Supported

see
footnote1

0b0 = A port group size of two bits is not supported
0b1 = A port group size of two bits is supported for both transmission and
reception
RapidIO.org 27

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
Symbol Generation by a port must be enabled only when the device at the other end
of the link supports reception.

VoQ Backpressure per VC should be enabled only if it is supported by both
connected devices. Support is defined as being able to generate and receive VoQ
Backpressure per VC messages. Generating and receiving per VC VoQ
Backpressure messages requires an underlying queueing structure that can segregate
traffic by both VC and port.

Bits 9 and 10 combine as shown in Table 5-4.

15 Port Group Size 3
Supported

see
footnote1

0b0 = A port group size of three bits is not supported
0b1 = A port group size of three bits is supported for both transmission and
reception

16 Port Group Size 4
Supported

0b1 0b0 = A port group size of four bits is not supported
0b1 = A port group size of four bits is supported for both transmission and
reception

17 Port Group Size 5
Supported

see
footnote1

0b0 = A port group size of five bits is not supported
0b1 = A port group size of five bits is supported for both transmission and
reception

18 Port Group Size 6
Supported

see
footnote1

0b0 = A port group size of six bits is not supported
0b1 = A port group size of six bits is supported for both transmission and
reception

19-25 reserved 0x00

26-28 TX Port Group Size 0x0 Current number of bits devoted to port group for transmitted VoQ Status
control symbols, encoded as follows:
0x0 = No bits for port_group, all bits are port status
0x1 = One bit for port_group, remaining bits are port status
0x2 = Two bits for port_group, remaining bits are port_status
...
0x6 = Six bits for port_group, remaining bits are port_status
0x7 = Reserved
This field shall be changed only when Enable VoQ Symbol Generation is
cleared.

29-31 RX Port Group Size 0x0 Current number of bits devoted to port group for received VoQ Status
control symbols, encoded as follows:
0x0 = No bits for port_group, all bits are port status
0x1 = One bit for port_group, remaining bits are port status
0x2 = Two bits for port_group, remaining bits are port_status
...
0x6 = Six bits for port_group, remaining bits are port_status
0x7 = Reserved
This field shall be changed only when the link partner’s Enable VoQ
Symbol Generation field is cleared.

1The reset value is implementation dependent

Table 5-3. Port n VoQ Backpressure CSR

Bit Name
Reset
Value

Description
28 RapidIO.org

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
With bit 9 = 0b0, toggling bit 10 will change the port’s reported state, but will not
trigger any new symbols. With bit 9 = 0b1, changing from normal operation to
congested or congested to normal operation will cause a symbol to be transmitted
only if the state of the port changed.

Note that changing the status of the port does not necessarily imply traffic will
change. That depends on the configuration of the upstream device.

Table 5-4. Port Status Control

Bit 9 Bit 10 Status Reflected in VoQ Backpressure Messages

0 0 Port Status is always 0b0 (will not cause symbol to be generated)

0 1 Port Status is always 0b1 (will not cause symbol to be generated)

1 0 Normal operation, state transitions cause symbols to be generated and the
status is reflected in the symbol

1 1 Port Status is always 0b1 (will cause a symbol to be generated if changing
from normal operation causes a state change).
RapidIO.org 29

RapidIO Part 12: Virtual Output Queueing Extensions Specification 3.2
30 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Annex 1: Software/System Bring Up

Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

1.0 First release 12/17/2003

1.3 Technical changes: the following errata showings:
04-09-00020.001, 04-09-00023.001
Converted to ISO-friendly templates
Revision bumped to align with the rest of the specification stack

02/23/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.1 Technical changes: Errata showing 08-06-00000.000 07/09/2009

2.2 No technical changes 05/05/2011

3.0 Changed RTA contact information. No technical changes 10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 1 Overview

1.1 Introduction... 7
1.2 Overview... 7
1.3 Scope... 7
1.4 System Enumeration API.. 8
1.5 Terminology.. 8
1.6 Software Conventions... 8

Chapter 2 Requirements for System Bring Up

2.1 Introduction... 9
2.2 Boot Requirements.. 9
2.3 Enumeration Completion .. 10
2.4 Enumeration Time-Out ... 10
2.5 Function Return Codes ... 11

Chapter 3 Hardware Abstraction Layer

3.1 Introduction... 13
3.2 Device Addressing .. 13
3.3 HAL Functions.. 14
3.3.1 Types and Definitions... 14
3.3.2 rioGetNumLocalPorts ... 14
3.3.3 rioConfigurationRead ... 15
3.3.4 rioConfigurationWrite .. 16

Chapter 4 Standard Bring Up Functions

4.1 Introduction... 17
4.2 Data Structures.. 17
4.3 Bring Up Functions... 18
4.3.1 rioInitLib... 18
4.3.2 rioGetFeatures... 19
4.3.3 rioGetSwitchPortInfo.. 20
4.3.4 rioGetExtFeaturesPtr .. 21
4.3.5 rioGetNextExtFeaturesPtr... 22
4.3.6 rioGetSourceOps... 23
4.3.7 rioGetDestOps .. 24
4.3.8 rioGetAddressMode.. 25
4.3.9 rioGetBaseDeviceId.. 26
4.3.10 rioSetBaseDeviceId .. 27
RapidIO.org 3

Table of Contents

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.11 rioAcquireDeviceLock.. 28
4.3.12 rioReleaseDeviceLock .. 29
4.3.13 rioGetComponentTag ... 30
4.3.14 rioSetComponentTag .. 31
4.3.15 rioGetPortErrStatus... 32

Chapter 5 Routing-Table Manipulation Functions

5.1 Introduction... 33
5.2 Routing Table Functions... 34
5.2.1 rioRouteAddEntry... 34
5.2.2 rioRouteGetEntry.. 35

Chapter 6 Device Access Routine Interface

6.1 Introduction... 37
6.2 DAR Packaging .. 37
6.3 Execution Environment .. 37
6.4 Type Definitions ... 38
6.5 DAR Functions ... 39
6.5.1 rioDar_nameGetFunctionTable.. 39
6.5.2 rioDarInitialize.. 40
6.5.3 rioDarTerminate.. 41
6.5.4 rioDarTestMatch... 42
6.5.5 rioDarRegister... 43
6.5.6 rioDarGetMemorySize.. 44
6.5.7 rioDarGetSwitchInfo .. 45
6.5.8 rioDarSetPortRoute... 46
6.5.9 rioDarGetPortRoute .. 47

Annex A System Bring Up Guidelines (Informative)

A.1 Introduction... 49
A.2 Overview of the System Bring Up Process... 49
A.3 System Enumeration Algorithm ... 50
A.3.1 Data Structures, Constants, and Global Variables.. 51
A.3.2 Pseudocode ... 52
A.4 System Bring Up Example.. 56
4 RapidIO.org

List of Figures

RapidIO Annex 1: Software/System Bring Up Specification 3.2
A-1 Example System..57
RapidIO.org 5

List of Figures

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Blank page
6 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 1 Overview

1.1 Introduction
This chapter provides an overview of the RapidIO Annex 1: Software/System Bring
Up Specification document. This document assumes that the reader is familiar with
the RapidIO specifications, conventions, and terminology.

1.2 Overview
The RapidIO Architectural specifications establish a framework that enables a wide
variety of implementations. The RapidIO Part 7: System and Device
Inter-operability Specification provides a standard set of device and system design
solutions to support inter-operability. This document builds upon the
inter-operability specification to define a standard set of software API functions for
use in system bring up.

Each chapter addresses a different bring up topic. This revision of the RapidIO
Annex 1: Software/System Bring Up Specification document covers the following
issues:

Chapter 2, “Requirements for System Bring Up”

Chapter 3, “Hardware Abstraction Layer”

Chapter 4, “Standard Bring Up Functions”

Chapter 5, “Routing-Table Manipulation Functions”

Chapter 6, “Device Access Routine Interface”

Annex A, “System Bring Up Guidelines (Informative)”

1.3 Scope
Although RapidIO networks provide many features and capabilities, there are a few
assumptions and restrictions that this specification relies on to simplify the bring up
process and narrow the specification scope. These assumptions and restrictions are:

• Only two hosts may simultaneously enumerate a network. Two hosts may be
needed on a network for fault tolerance purposes. System integrators must
determine which hosts can perform this function.
RapidIO.org 7

RapidIO Annex 1: Software/System Bring Up Specification 3.2
• Only one host actually completes the network enumeration (this is referred to
as the winning host). The second host must retreat and wait for the
enumeration to complete or, assuming the winning host has failed, for
enumeration to timeout. If a timeout occurs, the second host re-enumerates
the network.

• After enumeration, other hosts in the system must passively discover the
network to gather topology information such as routing tables and memory
maps.

1.4 System Enumeration API
System enumeration API functions may be divided into two categories:

• Standard RapidIO functions that use hardware resources defined by the
RapidIO specifications. These functions should rely on the support functions
provided by the Hardware Abstraction Layer (HAL) to ensure portability
between different platforms.

• Device-specific (vendor-specific) functions defined by a device manufacturer
that use hardware resources outside of the scope of the RapidIO
specifications. The main purpose of these functions is to provide Hardware
Abstraction Layer (HAL) support to the standard RapidIO functions.

An important goal of this software API specification is to minimize the number of
device-specific functions required for enumeration so that the portability of the API
across hardware platforms is maximized.

1.5 Terminology
This document uses terms such as local port, local configuration registers, etc. to
refer to hardware resources associated with a RapidIO end point device attached to
(or combined with) the host processor that performs RapidIO system enumeration
and initialization.

1.6 Software Conventions
To describe the software API functions, this document uses syntactic and notational
conventions consistent with the C programming language. The conventions for
naming functions and variables used by these APIs are outside of scope of this
document.
8 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 2 Requirements for System Bring Up

2.1 Introduction
This section describes basic requirements for system bring up and discovery. An
overview of the system bring up process, including a system bring up example, is
presented in Annex A, “System Bring Up Guidelines (Informative)”.

2.2 Boot Requirements
The following system state is required for proper system bring up:

After the system is powered on, the state necessary for system enumeration to occur
using multiple host processors is automatically initialized as follows (These initial
state requirements are specified in the RapidIO Part 7: System and Device
Inter-operability Specification):

• System devices are initialized with the following Base Device IDs:

— Non-boot-code and non-host device IDs are set to 0xFF (0xFFFF for
16-bit deviceID systems).

— Boot code device IDs are set to 0xFE (0x00FE for 16-bit deviceID
systems).

— Host device IDs are set to 0x00 (0x0000 for 16-bit deviceID systems).

• Physical layer link initialization of end points is complete.

• The default routing state of all switches between the boot code device and the
host device is set to route all requests for device ID 0xFE (0x00FE for 16-bit
deviceID systems) to the appropriate boot code device. All response packets
are routed back to the host from the boot code device.

• Any host that participates in discovery must change its destination ID to a
unique ID value before starting the system initialization process. This value
is used by a device’s Host Base Device ID Lock CSR to ensure only one host
can manipulate a device at a time. The allowed ID values for a discovering
host are 0x00 (0x0000) and 0x01 (0x0001). A host with an ID of 0x00
(0x0000) has a lower priority than a host with an ID of 0x01 (0x0001). Host
devices must be configured to accept maintenance packets with a destination
ID of 0xFF (0xFFFF for 16-bit deviceID systems) as well as the unique host
ID.
RapidIO.org 9

RapidIO Annex 1: Software/System Bring Up Specification 3.2
• All host devices have their Master Enable bit (Port General Control CSR) set
to 1. Switch devices do not have a Master enable bit.

• All devices will accept requests with any sourceID or destinationID value

2.3 Enumeration Completion
One or two hosts can perform system enumeration in a RapidIO network. If two
hosts are present, an algorithm is needed to determine which host has the priority to
proceed with enumeration. The host with the higher priority is the winning host and
the other host is the losing host. The enumeration algorithm suggested in Appendix
A, “System Bring Up Guidelines (Informative),” on page 49 sets priority based on
the value of the power-on device ID.

Enumeration is complete when the winning host releases the lock on the losing host.
It is the losing host’s responsibility to detect that it has been locked by the winning
host and to later detect that the lock has been released by the winning host. The
methods used to release locks on nodes other than the host nodes is outside the scope
of this document.

2.4 Enumeration Time-Out
As mentioned in the previous section, two hosts can be used to enumerate the
RapidIO network. The algorithm in Appendix A assumes the host with the higher
power-on host device ID has priority over the other host. Because of this pre-defined
priority, only one host (the one with higher priority) can win the enumeration task.
In this case, the losing host enters a wait state.

If the winning host fails to enumerate the entire network, the losing host’s wait state
times out. When this occurs, the losing host attempts to enumerate the network. In
an open 8-bit deviceID system, the losing host must wait 15 seconds before timing
out and restarting the enumeration task. The length of the time-out period in a closed
or a 16-bit deviceID system may differ from that of an open system.

To develop the 15 second time-out value, the following assumptions are made about
the network maximal size:

NUMDEV = 256 devices

NUMSWITCHES = 256 switches

NUMFTE = 256 routing table entries per switch

It is assumed that a separate maintenance write packet is required to program each
routing table entry for each switch. Since we need to establish a time base for
operations, we assume:

CWTime = 100 microseconds per configuration write packet
10 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Now we can estimate that the number of configuration writes it takes to program all
of the switch routing table entries is (256 switches)*(256 routing table entries), or;

=> 256*256*CWTIME microsecs =

=> ~6.6 seconds.

Given these rough approximations, a 15 second time-out value is seen as appropriate
and conservative for open systems. The chosen value must be such that if a time-out
were to occur, it must be guaranteed that failure HAS occurred, and hence choosing
a conservative value is necessary.

2.5 Function Return Codes
The following return codes and their constant values are defined for use by the
system bring up functions.

typedef unsigned int STATUS;

#define RIO_SUCCESS 0x0 // Success status code
#define RIO_WARN_INCONSISTENT 0x1 // Used by

// rioRouteGetEntry—indicates
// that the routeportno returned is
// not the same for all ports

#define RIO_ERR_SLAVE 0x1001 // Another host has a higher
// priority

#define RIO_ERR_INVALID_PARAMETER 0x1002 // One or more input parameters
// had an invalid value

#define RIO_ERR_RIO 0x1003 // The RapidIO fabric returned a
// Response Packet with ERROR
// status reported

#define RIO_ERR_ACCESS 0x1004 // A device-specific hardware
// interface was unable to generate
// a maintenance transaction and
// reported an error

#define RIO_ERR_LOCK 0x1005 // Another host already acquired
// the specified processor element

#define RIO_ERR_NO_DEVICE_SUPPORT 0x1006 // Device Access Routine does not
// provide services for this device

#define RIO_ERR_INSUFFICIENT_RESOURCES 0x1007 // Insufficient storage available in
// Device Access Routine private
// storage area

#define RIO_ERR_ROUTE_ERROR 0x1008 // Switch cannot support
// requested routing

#define RIO_ERR_NO_SWITCH 0x1009 // Target device is not a switch
#define RIO_ERR_FEATURE_NOT_SUPPORTED 0x100A // Target device is not capable of

// per-input-port routing
RapidIO.org 11

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Blank page
12 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 3 Hardware Abstraction Layer

3.1 Introduction
The Hardware Abstraction Layer (HAL) provides a standard software interface to
the device-specific hardware resources needed to support RapidIO system
configuration transactions. Configuration read and write operations are used by the
HAL functions to access RapidIO device registers. The HAL functions are accessed
by the RapidIO enumeration API during system bring up.

This section describes the HAL functions and how they can be used to access local
and remote RapidIO device registers. These functions must be implemented by
every new device-specific host-processing element to support RapidIO system
enumeration and initialization. The HAL functions assume the following:

• All configuration read and write operations support only single word (4-byte)
accesses.

• As required by the device, the size of the 8-bit or 16-bit deviceID field is
considered by the device implementation (see section 2.4 of the RapidIO Part
3: Common Transport Specification for more information).

• An enumerating processor device may have more than one RapidIO end point
(local port).

3.2 Device Addressing
One purpose of the HAL is to provide a unified software interface to configuration
registers in both local and remote RapidIO processing elements. This is done using
a universal device-addressing scheme. Such a scheme enables HAL functions to
distinguish between accesses to local and remote RapidIO end points without
requiring an additional parameter. The result is that only one set of HAL functions
must be implemented to support local and remote configuration operations.

All HAL functions use the destid and hopcount parameters to address a RapidIO
device. The HAL reserves destid=0xFFFFFFFF and hopcount of 0 for addressing
configuration registers within the local RapidIO end point. A destid= 0xFFFFFFFF
and hopcount of 0 value must be used to address the local processing end point
regardless of the actual destination ID value. This reserved combination does not
conflict with the address of other RapidIO devices. The localport parameter is used
by the HAL functions to identify a specific local port within RapidIO devices
containing multiple ports.
RapidIO.org 13

RapidIO Annex 1: Software/System Bring Up Specification 3.2
3.3 HAL Functions
The functions that form the RapidIO initialization HAL are described in the
following sections.

3.3.1 Types and Definitions

/* The HOST_REGS value below is a destination ID used to specify that the
registers of the processor/platform on which the code is running are to be accessed.
*/

#define HOST_REGS 0xFFFFFFFF

3.3.2 rioGetNumLocalPorts
Prototype:

INT32 rioGetNumLocalPorts (
void

)

Arguments:

None

Return Value:

0 Error

n Number of RapidIO ports supported

Synopsis:

rioGetNumLocalPorts() returns the total number of local RapidIO ports supported by the HAL functions. The
number n returned by this function should be equal to or greater than 1. A returned value of 0 indicates an error.
14 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
3.3.3 rioConfigurationRead
Prototype:

STATUS rioConfigurationRead (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *readdata

)

Arguments:

localport Local port number [IN]

destid Destination ID of the target device [IN]

hopcount Hop count [IN]

offset Word-aligned (four byte boundary) offset—in
bytes—of the CAR or CSR [IN]

*readdata Pointer to storage for received data [OUT]

Return Value:

RIO_SUCCESS The read operation completed successfully and valid
data was placed into the specified location.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioConfigurationRead() performs a configuration read transaction from CAR and/or CSR register(s) belonging to a
local or remote RapidIO device. The function uses a device-specific hardware interface to generate maintenance
transactions to remote devices. This hardware sends a configuration read request to the remote device (specified by
destid and/or hopcount) and waits for a corresponding configuration read response. After the function receives a
configuration read response it returns data and/or status to the caller. The method for accessing registers in a local device
is device-specific.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 15

RapidIO Annex 1: Software/System Bring Up Specification 3.2
3.3.4 rioConfigurationWrite
Prototype:

STATUS rioConfigurationWrite (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *writedata

)

Arguments:

localport Local port number [IN]

destid Destination ID of the target device [IN]

hopcount Hop count [IN]

offset Word-aligned (four byte boundary) offset—in
bytes—of the CAR or CSR [IN]

*writedata Pointer to storage for data to be written [IN]

Return Value:

RIO_SUCCESS The write operation completed successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioConfigurationWrite() performs a configuration write transaction to CAR and/or CSR register(s) belonging to a
local or remote RapidIO device. The function uses a device-specific hardware interface to generate maintenance
transactions to remote devices. This hardware sends a configuration write request to the remote device (specified by
destid and/or hopcount) and waits for a corresponding configuration write response. After the function receives a
configuration write response it returns status to the caller. The method for accessing registers in a local device is
device-specific.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
16 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 4 Standard Bring Up Functions

4.1 Introduction
This section describes the RapidIO functions that must be implemented to support
system bring up. Functions are defined only for device registers used during the
RapidIO enumeration and initialization process, not for all possible RapidIO device
registers. These functions can be implemented using the HAL functions. Many of
the functions can also be implemented as macros that specify predefined parameters
for the HAL functions. The standard RapidIO bring up functions can be combined
into a library if they are implemented as a set of subroutines.

4.2 Data Structures
typedef ADDR_MODE UINT32;

#define ADDR_MODE_34BIT_SUPPORT 0x1

#define ADDR_MODE_50_34BIT_SUPPORT 0x3

#define ADDR_MODE_66_34BIT_SUPPORT 0x5

#define ADDR_MODE_66_50_34BIT_SUPPORT 0x7
RapidIO.org 17

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3 Bring Up Functions

4.3.1 rioInitLib
Prototype:

STATUS rioInitLib (
void

)

Arguments:

None

Return Value:

RIO_SUCCESS Initialization completed successfully.

RIO_ERROR Generic error report. Unable to initialize library.

Synopsis:

rioInitLib() initializes the RapidIO API library. No routines defined in this chapter may be called unless and until
rioInitLib has been invoked. If rioInitLib returns RIO_ERROR, no routines defined in this chapter may be called.
18 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.2 rioGetFeatures
Prototype:

STATUS rioGetFeatures (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *features

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*features Pointer to storage containing the received features
[OUT]

Return Value:

RIO_SUCCESS The features were retrieved successfully and placed
into the location specified by *features.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetFeatures() uses the HAL rioConfigurationRead() function to read from the Processing Element Features
CAR of the specified processing element. Values read are placed into the location referenced by the *features pointer.
Reported status is similar to rioConfigurationRead()

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 19

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.3 rioGetSwitchPortInfo
Prototype:

STATUS rioGetSwitchPortInfo (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *portinfo

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*portinfo Pointer to storage containing the received port
information [OUT]

Return Value:

RIO_SUCCESS The port information was retrieved successfully and
placed into the location specified by *portinfo.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an
invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetSwitchPortInfo() uses the HAL rioConfigurationRead() function to read from the Switch Port Information
CAR of the specified processing element. Values read are placed into the location referenced by the *portinfo pointer.
Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
20 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.4 rioGetExtFeaturesPtr
Prototype:

STATUS rioGetExtFeaturesPtr (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *extfptr

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*extfptr Pointer to storage containing the received extended
feature information [OUT]

Return Value:

RIO_SUCCESS The extended feature information was retrieved
successfully and placed into the location specified by
*extfptr.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetExtFeaturesPtr() uses the HAL rioConfigurationRead() function to read the pointer to the first entry in the
extended features list from the Assembly Information CAR of the specified processing element. That pointer is placed
into the location referenced by the *extfptr pointer. Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.

Note that if the EF_PTR field of *extfptr is 0, no extended features are available.
RapidIO.org 21

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.5 rioGetNextExtFeaturesPtr
Prototype:

STATUS rioGetNextExtFeaturesPtr (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 currfptr,
UINT32 *extfptr

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

currfptr Pointer to the last reported extended feature [IN]

*extfptr Pointer to storage containing the received extended
feature information [OUT]

Return Value:

RIO_SUCCESS The extended feature information was retrieved
successfully and placed into the location specified by
*extfptr.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetNextExtFeaturesPtr() uses the HAL rioConfigurationRead() function to read the pointer to the next entry
in the extended features. That pointer is placed into the location referenced by the *extfptr pointer. Reported status is
similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.

Note that if the EF_PTR field of *extfptr is 0, no further extended features are available. Invoking
rioGetNextExtFeaturesPtr when currfptr has an EF_PTR field value of 0 will result in a return code of
RIO_ERR_INVALID_PARAMETER.
22 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.6 rioGetSourceOps
Prototype:

STATUS rioGetSourceOps (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *srcops

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*srcops Pointer to storage containing the received source
operation information [OUT]

Return Value:

RIO_SUCCESS The source operation information was retrieved
successfully and placed into the location specified by
*srcops.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetSourceOps() uses the HAL rioConfigurationRead() function to read from the Source Operations CAR of
the specified processing element. Values read are placed into the location referenced by the *srcops pointer. Reported
status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 23

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.7 rioGetDestOps
Prototype:

STATUS rioGetDestOps (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *dstops

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*dstops Pointer to storage containing the received destination
operation information [OUT]

Return Value:

RIO_SUCCESS The destination operation information was retrieved
successfully and placed into the location specified by
*dstops.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetDestOps() uses the HAL rioConfigurationRead() function to read from the Destination Operations CAR of
the specified processing element. Values read are placed into the location referenced by the *dstops pointer. Reported
status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
24 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.8 rioGetAddressMode
Prototype:

STATUS rioGetAddressMode (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
ADDR_MODE *amode

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*amode Pointer to storage containing the received address
mode (34-bit, 50-bit, or 66-bit address) information
[OUT]

Return Value:

RIO_SUCCESS The address mode information was retrieved
successfully and placed into the location specified by
*amode.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetAddressMode() uses the HAL rioConfigurationRead() function to read from the PE Logical Layer CSR of
the specified processing element. The number of address bits generated by the PE (as the source of an operation) and
processed by the PE (as the target of an operation) are placed into the location referenced by the *amode pointer.
Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 25

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.9 rioGetBaseDeviceId
Prototype:

STATUS rioGetBaseDeviceId (
UINT8 localport,
UINT32 *deviceid

)

Arguments:

localport Local port number [IN]

*deviceid Pointer to storage containing the base device ID
[OUT]

Return Value:

RIO_SUCCESS The base device ID information was retrieved
successfully and placed into the
location specified by *deviceid.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetBaseDeviceId() uses the HAL rioConfigurationRead() function to read from the Base Device ID CSR of
the local processing element (the destid and hopcount parameters used by rioConfigurationRead() must be set to
HOST_REGS and zero, respectively). Values read are placed into the location referenced by the *deviceid pointer.
Reported status is similar to rioConfigurationRead(). This function is useful only for local end-point devices.
26 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.10 rioSetBaseDeviceId
Prototype:

STATUS rioSetBaseDeviceId (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 newdeviceid

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

newdeviceid New base device ID to be set [IN]

Return Value:

RIO_SUCCESS The base device ID was updated successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioSetBaseDeviceId() uses the HAL rioConfigurationWrite() function to write the base device ID in the Base
Device ID CSR of the specified processing element (end point devices only). Reported status is similar to
rioConfigurationWrite().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 27

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.11 rioAcquireDeviceLock
Prototype:

STATUS rioAcquireDeviceLock (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 hostdeviceid,
UINT16 *hostlockid

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

hostdeviceid Host base device ID for the local processing element
[IN]

*hostlockid Device ID of the host holding the lock if ERR_LOCK
is returned [OUT]

Return Value:

RIO_SUCCESS The device lock was acquired successfully.

RIO_ERR_LOCK Another host already acquired the specified processor
element. ID of the device holding the lock is contained
in the location referenced by the *hostlockid
parameter.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioAcquireDeviceLock() tries to acquire the hardware device lock for the specified processing element on behalf of
the requesting host. The function uses the HAL rioConfigurationWrite() function to write the requesting host device
ID into the Host Base Lock Device ID CSR of the specified processing element. After the write completes, this function
uses the HAL rioConfigurationRead() function to read the value back from the Host Base Lock Device ID CSR.
The written and read values are compared. If they are equal, the lock was acquired successfully. Otherwise, another host
acquired this lock and the device ID for that host is reported.

This function assumes unique host-based device identifiers are assigned to discovering hosts. For more details, refer to
Annex A, “System Bring Up Guidelines (Informative)”.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
28 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.12 rioReleaseDeviceLock
Prototype:

STATUS rioReleaseDeviceLock (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 hostdeviceid,
UINT16 *hostlockid

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

hostdeviceid Host base device ID for the local processing element
[IN]

*hostlockid Device ID of the host holding the lock if ERR_LOCK
is returned [OUT]

Return Value:

RIO_SUCCESS The device lock was released successfully.

RIO_ERR_LOCK Another host already acquired the specified processor
element.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioReleaseDeviceLock() tries to release the hardware device lock for the specified processing element on behalf of
the requesting host. The function uses the HAL rioConfigurationWrite() function to write the requesting host device
ID into the Host Base Lock Device ID CSR of the specified processing element. After the write completes, this function
uses the HAL rioConfigurationRead() function to read the value back from the Host Base Lock Device ID CSR. If
the Device ID that is read back from the Host Base Device ID register is 0xFFFF then the lock has been released
successfully.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 29

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.13 rioGetComponentTag
Prototype:

STATUS rioGetComponentTag (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *componenttag

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*componenttag Pointer to storage containing the received component
tag information [OUT]

Return Value:

RIO_SUCCESS The component tag information was retrieved
successfully and placed into the location specified by
*componenttag.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetComponentTag() uses the HAL rioConfigurationRead() function to read from the Component Tag CSR of
the specified processing element. Values read are placed into the location referenced by the *componenttag pointer.
Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
30 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.14 rioSetComponentTag
Prototype:

STATUS rioSetComponentTag (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 componenttag

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

componenttag Component tag value to be set [IN]

Return Value:

RIO_SUCCESS The component tag was updated successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioSetComponentTag() uses the HAL rioConfigurationWrite() function to write the component tag into the
Component Tag CSR of the specified processing element. Reported status is similar to rioConfigurationWrite().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 31

RapidIO Annex 1: Software/System Bring Up Specification 3.2
4.3.15 rioGetPortErrStatus
Prototype:

STATUS rioGetPortErrStatus (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 extfoffset,
UINT8 portnum,
UINT32 *porterrorstatus

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

extfoffset Offset from the previously reported extended features
pointer [IN]

portnum Port number to be accessed [IN]

*porterrorstatus Pointer to storage for the returned value [OUT]

Return Value:

RIO_SUCCESS The read completed successfully and valid data was
placed into the location specified by *porterrorstatus.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetPortErrStatus() uses the HAL rioConfigurationRead() function to read the contents of the Port n Error
and Status CSR of the specified processing element. Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
32 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 5 Routing-Table Manipulation
Functions

5.1 Introduction
This section describes the RapidIO functions that must be provided to support
routing tables used within the switch fabric. The RapidIO common transport
specification requires implementing device-identifier-based packet routing. The
detailed implementation of routing tables is beyond the scope of this specification.

The routing-table manipulation functions assume the following:

• The destination ID of the device that receives a packet routed by the switch is
the route destination ID.

• The specific port at the route destination ID that receives a packet routed by the
switch is the route port number.

• The software paradigm used for routing tables is a linear routing table indexed
by the route destination ID.

• Switches may implement a global routing table, “per port” routing tables, or a
combination of both.
RapidIO.org 33

RapidIO Annex 1: Software/System Bring Up Specification 3.2
5.2 Routing Table Functions
The functions defined for RapidIO routing-table manipulation are described in the
following sections.

5.2.1 rioRouteAddEntry
Prototype:

STATUS rioRouteAddEntry (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 routeportno

)

Arguments:

localport Local port number (RapidIO switch) [IN]

destid Destination ID of the processing element (RapidIO
switch) [IN]

hopcount Hop count [IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

routeportno Route port number—value written to the selected
routing table entry [IN]

Return Value:

RIO_SUCCESS The routing table entry was added successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

RIO_WARN_INCONSISTENT Used by rioRouteGetEntry—indicates that the
routeportno returned is not the same for all ports.

Synopsis:

rioRouteAddEntry() adds an entry to a routing table for the RapidIO switch specified by the destid and hopcount
parameters. The tableidx parameter is used to select a specific routing table in the case of implementations with “per
port” routing tables. A value of tableidx=0xFFFFFFFF specifies a global routing table for the RapidIO switch. The
routeportno parameter is written to the routing table entry selected by the routedestid parameter.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
34 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
5.2.2 rioRouteGetEntry
Prototype:

STATUS rioRouteGetEntry (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 *routeportno

)

Arguments:

localport Local port number (RapidIO switch) [IN]

destid Destination ID of the processing element (RapidIO
switch) [IN]

hopcount Hop count [IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

*routeportno Route port number—pointer to value read from the
selected routing table entry [OUT]

Return Value:

RIO_SUCCESS The routing table entry was added successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported.
Error status returned by this function may contain
additional information from the Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

RIO_WARN_INCONSISTENT Used by rioRouteGetEntry—indicates that the
routeportno returned is not the same for all ports.

Synopsis:

rioRouteGetEntry() reads an entry from a routing table for the RapidIO switch specified by the destid and
hopcount parameters. The tableidx parameter is used to select a specific routing table in the case of implementations
with “per port” routing tables. A value of tableidx=0xFF specifies a global routing table for the RapidIO switch. The
value in the routing table entry selected by the routedestid parameter is read from the table and placed into the
location referenced by the *routeportno pointer.

Reads from the global routing table may be undefined in the case where per-port routing tables exist.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 35

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Blank page
36 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Chapter 6 Device Access Routine Interface

6.1 Introduction
This section defines the device access routine (DAR) interface that must be provided
for RapidIO device configuration. The client for this interface is the boot loader
responsible for RapidIO network enumeration and initialization. By using a standard
DAR interface, the firmware does not need to include knowledge of device-specific
configuration operations. Thus, enumeration and initialization firmware can operate
transparently with devices from many component vendors.

6.2 DAR Packaging
For each processor type supported by a DAR provider, linkable object files for
DARs shall be supplied using ELF format. Device-specific configuration DARs
shall be supplied using C-language source code format.

6.3 Execution Environment
The functions provided by device-specific configuration DARs must be able to link
and execute within a minimal execution context (e.g., a system-boot monitor or
firmware). In general, configuration DARs should not call an external function that
is not implemented by the DAR, unless the external function is passed to the
configuration DAR by the initialization function. Also, configuration DAR
functions may not call standard C-language I/O functions (e.g., printf) or standard
C-language library functions that might manipulate the execution environment (e.g.,
malloc or exit).
RapidIO.org 37

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.4 Type Definitions
The following type definitions are to be used by the DAR functions in Section 6.5.

typedef struct RDCDAR_PLAT_OPS_STRUCT {
UINT32 specversion;
UINT32 (*rioConfigurationRead) (UINT8 localport,

UINT16 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *readdata);

UINT32 (*rioConfigurationWrite) (UINT8 localport,
UINT16 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *writedata);

} RDCDAR_PLAT_OPS;

typedef struct RDCDAR_OPS_STRUCT {
UINT32 specversion;
UINT32 (*rioDarInitialize) (...);
UINT32 (*rioDarTerminate) (...);
UINT32 (*rioDarTestMatch) (...);
UINT32 (*rioDarRegister) (...);
UINT32 (*rioDarGetSwitchInfo) (...);
UINT32 (*rioDarSetPortRoute) (...);
UINT32 (*rioDarGetPortRoute) (...);
UINT32 (*rioDarGetMemorySize) (...);

} RDCDAR_OPS

typedef struct RDCDAR_DATA_STRUCT {
UINT32 databytesallocated;
CHAR *data;

} RDCDAR_DATA

typedef struct RDCDAR_SWITCH_INFO_STRUCT {
BOOL useslutmodel;
BOOL separatelutperinputport;
UINT32 maxlutentries;

} RDCDAR_SWITCH_INFO
38 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5 DAR Functions
The functions that must be provided for a RapidIO device-specific configuration
DAR are described in the following sections. For the
rioDar_nameGetFunctionTable functions, the rioDar_name portion of the function
name shall be replaced by an appropriate name for the implemented driver.

6.5.1 rioDar_nameGetFunctionTable
Prototype:

UINT32 rioDar_nameGetFunctionTable(
UINT32 specversion,
RDCDAR_OPS_STRUCT *darops,
UINT32 maxdevices,
UINT32 *darspecificdatabytes

)

Arguments:

specversion Version number of the DAR interface specification
indicating the caller’s implementation of the type
definition structures [IN]

*darops Pointer to a structure of DAR functions that are
allocated by the caller and filled in by the called
function (see Section 6.4) [OUT]

maxdevices Maximum expected number of RapidIO devices that
must be serviced by this configuration DAR [IN]

*darspecificdatabytes Number of bytes needed by the DAR for the DAR
private data storage area [OUT]

Return value:

RIO_SUCCESS On successful completion

Synopsis:

rioDar_nameGetFunctionTable() is called by a client to obtain the list of functions implemented by a RapidIO
device-specific configuration DAR module. It shall be called once before enumerating the RapidIO network.

The specversion parameter is the version number defined by the revision level of the specification from which the
DAR type definition structures are taken (see Section 6.4).

The maxdevices parameter is an estimate of the maximum number of RapidIO devices in the network that this DAR
must service. The DAR uses this estimate to determine the size required for the DAR private data storage area. The
storage size is returned to the location referenced by the *darspecificdatabytes pointer. After the client calls this
function, the client shall allocate a DAR private data storage area of a size no less than that indicated by
*darspecificdatabytes. The client shall provide that private data storage area to rioDarInitialize().
RapidIO.org 39

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.2 rioDarInitialize
Prototype:

UINT32 rioDarInitialize (
UINT32 specversion,
UINT32 maxdevices,
RDCDAR_PLAT_OPS *platops,
RDCDAR_DATA *privdata

)

Arguments:

specversion Version number of the DAR interface specification
indicating the caller’s implementation of the type
definition structures [IN]

maxdevices Maximum expected number of RapidIO devices that
must be serviced by this configuration DAR [IN]

*platops Pointer to a structure of platform functions for use by
the DAR (see Section 6.4) [IN]

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Return value:

RIO_SUCCESS On successful completion

Synopsis:

rioDarInitialize() is called by a client to initialize a RapidIO device-specific configuration DAR module. This
function shall be called once after calling the rioDar_nameGetFunctionTable() functions and before enumerating
the RapidIO network.

The specversion parameter is the version number defined by the revision level of the specification from which the
DAR type definition structures are taken (see Section 6.4).

The maxdevices parameter is an estimate of the maximum number of RapidIO devices in the network that this DAR
must service. The maxdevices value must be equal to the value used in the corresponding
rioDar_nameGetFunctionTable() function call. The client is responsible for allocating the structure referenced by
*privdata. The client is also responsible for allocating a DAR private data storage area at least as large as that specified
by the rioDar_nameGetFunctionTable() call. The client must initialize the structure referenced by *privdata with
the number of bytes allocated to the DAR private data storage area and with the pointer to the storage area. After calling
rioDarInitialize(), the client may not deallocate the DAR private data storage area until after the rioDarTerminate()
function has been called.
40 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.3 rioDarTerminate
Prototype:

UINT32 rioDarTerminate (
RDCDAR_DATA *privdata

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Return value:

RIO_SUCCESS On successful completion

Synopsis:

rioDarTerminate() is invoked by a client to terminate a RapidIO device-specific configuration DAR module. This
function shall be called once after all use of the DAR services is completed. After calling this function, the client may
deallocate the DAR private data storage area in the structure referenced by *privdata.
RapidIO.org 41

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.4 rioDarTestMatch
Prototype:

UINT32 rioDarTestMatch (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number used to access the network [IN]

destid Destination device ID for the target device [IN]

hopcount Number of switch hops needed to reach the target
device [IN]

Return value:

RIO_SUCCESS Device DAR does provide services for this device

RIO_ERR_NO_DEVICE_SUPPORT Device DAR does not provide services for this device.

Synopsis:

rioDarTestMatch() is invoked by a client to determine whether or not a RapidIO device-specific configuration DAR
module provides services for the device specified by destid. The DAR interrogates the device (using the platform
functions supplied during DAR initialization), examines the device identity and any necessary device registers, and
determines whether or not the device is handled by the DAR.

The DAR does not assume that a positive match (return value of 0) means the DAR will actually provide services for the
device. The client must explicitly register the device with rioDARregister() if the client will be requesting services.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
42 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.5 rioDarRegister
Prototype:

UINT32 rioDarRegister (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number used to access the network [IN]

destid Destination device ID for the target device [IN]

hopcount Number of switch hops needed to reach the target
device [IN]

Return value:

RIO_SUCCESS Device DAR successfully registered this device.

RIO_ERR_NO_DEVICE_SUPPORT Device DAR does not provide services for this device.

RIO_ERR_INSUFFICIENT_RESOURCES Insufficient storage available in DAR private storage
area

Synopsis:

rioDarRegister() is invoked by a client to register a target device with a RapidIO device-specific configuration DAR.
The client must call this function once for each device serviced by the DAR. The client should first use the
rioDarTestMatch() function to verify that the DAR is capable of providing services to the device.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 43

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.6 rioDarGetMemorySize
Prototype:

UINT32 rioDarGetMemorySize (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 regionix,
UINT32 *nregions,
UINT32 *regbytes[2],
UINT32 *startoffset[2]

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number used to access the network [IN]

destid Destination device ID for the target device [IN]

hopcount Number of switch hops needed to reach the target
device [IN]

regionix Index of the memory region being queried (0, 1, 2, 3,
...) [IN]

*nregions Number of memory regions provided by the target
device [OUT]

*regbytes Size (in bytes) of the queried memory region [OUT]

*startoffset Starting address offset for the queried memory region
[OUT]

Return value:

RIO_SUCCESS Device DAR successfully returned memory size
information for the target device.

RIO_ERR_NO_DEVICE_SUPPORT
Device DAR could not determine memory size
information for the target device.

Synopsis:

rioDarGetMemorySize() is invoked by a client to determine the number of, the sizes of, and the offsets for the
memory regions supported by a RapidIO target device. The function is intended to support the mapping of PCI or other
address windows to RapidIO devices. If the regionix parameter is greater than the number of regions provided by the
device (*nregions), the DAR should return a value of zero for the *regbytes and *startoffset parameters, and
indicate a “successful” (0) return code.

rioDarGetMemorySize always returns at least one region. The first index, index 0, always refers to the region controlled
by the Local Configuration Space Base Address Registers.

The client must register the target device with the RapidIO device-specific configuration DAR before calling this
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
44 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.7 rioDarGetSwitchInfo
Prototype:

UINT32 rioDarGetSwitchInfo (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
RDCDAR_SWITCH_INFO *info

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number to be used to access network [IN]

destid Destination device ID to reach target switch device
[IN]

hopcount Number of switch hops to reach target switch device
[IN]

*info Pointer to switch information data structure (see
Section 6.4) [OUT]

Return value:

RIO_SUCCESS Device DAR successfully retrieved the information
for RDCDAR_PLAT_OPS_STRUCT.

RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.

RIO_ERR_NO_SWITCH Target device is not a switch.

Synopsis:

rioDarGetSwitchInfo() is invoked by a client to retrieve the data necessary to initialize the
RDCDAR_SWITCH_INFO structure.

The client must register the target device with the RapidIO device-specific configuration DAR before calling this
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 45

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.8 rioDarSetPortRoute
Prototype:

UINT32 rioDarSetPortRoute (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 routeportno

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number to be used to access network [IN]

destid Destination device ID to reach target switch device
[IN]

hopcount Number of switch hops to reach target switch device
[IN]

inport Target switch device input port [IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

routeportno Route port number—value written to the selected
routing table entry [IN]

Return value:

RIO_SUCCESS Device DAR successfully modified the packet routing
configuration for the target switch device.

RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.

RIO_ERR_ROUTE_ERROR Switch cannot support requested routing.

RIO_ERR_NO_SWITCH Target device is not a switch.

RIO_ERR_FEATURE_NOT_SUPPORTED Target device is not capable of per-input-port routing.

Synopsis:

rioDarSetPortRoute() is invoked by a client to modify the packet routing configuration for a RapidIO target switch
device.

The client must register the target device with the RapidIO device-specific configuration DAR before calling this
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
46 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
6.5.9 rioDarGetPortRoute
Prototype:

UINT32 rioDarGetPortRoute (
RDCDAR_DATA *privdata,
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 *routeportno

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number to be used to access network [IN]

destid Destination device ID to reach target switch device
[IN]

hopcount Number of switch hops to reach target switch device
[IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

*routeportno Route port number—pointer to value read from the
selected routing table entry [OUT]

Return value:

RIO_SUCCESS Device DAR successfully modified the packet routing
configuration for the target switch device.

RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.

RIO_ERR_ROUTE_ERROR Switch cannot support requested routing.

RIO_ERR_NO_SWITCH Target device is not a switch.

Synopsis:

rioDarGetPortRoute() is invoked by a client to read the packet routing configuration for a RapidIO target switch
device.

The client must register the target device with the RapidIO device-specific configuration DAR before calling this
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers.
RapidIO.org 47

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Blank page
48 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Annex A System Bring Up Guidelines
(Informative)

A.1 Introduction
The RapidIO Annex 1: Software/System Bring Up Specification defines a standard
set of software API functions for use in system enumeration and initialization. These
API functions enable up to two RapidIO hosts to cooperatively enumerate and
configure a RapidIO network.

This appendix is provided as a reference model for the system bring up process. An
algorithm is presented that enables up to two cooperating host processors in a Rapid
IO system to enumerate the entire network, set up a route to every system node, and
enable the booting software to start the next boot-process phase. The actual
implementation of the algorithm used to bring up a RapidIO network can vary
greatly from this model in both capability and complexity.

A.2 Overview of the System Bring Up Process
This section presents a high-level overview of the system bring up process.

1. The system is powered on. Refer to Chapter 2, “Requirements for System
Bring Up” for the system power-on requirements.

2. The host processor fetches the initial boot code (if necessary). If two
processors are present, both can fetch the initial boot code.

3. The system exploration and enumeration algorithm is started. The algorithm
for this process is outlined in Section A.3 on page 50.

4. All devices have been enumerated and stored in the device database, and
routes have been set up between the host device and all end point devices.
The enumeration process may optionally choose to do the following:

a) Compute and configure optimal routes between the host device and
end point devices, and between different end point devices.

b) Configure the switch devices with the optimal route information.

c) Store the optimal route and alternate route information in the device
database.

5. The address space is mapped.

The host may access the network across a host-RapidIO bridge or host-PCI bridge. The
address-space mapping across this bridge must be done when devices are enumerated and
stored in the device database. This allows the address of a found device to be retrieved later
and presented to the device access routines during operating system (OS) initialization. The
pseudocode for this process is as follows:
RapidIO.org 49

RapidIO Annex 1: Software/System Bring Up Specification 3.2
1 ACQUIRE the host bridge address-space requirement
2 MAP the address space into a host address partition X
3 FOR every device in the database
4 IF the component is a RapidIO device
5 ACQUIRE the device’s address-space requirement
6 MAP the address space into a new host address partition
7 EXPAND the partition X window to cover the new partition
8 UPDATE the device database with the new host address
9 ELSE IF the component is a PCI bridge
10 ACQUIRE the bridge’s PCI bus ID
11 ACQUIRE the bridge’s address-space requirement
12 // All devices that appear behind this PCI bridge must have their address spaces

// mapped within the region specified for this bridge.
13 MAP the address space into a new host address partition
14 EXPAND the partition X window to cover the new partition
15 UPDATE the device database with the new host address
16 ENDIF
17 ENDFOR

After discovery has been concluded, it is expected that the majority of systems will then
attempt to load in a software image from a boot device.

A.3 System Enumeration Algorithm
The system enumeration algorithm is designed for use by one or two host
processors. The outline of the algorithm is as follows:

1. Access the RapidIO network. This step may involve generating special
transaction cycles to ensure that the RapidIO network is accessible.

2. Discover the host and assign a device ID to it.

3. Discover the neighbor, if present.

4. If necessary, repeat the previous step recursively to discover additional
devices.

5. Clear up.

When a host begins exploring, it must acquire the Host Base Device ID Lock before
it can proceed. Once acquired, it can set its device ID and discover its neighbor (if
necessary).

If two hosts are used, both can execute the enumeration algorithm. However, only
one host (the one with higher priority) can win the enumeration task. The losing host
enters a wait state. The guidelines for prioritizing hosts to enumerate the network
and restarting enumeration should the winning host fail to complete the task are
described in Chapter 2, “Requirements for System Bring Up,” on page 9.

The enumeration algorithm described below sets priority based on the value of the
power-on device ID. The winning host is the device with the higher power-on host
device ID. The losing host has the lower power-on host device ID. The losing host
enters a wait state until the winning host completes enumeration or until the wait
50 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
state times out.

The prioritization mechanism never results in a deadlock if the priorities of both host
processors are unique. The enumeration process is initially performed in parallel by
both hosts until they meet at a device. When a meeting occurs, prioritization
guarantees one winning host—the other host retreats (enters a wait state).

The enumeration algorithm described below uses a recursive, depth-first graph
traversal to discover the network. It may be possible to improve the algorithm using
non-recursive or breadth-first graph traversal. However, those improvements and
optimizations are implementation dependent and beyond the scope of this
document.

A.3.1 Data Structures, Constants, and Global Variables

This section outlines the data structures, constants, and global variables used by the
system enumeration algorithm pseudocode.

The example system is composed of only 8 bit capable devices.

Data Structures

struct rioRouteTable {

// The switch routing table is implemented as a linear routing table for destination IDs. The table is
// indexed using the destination ID and the table index range is equal to the maximum destination ID
// value. The value of a table entry indicates the output port number used to route messages for the
// destination ID. The table entry default value is implementation dependent. Table entries must be
// initialized to support FLASH memory accesses. The algorithm pseudocode described in this
// document assumes the device ID is equal to the RapidIO protocols destination ID. This assignment
// is not a general requirement.

UINT8 LFT[MAX_DEVICEID];
}

struct rioSwitch {

…

UINT16 SwitchIdentity; // Switch Identity
UINT16 hopCount; // Hop Count to reach this switch
UINT16 DeviceID; // Associated Device ID in the path to this switch
struct rioRouteTable RouteTable; // Switch Routing Table

…

}

Constants

RIO_GEN_DFLT_DID 0x00FFFFFF // RIO_GEN_DFLT_DID is the general default device
// ID assigned to non-host and non-boot code end
// points

RIO_BOOT_DFLT_DID 0x0000FFFE // RIO_BOOT_DFLT_DID is the default device ID
// assigned to boot code devices

RIO_HOST_DFLT_DID 0x00000000 // RIO_HOST_DFLT_DID is the default device ID
// assigned to host devices

Global Variables

UINT16 DeviceID = 0; // Currently available Device ID to be assigned to the
RapidIO.org 51

RapidIO Annex 1: Software/System Bring Up Specification 3.2
// end point device
UINT16 SwitchID = 0; // Currently available Switch ID. This is used

// internally by the to index
// switches that have been discovered.

// The following global arrays are used to store device
// information
// collected from rioGetFeatures and
// rioGetSwitchPortInfo. They are
// also used to store the hopCount and DeviceID
// assigned to switches.

struct rioSwitch Switches[MAX_SWITCHES];

A.3.2 Pseudocode

This section outlines the detailed pseudocode for the system enumeration algorithm.

1 //**
2 // System enumeration and initialization using the power-on device ID as the hostDeviceID
3 // —Discover the host first
4 // —Discover the host’s neighbor recursively
5
6 STATUS rioSystemEnumerate (hostDeviceID)
7 {
8 // Discover the host first.
9 status = rioEnumerateHost (hostDeviceID);
10
11 if (status == ERR_SLAVE) {
12 rioClearUp (hostDeviceID);
13 return ERR_SLAVE;
14 }
15
16 // Discover the host neighbor
17 status = rioEnumerateNeighbor (hostDeviceID, hopCount = 1);
18
19 if (status == ERR_SLAVE) {
20 rioClearUp (hostDeviceID);
21 return ERR_SLAVE;
22 }
23
24 // If the code advances to this point successfully, the host must acquire the
25 // HostBaseDeviceIdLock for all devices in the system. When this is done, the Discovered bit
26 // Master Enable bit, etc. can be set for all devices.
27
28 } // end rioSystemEnumerate
29
30 //**
31 // System Delay
32 // —Wait for other host to release the lock
33
34 rioDelay () {
35 } // end rioDelay
36
37 //**
38 // Host enumeration and initialization
39
40 STATUS rioEnumerateHost (hostDeviceID)
52 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
41 {
42 // Try to acquire the lock
43 rioAcquireDeviceLock (0, hostDeviceID, 0, hostDeviceID);
44
45 while (HostBaseDeviceIdLockCSR.HostBaseDeviceID < hostDeviceID) {
46 // Delay for a while
47 rioDelay ();
48
49 // Retry lock acquisition
50 rioAcquireDeviceLock (0, hostDeviceID, 0, hostDeviceID, &lockingHost);
51 }
52
53 // Check to see if there is a master with a larger host device ID
54 if (HostBaseDeviceIdLock.HostBaseDeviceID > hostDeviceID) {
55 // Release the current lock
56 rioReleaseDeviceLock (0, hostDeviceID, 0, hostDeviceID);
57
58 return ERR_SLAVE;
59 }
60
61 // Lock has been acquired so enumeration can begin
62
63 // Assign the default host ID to the host
64 rioSetBaseDeviceId (0, hostDeviceID, hostDeviceID);
65
66 // Increment the available device ID
67 if (DeviceID == hostDeviceID) {
68 DeviceID ++;
69 }
70
71 return RIO_SUCCESS;
72 } // end rioEnumerateHost
73
74 //**
75 // Neighbor enumeration
76
77 STATUS rioEnumerateNeighbor (hostDeviceID, hopCount)
78 {
79 // The host has already discovered this node if it currently owns the lock
80 rioGetCurHostLock (0, 0, 0, &owner_device_id);
81 if (owner_device_id == hostDeviceID) {
82 return RIO_SUCCESS;
83 }
84
85 // Try to acquire the lock
86 rioAcquireDeviceLock (0, RIO_GEN_DFLT_DID, hopCount, hostDeviceID, &lockingHost);
87
88 while (HostBaseDeviceIdLockCSR.HostBaseDeviceID < hostDeviceID) {
89 // Delay for a while
90 rioDelay ();
91
92 // Retry lock acquisition
93 rioAcquireDeviceLock(0, RIO_GEN_DFLT_DID, hopCount, hostDeviceID,

&lockingHost);
94 }
95
RapidIO.org 53

RapidIO Annex 1: Software/System Bring Up Specification 3.2
96 // Check to see if there is a master with a larger host device ID
97 if (HostBaseDeviceIdLock.HostBaseDeviceID > hostDeviceID) {
98 return ERR_SLAVE;
99 }
100
101 // Lock has been acquired so enumeration can begin
102
103 // Check Source Operation CAR and Destination Operation CAR to see if a Device ID can be
104 // assigned
105
106 rioGetSourceOps (0, RIO_GEN_DFLT_DID, hopCount, &SourceOperationCAR);
107 rioGetDestOps (0, RIO_GEN_DFLT_DID, hopCount, &DestinationOperationCAR);
108
109 if ((SourceOperationCAR.Read || Write || Atomic) &&
110 (DestinationOperationCAR.Read || Write || Atomic)) {
111
112 // Set the device ID
113 rioSetBaseDeviceId (0, RIO_GEN_DFLT_DID, DeviceID);
114
115 // Increment the available device ID
116 DeviceID ++;
117 if (DeviceID == hostDeviceID) {
118 DeviceID ++;
119 }
120 }
121
122 // Check to see if the device is a switch
123 rioGetFeatures (0, RIO_GEN_DFLT_DID, hopCount, &ProcessingElementFeatureCAR);
124 if (ProcessingElementFeatureCAR.Switch == TRUE) {
125
126 // Read the switch information
127 rioGetSwitchPortInfo (0, RIO_GEN_DFLT_DID, hopCount,

&SwitchPortInformationCAR);
128
129 // Record the switch device identity
130 Switches[SwitchID].SwitchIdentity = DeviceIdentityCAR.DeviceIdentity;
131
132 // Bookkeeping for the current switch ID
133 curSwitchID = SwitchID;
134
135 // Increment the available switch ID
136 SwitchID ++;
137
138 // Initialize the current switch routing table to add entries for all previously discovered
139 // devices so that they are routed correctly. Start with the host device ID (0x00) and end with
140 // DeviceID-1.
141 for (each deviceID in [0..DeviceID-1]) {
142 rioRouteAddEntry (0, RIO_GEN_DFLT_DID, hopCount, RIO_GEN_DFLT_DID,

deviceID,
143 SwitchPortInformationCAR.PortNumber, NULL);
144 }
145
146 // Synchronize the current switch routing table with the global table
147 for (each deviceID in [0.. DeviceID-1]) {
148 Switches[curSwitchID].RouteTable.LFT[deviceID] =
149 SwitchPortInformationCAR.PortNumber;
54 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
150 }
151
152 // Update the hopCount to reach the current switch
153 Switches[curSwitchID].HopCount = hopCount;
154
155 for (each portNum in SwitchPortInformationCAR.PortTotal) {
156 if (SwitchPortInformationCAR.PortNumber == portNum) {
157 continue;
158 }
159
160 // Bookkeeping for the current available device ID
161 curDeviceID = DeviceID;
162
163 rioGetPortErrStatus (0, RIO_GEN_DFLT_DID, hopCount,

&PortErrorStatusCSR[portNum]);
164
165 // Check if it is possible to have a neighbor
166 if (PortErrorStatusCSR[portNum].PortUninitialized == TRUE) {
167 continue;
168 }
169
170 else if (PortErrorStatusCSR[portNum].PortOK == TRUE) {
171
172 // Check if it is an enumeration boundary port
173 if (PortControlCSR[portNum].PortEnumerationBoundary == TRUE) {
174 continue;
175 }
176 rioRouteAddEntry(0, RIO_GEN_DFLT_DID, hopCount, RIO_GEN_DFLT_DID, 0,

portNumber, NULL);
177
178 // Discover the neighbor recursively
179 if (status = rioEnumerateNeighbor(hopCount + 1) != RIO_SUCCESS) {
180 return status;
181 }
182
183 // If more than one end point device was found, update the current switch routing table
184 // entries beginning with the curDeviceID entry and ending with the DeviceID-1
185 // entry.
186 if (DeviceID > curDeviceID) {
187 for (each deviceID in [curDeviceID..DeviceID-1]) {
188 rioRouteAddEntry(0, RIO_GEN_DFLT_DID, hopCount, deviceID,

portNumber);
189 }
190
191 // Synchronize the current switch routing table with the global table
192 for (each deviceID in [curDeviceID..DeviceID-1]) {
193 Switches[curSwitchID].RouteTable.LFT[deviceID] = portNumber;
194 }
195
196 // Update the associated Device ID in the path.
197 Switches[curSwitchID].DeviceID = curDeviceID;
198 } // end if
199 } // end else if
200 } // end for
201 } // end if (ProcessingElementFeatureCAR.Switch == TRUE)
202
RapidIO.org 55

RapidIO Annex 1: Software/System Bring Up Specification 3.2
203 return RIO_SUCCESS;
204
205 } // end rioEnumerateNeighbor
206
207 // **
208 // System clear up
209 // —Reset the previously acquired lock because a master exists elsewhere. Use hostDeviceID to
210 // reset the lock
211
212 STATUS rioClearUp (hostDeviceID) {
213
214 // Clear the host lock
215 if (hostDeviceID > DeviceID –1) {
216 rioReleaseDeviceLock (0, hostDeviceID, 0, hostDeviceID);
217 }
218
219 // Clear the discovered end point device lock
220 while (DeviceID >= 1) {
221 rioReleaseDeviceLock (0, DeviceID-1, 0, hostDeviceID);
222 DeviceID --;
223 }
224
225 // Clear the discovered switch device lock
226 while (SwitchID >= 1) {
227 rioReleaseDeviceLock (0, Switches[SwitchID–1].DeviceID,
228 Switches[SwitchID-1].hopCount, hostDeviceID);
229 SwitchID --;
230 }
231
232 return RIO_SUCCESS;
233 } // end rioClearUp

A.4 System Bring Up Example
This section walks-through a system bring up example. The system described in this
example is shown in Figure A-1.
56 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Figure A-1. Example System

Referring to Figure A-1, system Host A is preloaded with device ID 0x00 and
system Host B is preloaded with device ID 0x01. Host A is configured to accept
maintenance packets with destination IDs of 0x00 and 0xFF. Host B is configured
to accept maintenance packets with destination IDs of 0x01 and 0xFF. System Bring
Up advances through time slots along the following timeline:

The time slots shown above are defined as follows:

• T+0: Host A begins RapidIO enumeration.

• T+1: Host B begins RapidIO enumeration and Host A continues RapidIO
enumeration.

• T+2: Host B discovers another host in the system (Host A) and waits.

• T+3: Host A discovers a higher priority host in the system (Host B) and
retreats.

T+0 T+1 T+2 T+3 T+4 T+5 T+6 T+7

System
Host A

Microprocessor

Host RapidIO
Bridge Board Switch

System
Host B

Microprocessor

HostRapidIO
BridgeBoard Switch

High-Speed I/O Card

Ethernet

RapidIO to RapidIO to
PCI/X Bridge PCI/X Bridge

ATM

DSP

DSP

RapidIO to
PCI/X Bridge

DSP

Farm

DSP

DSP

Board Interconnect
Switch

(Midplane Switch)

0

12

3

4

RapidIO.org 57

RapidIO Annex 1: Software/System Bring Up Specification 3.2
• T+4: Host B assumes sole enumeration of the system.

• T+5: Host B enumerates the PE on switch port 1.

• T+6: Host B enumerates the PEs on switch ports 2, 3 and 4.

• T+7: System enumeration is complete.

The following describes the actions taken during each time slot in more detail:

Time T+0

Host A attempts to acquire the lock from its Host Base Device ID Lock CSR by
writing 0x00 to the CSR. Host A confirms it has acquired the lock when it reads the
value of 0x00 (the host device ID) from the Lock CSR. Host A continues by reading
the Processing Element Features CAR and adding the information from the CAR to
its RapidIO device database. Host A updates its Base Device ID CSR with the host
device ID (0x00).

Time T+1

Host B attempts to acquire the lock from its Host Base Device ID Lock CSR by
writing 0x01 to the CSR. Host B confirms it has acquired the lock when it reads the
value of 0x01 (the host device ID) from the Lock CSR. Host B continues by reading
the Processing Element Features CAR and adding the information from the CAR to
its RapidIO device database. Host B updates its Base Device ID CSR with the host
device ID (0x01).

Host A begins neighbor enumeration. It attempts to acquire the lock from the Host
Base Device ID Lock CSR of the Board Interconnect Switch. A maintenance write
of the host device ID (0x00), the destination device ID (0xFF), and the hop count (0)
is issued for the Lock CSR. Host A confirms it has acquired the lock when it reads
the value of 0x00 (the host device ID) from the Lock CSR.

Time T+2

Host B begins neighbor enumeration. It attempts to acquire the lock from the Host
Base Device ID Lock CSR of the Board Interconnect Switch. A maintenance write
of the host device ID (0x01), the destination device ID (0xFF), and the hop count (0)
is issued for the Lock CSR. However, after Host B issues a maintenance read from
the Lock CSR it finds that the device was already locked by host device ID 0x00.
Because Host B has a higher priority than the current lock holder (0x01 is greater
than 0x00), Host B spins in a delay loop and repeatedly attempts to acquire the lock.

Time T+3

Host A continues neighbor enumeration. It issues a maintenance read cycle to the
Device Identity CAR of the Board Interconnect Switch and looks for a matching
entry in the device database. Device configuration continues because no match is
found (Host A has not enumerated the device). Host A reads the Source Operations
and Destination Operations CARs for the device. It is determined that the device
58 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
does not support read/write/atomic operations and does not require a device ID.
Host A reads the Processing Element Feature CAR for the device and determines
that it is a switch element.

Because the device is a switch, Host A reads the Switch Port Information CAR and
records the device identity in the switch database. Next, Host A adds a set of entries
to the switch's routing table. For each previously discovered device ID, an entry is
created containing a target ID (0xFF), hop count (0), and the route port number
(from the Switch Port Information CAR). The switch database is updated with the
same routing information. Host A reads the Port Error Status CSR for switch port 0,
verifying that it is possible for the port to have a neighbor PE. An entry is created in
the switch’s routing table containing target ID (0xFF), hop count (0), and the route
port number (0).

Host A continues neighbor enumeration using a hop count of 1. It attempts to
acquire the lock from the Host Base Device ID Lock CSR of the neighbor PE on port
0. A maintenance write of the host device ID (0x00), the destination device ID
(0xFF), and the hop count (1) is issued for the Lock CSR. However, after Host B
issues a maintenance read from the Lock CSR it finds that the device was already
locked by host device ID 0x01. Because Host A has a lower priority than the current
lock holder (0x00 is less than 0x01), Host A retreats. It begins the process of backing
out all enumeration and configuration changes it has made.

Host A checks its device and switch databases to find all host locks it obtained
within the system (System Host A and the Board Interconnect Switch). It issues a
maintenance write transaction to their Host Base Device ID Lock CSRs to release
the locks.

Time T+4

As Host B spins in its delay loop, it attempts to acquire the lock from the Host Base
Device ID Lock CSR of the Board Interconnect Switch. A maintenance write of the
host device ID (0x01), the destination device ID (0xFF), and the hop count (0) is
issued for the Lock CSR. Because Host A released the lock, Host B is able to
confirm it has acquired the lock when it reads the value of 0x01 from the Lock CSR.

Host B continues neighbor enumeration. It issues a maintenance read cycle to the
Device Identity CAR of the Board Interconnect Switch and looks for a matching
entry in the device database. Device configuration continues because no match is
found (Host B has not enumerated the device). Host B reads the Source Operations
and Destination Operations CARs for the device. It is determined that the device
does not support read/write/atomic operations and does not require a device ID.
Host B reads the Processing Element Feature CAR for the device and determines
that it is a switch element.

Because the device is a switch, Host B reads the Switch Port Information CAR and
records the device identity in the switch database. Next, Host B adds a set of entries
to the switch's routing table. For each previously discovered device ID, an entry is
RapidIO.org 59

RapidIO Annex 1: Software/System Bring Up Specification 3.2
created containing a target ID (0xFF), hop count (0), and the route port number
(from the Switch Port Information CAR). The switch database is updated with the
same routing information. Host B reads the Port Error Status CSR for switch port 0,
verifying that it is possible for the port to have a neighbor PE. An entry is created in
the switch’s routing table containing target ID (0xFF), hop count (0), and the route
port number (0). Host B detects that it is attached to port 0. Because Host B has
already been enumerated, neighbor enumeration continues on the next port.

Time T+5

Host B reads the Port Error Status CSR for switch port 1, verifying that it is possible
for the port to have a neighbor PE. An entry is created in the switch’s routing table
containing target ID (0xFF), hop count (0), and the route port number (1).

Host B continues neighbor enumeration using a hop count of 1. It attempts to acquire
the lock from the Host Base Device ID Lock CSR of the neighbor PE on port 1. A
maintenance write of the host device ID (0x01), the destination device ID (0xFF),
and the hop count (1) is issued for the Lock CSR. Host B confirms it has acquired
the lock when it reads the value of 0x01 from the Lock CSR.

Host B issues a maintenance read cycle to the Device Identity CAR of the DSP Farm
and looks for a matching entry in the device database. Device configuration
continues because no match is found (Host B has not enumerated the device).
Host B reads the Source Operations and Destination Operations CARs for the
device. It is determined that the device supports read/write/atomic operations. A
maintenance write is used to update the Base Device ID CSR with the value of 0x00
(the first available device ID). DeviceID is incremented and compared with the
Host B device ID. Because they are equal, deviceID is assigned the next available
device ID.

Time T+6

The process described in the previous step (Time T+5) is repeated on switch ports
2–4. Device IDs 0x02, 0x03, and 0x04 are assigned to the PEs on switch ports 2, 3
and 4, respectively.

Time T+7

Host A detects that its Host Base Device Lock CSR has been acquired by another
host device, indicating it has been enumerated. Host A can initiate passive discovery
to build a local system database.
60 RapidIO.org

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Application programming interface (API.). A standard software interface
that promotes portability of application programs across multiple
devices.

Capability registers (CARs). High-speed memory containing recently
accessed data and/or instructions (subset of main memory)
associated with a processor.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the
RapidIO interconnect.

Discovery. The passive exploration of a RapidIO network fabric. This
process involves walking an already enumerated RapidIO fabric to
determine network topology and resource allocations.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

A

C

D

E

RapidIO.org 61

RapidIO Annex 1: Software/System Bring Up Specification 3.2
Enumeration. The active exploration of a RapidIO network fabric. This
process involves configuring device identifiers and maintaining
proper host locking.

Hardware abstraction layer (HAL). A a standard software interface to
device-specific hardware resources.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Sender. The RapidIO interface output port on a processing element.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

Write port. Hardware within a processing element that is the target of a port-
write operation.

H

I

O

P

S

T

W

62 RapidIO.org

3.2, 1/2016

© Copyright RapidIO.org

RapidIO™ Interconnect Specification
Annex 2: Session Management

Protocol Specification
RapidIO.org

NO WARRANTY. RAPIDIO.ORG PUBLISHES THE SPECIFICATION “AS IS”. RAPIDIO.ORG MAKES NO WARRANTY,
REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND CONCERNING THE SPECIFICATION, INCLUDING,
WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO WARRANTY OF MERCHANTABILITY AND NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO ASSUME ALL OF THE RISKS ASSOCIATED WITH
ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, USER IS
RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR RIGHTS WHICH MAY BE NECESSARY TO
IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY. RAPIDIO.ORG SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, INDIRECT, SPECIAL,
INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS)
RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION WHATSOEVER,
INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF RAPIDIO.ORG HAS BEEN
NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding RapidIO.org, specifications, or membership should be forwarded to:

RapidIO.org
8650 Spicewood Springs #145-515

Austin, TX 78759

512-827-7680 Tel.

RapidIO and the RapidIO logo are trademarks and service marks of RapidIO.org. All other trademarks are the property of their respective owners.

Revision History

Revision Description Date

2.0 First release 06/14/2007

2.0 Public release 03/06/2008

2.1 No technical changes 07/09/2009

2.1 Removed confidentiality markings for public release 08/13/2009

2.2 No technical changes 05/05/2011

3.0 Changed RTA contact information. No technical changes 10/11/2013

3.1 No technical changes. 09/18/2014

3.2 No technical changes. 01/28/2016
RapidIO.org

Table of Contents

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.3 Features of the Session Management Protocol ... 12
1.4 Contents .. 12
1.5 Terminology.. 13
1.6 Conventions .. 14
1.7 Useful References ... 14

Chapter 2 Managing Data Streams

2.1 Introduction... 15
2.2 System Example.. 15
2.3 Establishing Data Streams .. 16
2.4 Data Streaming System Configurations.. 17

Chapter 3 Session Management Operation

3.1 Introduction... 19
3.2 Initialization of Session Management Advertisement CSRs 19
3.3 Contacting a Participating End point .. 20
3.4 Establishing Conduits ... 21
3.4.1 Master/Slave Configuration Conduit Establishment .. 22
3.4.2 Peers Configuration Conduit Establishment... 23
3.4.3 Conduit Establishment Algorithm .. 24
3.5 Management Messages ... 26
3.5.1 Session Management Message Types... 26
3.5.1.1 REQUEST .. 26
3.5.1.2 ADVERTISE .. 26
3.5.1.3 OPEN.. 27
3.5.1.4 ACCEPT ... 27
3.5.1.5 REFUSE ... 27
3.5.1.6 FLOW-CONTROL... 27
3.5.1.7 DATA ... 27
3.5.1.8 CLOSE.. 27
3.5.1.9 STATUS ... 28
3.5.2 Message Header Fields ... 28
3.5.2.1 Command Header Field: <CMD><VER>.. 28
3.5.2.2 SourceID and DestID.. 28
3.5.2.3 Protocol Identifier: <ProtoID> ... 29
3.5.2.4 Class of Service: <COS>.. 29
RapidIO.org 3

Table of Contents

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.5.2.5 Stream Identifier: <StreamID>... 29
3.5.3 Session Management Protocol Attributes... 30
3.5.3.1 VENDOR Attribute .. 31
3.5.3.2 DATA_OFFSET_VENDOR Attribute... 31
3.5.3.3 DATA_OFFSET Attribute ... 32
3.5.3.4 REQUEST_RETRY_PERIOD Attribute ... 32
3.5.3.5 REQUEST_TIMEOUT_PERIOD Attribute .. 32
3.5.3.6 FLOW_CONTROL_XON_TIMEOUT_PERIOD Attribute........................ 33
3.5.3.7 OPEN_MESSAGE_NUMBER Attribute... 33
3.5.3.8 CONDUIT_STREAM Attribute... 33
3.5.3.9 DATA_HEADER_FORMAT Attribute ... 34
3.5.3.10 CONVEYANCE Attribute ... 34
3.5.3.11 Other Attributes .. 34
3.6 Message Sequence Examples ... 35
3.6.1 Stream Initiation ... 35
3.6.2 Refusal to Initiate a Stream... 35
3.6.3 Stream Shutdown.. 36
3.6.4 Uses of the STATUS command.. 37
3.6.5 Use of the FLOW_CONTROL Command ... 38
3.7 Session Management Error Conditions and Recovery ... 39
3.7.1 Message Loss.. 39
3.7.2 Session Management Protocol Congestion Management................................. 40
3.7.3 Session Management Protocol Non-Compliance ... 40
3.8 Rules for Session Management... 41
3.8.1 Optional Features.. 41
3.8.2 Attribute Related Rules... 41
3.8.3 Rules Related to Virtual Stream Status... 42
3.8.4 Rules Related to Vendor-Specific Commands ... 42
3.8.5 Rules Related to Reserved Fields ... 43
3.9 Notes on Optional Features and Inter-Operability.. 43
3.9.1 Optional Attributes ... 43
3.9.2 REQUEST and ADVERTISE .. 44

Chapter 4 Message Format Descriptions

4.1 Introduction... 45
4.2 Control Message Formats ... 45
4.2.1 REQUEST .. 45
4.2.2 ADVERTISE .. 46
4.2.3 OPEN.. 47
4.2.4 ACCEPT ... 48
4.2.5 REFUSE.. 49
4.2.6 FLOW_CONTROL .. 49
4.2.7 CLOSE.. 50
4.2.8 STATUS ... 51
4.2.9 User Defined ... 52
4 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2

Table of Contents
4.3 Data Formats... 53
4.3.1 DATA Message Format, MAILBOX ... 53
4.3.2 DATA1 Message Format, Large PDU ... 54
4.3.3 DATA2 Message Format.. 54
4.3.4 DATA3 Zero-length DATA header.. 54
4.3.5 Data Streaming ... 55

Chapter 5 Registers

5.1 Introduction... 57
5.2 Session Management Protocol Extended Features Register Block 58
5.2.1 Session Management Protocol Register Block Header

(Block Offset 0x0) 58
5.2.2 Session Management Protocol Register Write Enable CSR

(Block Offset 0x4) 59
5.2.3 Session Management Advertisement CSR

(Block Offset 0x8) 60
5.2.4 Session Management Attribute Range CSR

(Block Offset 0xC) 61
5.2.5 Session Management Protocol Attributes 0-508 CSRs

(Block Offset 0x10-0x7F8) 63
5.3 Component Tag CSR Session Management Protocol Advertisement.................. 64

Chapter 6 Vendor-Defined Protocols

6.1 ProtoID.. 67
6.2 Attributes... 67
6.2.1 VENDOR attribute ... 67
6.2.2 PROTOCOL_NAME attribute ... 67
6.2.3 Other attributes ... 67
6.3 Other Requirements for Vendor-Defined Protocols ... 67

Chapter 7 Ethernet Encapsulation

7.1 ProtoID.. 69
7.2 Attributes... 69
7.2.1 MTU Attribute .. 69
7.2.2 CONVEYANCE Attribute ... 69
7.2.3 MAC_ADDRESS Attribute.. 69
7.3 Other Requirements of Ethernet Encapsulation.. 69
7.3.1 Dropped Messages.. 70
7.3.2 Broadcast .. 70
7.3.2.1 Broadcast With Multicast Extensions... 70
7.3.2.2 Broadcast Without Multicast Extensions.. 70
RapidIO.org 5

Table of Contents

RapidIO Annex 2: Session Management Protocol Specification 3.2
7.3.2.3 Vendor defined Broadcast Server ... 70
7.3.3 Ingress/Egress Nodes.. 70
6 RapidIO.org

List of Figures

RapidIO Annex 2: Session Management Protocol Specification 3.2
1-1 Data Streaming..11
2-1 Example of a RapidIO-Based Networking System ..15
2-2 Stream Process ..16
3-1 Normal Stream Initiation ..35
3-2 Use of REFUSE Command ..35
3-3 Normal Stream Shutdown...36
3-4 Use of the STATUS Command ..37
3-5 Use of the FLOW_CONTROL Command ...38
RapidIO.org 7

List of Figures

RapidIO Annex 2: Session Management Protocol Specification 3.2
Blank page
8 RapidIO.org

List of Tables

RapidIO Annex 2: Session Management Protocol Specification 3.2
2-1 Data Streaming System Configurations..17
3-1 StreamID Assignments ...29
3-2 System Management Protocol Attribute Sizes ...30
3-3 Vendor-Specific Attribute Ranges..30
3-4 System Management Protocol Attribute Sizes ...31
3-5 System Management Protocol Attribute Sizes ...31
3-6 DATA_OFFSET Attribute Format ...32
3-7 DATA_HEADER_FORMAT Attribute Values ...34
3-8 Ethernet Encapsulation Conveyance...34
4-1 REQUEST Message Format ...45
4-2 ADVERTISE Message Format - Protocol Attributes...46
4-3 ADVERTISE Message Format - Protocol List...47
4-4 OPEN Message Format...48
4-5 ACCEPT Message Format..48
4-6 REFUSE Message Format ..49
4-7 FLOW_CONTROL Message Format...50
4-8 CLOSE Message Format ..50
4-9 STATUS Message Format..51
4-10 Status Bit Values...51
4-11 USERDEFINED Message Format..52
4-12 DATA Message Format..53
4-13 DATA Message Format..54
4-14 DATA Message Format..54
5-1 Bit Settings for Session Management Protocol Register Block Header58
5-2 Bit Settings for Session Management Protocol Register Write Enable Register............59
5-3 Bit Settings for Session Management Protocol Advertisement Register........................60
5-4 Bit Settings for Session Management Attribute Range Register61
5-5 Bit Settings for Session Management Protocol Attributes 0-508 Registers63
5-6 Component Tag CSR Bit Usage ...64
RapidIO.org 9

List of Tables

RapidIO Annex 2: Session Management Protocol Specification 3.2
Blank page
10 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 1 Overview

1.1 Introduction
The Session Management Protocol permits system software to establish, manage,
and remove virtual streams as defined in RapidIO Interconnect Specification Part
10: Data Streaming Logical Specification Rev. 2.1. The data streaming protocol
allows data of any format to be transported between two end points. The Session
Management Protocol provides a method for two end points to negotiate the
characteristics of the data stream and assign those characteristics so the receiving
entity can use the appropriate software layers upon receiving the data stream.

1.2 Overview
A stream, is a unidirectional connection between two end points. Bidirectional
traffic is carried over two streams, one in each direction.

Figure 1-1. Data Streaming

The end points must have a common understanding of what the data within the
stream is, and associate the stream with the right end point process. One of the
principles of the data streaming protocol is the use of virtual streams. A virtual
stream contains a generic tag called the virtual stream ID (VSID). The VSID is
assigned by the destination, based on the destination’s method for decoding, and
may be a software or a hardware feature.

VSIDs are unique between any pair of source and destinations. The Session
Management Protocol allows a source and destination to discover what protocols the
two can use to communicate, assign a VSID to carry that protocol, establishing an
open stream. Once open, a stream can carry any number of protocol data units
(PDUs) until the stream is not longer needed. The Session Management Protocol is
then used to close the stream.

Stream A

Stream B

End point
Protocol
Software

End point
Protocol
Software
RapidIO.org 11

RapidIO Annex 2: Session Management Protocol Specification 3.2
The Session Management Protocol is intended to manage streams of
communication. When data is passed using Type 9 (Data-Streaming Class) as the
conveyance, the streamID used for Session Management Protocol is the same as the
streamID used for Type 9 data traffic. When the data are passed using Type 11
(Message Class) as the conveyance, the streamID used for Session Management
Protocol can be encapsulated in the command header of the DATA or DATA1
commands, as defined in Section 4.3.

1.3 Features of the Session Management Protocol
The Session Management Protocol provides the following features:

• A method to contact the session management software running on any end
point.

• A method to discover which protocols an end point is capable of receiving.

• A method to discover and assign streams.

• A method to manage the status of streams.

• A method to close active streams.

• A method to handle errors and to handle protocol violations.

1.4 Contents
Following are the contents of the RapidIO Interconnect Specification Annex 2:
Session Management Protocol Specification Rev. 2.1:

• Chapter 1, “Overview,” is an overview of the Session Management Protocol
specification.

• Chapter 2, “Managing Data Streams,” introduces system issues such as
discovery and transport configurations.

• Chapter 3, “Session Management Operation,” describes the set of messages
defined by the protocol and their use.

• Chapter 4, “Message Format Descriptions,” contains the packet format
definitions for the session management messages.

• Chapter 5, “Registers,” describes the visible register set that allows an external
processing element to discover and contact a session management process on
another end point.

• Chapter 6, “Vendor-Defined Protocols,” describes how to specify vendor-
defined protocol attributes.

• Chapter 7, “Ethernet Encapsulation,” contains the specific use case
requirement for tunneling Ethernet using this protocol and data streaming, as
well as requirements for vendor-specific attributes.
12 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
1.5 Terminology
The following terms are used in this document. The terms are consistent with their
usage in RapidIO Interconnect Specification Part 10: Data Streaming Logical
Specification.

Refer to the Glossary at the back of this document for additional definitions.

Class of service - (cos) a term used to describe different treatment (quality of
service) for different data streams. Support for class of service is provided by a class
of service field in the data streaming protocol. The class of service field is used in
the virtual stream ID and in identifying a virtual queue.

The value of the cos field is not defined by this specification, but is implementation
dependent. The requirements for this field are that every message with a given cos
must be transmitted with equal priority.

Conduit - A bidirectional data path, consisting of one stream for data transfer in
each direction.

Conveyance - The RapidIO logical layer protocol used to transmit and receive data
within a stream. This specification defines the use of RapidIO Type 11 (Message
Class) and Type 9 (Data-Streaming Class) conveyances.

Egress - Egress is the device or node where traffic exits the system. The egress node
also becomes the destination for traffic out of the RapidIO fabric. The terms egress
and destination may or may not be used interchangeably when considering a single
end to end connection.

Ingress - Ingress is the device or node where traffic enters the system. The ingress
node also becomes the source for traffic into the RapidIO fabric. The terms ingress
and source may or may not be used interchangeably when considering a single end
to end connection.

Process - When a node communicates with a remote, some element of execution is
responsible for managing the data communication. In this specification such
element of execution is referred to as a process. No implication is intended regarding
the internal structure of the operating system or other system organization.

Protocol Data Unit - (PDU) A self contained unit of data transfer comprised of data
and protocol information that defines the treatment of that data.

Virtual Stream ID - (VSID) an identifier comprised of several fields in the protocol
to identify individual data streams. When using Type 9 (Data-Streaming Class) as
the conveyance for data transfers, the VSID is encapsulated in the Type 9 protocol.
When using Type 11 (Message Class) as the conveyance for data transfers, the VSID
is encapsulated in fields in the DATA or DATA1 Session Management Protocol
commands.
RapidIO.org 13

RapidIO Annex 2: Session Management Protocol Specification 3.2
StreamID - a specific field in the data streaming protocol that is combined with the
data stream’s transaction request flow ID and the source ID or destination ID from
the underlying packet transport fabric to form the virtual stream ID.

Segment - A portion of a PDU.

Segmentation - a process by which a PDU is transferred as a series of smaller
segments.

Segmentation context - Information that allows a receiver to associate a particular
packet with the correct PDU.

Suspect - A node which, for some reason, is not behaving according to the
specification. See “Section 3.7, Session Management Error Conditions and
Recovery” on page 39 for more information.

1.6 Conventions
All fields and message formats are described using big endian format.

|| Concatenation, used to indicate that two fields are physically
associated as consecutive bits

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets.

TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text.

n A decimal value.

[n-m] Used to express a numerical range from n to m.

0bnn A binary value, the number of bits is determined by the number of
digits.

0xnn A hexadecimal value, the number of bits is determined by the
number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care.

<variable> Identifies a logical variable that may be a specific field of a register
or packet or data structure.

1.7 Useful References
RapidIO Interconnect Specification Part 2: Message Passing Logical Specification

RapidIO Interconnect Specification Part 3: Common Transport Specification

RapidIO Interconnect Specification Part 10: Data Streaming Logical Specification
14 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 2 Managing Data Streams

2.1 Introduction
Data streaming provides a common layer in RapidIO that allows any protocol to
simultaneously share the same physical transport with any and all other protocols.
The system can be comprised of many end points, supporting multiple protocols,
and utilizing a variety of hardware and software acceleration features. Using data
streaming and this management protocol, any standard or proprietary protocol data
format can be tunneled on a RapidIO fabric.

2.2 System Example
Figure 2-1 shows an example of a system using two methods to perform file
transfers, one interworking with an Ethernet bridge and one tunneling FTP directly.

Figure 2-1. Example of a RapidIO-Based Networking System

Stream 1

External
Ethernet
Link

MAC to RIO
Switching

Stream 2

FTP IP

E
N

E
T

R
ap

id
IO

 L
ay

er

Stream 1

IP

E
N

E
T

FTP

TCP

UDP

TCP

UDP

R
ap

id
IO

 L
ay

er Stream 2FTP

End point #1

End point #2

End point #3

R
ap

id
IO

 L
ay

er
RapidIO.org 15

RapidIO Annex 2: Session Management Protocol Specification 3.2
2.3 Establishing Data Streams
The data streaming process is separated into two phases, with the management phase
separated from the data phase. All the information about the stream is exchanged
separately from the actual data transfer. Once established, a stream can support
many data transfers. The data transfer only contains the information necessary to
recover the original data. The received data must then be associated with an end
process.

The method of association makes use of both the streamID and class of service (cos)
to identify the stream. For example, the streamID can be linked directly to a given
process which receives information for that stream. The cos may be used to
determine the real time behavior necessary for the data, for example, guaranteed
latency of X for responses.

Figure 2-2. Stream Process

The Session Management Protocol begins with a discovery process. That discovery
process detects which end points can perform session management negotiations.
The discovery process is described in “Section 3.3, Contacting a Participating End
point” on page 20.

Once two management end points are connected, they exchange a series of Session
Management Protocol messages to discover the data streaming capabilities of the
other. If both have the right capabilities, then one or more streams are opened for a
given protocol.

With an open stream data can be transferred at any time. A stream may be persistent,
existing even though there is no data to transfer at any given time.

Any stream may be closed by either end point, however most streams should remain
open as long as the hardware and software might need to transfer data. If an end
point is shutting down, or is terminating the process that handles data on that stream,
it may close a stream.

As previously described, streams are unidirectional. However, many systems have

Source Destination

Mgmt
Process

Mgmt
Process

Stream A

Make Contact, Open Stream

Stream A

Mgmt
Process

Mgmt
Process

Close Stream (optional)

Recv
Process

Data Transfers

T
IM

E

16 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
requirements that communication be bidirectional. A bidirectional data path is
created out of two streams, one in each direction. Such a bidirectional data path is
called a conduit. When there is a requirement for bidirectional data transfer, one
system may initiate the connection. The recipient of the initial negotiation is
expected to start negotiation for the connection in the other direction. The resulting
pair of streams should be grouped together, so that whenever one stream of the
conduit is opened or closed, the other stream is treated the same. For more
information, see “Section 3.4, Establishing Conduits” on page 21.

2.4 Data Streaming System Configurations
RapidIO Interconnect Specification Part 10: Data Streaming Logical Specification
defines a logical layer for streaming data transfer. Hardware designed to this
specification can transfer data using hardware or software resources to encapsulate
data. The data streaming protocol uses a segmentation and reassembly protocol to
manage variable sized PDUs.

Other methods may be used to transfer variable sized PDUs as long as they include
the elements of segmentation and reassembly and contain a virtual stream ID. This
specification also defines a method to encapsulate data using the RapidIO
Interconnect Specification Part 2: Message Passing Logical Layer Specification.

The management protocol may also be run over a number of conveyances. The
messages may be embedded in a predesignated stream in the data streaming logical
layer, or it may be run over the message passing logical layer, even if the data is on
the data streaming logical layer. Additional conveyances may be available as
vendor-specific conveyances or in future versions of the RapidIO specifications.
Table 2-1 shows the system configurations that are currently defined by this
specification.

The protocol first establishes how to contact the management process. Once
contacted, the management processes then exchange the necessary information to
transfer the data.

When a single node supports Session Management Protocol on multiple
conveyances, the initial information required to establish a Session Management
Protocol connection on each conveyance must be put in a separate Session
Management Protocol Extended Features Register Block, as described in “Section
5.2, Session Management Protocol Extended Features Register Block” on page 58.

Table 2-1. Data Streaming System Configurations

Management Data Transfers

Messaging (Type 11) Messaging (Type 11)

Messaging (Type 11) Data Streaming (Type 9)

Data Streaming (Type 9) Messaging (Type 11)

Data Streaming (Type 9) Data Streaming (Type 9)
RapidIO.org 17

RapidIO Annex 2: Session Management Protocol Specification 3.2
Therefore, multiple Session Management Protocol Extended Features Register
Blocks may be required.
18 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 3 Session Management Operation

3.1 Introduction
This chapter describes the RapidIO Session Management Protocol. The protocol
consists of a sequence of messages to establish capabilities, open streams, manage
streams, and close streams. The protocol includes methods for handling abnormal
conditions.

3.2 Initialization of Session Management Advertisement
CSRs

Before any management messages can be exchanged, an end point must first
establish which end points support data streams, and discover how to contact their
management process. The Session Management Protocol allows each end point to
use its own resources as needed for the process of data streaming.

Participating end points place information in the Session Management
Advertisement CSR, indicating that it supports the session management protocol,
and identifies which conveyance to use to contact the management process. Legacy
devices may also advertise participation in this protocol using the Component TAG
CSR (see RapidIO Interconnect Specification Part 3: Common Transport
Specification and “Section 5.3, Component Tag CSR Session Management Protocol
Advertisement” on page 64).

On hardware power-up and on hardware reset, the Session Management
Advertisement CSR and the Component Tag CSR must be initialized by hardware
to indicate non-participation in Session Management Protocol. During software
initialization, implementations conforming to this specification must indicate
participation in the Session Management Protocol by modifying the Session
Management Advertisement CSR, or optionally by modifying the Component Tag
CSR if the Session Management Protocol Extended Features Register Block is not
available.

The Session Management Advertisement CSRs, defined in “Section 5.2, Session
Management Protocol Extended Features Register Block” on page 58, may be
initialized by a processor which is part of the device implementing the Session
Management Advertisement CSRs, by a processor remote from the device, or
through a combination of the two. For example, protocol support related attributes
could be initialized by the local processor, while system related attributes such as
RapidIO.org 19

RapidIO Annex 2: Session Management Protocol Specification 3.2
message timeout values could be initialized by a remote processor.

The Session Management Advertisement CSRs include a number of registers to
facilitate initialization by local and remote processors. These are:

• “Section 5.2.2, Session Management Protocol Register Write Enable CSR
(Block Offset 0x4)” on page 59

• “Section 5.2.4, Session Management Attribute Range CSR (Block Offset
0xC)” on page 61

The Session Management Protocol Register Write Enable CSR implements mutual
exclusion between processors attempting to write to the attribute registers. If the
Session Management Protocol Register Write Enable CSR is locked, other
processors must respect the lock and not attempt to modify the attribute registers.

The Session Management Attribute Range CSR indicates how many attributes have
been initialized. It also supports encoding up to 16 stages of initialization, to allow
sequencing of the attribute initialization process.

For more information, refer to the definitions of the named registers.

3.3 Contacting a Participating End point
The Session Management Advertisement CSR contains the following information:

<Conveyance> indicates which conveyance can be used for the Session
Management Protocol

If the conveyance is Type 11 (messaging) then the CSR has the following
information:

• <Mailbox ID> identifies a mailbox dedicated for the reception of management
messages.

If the conveyance is Type 9 (streaming) then the CSR has the following information:

• <StreamID> identifies a stream dedicated for the reception of management
messages.

• <COS> identifies the class of service dedicated for the reception of
management messages.

The conveyance used to create and manage all streams is specified in the Session
Management Advertisement CSR, or in the Component Tag CSR if the Session
Management Protocol Extended Features Register Block is not available. Unless
otherwise specified, the conveyance used to transmit DATA and
FLOW_CONTROL messages for a stream is the same as the conveyance used to
create and manage all streams. Specification of other conveyances for DATA and
FLOW_CONTROL traffic is performed by including the CONVEYANCE attribute
as described in Section 3.5.3.10.
20 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
A special case may be needed when a system is required to create and manage
streams using both Type 11 (messaging) and Type 9 (streaming). This will occur on
mixed systems, where some nodes provide support for only Type 11 conveyance and
other nodes provide support for only Type 9 conveyance. When necessary, this can
be accomplished by use of the Session Management Advertisement CSR to contain
contact information for Type 9 management, and using the Component Tag CSR to
contain contact information for Type 11 management. Other configurations may be
possible, but are implementation specific.

End points have two options to determine whether a remote node participates in this
protocol. First, they may choose an implementation-specific mechanism, such as a
built-in table, to check only for specified remote systems. Second, they may scan
management space for all remote nodes, collecting information on participating end
points. In either case, the end point is then expected to contact remote end points as
appropriate, asking for their capabilities. See Chapter 5, “Registers”, for the bit
definitions.

3.4 Establishing Conduits
Conduits consist of a pair of unidirectional streams for transferring data for a single
protocol between two end points. In every conduit, one stream transfers protocol
data in one direction while the other stream transfers protocol data in the other
direction.

Conduits are established using the same command set as unidirectional streams. The
Session Management Protocol requires that the sender initiate the process of
opening a stream. One consequence of these two facts is that for conduits to be
established, both end points are required to send an OPEN command, and there must
be a mechanism to link the two streams into a single conduit. Linking the two
streams into a conduit is accomplished by use of the CONDUIT_STREAM attribute
during OPEN/ACCEPT negotiation. The CONDUIT_STREAM attribute is a 32-bit
attribute, as described in Section 3.5.3.8. The data associated with this attribute
consists of two streamIDs involved in the conduit.

One difficulty arises, based on whether a known end point is required to establish
the conduit based on some external criteria, or whether it is possible for either end
point to initiate establishment of the conduit.

The simple case, where one end point initiates establishment of the conduit, is
referred to as a master/slave configuration. In this case, the master may send an
OPEN message at any time to initiate establishment of the conduit, but the slave may
only send the corresponding OPEN message after receiving the OPEN message
from the master.

The more general case is referred to as a peers configuration. In this case, either node
may send an OPEN message at any time to initiate establishment of the conduit. The
peers configuration is more complex, because there must be a mechanism to handle
RapidIO.org 21

RapidIO Annex 2: Session Management Protocol Specification 3.2
the case when the two OPEN messages are in transmit at the same time.

It should be noted that an implementation capable of handling the peers
configuration is capable of handling the master/slave configuration. For this reason,
the algorithm for the peers configuration is presented in Section 3.4.3, but no
algorithms for master/slave configuration are provided.

3.4.1 Master/Slave Configuration Conduit Establishment

In the master/slave configuration, one end point, the master, is always responsible
for initiating conduit establishment. The other end point, the slave, completes
conduit establishment in response to the establishment of the first conduit stream.
The algorithm running on the master may not be identical to the algorithm running
on the slave.

The master begins to establish the conduit by creating a local structure to contain
information about the conduit. The first RapidIO transaction that the master makes
is sending an OPEN message1 containing the CONDUIT_STREAM attribute. The
CONDUIT_STREAM attribute value is 0xFFFFFFFF in the first OPEN message
when establishing a conduit, indicating that no previous negotiation has already
been performed for this protocol between these two end points.

Upon receipt of an OPEN with CONDUIT_STREAM specified, the slave creates a
local record containing information about the conduit. It responds to the OPEN with
an ACCEPT message specifying a newly created streamID, which we refer to as
0xSSSS and CONDUIT_STREAM attribute value of 0xFFFFSSSS indicating that
the slave, the sender of the ACCEPT message, will receive data on streamID
0xSSSS for this conduit.

To complete conduit creation, the slave then sends an OPEN message with the
CONDUIT_STREAM attribute set to 0xFFFFSSSS to the master. The first field is
the streamID that the slave will use to transmit data on, which has not yet been
established. The second field is the streamID that the slave will use to receive data
on, which has been assigned in the prior ACCEPT message.

The CONDUIT_STREAM attribute data contains the first field set to 0xFFFF and the
second field set to a valid streamID. The fact that the CONDUIT_STREAM attribute
is specified indicates that the OPEN message is related to a conduit. The value
0xFFFF in the first field indicates that the slave, the sender of the OPEN message,
does not already know the streamID to use for transmitting data related to the
conduit. The value of 0xSSSS in the second field indicates that the slave, the sender
of the OPEN message, does already know the streamID to use for received data
related to the conduit, and that the streamID is 0xSSSS.

The master, on receiving the ACCEPT message, reads the CONDUIT_STREAM

1REQUEST and ADVERTISE messages may have been previously exchanged. As these details add no relevant infor-
mation to the discussion of establishing a conduit, they have been omitted.
22 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
attribute data, extracts the second field and finds 0xSSSS, and searches through its
internal data for a conduit with matching streamID. The criteria for determining that
the streamID is a match includes, but may not be limited to, the following tests. The
matching streamID from the master’s internal data must be part of a conduit. It must
have the same value as specified, 0xSSSS. Finally, it must be the streamID that the
master uses to transmit data on that conduit. If no such data record is found, the
master may respond with REFUSE. However, when the master does find the data
record associated with the conduit, it responds to the OPEN with ACCEPT, and
updates its internal data structures. The ACCEPT message specifies a streamID on
which the master will receive data, 0xMMMM, as well as the CONDUIT_STREAM
attribute. The data contained in the CONDUIT_STREAM attribute consists of
0xSSSSMMMM.

The slave, on receiving the ACCEPT, searches through its internal data containing
incomplete conduit records, finds a matching record, and updates its internal data
structures.

3.4.2 Peers Configuration Conduit Establishment

In some distributed and/or reliable systems, it is necessary to allow each end of a
conduit to attempt, simultaneously, to establish a conduit. The difference between
the peers configuration and the master/slave configuration is that, in the peers
configuration, an additional check is required before attempting to complete the
conduit.

Assume that node M and node P are attempting to simultaneously create a conduit
for a protocol. It is possible that node P receives node M’s OPEN request before
node P transmits is own OPEN request, and vice versa. When P receives the OPEN
request, it checks to see if it has an outstanding OPEN request for establishing the
same conduit. In this case, Node P does not, so the peers algorithm degenerates into
the master/slave algorithm. Node P sends an ACCEPT response for node M’s OPEN
request, followed by node P’s OPEN request to complete the creation of the conduit.

If node P receives node M’s OPEN request after node P has transmitted its own
OPEN request to node M, then when node P checks for outstanding OPEN requests
for the creation of a conduit with the specified protocol with the other node, it will
find one. Node P will respond with an ACCEPT message specifying the streamID
that node P will receive data on using the CONDUIT_STREAM attribute, and will
note that stream against its own attempt to establish the conduit. When node P
receives the ACCEPT response for its own OPEN request for the conduit, both the
transmit and receive stream IDs for the conduit will be known. Exactly the same
procedure occurs on node M, so the conduit is established.
RapidIO.org 23

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.4.3 Conduit Establishment Algorithm

The following algorithm consists of three entry points, representing the procedure to
call when processing incoming OPEN and ACCEPT messages, and the procedure
for application code to initiate the procedure to establish a conduit. These are called
process_incoming_open(), process_incoming_accept(), and create_conduit(),
respectively. When working together, these three procedures create conduits.

There are several user-supplied procedures called from this algorithm. The function
names should be self-explanatory, with the exception of find_partial_conduit(). This
procedure searches through internal data structures for a conduit structure matching
the specified remote nodeID and protocol, and with the streamIDs matching in the
following manner. If the streamID specified in the call is 0xFFFF, then any streamID
matches. If the streamID specified in the call is not 0xFFFF but the streamID in the
local structure is 0xFFFF, then the streamID matches. If neither is 0xFFFF, then the
values must be identical for them to match.

The algorithm specified here can be implemented for systems using a single
execution thread and polled mode I/O. It does not indicate critical sections, which
must be mutually exclusive. For multi-threaded OS implementations, the
implementer must supply a locking mechanism to prevent concurrent access by
other processes and/or interrupt service routines, and identify which portions of the
algorithm need to be protected in their particular environment.

process_incoming_open(message)

remote = get_sender(message)

proto = get_protocol(message)

rem_xmit = get_sender_transmit(message)

rem_rcv = get_sender_receive(message)

conduit = find_partial_conduit(remote, proto, rem_xmit, rem_rcv)

if (not found(conduit))

conduit = create_new_conduit(remote, proto)

local_xmit = rem_rcv

local_rcv = rem_xmit

update_conduit_transmit(conduit, local_xmit)

else

local_xmit = get_conduit_transmit(conduit)

local_rcv = get_conduit_receive(conduit)

streamID = alloc_new_stream()

update_conduit_receive(conduit, streamID)

response = create_new_message()

put_local_receive(response, streamID)

put_local_transmit(response, local_xmit)
24 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
send_accept(remote, response, streamID)

if (local_xmit == 0xFFFF)

response = create_new_message()

put_local_receive(response, streamID)

put_local_transmit(response, 0xFFFF)

update_conduit_flag(conduit, OPEN_SENT)

send_open(remote, response)

process_incoming_accept(message)

remote = get_sender(message)

proto = get_protocol(message)

rem_xmit = get_sender_transmit(message)

rem_rcv = get_sender_receive(message)

local_xmit = rem_rcv

conduit = find_partial_conduit(remote, proto, rem_xmit, rem_rcv)

if (not found(conduit))

conduit = create_new_conduit(remote, proto)

local_rcv = rem_xmit

update_conduit_receive(conduit, local_rcv)

else

local_rcv = get_conduit_receive(conduit)

if (local_rcv == 0xFFFF)

local_rcv = rem_xmit

update_conduit_receive(conduit, local_rcv)

update_conduit_transmit(conduit, local_xmit)

flag = get_conduit_flag(conduti)

if (not flagIsSet(flag, OPEN_SENT))

response = create_new_message()

put_local_receive(response, local_rcv)

put_local_transmit(response, 0xFFFF)

update_conduit_flag(conduit, OPEN_SENT)

send_open(remote, response)

create_conduit(remote, proto)

conduit = find_partial_conduit(remote, proto, 0xFFFF, 0xFFFF)

if (not found(conduit))

conduit = create_new_conduit(remote, proto)
RapidIO.org 25

RapidIO Annex 2: Session Management Protocol Specification 3.2
update_conduit_receive(conduit, 0xFFFF)

update_conduit_transmit(conduit, 0xFFFF)

message = create_new_message()

put_local_transmit(message, 0xFFFF)

put_local_receive(message, 0xFFFF)

update_conduit_flag(conduit, OPEN_SENT)

send_open(remote, message)

3.5 Management Messages
The Session Management protocol consists of the following messages. The formats
of the messages are defined in Chapter 4, “Message Format Descriptions,” on
page 45.

Message names in this document use only capital letters to avoid confusion with
non-message related use of the terms for message names.

Attribute names in this document are italicized and in uppercase, with individual
words separated by underscore, to avoid confusion with non-attribute related use of
the terms for attribute names.

3.5.1 Session Management Message Types

The following subsections list the messages used in the Session Management
Protocol.

3.5.1.1 REQUEST

A REQUEST message is used to request information related to the protocols
supported by the remote. The REQUEST can be for a list of supported protocols, or
a list of attributes associated with a particular protocol.

For more information, refer to “Section 4.2.1, REQUEST” on page 45.

3.5.1.2 ADVERTISE

An ADVERTISE message is the response to a REQUEST message. If the
REQUEST message specified that a list of protocols supported should be returned,
the ADVERTISE message contains only a list of protocols.

If the REQUEST message specified a particular protocol, and the recipient of the
REQUEST supported the protocol, the ADVERTISE message contains all required
and optional attributes related to the protocol.

Optional attributes and vendor defined attributes may be negotiated. See Section
3.5.3 for discussion on this topic.

For more information, refer to “Section 4.2.2, ADVERTISE” on page 46.
26 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.5.1.3 OPEN

An OPEN message is sent to attempt to open a session on a target. The attributes
specified in the OPEN message may or may not be acceptable by the target.

For more information, refer to “Section 4.2.3, OPEN” on page 47.

3.5.1.4 ACCEPT

An ACCEPT message is sent if the OPEN message is successful. The ACCEPT
message specifies the stream to be used to identify the session, as well as the other
attribute values which will govern the session.

OPEN messages may be sent to attempt to open multiple sessions with the same
target and attributes. A target may optionally support only a single session for a
given protocol and source, in which case attempts to OPEN multiple sessions will
result in ACCEPT responses which all specify the same stream.

For more information, refer to “Section 4.2.4, ACCEPT” on page 48.

3.5.1.5 REFUSE

A REFUSE message is sent if the OPEN message is unsuccessful. The REFUSE
message contains all the attributes in the OPEN request, in order to allow the OPEN
sender to differentiate which OPEN request was refused.

For more information, refer to “Section 4.2.5, REFUSE” on page 49.

3.5.1.6 FLOW-CONTROL

FLOW-CONTROL messages start or stop transmission of DATA messages. It is not
necessary for any implementation to send FLOW-CONTROL messages, however
FLOW-CONTROL messages must always be supported when received.

For more information, refer to “Section 4.2.6, FLOW_CONTROL” on page 49.

3.5.1.7 DATA

DATA messages are used to transfer data using the message passing logical layer.
There are several DATA messages, each with a different header format for use in
different hardware and/or software environments.

For more information, refer to “Section 4.3, Data Formats” on page 53.

3.5.1.8 CLOSE

CLOSE messages are used to terminate the existence of a stream between a source
and destination.

NOTE:

The stream may or may not exist at either the source or destination.
After reception of a CLOSE message, the stream specified must no
RapidIO.org 27

RapidIO Annex 2: Session Management Protocol Specification 3.2
longer be used. After sending a CLOSE message, the system must be
able to receive, without error, messages in transit at the time the
CLOSE was sent. Such messages may be dropped.

When the stream is part of a conduit, the conduit should be closed. The means of
determining that a stream is part of a conduit is implementation specific.

For more information, refer to “Section 4.2.7, CLOSE” on page 50.

3.5.1.9 STATUS

STATUS messages can be used to query status information related to a specified
stream. In this form of the STATUS command, a streamID is included in the
message, and other parts of the command indicate that the purpose is to query the
status of the stream.

STATUS message are also used to provide status information, related either to a
specified stream or to a specified command. A STATUS message is sent in three
situations: as a response to a STATUS message querying status for a specific stream,
indicating the current status of the stream; as a response to a CLOSE message,
indicating that the CLOSE was successful, and as a response to an illegal, unknown,
or malformed command, indicating that the command was not understood.

Note that the STATUS response to a STATUS query can include a query of the same
stream.

For more information, refer to “Section 4.2.8, STATUS” on page 51.

3.5.2 Message Header Fields

All Session Management Protocol messages begin with a command header field,
followed by one or more additional fields. The header fields and arrangement of the
header fields are fixed for each message type.

3.5.2.1 Command Header Field: <CMD><VER>

The command header field consists of two octets, a command value denoted
<CMD>, and a version value denoted <VER>. Each command value corresponds to
one of the messages laid out in Section 3.5.1 on page 26.

<VER> for all commands described in this version of the specification, except the
DATA1 command, must be set to a numeric value of 0x01. Receivers of commands
must check <VER>. If a receiver receives an unrecognized message or a message
other than STATUS with unknown <VER>, then the receiver must respond with a
STATUS command with the Command_Unknown bit set. Recipients must not
respond to STATUS messages with unknown <VER>.

3.5.2.2 SourceID and DestID

SourceID, denoted <SourceID>, is the RapidIO destination ID of the device which
28 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
transmitted the message. DestID, denoted <DestID>, is the RapidIO destination ID
for the device which should receive this message.

Both <SourceID> and <DestID> are 2 octets in size.

3.5.2.3 Protocol Identifier: <ProtoID>

The protocol identifier is used to specify what encapsulated protocol is being
referenced by the Session Management message. The <ProtoID> is always 16 bits
in size.

Ethernet encapsulation, as described below, uses protocol ID 0x0102.

Proprietary protocols use 0x0101 for all proprietary protocols. Different protocols
are distinguished by protocol attributes, as described in Chapter 6, “Vendor-Defined
Protocols”.

Protocol ID 0xFFFF is reserved for special usage within messages. Refer to the
definition of individual message types for the use of this special value, if any.

3.5.2.4 Class of Service: <COS>

The Class of Service field can be used to specify the priority of a given stream or
virtual stream. The value of the COS field is not defined by this spec, but can be
implementation dependent. The requirements for this field are that every message
with a given COS value must be transmitted with equal priority.

Class of Service, or <COS>, is always one octet in size.

3.5.2.5 Stream Identifier: <StreamID>

The stream identifier is the value used to identify the particular session for a given
protocol between a <SourceID> and <DestID>. The combination of
<SourceID><DestID><ProtoID><StreamID> must always be unique in the system.

The <StreamID> is always two octets in size.

StreamIDs are assigned by the recipient of an OPEN message. The value of the
StreamID must conform to the criteria shown in Table 3-1.

StreamIDs marked “available for applications” in Table 3-1 must be opened with an
OPEN message. StreamIDs with vendor specific values and reserved values are
pre-defined and may be used without explicitly opening a stream. Definitions of

Table 3-1. StreamID Assignments

StreamID value Usage

0x0000 - 0xDFFF Available for applications

0xE000 - 0xEFFF Vendor specific

0xF000 - 0xFFFE Reserved

0xFFFF Invalid
RapidIO.org 29

RapidIO Annex 2: Session Management Protocol Specification 3.2
reserved StreamIDs are defined in protocol specific chapters.

3.5.3 Session Management Protocol Attributes

Protocol attributes are relevant to individual virtual streams, and not to the session
management protocol. Protocol attributes specify information about the stream,
about the data transferred within the stream, or about how the data is to be
represented on egress.

Each session management protocol attribute is encoded and made available to the
remote system. Each attribute is encoded into an attribute field. Regardless of the
data being identified, the attribute field always consists of a 64-bit (8-octet) value,
consisting of two fields. The first field, Attribute ID, contains an identifier of the
attribute. The second field, Attribute Value, contains the value associated with the
attribute on a particular system. The fixed size allows for consistent parsing of
attributes between multiple different protocols. It also allows attributes to be ignored
if they are not understood by a given implementation. Another reason to have fixed
size attributes is that it will simplify the implementation of hardware support for
these attributes.

Attribute IDs can have one of three sizes: 8-bits, 16-bits, and 32-bits. The size of
each attribute can be determined based on the first octet of the Attribute ID. The
remaining bits in the attribute encoding are available for the Attribute Value.
Attribute ID sizes are pre-defined, independent of protocol. Table 3-3 lists the sizes
of each Attribute ID for all protocols.

Attribute IDs marked as vendor specific are available for use by vendors for their
own purposes. Table 3-3 shows the attribute ID ranges available for vendor use. All
attribute ID ranges not explicitly assigned as general attributes, protocol-specific
attributes, or vendor-specific attributes, are reserved and must not be used.

There are minimal ordering requirements for protocol attributes. All required
attributes must occur ahead of all optional or vendor specific attributes. The order of

Table 3-2. System Management Protocol Attribute Sizes

Attribute ID size Attribute ID value

8 bits 0x00 - 0x7F

16 bits 0x8000 - 0xEFFF

32 bits 0xF0000000 - 0xFFFFFFFF

Table 3-3. Vendor-Specific Attribute Ranges

Attribute ID size Vendor-Specific Range

8-bits 0x78-0x7F

16-bits 0xEF00 - 0xEFFF

32-bits 0xFE000000 - 0xFFFFFFFF
30 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
any attributes required by a protocol may be specified by the protocol. Optional
attributes may occur in any order. All optional attributes must occur after all required
attributes, and before any vendor specific attributes. If vendor specific attributes are
used, the first vendor specific attribute must begin with attribute 0x00, which
identifies the vendor associated with the vendor specific attributes. Any further
ordering requirements of vendor specific attributes may be defined by the vendor.

All implementations of the Session Management Protocol must include complete
support for all standard attributes for every protocol supported. In the event that an
optional or vendor specific attribute is not understood by an implementation, the
session must not be opened.

3.5.3.1 VENDOR Attribute

The VENDOR attribute is an 8-bit attribute ID (0x00) with a 56-bit value. Only one
VENDOR attribute may be specified in any single command.

The attribute value for the VENDOR attribute must conform to one of two formats:

OUI format: The three-octet OUI for the vendor defining the protocol may be
assigned to the second, third, and fourth octets of the attribute, and the remaining
four octets set to zero.

NAME format: A seven-octet value, where every octet must contain a non-zero
value. This format may be assigned to a seven-character representation of the ASCII
value of the vendor company name.

Vendors should use the OUI format if an OUI is available. If NAME format is used,
the vendor is responsible for insuring that the choice of NAME does not conflict
with any existing VENDOR attribute value.

NOTE:

The values specified above are for example only, and should not be
used.

3.5.3.2 DATA_OFFSET_VENDOR Attribute

The DATA_OFFSET_VENDOR attribute is an 8-bit attribute ID (0x02) with a 56-bit
value. The value must conform to the formats specified for the VENDOR attribute.

Table 3-4. System Management Protocol Attribute Sizes

AttributeID OUI #1 OUI #2 OUI #3 Zero Zero Zero Zero

0x01 0x00 0xA0 0x1E 0x00 0x00 0x00 0x00

Table 3-5. System Management Protocol Attribute Sizes

AttributeID Char #1 Char #2 Char #3 Char #4 Char #5 Char #6 Char #7

0x01 0x52 0x61 0x70 0x69 0x64 0x49 0x4F
RapidIO.org 31

RapidIO Annex 2: Session Management Protocol Specification 3.2
The DATA_OFFSET_VENDOR attribute identifies the vendor associated with the
contents of the DATA_OFFSET Attribute.

The DATA_OFFSET_VENDOR attribute is optional, however, if the
DATA_OFFSET_VENDOR attribute is specified, then the DATA_OFFSET attribute
must follow it.

3.5.3.3 DATA_OFFSET Attribute

The DATA_OFFSET attribute is specified with the 16-bit attribute ID 0x8003,
leaving six octets of data.

The DATA_OFFSET attribute specifies the number of octets of data that will be
appended to the header of a Data message for a given stream. These octets are
known as the Offset octets. The Offset octets can be used to convey information such
as TCP/IP offload information, packet classification, and other vendor specific
features. The remaining five octets in the DATA_OFFSET attribute are available for
vendor specific information, labelled <VendorN>. The format of the
DATA_OFFSET Attribute is as follows:

DATA_OFFSET must be present if the DATA_OFFSET_VENDOR is specified.

If the DATA_OFFSET_VENDOR and DATA_OFFSET attributes are not included in
an Open request, the default number of Offset octets is 0.

If the DATA_OFFSET_VENDOR and DATA_OFFSET attributes are present, the
DATA_OFFSET attribute must follow the DATA_OFFSET_VENDOR attribute.

3.5.3.4 REQUEST_RETRY_PERIOD Attribute

The REQUEST_RETRY_PERIOD attribute is specified with the 32 bit attribute ID
0xF0000000.

The REQUEST_RETRY_PERIOD attribute indicates the time period, in
microseconds, after which an REQUEST, OPEN, CLOSE, or STATUS request
which has not received a response should be sent again.

The REQUEST_RETRY_PERIOD attribute default value is 250 milliseconds.

3.5.3.5 REQUEST_TIMEOUT_PERIOD Attribute

The REQUEST_TIMEOUT_PERIOD attribute is specified with the 32 bit attribute
ID 0xF0000001.

The REQUEST_TIMEOUT_PERIOD attribute indicates the time period, in

Table 3-6. DATA_OFFSET Attribute Format

attributeID Offset Vendor0 Vendor1 Vendor2 Vendor3 Vendor4

16-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

0x8003 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
32 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
microseconds, after which an REQUEST, OPEN, CLOSE, or STATUS request
which has not received a response should be judged to have failed.

The REQUEST_TIMEOUT_PERIOD attribute default value is 1 second.

3.5.3.6 FLOW_CONTROL_XON_TIMEOUT_PERIOD Attribute

The FLOW_CONTROL_XON TIMEOUT attribute is specified with the 32 bit
attribute ID 0xF0000002.

The FLOW_CONTROL_XON TIMEOUT attribute value indicates the time period,
in microseconds, from the time a FLOW CONTROL XOFF request is received until
another FLOW CONTROL XOFF/XON message must be received. In the event that
a FLOW CONTROL XOFF/XON message is not received in the timeout interval,
transmission of the XOFF’ed stream should resume. This behavior is designed to
detect the loss of FLOW CONTROL XON messages.

The FLOW_CONTROL_XON TIMEOUT attribute default value is 1 second.

3.5.3.7 OPEN_MESSAGE_NUMBER Attribute

The OPEN_MESSAGE_NUMBER attribute is specified with the 32 bit attribute ID
0xF0000003.

The OPEN_MESSAGE_NUMBER attribute is used by the originator of an OPEN
message to identify the response to the OPEN request. This allows the originator to
have multiple parallel OPEN requests in flight, and to be able to match responses to
the requests.

The OPEN_MESSAGE_NUMBER attribute value is used in an implementation
specific manner.

3.5.3.8 CONDUIT_STREAM Attribute

The CONDUIT_STREAM attribute is specified with the 32 bit attribute ID
0xF0000004.

The CONDUIT_STREAM attribute is used by both sides, in OPEN and ACCEPT
messages, when creating a bidirectional conduit. The 32 bit value associated with
the CONDUIT_STREAM attribute consists of the two stream IDs associated with the
conduit. The first sixteen bits are used to indicate the stream ID of the stream which
the sender of the OPEN or ACCEPT will use to transmit data on. The last sixteen
bits are used to indicate the stream ID of the stream which the sender of the OPEN
or ACCEPT will use to receive data on. The value of 0xFFFF for either field
indicates that the specified stream ID was not known at the time the OPEN or
ACCEPT message was sent.

See “Section 3.4, Establishing Conduits” on page 21 for more information, and
examples of usage.
RapidIO.org 33

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.5.3.9 DATA_HEADER_FORMAT Attribute

The DATA_HEADER_FORMAT attribute is specified with the 32 bit attribute ID
0xF0000005.

The DATA_HEADER_FORMAT attribute is used in an ACCEPT message to
indicate which DATA header should be used for DATA messages. The value is the
numeric value of the DATA command, that is 0x06 indicates DATA Message
Format, MAILBOX, as described in “Section 4.3.1, DATA Message Format,
MAILBOX” on page 53, 0x09 indicates DATA1 message format for large PDUs,
and so on.

Note that a special case exists for the DATA2 command. The
implementation-specific value in the DATA2 header precedes the DATA2 command
in the attribute value field, as shown in Table 3-7.

When the DATA_HEADER_FORMAT attribute is not specified, the DATA
command (0x06) must be used.

3.5.3.10 CONVEYANCE Attribute

The transmission channel is assigned with the 16-bit attribute ID 0x8001, leaving six octets
for channel information. The channel is encoded in the first sixteen bits, leaving 32 bits for
channel-specific information. The values for the conveyance are shown in Table 3-8.

Note that if a vendor-specific channel is used, the VENDOR attribute must be
specified.

3.5.3.11 Other Attributes

For all protocols, system vendors may choose to define additional vendor-specific
attributes not defined by the protocol. If additional protocol-specific attributes are

Table 3-7. DATA_HEADER_FORMAT Attribute Values

8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

DATA 0xF0 0x00 0x00 0x05 Reserved Reserved 0x00 0x06

DATA1 0xF0 0x00 0x00 0x05 Reserved Reserved Implementation-Specific 0x09

DATA2 0xF0 0x00 0x00 0x05 Reserved Reserved 0x00 0x0A

DATA3 0xF0 0x00 0x00 0x05 Reserved Reserved 0x00 0x0B

Table 3-8. Ethernet Encapsulation Conveyance

Channel (16 bits) Channel-specific information (32 bits)

0x0000 = reserved N/A

0x0001 = message 0x0000_00nn; nn indicates a mailbox

0x0002 - 0xFEFF = reserved N/A

0xFF00 - 0xFFFF = vendor-specific Vendor-defined
34 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
used, the list of attributes must include the VENDOR attribute.

3.6 Message Sequence Examples
This section presents flow diagrams, to illustrate some typical uses of the Session
Management command set.

3.6.1 Stream Initiation

Figure 3-1 shows the message sequence for initiation of a stream.

Figure 3-1. Normal Stream Initiation

3.6.2 Refusal to Initiate a Stream

Figure 3-2 shows the usage of a REFUSE command, when the recipient of an OPEN
command does not allow the stream to be created.

Figure 3-2. Use of REFUSE Command

Source Dest

<OPEN> <Ver> <HDR>
<Prot ID> <Attrib>

<REFUSE> <Ver>
<HDR> <Prot ID> <At-
RapidIO.org 35

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.6.3 Stream Shutdown

Figure 3-3 shows the sequence of commands for use during stream shutdown, when
the initiator sends the CLOSE command. The receiver may also initiate the
shutdown procedure.

Note that after the CLOSE message has been received, subsequent data must be
discarded.

Figure 3-3. Normal Stream Shutdown

Src Dest

CLOSE<Ver><HDR><Src>

<Dest><COS><StreamID>
Close <StreamID>, prepare
response

<DATA>...<StreamID>

Discard DATA for a closed
stream

<STATUS>...<Stream-
ID><Closed>

Close <StreamID>, prepare response
36 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.6.4 Uses of the STATUS command

Figure 3-4 demonstrates several uses of the STATUS command.

Figure 3-4. Use of the STATUS Command

There are four examples of the use of a Status query and response contained in
Figure 3-4. The first message sent is a well formed STATUS request for information
on a known VSID. The response to this message includes the state of the VSID, as
well as all of the attributes used to OPEN the VSID. The second example is similar
to the first, but for a VSID which is not open. The third example shows the use of a
STATUS message to respond to a malformed packet. The last example shows the
discard of a malformed STATUS command.

Source Dest

<STATUS>...<Source> <StreamID>
<Stream Functional, Ready to Re-
ceive, Data Ready to Send, Request
Status of Remote>

<STATUS>...<Source> <Stream-
ID> <DataSize = xx Bytes>
<Stream Functional, Ready to Re-
ceive, Data Ready to Send>
<Attributes of the stream>

<STATUS>...<Source> <StreamID>
<DataSize=0><Stream Functional,
Ready to Receive, Data Ready to
Send, Request Status of Remote> <STATUS>...<Source> <Stream-

ID> <Stream Unknown, Closed>

<BAD CMD>...<Random Contents>
<STATUS>...<Source> <Stream-
ID> <DataSize = yy Bytes>
<Stream Unknown, Command
Unknown> <BAD CMD>...
<Random Contents>

<STATUS>...<Random Contents>

Drop the malformed STATUS
packet
RapidIO.org 37

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.6.5 Use of the FLOW_CONTROL Command

Figure 3-5 shows sample usage of the FLOW_CONTROL command.

Figure 3-5. Use of the FLOW_CONTROL Command

FLOW_CONTROL packets are used to start and stop the transmission of data for a
VSID, and to inform receivers that data is available to be transmitted. The above
example shows a transmission being started (<XON>), stopped (<XOFF>), and the
receiver being informed that there is data to be sent. The VSID is then started
(<XON>), and data transmission begins anew.

Source Dest

<FLOW_CONTROL>...<StreamID>
<XON>

<DATA>...<StreamID>

<FLOW_CONTROL>...<StreamID>
<XOFF>

<FLOW_CONTROL>...<Stream-
ID> <RTS>

<FLOW_CONTROL>...<StreamID>
<XON>

<DATA>...<StreamID>

<DATA>...<StreamID>

<FLOW_CONTROL>...<Stream-
ID> <RTS>

<DATA>...<StreamID>
<DATA>...<StreamID>

<DATA>...<StreamID>
38 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.7 Session Management Error Conditions and Recovery
Error conditions which the Session Management Protocol is designed to handle are:

• Message Loss

• Message Congestion at Source or Destination

• Session Management Protocol Non-compliance

Under some situations, some operating systems may need to drop messages. It is this
source of message loss that the Session Management Protocol is designed to deal
with. Message loss is not likely to occur in RapidIO fabrics and hardware when
reliable communication channels are used. Session Management Protocol must not
be used over unreliable channels.

RapidIO fabrics may experience congestion. Many mechanisms are available to
manage congestion within RapidIO systems, including those designed in the Session
Management Protocol.

The Session Management Protocol is designed to allow deployment of reliable
systems in the face of software defects. The scope of defects is generally limited to
non-responsiveness or poorly formed responses. Pathological software defects and
malicious intent may still result in Session Management Protocol failure.

Non-compliance is tested in several ways. First, whenever illegal values are
specified in individual commands, the system receiving the command must respond
with an indication of error. Second, compliant software systems must be able to be
configured into a validation mode, in which fields are tested for validity whenever
possible and all reserved fields are tested to insure that the contents are zero.

3.7.1 Message Loss

Message loss for the Session Management Protocol REQUEST, OPEN, CLOSE and
STATUS request messages is detectable through timeouts on ADVERTISE,
ACCEPT, REFUSE, and STATUS responses.

Session Management control messages may be dropped due to lack of resources by
the receiver. In this case, the transmitter can detect the fact that the message has been
lost through a response timeout, which will trigger retransmission of the original
request. A timeout period limits the number of retries which can be attempted.

Both the interval between retries, and the overall timeout period, are negotiated
using attributes in the OPEN command. These attributes are the
REQUEST_RETRY_PERIOD attribute, and the REQUEST_TIMEOUT_PERIOD
attribute, respectively. By default, a REQUEST, OPEN, CLOSE or STATUS request
should be retried once every 250 msec, with an overall timeout period of 1 second.

FLOW_CONTROL XOFF message loss is detected through continued transmission
of DATA on the stream which was turned off. In this case, the implementation may
RapidIO.org 39

RapidIO Annex 2: Session Management Protocol Specification 3.2
send additional FLOW_CONTROL XOFF messages, or if the congestion becomes
severe, send a CLOSE request for the stream or conduit.

FLOW_CONTROL XON message loss is detected through timeouts on reception of
a FLOW_CONTROL XON after the reception of a FLOW_CONTROL XOFF. The
timeout period is set using the FLOW_CONTROL_XON TIMEOUT attribute in the
OPEN message for the stream. To support a wide variation in timeout periods and
data patterns, it may be necessary to handle to receive repeated FLOW_CONTROL
XOFF messages for a stream.

If DATA message loss is allowed to occur in a system, it may be handled by the
application or by the Session Management Protocol implementation.

Once message transmission has been timed out, the target of the message and all
intervening nodes should be deemed suspect by the system.

In the event that no response is received in reply to a STATUS command within the
reply delay period, the streamID specified in the STATUS command must be silently
closed locally, and the remote node must be considered suspect.

For information on dealing with suspect nodes, refer to Chapter 3.7.3, “Session
Management Protocol Non-Compliance,” on page 40.

3.7.2 Session Management Protocol Congestion Management

The Session Management Protocol is designed to avoid congestion conditions.

It is strongly recommended that messaging hardware implement a mechanism
allowing ACCEPT, CLOSE, FLOW_CONTROL and STATUS messages to be sent
and received with higher priority than messages containing commands OPEN,
REQUEST, ADVERTISE, REFUSE, DATA and USERDEFINED. This allows the
mechanisms for avoiding and managing congestion to operate in the presence of
congestion.

The relative priority within the set of ACCEPT, CLOSE, FLOW_CONTROL and
STATUS is implementation specific, with equality being the norm. Similarly, the
relative priority within the set of OPEN, REQUEST, ADVERTISE, REFUSE,
DATA, and USERDEFINED messages is implementation specific, with equality
being the norm.

3.7.3 Session Management Protocol Non-Compliance

Session Management Protocol Non-Compliance is the term used to indicate one of
two conditions. It can indicate that a target node is not operating in strict compliance
with the Session Management Protocol and/or the timeout values used by the
transmitter. It can also indicate that a target node is making illegal or non-specified
use of reserved fields. In both cases, the target node is judged to be suspect
(unreliable) by the Session Management Protocol implementation.
40 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
When a target node is judged to be suspect, the local system should follow the
procedures, if any, defined for abnormal behavior for each command as described in
Chapter 4, “Message Format Descriptions,” on page 45. System recovery actions
may be initiated. The system recovery actions are outside the scope of this
specification.

3.8 Rules for Session Management
This section describes restrictions and conditions during use of the Session
Management Protocol.

3.8.1 Optional Features

This document describes a fully functional model, in which RapidIO end points can
probe whether remote end points participate, send queries to discover what protocols
each end point supports, and establish conduits and/or Virtual Streams with which
to communicate. This functionality is designed for inter-operability of software,
independent of the choice of OS.

In closed systems, the system designer may design the system so that each end point
uses hard-coded information about all the remote end points with which it needs to
communicate. In this case, the full functionality described in this document may not
be necessary. Within such a closed system the use of the Component Tag CSR
should be considered optional; however, a Session Management Protocol Register
Extension Block, if available in the hardware, is not optional. The commands
REQUEST and ADVERTISE are also optional. Designers of such systems should
keep in mind that the rules below related to Attribute order may still place
restrictions on the required order of Attributes to the OPEN command, and design
the system accordingly.

Even in systems not intended as closed, the REQUEST and ADVERTISE
commands are optional. No system may refuse to establish a connection based
solely on the fact that no REQUEST command had been previously received and a
corresponding ADVERTISE command sent in response. Systems which do not
implement support for REQUEST and ADVERTISE will respond to REQUEST
with STATUS, indicating Command_Unknown. When implementations do include
support for REQEUEST and ADVERTISE, this also allows the system to attempt
faster startup, trying OPEN first with the preferred protocol and attributes, and only
fall back on the REQUEST / ADVERTISE mechanism in case of failure.

3.8.2 Attribute Related Rules

Implementations may choose to view Attributes as ordered lists. Therefore, any
given implementation may refuse to open a Virtual Stream if the Attributes are not
in the same order as presented in the ADVERTISE command. To ensure
inter-operability, OPEN commands should maintain the order of Attributes that was
RapidIO.org 41

RapidIO Annex 2: Session Management Protocol Specification 3.2
used in the ADVERTISE command.

When advertising attributes, there may be cases when multiple values for a specific
Attribute are provided for a single protocol block, resulting in duplicate copies of the
Attribute. In this case, the initiator may remove the duplicate copies in order to select
a specific value, or it may leave all values in place. However, by the time the
ACCEPT command is sent, all duplicate copies must be removed. Therefore, if an
OPEN command is received, containing duplicate copies of any attribute, the
recipient must remove the duplicates and determine a specific value for every
required Attribute.

In some cases, duplicate copies of Attributes may indicate that the receiver can
receive a range of values. In this case, there will always be exactly two copies of the
Attribute, indicating the minimum and maximum values. A system receiving an
ADVERTISE command with this condition may attempt to OPEN a Virtual Stream
with an intermediate value. If the receiver responds with REFUSE, then the sender
must not attempt any other intermediate value for any such attribute, but restrict
itself to the values specified. A single attempt at intermediate values may be
attempted. It is not necessary for implementations to exhaustively check attribute
ranges.

In all systems, vendor-specific VSIDs may be handled in vendor-specific manner. In
this case, the participants are not required to go through the establishment protocol
with OPEN, ACCEPT, and REFUSE, but may be defined by the vendor to be
available for immediate DATA messages.

3.8.3 Rules Related to Virtual Stream Status

If an OPEN message is received for a protocol and remote end point, where an
existing Virtual Stream is already open, the recipient may choose to either re-send
the existing VSID, or to create a new VSID for a second instance of the protocol
connection.

In the case that the recipient of an OPEN message responds with an ACCEPT
command containing the existing VSID, the ACCEPT should be followed by a
STATUS message indicating that the stream is functional and indicating other status
information as appropriate. If any DATA or FLOW_CONTROL command is
received, which specifies a VSID which the recipient does not understand, the
recipient must respond with a STATUS command indicating that the VSID is
unknown. Upon receipt of such a STATUS command, the node should, at a time
deemed appropriate by the system designer, check all other open VSIDs to verify
that they are functional. This is intended to handle the condition where a node is
rebooted and the Virtual Streams need to be closed and/or reestablished.

3.8.4 Rules Related to Vendor-Specific Commands

If any USERDEFINED command is received, which the recipient does not
42 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
understand, the receiver must respond with a STATUS command indicating that the
USERDEFINED command is unknown.

3.8.5 Rules Related to Reserved Fields

Several fields in the structures described by this specification are marked reserved.
On transmission, these fields must be filled with zeros.

Implementations of Session Management Protocol conforming to this specification
must be able to be configured into a validation mode. When configured in this mode,
the receiver must test all reserved fields for zero-filled content, and reject the
received command if not zero-filled. The sender of such a message is thereafter to
be treated as suspect (unreliable). Normal error handling is used in such a case, or if
no other error handling is specified, a STATUS message must be returned, indicating
Command_Unknown.

For higher performance, implementations of Session Management Protocol
conforming to this specification may be able to be configured into a non-validation
mode, in which reserved fields are ignored. Other error handling must not be
disabled when the implementation is configured in non-validation mode.

3.9 Notes on Optional Features and Inter-Operability
For full inter-operability, an implementation must support all the features of this
specification, including the optional features. There are conditions in which lack of
optional features may restrict functionality and inter-operability. This section lists a
sample of some potential consequences of not implementing all defined features,
though this list is neither complete nor comprehensive. It is included as a warning of
some consequences of design decisions during implementation.

3.9.1 Optional Attributes

Every implementation may choose to implement vendor specific attributes. If any
vendor specific attribute is used, it should be optional. If not, then it is unlikely that
other systems, which may not understand the vendor-specific attribute, will be able
to inter-operate with the implementation.

For example, if the DATA_OFFSET_VENDOR and DATA_OFFSET attributes are
required, then the system will not be able to communicate with other
implementations. However, if the DATA_OFFSET_VENDOR and DATA_OFFSET
attributes are used but not required, then the implementation may operate more
efficiently with other systems using the feature, but will continue to inter-operate
with systems not implementing that feature.
RapidIO.org 43

RapidIO Annex 2: Session Management Protocol Specification 3.2
3.9.2 REQUEST and ADVERTISE

The REQUEST and ADVERTISE message types are listed as optional. This is true
in two senses. First, no system is required to use REQUEST or ADVERTISE when
attempting to open a connection. Second, no system is required to recognize
incoming REQUEST and ADVERTISE messages, but may respond to them with
STATUS messages indicating Command_Unknown.

However, any arbitrary node, which wants to establish a connection with a node that
does not recognize incoming REQUEST messages, may not be able to determine the
appropriate attributes to use for the desired protocol. Without a listing of the
available attributes from an ADVERTISE message, it is not possible reliably to
make a connection. Such systems would not inter-operate.

Furthermore, if an implementation that does not support REQUEST and
ADVERTISE messages also chooses to view attributes as an ordered list, then even
in the case that some external agent provided the attributes and values to use, then
the two systems may still not be inter-operable due to ordering restrictions.
44 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 4 Message Format Descriptions

4.1 Introduction
This chapter contains the definition of the data streaming packet format.

4.2 Control Message Formats
All message formats are given in big endian format - the most significant octet is on
the left of each field.

4.2.1 REQUEST

A REQUEST message is used to request information related to protocols supported
by the remote. There are two primary variants to the REQUEST message: first, to
request a list of protocols supported by the remote; second, to request attributes of a
specified protocol. These two variants are distinguished by the contents of the
ProtoID field. A value containing all ones, 0xffff, indicates a request for a list of
protocols without attributes. Protocol specific values of ProtoID are described in
“Section 3.5.2.3, Protocol Identifier: <ProtoID>” on page 29.

The form of REQUEST, which is used to request the attributes for a specified
protocol, may limit the request by including a list of required attributes. The
<NumAttrib> field contains the number of attributes listed, or zero if no attributes
are listed. Upon receipt of a REQUEST message, the receiver should respond only
with attributes that match the attributes included in the REQUEST message.

All the header fields in a REQUEST message other than <NumAttrib> are described
in Chapter 3.5.2, “Message Header Fields,” on page 28.

Table 4-1. REQUEST Message Format

Octet 0 Octet 1 Octet 2 Octet 3

Word 0 <CMD=0x01> <VER> <SourceID> <SourceID>

Word 1 <DestID> <DestID> <COS> Reserved

Word 2 <ProtoID> <ProtoID> <NumAttrib> <NumAttrib>

Word 3 Reserved Reserved Reserved Reserved
RapidIO.org 45

RapidIO Annex 2: Session Management Protocol Specification 3.2
4.2.2 ADVERTISE

An ADVERTISE message is sent in response to a REQUEST message, to identify
supported protocols or attributes of a specified protocol, depending on the contents
of the REQUEST message. The two variants are distinguished by the value of the
<A> bit in the message header.

Table 4-2. ADVERTISE Message Format - Protocol Attributes

3 2 1 0

<CMD=0x02> <VER> <SourceID> <SourceID>

<DestID> <DestID> <S+A+Count> <Count=M>

<ProtoID_1> <ProtoID_1> <numAttributes_1=N1> <numAttributes_1=N1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N1> <Attribute_N1> <Attribute_N1> <Attribute_N1>

<Attribute_N1> <Attribute_N1> <Attribute_N1> <Attribute_N1>

<ProtoID_2> <ProtoID_2> <numAttributes_2=N2> <numAttributes_2=N2>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N2> <Attribute_N2> <Attribute_N2> <Attribute_N2>

<Attribute_N2> <Attribute_N2> <Attribute_N2> <Attribute_N2>

.....

<ProtoID_M> <ProtoID_M> <numAttributes_2=NM> <numAttributes_2=NM>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_NM> <Attribute_NM> <Attribute_NM> <Attribute_NM>

<Attribute_NM> <Attribute_NM> <Attribute_NM> <Attribute_NM>
46 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
<S>: (1 bit) indicates whether or not the requested protocol is supported. If the value
of <S> is 1, then the protocol is supported. If the value of <S> is 0, then the protocol
is not supported, and the <A> bit must be set to zero (0).

<A>: (1 bit) indicates whether or not the ADVERTISE message includes attributes
or whether it is a simple list of protocols. Note that if <S> is set, then the <A> bit is
invalid and must contain the value zero (0). <A>=1 indicates that the format follows
Table 4-2. <A>=0 indicates that the format follows Table 4-3.

If <A>=0, then the message contains a list of <ProtoID> values, as shown in Table
4-3. Note that the final Reserved fields shown in the table indicate padding to a
multiple of 8 octets, and that there may be zero to seven such Reserved octets, and
not exactly the six (6) octets shown in the Table 4-3. The Reserved octets must
contain zero (0) values.

The valid values of S+A are 0b00, 0b10, and 0b11. The value of 0b01 is reserved.

If <S>=0, then <Count> is invalid and must be set to zero (0). If <S>=1, then
<Count> is valid. <Count> is a 14 bit value the number of <ProtoID>’s included in
the ADVERTISE message. Note that this field does not indicate octet length, but
rather the number of protocols.

If <A>=0, then the message contains a list of <ProtoID> values, padded out to a
multiple of 8 octets.

If <A>=1, then the message contains a list of Attributes associated with the
<ProtoID>, padded out to the nearest multiple of 8 octets. The number of Attributes
in the message is contained in the <numAttributes> field. Note that a value of 0,
meaning that no Attributes are supported for this <ProtoID>, is valid.

4.2.3 OPEN

An OPEN message is used to request that the remote system create a stream or
virtual stream suitable for the remote system to receive data on. The OPEN message
specifies the protocol which is to be carried on the stream or virtual stream, as well
as any protocol attributes that need to be used.

Table 4-3. ADVERTISE Message Format - Protocol List

3 2 1 0

<CMD=0x02> <VER> <SourceID> <SourceID>

<DestID> <DestID> <1+0+Count> <Count>

<ProtoID_1> <ProtoID_1> <ProtoID_2> <ProtoID_2>

.....

<ProtoID_Count> <ProtoID_Count> Reserved Reserved

Reserved Reserved Reserved Reserved
RapidIO.org 47

RapidIO Annex 2: Session Management Protocol Specification 3.2
Note that the packet format specifies the SourceID, but no DestID. When the OPEN
message is received, the receiver uses it’s own nodeID as the recipient of traffic, and
the SourceID specified in the message is the information that the recipient needs to
have in order to pass control traffic.

The OPEN request must have the OPEN_MESSAGE_NUMBER attribute as the first
attribute in its attribute list.

4.2.4 ACCEPT

An ACCEPT message is used to inform a requestor that a stream or virtual stream
is now open and that the requestor can send data traffic using the StreamID specified
in the ACCEPT message.

“ack type” values:

• 0: normal ACK

• 1-255: reserved

Table 4-4. OPEN Message Format

3 2 1 0

<CMD=0x03> <VER> <SourceID> <SourceID>

<ProtoID> <ProtoID> <numAttributes=N> <numAttributes=N>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

Table 4-5. ACCEPT Message Format

3 2 1 0

<CMD=0x04> <VER> <DestID> <DestID>

<ack-type> <COS> <StreamID> <StreamID>

<ProtoID> <ProtoID> <numAttributes=N> <numAttributes=N>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>
48 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
For ACCEPT and REFUSE messages, the DestID is the nodeID of the receiver,
which is the system sending the ACCEPT or REFUSE message.

The only attribute required in the ACCEPT message is the
OPEN_MESSAGE_NUMBER attribute from the OPEN. Other attributes from the
REQUEST message may optionally be copied to the ACCEPT message.

4.2.5 REFUSE

A REFUSE message is sent in response to an OPEN request, if the requestee cannot
create a stream or virtual stream with the protocol and attributes specified in the
OPEN request.

“nack type” values:

• 0: normal NACK

• 1-255: reserved

For ACCEPT and REFUSE messages, the <DestID> is the nodeID of the receiver,
which is the system sending the ACCEPT or REFUSE message.

The only attribute required in the REFUSE message is the
OPEN_MESSAGE_NUMBER attribute from the OPEN. Other attributes from the
REQUEST message may optionally be copied to the REFUSE message.

4.2.6 FLOW_CONTROL

A FLOW_CONTROL message is used to regulate traffic and manage traffic
congestion. There are three types of flow control behavior which can be specified.
First, use the XON command to enable data traffic. Second, use the XOFF command
to suspend data traffic. In the case that data traffic is suspended, RTS can be used to
inform the stream owner (data receiver) that data is available to be sent.

Table 4-6. REFUSE Message Format

3 2 1 0

<CMD=0x05> <VER> <DestID> <DestID>

<nack-type> 0xFF 0xFF 0xFF

<ProtoID> <ProtoID> <numAttributes=N> <numAttributes=N>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>
RapidIO.org 49

RapidIO Annex 2: Session Management Protocol Specification 3.2

The default state when a stream is opened is for traffic to be enabled. No explicit
FLOW_CONTROL command XON needs to be sent in the default case.

Once an RTS message is sent, additional RTS messages must not be sent to indicate
that additional data is available. A single RTS message is sufficient. Because no
explicit response to RTS is required, the sender of a FLOW_CONTROL command
RTS may retry the message at 250 msec intervals, until 1 second has elapsed.

Flow_Control values:

• XON: 0x01

• XOFF: 0x00

• RTS: 0xff

No node is required to initiate FLOW-CONTROL. However, all RapidIO nodes
must accept and handle FLOW-CONTROL commands coming from the remote.
Note that it is possible to receive a FLOW-CONTROL command with XON flow
when no previous FLOW-CONTROL command with XOFF flow has been
received, since the FLOW-CONTROL XOFF command could have been lost.

4.2.7 CLOSE

A CLOSE message is used to terminate a stream or virtual stream. Either endpoint
may initiate the CLOSE behavior. In the event that the stream or virtual stream is
part of a conduit, both streams or virtual streams must be closed at the same time.
The means of determining that a stream is part of a conduit is implementation
specific.

NOTE: both SourceID and DestID must be specified in order to allow both
endpoints to initiate a shutdown. Regardless of which endpoint initiates the CLOSE,
the SourceID indicates the node sending data.

Table 4-7. FLOW_CONTROL Message Format

3 2 1 0

<CMD=0x07> <VER> <COS> <Flow_Control>

<SourceID> <SourceID> <StreamID> <StreamID>

<ProtoID> <ProtoID> Reserved Reserved

Reserved Reserved Reserved Reserved

Table 4-8. CLOSE Message Format

3 2 1 0

<CMD=0x08> <VER> <SourceID> <SourceID>

<DestID> <DestID> <COS> Reserved

<StreamID> <StreamID> Reserved Reserved

Reserved Reserved Reserved Reserved
50 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
When receiving a CLOSE message, the receiver of the CLOSE must reply with a
STATUS message indicating that the StreamID has been closed.

4.2.8 STATUS

A STATUS message is used to request the status of a stream or virtual stream, to
report the status of a stream or virtual stream, and to indicate certain error conditions
such as illegal commands. The status bits indicate the status of the stream and/or the
reason for sending the STATUS message.

A STATUS message consists of two parts. The initial header fields, as shown in
Table 4-9, and context specific data. The contents of the context specific data
depends on the reason for sending the STATUS message. In all cases, the
<DataSize> field is used to indicate he number of 8-octet words contained in the
<ContextSpecificData> fields. That is, the number of octets in the
<ContextSpecificData> field is eight times the value of <DataSize>.

If the STATUS message is sent in response to an invalid, unknown, or malformed
command, then the original command is sent in the <ContextSpecificData> fields

Table 4-9. STATUS Message Format

3 2 1 0

<CMD=0x10> <VER> <COS> <DataSize>

<SourceID> <SourceID> <StreamID> <StreamID>

<Mailbox> <Reserved> <CmdID> <CmdVersion>

<Status> <Status> <Status> <Status>

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

.....

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

Table 4-10. Status Bit Values

Status Bit Meaning

0x00000001 Stream Unknown

0x00000002 Stream Functional

0x00000004 Ready to Receive

0x00000008 Data Ready to Send

0x0ffffff0 Reserved

0x10000000 Error

0x20000000 Closed

0x40000000 Command Unknown

0x80000000 Request Status of Remote
RapidIO.org 51

RapidIO Annex 2: Session Management Protocol Specification 3.2
and the Command_Unknown flag bit is set. If the STATUS message is sent in
response to a STATUS message with the Request_Status_of_Remote bit set, then the
<ContextSpecificData> fields should be set to a copy of the ProtoID and attributes
used to create the StreamID or virtual StreamID. If the STATUS message is sent in
order to request the status of a StreamID, the <ContextSpecificData> fields are not
used, and <DataSize> must be set to zero.

In the case that the Stream_Unknown bit is set in the status field, the only two valid
flag bits are Stream_Unknown and Closed. Other flags are implicitly Reserved, and
must be set to zero by the sender.

When configured in validation mode, the receiver must test the value of the
Reserved bits of the Status field, including the bits explicitly marked as Reserved
and the bits which are implicitly Reserved if the Stream_Unknown bit is set.

The receiver must not respond to an illegally formed STATUS command with
another STATUS command. If not well-formed, the STATUS command must be
ignored. Such as system should indicate the reception of an illegal STATUS message
with a message printed to the console or other implementation specific error
reporting mechanism, but the method and format to indicate this error is beyond the
scope of this specification.

When a STATUS message is received with the ’Request_Status_of_Remote’ bit set,
a STATUS message must be sent back to the originator for the streamID requested.
The STATUS message which is sent back must not have the
’Request_Status_of_Remote’ bit set.

The STATUS message will only include <ContextSpecificData> fields when a
STATUS message is sent as a response for an unrecognized/unsupported/malformed
message or in response to a STATUS message.

4.2.9 User Defined

A number of message IDs are reserved for application specific commands.

If a system receives a USERDEFINED command which is not understood, it must
respond with a STATUS message, with the Command Unknown bit set to indicate
that it does not understand the command.

Table 4-11. USERDEFINED Message Format

3 2 1 0

<CMD=0xF0 to 0xFF> <VER> <COS> Reserved

<SourceID> <SourceID> <StreamID> <StreamID>

<user-defined data> <user-defined data> <user-defined data> <user-defined data>

<user-defined data> <user-defined data> <user-defined data> <user-defined data>
52 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
4.3 Data Formats

4.3.1 DATA Message Format, MAILBOX

DATA message format is used to send virtual Type 9 data (streams, see RapidIO
Interconnect Specification Part 10: Data Streaming Logical Specification) when the
only conveyance provided by the hardware is Type 11 (messages). The <Mailbox>
field is set to the mailbox ID used by the receiver of the data. <COS> is defined in
Table 3.5.2.4, “Class of Service: <COS>,” on page 29.

In the case that data is received for a StreamID unknown to the receiver, then the
receiver must respond with a STATUS message with the Closed bit set to indicate
that the stream is no longer open. It may also send STATUS messages to all other
StreamIDs for the same remote system, whether the StreamID is for transmitted
traffic or for received traffic.

The S and E bits are used to segment transfers larger than the maximum PDU length
over multiple messages. The S bit indicates that this is the first segment in a transfer.
The E bit indicates that this is the last segment in a transfer. If neither the S or the E
bit is set, then this is one of the middle segments in a multi-segment transfer. If a
transfer fits within a single segment, then both the S and E bits are set. PDUs in a
multi-segment transfer must be sent in order: Start segment, middle segments, End
segment.

The length field contains the size of the data payload included in this message
excluding the encapsulation header. The StreamID/PDU-Length field contains
either the StreamID of the message or the length of the data payload excluding the
encapsulation header. If either the S or E bit is set, then the StreamID/PDU-Length
field contains the StreamID. If neither S nor E is set, then the StreamID/PDU-Length
field contains PDU-Length, which includes the total size of all RapidIO messages
making up this packet, exclusive of encapsulation headers.

Table 4-12. DATA Message Format

3 2 1 0

<CMD=0x06> <VER> <Mailbox> <COS>

<Reserved> <Reserved> <SourceID> <SourceID>

<S+E+00
+Length(4bits)>

<Length> <StreamID/PDU-Length> <StreamID/PDU-Length>

Payload Data octet Payload Data octet Payload Data octet Payload Data octet

.....

Payload Data octet Payload Data octet Payload Data octet Payload Data octet
RapidIO.org 53

RapidIO Annex 2: Session Management Protocol Specification 3.2
4.3.2 DATA1 Message Format, Large PDU

DATA1 message format is used in situations where large amounts of data need to be
transferred as a block. All fields have the same meaning as in the DATA header.

All fields in this header format are used in the same manner as the DATA command.
However, the capacity of this format allows transfers of up to 4 gigabytes of data.

Underlying hardware may place limits on the size of messages, such as only
allowing data to be transferred in multiples of eight octets. In this case, padding must
be used where necessary to fill the size constraints. If padding is used, the data must
contain zeros, and the pad octets are not included in the <S+E+00+Length>,
<Length>, <StreamID/PDU-Length>, and <Reserved/PDU-Length> fields.

4.3.3 DATA2 Message Format

The DATA2 command is available for use when the full information contained in the
DATA and DATA1 headers is not required. Note that use of this format restricts the
packet size to the size limited by hardware, so that the maximum PDU size is 16380
octets, but may be smaller due to hardware constraints.

The Implementation-Specific field is available for use by implementers. Note that
the DATA2 message format is only used when the DATA Header attribute is used
during stream creation. The value to be used in this field is the seventh octet of the
DATA Header attribute, preceding the DATA command value.

4.3.4 DATA3 Zero-length DATA header

When using some conveyances, it may be possible to fully segregate traffic based
on streamID or other information. In this case, no header is required. For the

Table 4-13. DATA Message Format

3 2 1 0

<CMD=0x09> <VER> <Mailbox> <COS>

<Reserved> <Reserved> <SourceID> <SourceID>

<S+E+Length(6bits)> <Length> <Length> <Length>

<StreamID/PDU-Length
>

<StreamID/PDU-Length
>

<Reserved/PDU-Length> <Reserved/PDU-Length>

Payload Data octet Payload Data octet Payload Data octet Payload Data octet

.....

Payload Data octet Payload Data octet Payload Data octet Payload Data octet

Table 4-14. DATA Message Format

3 2 1 0

<CMD=0x0A> <Implementation-Specific> <S+E+Length (6 bits)> <Length>
54 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
purposes of determining the DATA header format, this can be considered as
CMD=0x0B, though the actual command value of 0x0B must never be transmitted.

This header format is used for hardware assisted data streaming, as defined in
RapidIO Interconnect Specification Part 10: Data Streaming Logical Specification.

4.3.5 Data Streaming

When the data is carried by the Data Streaming Protocol is uses a logical layer
packet format defined in RapidIO Interconnect Specification Part 10: Data
Streaming Logical Specification. In this case, no additional header needs to be used.

It is strongly recommended that the RapidIO specific information necessary for
software to compose and respond to Data messages is made accessible to software
through implementation specific means by hardware that supports type 9 packets.
RapidIO.org 55

RapidIO Annex 2: Session Management Protocol Specification 3.2
Blank page
56 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 5 Registers

5.1 Introduction
Before sending session management protocol messages, it is necessary to know if
the target node supports session management protocol, and the messaging method
used by the target node. The target node advertises this information using registers.

A Session Management Protocol register extension block may be used to advertise
a target nodes session management protocol parameters. This method is the
recommended approach.

Devices which are capable of accepting session management protocol messages
may advertise this fact in the Component Tag CSR. The Component Tag CSR may
be used to advertise session management protocol parameters only if a Session
Management Protocol register extension block is not present in a device. Only
devices whose Destination Operations CAR and Source Operations CAR indicate
support for Data Message and/or Data Streaming transactions may advertise support
for the Session Management Protocol using the Component Tag CSR.

The use of the Component Tag CSR is deprecated for new devices.
RapidIO.org 57

RapidIO Annex 2: Session Management Protocol Specification 3.2
5.2 Session Management Protocol Extended Features
Register Block

Where Reserved fields are used in the following structures, the value must be set to
zero. Implementations configured in validation mode should check these fields
when first reading the Session Management Protocol Extended Features Register
Block, and indicate the presence of an illegal Session Management Protocol
Extended Features Register with a message to the console or other implementation
specific error reporting mechanism, but the method and format to indicate this error
is beyond the scope of this specification.

Note that there should be an instance of the Session Management Protocol Extended
Features Register Block for every conveyance supported by the endpoint.

5.2.1 Session Management Protocol Register Block Header
(Block Offset 0x0)

The Session Management Protocol Register Block Header contains the EF_PTR to
the next extended features block and the EF_ID that identifies this as the Session
Management Protocol Register Block Header.

Table 5-1. Bit Settings for Session Management Protocol Register Block Header

Bit Name
Reset
Value

Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one
exists

16-31 EF_ID 0x000C Hard wired Extended Features ID
58 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
5.2.2 Session Management Protocol Register Write Enable CSR
(Block Offset 0x4)

The Session Management Protocol Advertisement register is used allow an external
RapidIO entity write access to the Session Management Protocol registers, which
otherwise are read only.

The operation of this register is identical to the Host Base Device ID CSR specified
in Part 2 Common Transport Specification:

• When the Lock_Val is 0xFFFF, all other registers in this block are read only.

• Writing to this register when Lock_Val is 0xFFFF sets the Lock_Val field to the
value written.

• When the Lock_Val field is not 0xFFFF, all registers in this block are writable.
Implementation specific checking may be done on the write transactions to
this block.

• When the Lock_Val field is not 0xFFFF, writing the value of the Lock_Val field
to this register resets the Lock_Val field to 0xFFFF.

• When the Lock_Val field is not 0xFFFF, writing a value different from the
Lock_Val field to this register does not affect the value of the Lock_Val field.

• Writing 0xFFFF to the Lock_Val field when the Lock_Val field is 0xFFFF has
no effect.

Table 5-2. Bit Settings for Session Management Protocol Register Write Enable Register

Bit Name
Reset
Value

Description

0-15 Reserved 0x0000 Not Used

16-31 Lock_Val 0xFFFF See description above
RapidIO.org 59

RapidIO Annex 2: Session Management Protocol Specification 3.2
5.2.3 Session Management Advertisement CSR
(Block Offset 0x8)

The Session Management Protocol Advertisement register is used to indicate
whether or not the node supports the session management protocol and, if so, how
to send session management protocol messages to the node.

All of the fields of this register are read-only using RapidIO maintenance
transactions, but may be written by the local processing element.

Table 5-3. Bit Settings for Session Management Protocol Advertisement Register

Bit Name
Reset
Value

Description

0-3 Conveyance Impl.
Spec.

Identifies which conveyance this Session Management
Protocol register block applies to:
0x0 - Messaging (Type 11)
0x1 - Data Streaming (Type 9)
0x2-0xE - Reserved
0xF - Not Supported

Write Protected by Session Management Protocol Register
Write Enable register.

4-31 Conveyance_Info Impl.
Dep.

Conveyance Info
This field communicates conveyance specific information
for reception of Session Management Protocol messages.

If Conveyance = type 11, the field format is
0x00000nn
where nn represents the mailbox ID, formatted according
to the definition in Part 2.

If Conveyance = type 9, the field format is 0x0ccssss
where:
cc - Class of Service (COS) value to be used
ssss - StreamID to be used

Write Protected by Session Management Protocol Register
Write Enable register.
60 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
5.2.4 Session Management Attribute Range CSR
(Block Offset 0xC)

The Session Management Protocol Advertisement register is used to indicate
whether or not the node supports the session management protocol and, if so, how
to send session management protocol messages to the node.

All of the fields of this register are read-only using RapidIO maintenance
transactions.

Table 5-4. Bit Settings for Session Management Attribute Range Register

Bit Name
Reset
Value

Description

0-7 — 0x00 reserved

8-15 Sess_Mgmt_Max_Attr Impl.
Dep.

This field contains the maximum number of attributes. Each
attribute takes up 8 octets.

0 - No Session Management Protocol Attribute Registers
1 - 2 Session Management Protocol Attribute Registers
2 - 4 Session Management Protocol Attribute Registers
3 - 6 Session Management Protocol Attribute Registers
...
n - 2n Session Management Protocol Attribute Registers
...
0xFE - 508 Session Management Protocol Attribute Registers
0xFF - Reserved

This field is Read Only from the RapidIO interface, but may
be writable by the local Processing Element.

16-19 — 0x0 reserved
RapidIO.org 61

RapidIO Annex 2: Session Management Protocol Specification 3.2
20-23 Sess_Mgmt_Init_Stage Impl.
Dep.

This field indicates progress through the register initialization
sequence, with a standard value indicating that initialization is
complete.

0x0 - Initialization of registers complete
0x1-0xF - Initialization of registers incomplete, initialization
stage X in progress.

Write Protected by Session Management Protocol Register
Write Enable register.

24-31 Sess_Mgmt_Num_Attr Impl.
Dep.

This field contains the number of valid attributes following
this register. Each attribute takes up 8 octets.

0 - No Session Management Protocol Attribute Registers
1 - 2 Session Management Protocol Attribute Registers
2 - 4 Session Management Protocol Attribute Registers
3 - 6 Session Management Protocol Attribute Registers
...
n - 2n Session Management Protocol Attribute Registers
...
0xFE - 508 Session Management Protocol Attribute Registers
0xFF-0xFFFE - Reserved
0xFFFF - Session Management Protocol Attribute Registers
not initialized

Write Protected by Session Management Protocol Register
Write Enable register.

Table 5-4. Bit Settings for Session Management Attribute Range Register

Bit Name
Reset
Value

Description
62 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
5.2.5 Session Management Protocol Attributes 0-508 CSRs
(Block Offset 0x10-0x7F8)

The number of valid Session Management Protocol Attribute registers is indicated
by the Sess_Mgmt_Num_Attr field of the Session Management Protocol
Advertisement register.

The number of Session Management Protocol Attributes registers is implementation
specific. Up to 508 Session Management Protocol Attributes registers can exist.

It is recommended that at least 8 Session Management Protocol Attributes registers
be implemented.

Table 5-5. Bit Settings for Session Management Protocol Attributes 0-508 Registers

Bit Name
Reset
Value

Description

0-63 Attribute Data Impl
Dep

Attribute specification data, formatted as per the attributes
defined in Section 3.5.3 and in the protocol-specific
chapters.
RapidIO.org 63

RapidIO Annex 2: Session Management Protocol Specification 3.2
5.3 Component Tag CSR Session Management Protocol
Advertisement

If a Session Management Protocol Register Block Header does not exist within the
registers for a device, the device may advertise support for the Session Management
Protocol using the Component Tag CSR, as described in Table 5-6.

Only devices whose Destination Operations CAR and Source Operations CAR
indicate support for Data Message and/or Data Streaming transactions may advertise
support for the Session Management Protocol using the Component Tag CSR.

If Bit 0 of the Component Tag CSR contains a value of 0, then the node does not
conform to this specification. In this case, this specification puts no requirements on
the remaining bits of the Component Tag CSR.

If Bit 0 contains a value of 1, then the node must not use the first 16 bits of this
register for any purpose other than advertising support for Session Management
Protocol messages.

Table 5-6. Component Tag CSR Bit Usage

Bit Field Name Description

0 Sess_Mgmt_Sup Session Management Protocol Support
This bit indicates whether or not a processing element
supports the Session Management Protocol.

0b0 - This processing element does not support the Session
Management Protocol
0b1 - This processing element does support the Session
Management Protocol
64 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
The Sess_Mgmt_Chan bits indicate the conveyance to use for Session Management
Protocol traffic. The value of 0b11, Expansion, is used to indicate that a reserved,
expanded Sess_Mgmt_Chan field, larger than two bits, is to be used. In this case,
Sess_Mgmt_Chan_Info will consist of fewer bits.

1-2 Sess_Mgmt_Chan Session Management Protocol Channel
This bit indicates what logical layer to use, and how to
interpret the Channel Information below:

0b00 = Use Message Passing (type 11)
0b01 = Use Data Streaming (type 9)
0b10 = Reserved
0b11 = Expansion

This field is only valid if Sess_Mgmt_Sup is 0b1.

2-15 Sess_Mgmt_Chan_Info Session Management Protocol Channel Info
This field communicates channel specific information for
reception of Session Management Protocol messages.

If Session Management Channel = type 11:
bits 2-15 = 0b00000nnnnnnnn
where the low 8 bits are the mailbox ID (formatted
according to the definition in Part 2)

If Session Management Channel = type 9:
bits 2-5 = 0bx0000nnnnnnnn where:
x = 1 = StreamID MSB = 0xFF
x = 0 = StreamID MSB = 0x00
n = StreamID LSB
The StreamID is the Stream to use to embed the
management messages. The COS field in the VSID should
be the highest priority COS supported by the interface.
ex: 0b100001111000 = StreamID = 0xFFF0

This field is only valid if Sess_Mgmt_Sup is 1.

Table 5-6. Component Tag CSR Bit Usage

Bit Field Name Description
RapidIO.org 65

RapidIO Annex 2: Session Management Protocol Specification 3.2
Blank page
66 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 6 Vendor-Defined Protocols

6.1 ProtoID
The ProtoID value for vendor-defined protocols is 0x0101.

6.2 Attributes
Two protocol attributes are required for vendor-defined protocols. These two
attributes distinguish a vendor-defined protocol from all other vendor-defined
protocols. The attributes are the VENDOR attribute, and the PROTOCOL-NAME
attribute.

6.2.1 VENDOR attribute

The VENDOR attribute, described in “Section 3.5.3.1, VENDOR Attribute” on
page 31, is required. It must be the first attribute listed.

6.2.2 PROTOCOL_NAME attribute

The PROTOCOL-NAME attribute is an 8-bit attribute ID (0x01) with a 56-bit value.
The PROTOCOL-NAME attribute is required for all vendor-defined protocols, and
must immediately follow the VENDOR attribute. The format of the attribute value
is defined by the vendor. The sole restriction is that the value defined by the vendor
must uniquely identify the protocol in that it differentiates the protocol from all other
protocols defined by the vendor. It may consist of an ASCII string or a numeric
value, at the discretion of the vendor defining the protocol.

6.2.3 Other attributes

Other attributes may be defined by the vendor.

6.3 Other Requirements for Vendor-Defined Protocols
Vendors wishing to make their protocols available may choose to create an RFC
describing attributes and other issues related to their protocol.
RapidIO.org 67

RapidIO Annex 2: Session Management Protocol Specification 3.2
Blank page
68 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Chapter 7 Ethernet Encapsulation

7.1 ProtoID
The protocol ID value for Ethernet encapsulation is 0x0102.

7.2 Attributes
Several protocol attributes are required: MTU, CONVEYANCE, and
MAC_ADDRESS. No ordering restrictions are placed on these attributes by the
specification, though implementations may impose ordering restrictions. Additional
optional protocol attributes exist, depending on the system configuration.

7.2.1 MTU Attribute

The MTU is assigned with the 16-bit attributed ID 0x8002, leaving six octets of data
for the MTU value. Only the lowest two octets should be used, allowing a maximum
MTU of 64 KBytes.

7.2.2 CONVEYANCE Attribute

The CONVEYANCE attribute, as described in “Section 3.5.3.10, CONVEYANCE
Attribute” on page 34, is required for Ethernet encapsulation.

7.2.3 MAC_ADDRESS Attribute

The MAC address is specified with the 16-bit attribute ID 0x8003, leaving six octets
of data for the MAC address.

This protocol is intended for use where RapidIO nodes and Ethernet nodes may
co-exist on the same virtual Ethernet segment. Therefore, MAC addresses are
required to conform to industry standards. This includes the requirement that the
first three octets of the MAC address should be a valid OUI (Organizationally
Unique Identifier) assigned by IEEE.

7.3 Other Requirements of Ethernet Encapsulation
There are a number of additional requirements for Ethernet encapsulation. These
requirements are discussed in the following sections.
RapidIO.org 69

RapidIO Annex 2: Session Management Protocol Specification 3.2
7.3.1 Dropped Messages

In Ethernet, it is appropriate for a packet to be dropped if there are difficulties
sending it, since higher level protocols handle retransmission. Although this differs
from the normal goal of RapidIO, that is, to have reliable transmission, there are
some conditions in which it is appropriate to drop Ethernet encapsulation messages.

If a node has received an XOFF from the remote system using Ethernet
encapsulation at the time a new message is to be sent, the node must retain at least
one pending message for transmission, however it may choose to drop additional
messages. The pending message(s) should be the most recent message(s), and older
messages should be dropped.

7.3.2 Broadcast

7.3.2.1 Broadcast With Multicast Extensions

If multicast capabilities are available in the RapidIO switches, they should be used
for broadcast messages. The value of the destination ID for ethernet encapsulation
should be 0xFE for 8-bit IDs or 0xFFFE for 16-bit IDs.

7.3.2.2 Broadcast Without Multicast Extensions

If multicast capabilities are not available, broadcast messages must be sent by
unicast transmission. The reserved StreamID value 0xF000 may be used for
transmission of broadcast traffic. Note that no OPEN message is required for this
StreamID, so no dedicated resources are required to be permanently allocated in
order to receive broadcast traffic. Receivers of broadcast traffic know that it is a
broadcast message, by reading the StreamID of incoming messages.

7.3.2.3 Vendor defined Broadcast Server

Vendors may wish to define a vendor-specific protocol for use by a broadcast server,
thereby eliminating the requirement for multiple unicast message transmission by
other nodes. Such broadcast servers must not re-transmit incoming broadcast
messages received on the broadcast StreamID 0xF000.

7.3.3 Ingress/Egress Nodes

Ingress/Egress nodes may be configured as switches or as routers. If configured as
routers, ingress and egress traffic are handled at a higher level protocol, and not the
subject of this protocol.

If ingress/egress nodes are configured as switches, the node must forward ingress
and egress traffic. This is handled as a layer 2 switch, the behavior of which is well
understood and not defined in this protocol.

When Ethernet-over-RapidIO traffic is transmitted outside the RapidIO fabric, the
70 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
egress system must be able to be configured to forward broadcast packets to the
external network and forward external broadcast packets into the RapidIO fabric.
This can be done by forwarding RapidIO messages received on StreamID 0xF000
to ethernet interfaces. Incoming broadcast packets coming from Ethernet interfaces
must be sent using the RapidIO broadcast mechanism.
RapidIO.org 71

RapidIO Annex 2: Session Management Protocol Specification 3.2
Blank page
72 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Class of service (cos). A term used to describe different treatment (quality of
service) for different data streams. Support for class of service is
provided by a class of service field in the data streaming protocol.
The class of service field is used in the virtual stream ID and in
identifying a virtual queue.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Conduit. A bidirectional data transfer mechanism consisting of two streams
or virtual streams, one for communication in each direction.

Conveyance. A communication channel, e.g. mailbox, stream, shared
memory mechanism, etc.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Double-word. An eight octet or 64 bit quantity, aligned on eight octet
boundaries.

Egress. Egress is the device or node where traffic exits the system. The egress
node also becomes the destination for traffic out of the RapidIO

B

C

D

E

RapidIO.org 73

RapidIO Annex 2: Session Management Protocol Specification 3.2
fabric. The terms egress and destination may or may not be used
interchangeably when considering a single end to end connection.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Half-word. A two octet or 16 bit quantity, aligned on two octet boundaries.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

Ingress. Ingress is the device or node where traffic enters the system. The
ingress node also becomes the source for traffic into the RapidIO
fabric. The terms ingress and source may or may not be used
interchangeably when considering a single end to end connection.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PDU. Protocol Data Unit, the OSI term for a packet.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

F

H

I

O

PP
74 RapidIO.org

RapidIO Annex 2: Session Management Protocol Specification 3.2
Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Protocol Attributes. Information relevant to communication using a
particular protocol, or to data transferred within the context of a
connection using that protocol.

Receiver. The RapidIO interface input port on a processing element.

SAR. Segmentation and Reassembly, a mechanism for encapsulating a PDU
within multiple packets.

Segmentation. A process by which a PDU is transferred as a series of smaller
segments.

Session Management Protocol. The protocol specified in this document,
used for negotiation of communication sessions and optionally for
data transfers.

Sequence. Sequentially ordered, uni-directional group of messages that
constitute the basic unit of data delivered from one end point to
another.

StreamID. A specific field in the data streaming protocol that is combined
with the data stream’s transaction request flow ID and the sourceID
or destinationID from the underlying packet transport fabric to form
the virtual stream ID.

Suspect. A communication partner, which may not fully conform to the
session management protocol.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

R

S

T

RapidIO.org 75

RapidIO Annex 2: Session Management Protocol Specification 3.2
Virtual Stream ID (VSID). An identifier comprised of several fields, used to
identify individual data streams. When using Type 9 (streaming) as
the conveyance for data transfers, the VSID is encapsulated in the
Type 9 protocol. When using Type 11 (messaging) as the conveyance
for data transfers, the VSID is encapsulated in fields in the DATA or
DATA1 Session Management Protocol commands.

Word. A four octet or 32 bit quantity, aligned on four octet boundaries.

V

W

76 RapidIO.org

	Part 1 - Input-Output Logical
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Input/Output Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter 2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 System Issues
	2.3.1 Operation Ordering
	2.3.2 Transaction Delivery
	2.3.3 Deadlock Considerations

	Chapter 3 Operation Descriptions
	3.1 Introduction
	3.2 I/O Operations Cross Reference
	3.3 I/O Operations
	3.3.1 Read Operations
	3.3.2 Write and Streaming-Write Operations
	3.3.3 Write-With-Response Operations
	3.3.4 Atomic (Read-Modify-Write) Operations

	3.4 System Operations
	3.4.1 Maintenance Operations

	3.5 Endian, Byte Ordering, and Alignment

	Chapter 4 Packet Format Descriptions
	4.1 Request Packet Formats
	4.1.1 Addressing and Alignment
	4.1.2 Field Definitions for All Request Packet Formats
	4.1.3 Type 0 Packet Format (Implementation-Defined)
	4.1.4 Type 1 Packet Format (Reserved)
	4.1.5 Type 2 Packet Format (Request Class)
	4.1.6 Type 3–4 Packet Formats (Reserved)
	4.1.7 Type 5 Packet Format (Write Class)
	4.1.8 Type 6 Packet Format (Streaming-Write Class)
	4.1.9 Type 7 Packet Format (Reserved)
	4.1.10 Type 8 Packet Format (Maintenance Class)
	4.1.11 Type 9–11 Packet Formats (Reserved)

	4.2 Response Packet Formats
	4.2.1 Field Definitions for All Response Packet Formats
	4.2.2 Type 12 Packet Format (Reserved)
	4.2.3 Type 13 Packet Format (Response Class)
	4.2.4 Type 14 Packet Format (Reserved)
	4.2.5 Type 15 Packet Format (Implementation-Defined)

	Chapter 5 Input/Output Registers
	5.1 Register Summary
	5.2 Reserved Register, Bit and Bit Field Value Behavior
	5.3 Extended Features Data Structure
	5.4 Capability Registers (CARs)
	5.4.1 Device Identity CAR
	5.4.2 Device Information CAR
	5.4.3 Assembly Identity CAR
	5.4.4 Assembly Information CAR
	5.4.5 Processing Element Features CAR
	5.4.6 Switch Port Information CAR
	5.4.7 Source Operations CAR
	5.4.8 Destination Operations CAR

	5.5 Command and Status Registers (CSRs)
	5.5.1 Processing Element Logical Layer Control CSR
	5.5.2 Local Configuration Space Base Address 0 CSR
	5.5.3 Local Configuration Space Base Address 1 CSR

	Part 2 - Message Passing Logical
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Message Passing Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter 2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 Message Passing System Model
	2.3.1 Data Message Operations
	2.3.2 Doorbell Message Operations

	2.4 System Issues
	2.4.1 Operation Ordering
	2.4.2 Transaction Delivery
	2.4.3 Deadlock Considerations

	Chapter 3 Operation Descriptions
	3.1 Introduction
	3.2 Message Passing Operations Cross Reference
	3.3 Message Passing Operations
	3.3.1 Doorbell Operations
	3.3.2 Data Message Operations

	3.4 Endian, Byte Ordering, and Alignment

	Chapter 4 Packet Format Descriptions
	4.1 Introduction
	4.2 Request Packet Formats
	4.2.1 Field Definitions for All Request Packet Formats
	4.2.2 Type 0 Packet Format (Implementation-Defined)
	4.2.3 Type 1–9 Packet Formats (Reserved)
	4.2.4 Type 10 Packet Formats (Doorbell Class)
	4.2.5 Type 11 Packet Format (Message Class)

	4.3 Response Packet Formats
	4.3.1 Field Definitions for All Response Packet Formats
	4.3.2 Type 12 Packet Format (Reserved)
	4.3.3 Type 13 Packet Format (Response Class)
	4.3.4 Type 14 Packet Format (Reserved)
	4.3.5 Type 15 Packet Format (Implementation-Defined)

	Chapter 5 Message Passing Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register, Bit and Bit Field Value Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Source Operations CAR
	5.4.2 Destination Operations CAR

	5.5 Command and Status Registers (CSRs)

	Annex A Message Passing Interface (Informative)
	A.1 Introduction
	A.2 Definitions and Goals
	A.3 Message Operations
	A.4 Inbound Mailbox Structure
	A.4.1 Simple Inbox
	A.4.2 Extended Inbox
	A.4.3 Received Messages

	A.5 Outbound Message Queue Structure
	A.5.1 Simple Outbox
	A.5.2 Extended Outbox

	Part 3 - Common Transport
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Transport Layer Features
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter 2 Transport Format Description
	2.1 Introduction
	2.2 System Topology
	2.2.1 Switch-Based Systems
	2.2.2 Ring-Based Systems

	2.3 System Packet Routing
	2.4 Field Alignment and Definition
	2.5 Routing Maintenance Packets

	Chapter 3 Common Transport Registers
	3.1 Introduction
	3.2 Register Summary
	3.3 Reserved Register, Bit and Bit Field Value Behavior
	3.4 Capability Registers (CARs)
	3.4.1 Processing Element Features CAR
	3.4.2 Switch Route Table Destination ID Limit CAR

	3.5 Command and Status Registers (CSRs)
	3.5.1 Base Device ID CSR
	3.5.2 Dev32 Base Device ID CSR
	3.5.3 Host Base Device ID Lock CSR
	3.5.4 Component Tag CSR
	3.5.5 Standard Route Cfg Destination ID Select CSR
	3.5.6 Standard Route Cfg Port Select CSR
	3.5.7 Standard Route Default Port CSR

	3.6 Switch Routing Table Register Block
	3.6.1 Register Map
	3.6.2 Switch Routing Table Register Block Header
	3.6.3 Broadcast Routing Table Control CSR
	3.6.4 Broadcast Level 0 Info CSR
	3.6.5 Broadcast Level 1 Info CSR
	3.6.6 Broadcast Level 2 Info CSR
	3.6.7 Port n Routing Table Control CSRs
	3.6.8 Port n Level 0 Info CSRs
	3.6.9 Port n Level 1 Info CSRs
	3.6.10 Port n Level 2 Info CSRs

	3.7 Routing Table Group Register Format
	3.7.1 Broadcast Level 0 Group x Entry y Routing Table Entry CSR
	3.7.2 Broadcast Level 1 Group x Entry y Routing Table Entry CSR
	3.7.3 Broadcast Level 2 Group x Entry y Routing Table Entry CSR
	3.7.4 Level 0 Group x Entry y Routing Table Entry CSR
	3.7.5 Level 1 Group x Entry y Routing Table Entry CSR
	3.7.6 Level 2 Group x Entry y Routing Table Entry CSR

	Annex A Dev32 Hierarchical Programming Model (Informative)
	A.1 Dev32 Configuration Examples
	A.1.1 Example 1: Routing 0x00_11_20_** to Port 14
	A.1.2 Example 2: Routing 0x00_11_0X_** to Port X
	A.1.3 Example 3: Routing 0x00_ZZ_**_** to Port 15, ZZ=[0,0x10]
	A.1.4 Example 4: All Other Packets Must Be Dropped
	A.1.5 Example 5: Flat Routing Table Operation

	Part 4 - Parallel Layer
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Input/Output Specification
	1.3.1 Functional features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter 2 Physical Layer Protocol
	2.1 Introduction
	2.2 Packet Exchange Protocol
	2.2.1 Packet and Control Alignment
	2.2.2 Acknowledge Identification

	2.3 Field Placement and Definition
	2.3.1 Flow Control Fields Format
	2.3.2 Packet Priority and Transaction Request Flows
	2.3.3 Transaction and Packet Delivery
	2.3.4 Resource Allocation
	2.3.5 Flow Control Mode Negotiation

	2.4 Error Detection and Recovery
	2.4.1 Control Symbol Protection
	2.4.2 Packet Protection
	2.4.3 Lost Packet Detection
	2.4.4 Implementation Note: Transactional Boundaries
	2.4.5 Link Behavior Under Error
	2.4.6 CRC Operation
	2.4.7 CRC Code

	2.5 Maximum Packet Size
	2.6 Link Maintenance Protocol
	2.6.1 Command Descriptions
	2.6.2 Status Descriptions

	Chapter 3 Packet and Control Symbol Transmission
	3.1 Introduction
	3.2 Packet Start and Control Symbol Delineation
	3.3 Packet Termination
	3.4 Packet Pacing
	3.5 Embedded Control Symbols
	3.6 Packet to Port Alignment
	3.7 System Maintenance
	3.7.1 Port and Link Initialization
	3.7.2 Multicast-Event

	3.8 Power Management

	Chapter 4 Control Symbol Formats
	4.1 Introduction
	4.2 Acknowledgment Control Symbol Formats
	4.2.1 Packet-Accepted Control Symbol
	4.2.2 Packet-Retry Control Symbol
	4.2.3 Packet-Not-Accepted Control Symbol
	4.2.4 Canceling Packets

	4.3 Packet Control Symbol Formats
	4.4 Link Maintenance Control Symbol Formats
	4.5 Reserved Symbol Formats
	4.6 Implementation-defined Symbol Formats
	4.7 Control Symbol to Port Alignment

	Chapter 5 8/16 LP-LVDS Registers
	5.1 Introduction
	5.2 Register Map
	5.3 Reserved Register, Bit and Bit Field Value Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Processing Element Features CAR

	5.5 Generic End Point Devices
	5.5.1 Register Map
	5.5.2 Command and Status Registers (CSRs)

	5.6 Generic End Point Devices, software assisted error recovery option
	5.6.1 Register Map
	5.6.2 Command and Status Registers (CSRs)

	5.7 Generic End Point Free Devices
	5.7.1 Register Map
	5.7.2 Command and Status Registers (CSRs)

	5.8 Generic End Point Free Devices, software assisted error recovery option
	5.8.1 Register Map
	5.8.2 Command and Status Registers (CSRs)

	Chapter 6 System Clocking Considerations
	6.1 Introduction
	6.2 Example Clock Distribution
	6.3 Elasticity Mechanism

	Chapter 7 Board Routing Guidelines
	7.1 Introduction
	7.2 Impedance
	7.3 Skew
	7.4 PCB Stackup
	7.5 Termination
	7.6 Additional Considerations
	7.6.1 Single Board Environments
	7.6.2 Single Connector Environments
	7.6.3 Backplane Environments

	7.7 Recommended pin escape ordering

	Chapter 8 Signal Descriptions
	8.1 Introduction
	8.2 Signal Definitions
	8.3 RapidIO Interface Diagrams

	Chapter 9 Electrical Specifications
	9.1 Introduction
	9.2 Overview
	9.3 DC Specifications
	9.4 AC Specifications
	9.4.1 Concepts and Definitions
	9.4.2 Driver Specifications
	9.4.3 Receiver Specifications

	Annex A Interface Management (Informative)
	A.1 Introduction
	A.2 Link Initialization and Maintenance Mechanism
	A.2.1 Input port training state machine
	A.2.2 Output port training state machine

	A.3 Packet Retry Mechanism
	A.3.1 Input port retry recovery state machine
	A.3.2 Output port retry recovery state machine

	A.4 Error Recovery
	A.4.1 Input port error recovery state machine
	A.4.2 Output port error recovery state machine

	Part 5 - GSM Logical
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.2.1 Memory System

	1.3 Features of the Globally Shared Memory Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter 2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 Programming Models
	2.3.1 Globally Shared Memory System Model

	2.4 System Issues
	2.4.1 Operation Ordering
	2.4.2 Transaction Delivery
	2.4.3 Deadlock Considerations

	Chapter 3 Operation Descriptions
	3.1 Introduction
	3.2 GSM Operations Cross Reference
	3.3 GSM Operations
	3.3.1 Read Operations
	3.3.2 Instruction Read Operations
	3.3.3 Read-for-Ownership Operations
	3.3.4 Data Cache Invalidate Operations
	3.3.5 Castout Operations
	3.3.6 TLB Invalidate-Entry Operations
	3.3.7 TLB Invalidate-Entry Synchronization Operations
	3.3.8 Instruction Cache Invalidate Operations
	3.3.9 Data Cache Flush Operations
	3.3.10 I/O Read Operations

	3.4 Endian, Byte Ordering, and Alignment

	Chapter 4 Packet Format Descriptions
	4.1 Introduction
	4.2 Request Packet Formats
	4.2.1 Addressing and Alignment
	4.2.2 Data Payloads
	4.2.3 Field Definitions for All Request Packet Formats
	4.2.4 Type 0 Packet Format (Implementation-Defined)
	4.2.5 Type 1 Packet Format (Intervention-Request Class)
	4.2.6 Type 2 Packet Format (Request Class)
	4.2.7 Type 3–4 Packet Formats (Reserved)
	4.2.8 Type 5 Packet Format (Write Class)
	4.2.9 Type 6–11 Packet Formats (Reserved)

	4.3 Response Packet Formats
	4.3.1 Field Definitions for All Response Packet Formats
	4.3.2 Type 12 Packet Format (Reserved)
	4.3.3 Type 13 Packet Format (Response Class)
	4.3.4 Type 14 Packet Format (Reserved)
	4.3.5 Type 15 Packet Format (Implementation-Defined)

	Chapter 5 Globally Shared Memory Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register, Bit and Bit Field Value Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Source Operations CAR
	5.4.2 Destination Operations CAR

	5.5 Command and Status Registers (CSRs)

	Chapter 6 Communication Protocols
	6.1 Introduction
	6.2 Definitions
	6.2.1 General Definitions
	6.2.2 Request and Response Definitions

	6.3 Operation to Protocol Cross Reference
	6.4 Read Operations
	6.4.1 Internal Request State Machine
	6.4.2 Response State Machine
	6.4.3 External Request State Machine

	6.5 Instruction Read Operations
	6.5.1 Internal Request State Machine
	6.5.2 Response State Machine
	6.5.3 External Request State Machine

	6.6 Read for Ownership Operations
	6.6.1 Internal Request State Machine
	6.6.2 Response State Machine
	6.6.3 External Request State Machine

	6.7 Data Cache and Instruction Cache Invalidate Operations
	6.7.1 Internal Request State Machine
	6.7.2 Response State Machine
	6.7.3 External Request State Machine

	6.8 Castout Operations
	6.8.1 Internal Request State Machine
	6.8.2 Response State Machine
	6.8.3 External Request State Machine

	6.9 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations
	6.9.1 Internal Request State Machine
	6.9.2 Response State Machine
	6.9.3 External Request State Machine

	6.10 Data Cache Flush Operations
	6.10.1 Internal Request State Machine
	6.10.2 Response State Machine
	6.10.3 External Request State Machine

	6.11 I/O Read Operations
	6.11.1 Internal Request State Machine
	6.11.2 Response State Machine
	6.11.3 External Request State Machine

	Chapter 7 Address Collision Resolution Tables
	7.1 Introduction
	7.2 Resolving an Outstanding READ_HOME Transaction
	7.3 Resolving an Outstanding IREAD_HOME Transaction
	7.4 Resolving an Outstanding READ_OWNER Transaction
	7.5 Resolving an Outstanding READ_TO_OWN_HOME Transaction
	7.6 Resolving an Outstanding READ_TO_OWN_OWNER Transaction
	7.7 Resolving an Outstanding DKILL_HOME Transaction
	7.8 Resolving an Outstanding DKILL_SHARER Transaction
	7.9 Resolving an Outstanding IKILL_HOME Transaction
	7.10 Resolving an Outstanding IKILL_SHARER Transaction
	7.11 Resolving an Outstanding CASTOUT Transaction
	7.12 Resolving an Outstanding TLBIE or TLBSYNC Transaction
	7.13 Resolving an Outstanding FLUSH Transaction
	7.14 Resolving an Outstanding IO_READ_HOME Transaction
	7.15 Resolving an Outstanding IO_READ_OWNER Transaction

	Part 6 - LP-Serial Physical
	Chapter 1 Overview
	1.1 Introduction
	1.2 Contents
	1.3 Terminology
	1.4 Conventions

	Chapter 2 Packets
	2.1 Introduction
	2.2 Packet Field Definitions
	2.3 Packet Format
	2.4 Packet Protection
	2.4.1 Packet CRC Operation
	2.4.2 CRC-16 Code

	2.5 Maximum Packet Size

	Chapter 3 Control Symbols
	3.1 Introduction
	3.2 Control Symbol Field Definitions
	3.3 Control Symbol Format
	3.4 Stype0 Control Symbols
	3.4.1 Packet-Accepted Control Symbol
	3.4.2 Packet-Retry Control Symbol
	3.4.3 Packet-Not-Accepted Control Symbol
	3.4.4 Timestamp Control Symbol
	3.4.5 Status Control Symbol
	3.4.6 VC-Status Control Symbol
	3.4.7 Link-Response Control Symbol
	3.4.8 Loop-Response Control Symbol

	3.5 Stype1 Control Symbols
	3.5.1 Start-of-Packet Control Symbol
	3.5.2 Stomp Control Symbol
	3.5.3 End-of-Packet Control Symbol
	3.5.4 Restart-From-Retry Control Symbol
	3.5.5 Link-Request Control Symbol
	3.5.6 Timing Control Symbols

	3.6 Control Symbol Protection
	3.6.1 CRC-5 Code
	3.6.2 CRC-5 Parallel Code Generation
	3.6.3 CRC-13 Code
	3.6.4 CRC-13 Parallel Code Generation
	3.6.5 CRC-24 Code
	3.6.6 CRC-24 Parallel Code Generation

	Chapter 4 8b/10b PCS and PMA Layers
	4.1 Introduction
	4.2 PCS Layer Functions
	4.3 PMA Layer Functions
	4.4 Definitions
	4.5 8b/10b Transmission Code
	4.5.1 Character and Code-Group Notation
	4.5.2 Running Disparity
	4.5.3 Running Disparity Rules
	4.5.4 8b/10b Encoding
	4.5.5 Transmission Order
	4.5.6 8b/10b Decoding
	4.5.7 Special Characters and Columns
	4.5.8 Effect of Single Bit Code-Group Errors

	4.6 LP-Serial Link Widths
	4.7 Idle Sequence
	4.7.1 Clock Compensation Sequence
	4.7.2 Idle Sequence 1 (IDLE1)
	4.7.3 Idle Sequence 1 Generation
	4.7.4 Idle Sequence 2 (IDLE2)
	4.7.5 Idle Sequence Selection

	4.8 Scrambling
	4.8.1 Scrambling Rules
	4.8.2 Descrambler Synchronization
	4.8.3 Descrambler Synchronization Verification

	4.9 1x Mode Transmission Rules
	4.9.1 1x Ports
	4.9.2 Nx Ports Operating in 1x Mode

	4.10 Nx Link Striping and Transmission Rules
	4.11 Retimers and Repeaters
	4.11.1 Retimers
	4.11.2 Repeaters

	4.12 Port Initialization
	4.12.1 1x Mode Initialization
	4.12.2 1x/Nx Mode Initialization
	4.12.3 Baud Rate Discovery
	4.12.4 State Machines

	4.13 Structurally Asymmetric Links
	4.13.1 Definitions
	4.13.2 Structurally Asymmetric Link Operation

	4.14 Pseudo Random Binary Sequence Testing

	Chapter 5 64b/67b PCS and PMA Layers
	5.1 Introduction
	5.2 PCS Layer Functions
	5.3 PMA Layer Functions
	5.4 Definitions
	5.5 64b/67b Transmission Code
	5.5.1 Codeword Format
	5.5.2 Data Codeword
	5.5.3 Control Codeword
	5.5.4 Scrambling
	5.5.5 Selective Codeword Inversion
	5.5.6 Lane Check Calculation
	5.5.7 Transmission Order

	5.6 Packet Transmission Rules
	5.6.1 Link CRC-32 Code

	5.7 Packet Delimiting and Alignment
	5.7.1 Packet Start Delimiter
	5.7.2 Packet Termination Delimiters

	5.8 Control Symbol Transmission Rules
	5.9 Ordered Sequences
	5.9.1 Seed Ordered Sequence
	5.9.2 Status/Control Ordered Sequence
	5.9.3 Skip Ordered Sequence

	5.10 Idle Sequence
	5.10.1 Idle Sequence 3 (IDLE3)
	5.10.2 Idle Sequence 3 Generation

	5.11 Adaptive Equalization
	5.11.1 Lane Training/Retraining
	5.11.2 Ports Operating at 10.3125 and 12.5 Gbaud

	5.12 LP-Serial Link Widths
	5.13 Transmission Rules
	5.13.1 Order of Operation
	5.13.2 1x Ports
	5.13.3 Nx Ports Operating in 1x Mode
	5.13.4 Kx Link Striping and Transmission Rules

	5.14 Effect of Transmission Errors and Error Detection
	5.15 Retimers and Repeaters
	5.15.1 Retimers
	5.15.2 Repeaters

	5.16 Port Initialization
	5.16.1 1x Mode Initialization
	5.16.2 1x/Nx Mode Initialization
	5.16.3 Baud Rate Discovery

	5.17 Asymmetric Operation
	5.17.1 Port Transmission Width
	5.17.2 Port Receive Width

	5.18 Structurally Asymmetric Links
	5.19 State Machines
	5.19.1 State Machine Conventions, Functions and Variables
	5.19.2 Frame_Lock State Machine
	5.19.3 Lane Training State Machines
	5.19.4 Codeword Lock State Machine
	5.19.5 Lane Synchronization State Machine
	5.19.6 Lane Alignment State Machine
	5.19.7 Port Initialization State Machine
	5.19.8 Retrain/Transmit_Width_Control State Machine
	5.19.9 Transmit Width State Machines
	5.19.10 Receive Width State Machines

	5.20 Pseudo Random Binary Sequence Testing

	Chapter 6 LP-Serial Protocol
	6.1 Introduction
	6.2 Packet Exchange Protocol
	6.3 Traffic types
	6.4 Virtual Channels
	6.4.1 Virtual channel 0 (VC0)
	6.4.2 Virtual Channels 1-8 (VC1-8)
	6.4.3 Virtual Channel Utilization

	6.5 Control Symbols
	6.5.1 Control Symbol Selection
	6.5.2 Control Symbol Delimiting
	6.5.3 Control Symbol Use

	6.6 Packets
	6.6.1 Packet Delimiting
	6.6.2 Acknowledgment Identifier
	6.6.3 Packet Priority and Transaction Request Flows

	6.7 Link Maintenance Protocol
	6.8 Packet Transmission Protocol
	6.9 Flow Control
	6.9.1 Receiver-Controlled Flow Control
	6.9.2 Transmitter-Controlled Flow Control
	6.9.3 Flow Control Mode Negotiation

	6.10 Canceling Packets
	6.11 Transaction and Packet Delivery Ordering Rules
	6.12 Deadlock Avoidance
	6.13 Error Detection and Recovery
	6.13.1 Lost Packet Detection
	6.13.2 Link Behavior Under Error

	6.14 Power Management

	Chapter 7 LP-Serial Registers
	7.1 Introduction
	7.2 Register Map
	7.3 Reserved Register, Bit and Bit Field Value Behavior
	7.4 Capability Registers (CARs)
	7.4.1 Processing Element Features CAR

	7.5 LP-Serial Extended Feature Blocks
	7.5.1 Generic Endpoint Devices
	7.5.2 Generic Endpoint Devices, Software-assisted Error Recovery Option
	7.5.3 Generic Endpoint Free Devices
	7.5.4 Generic Endpoint Free Devices, Software-assisted Error Recovery Option
	7.5.5 Register Map - I
	7.5.6 Register Map - II

	7.6 LP-Serial Command and Status Registers (CSRs)
	7.6.1 LP-Serial Register Block Header
	7.6.2 Port Link Timeout Control CSR
	7.6.3 Port Response Timeout Control CSR
	7.6.4 Port General Control CSR
	7.6.5 Port n Link Maintenance Request CSRs
	7.6.6 Port n Link Maintenance Response CSRs
	7.6.7 Port n Local ackID CSRs
	7.6.8 Port n Initialization Status CSRs
	7.6.9 Port n Control 2 CSRs
	7.6.10 Port n Error and Status CSRs
	7.6.11 Port n Control CSRs
	7.6.12 Port n Outbound ackID CSRs
	7.6.13 Port n Inbound ackID CSRs
	7.6.14 Port n Power Management CSRs
	7.6.15 Port n Latency Optimization CSRs
	7.6.16 Port n Link Timers Control CSRs
	7.6.17 Port n Link Timers Control 2 CSRs
	7.6.18 Port n Link Timers Control 3 CSRs

	7.7 LP-Serial Lane Extended Features Block
	7.7.1 Register Map
	7.7.2 LP-Serial Lane Command and Status Registers (CSRs)

	7.8 Virtual Channel Extended Features Block
	7.8.1 Register Map
	7.8.2 Virtual Channel Control Block Registers

	7.9 Timestamp Generation Extension Block
	7.9.1 Timestamp Generation Extension Block Header
	7.9.2 Timestamp CAR
	7.9.3 Timestamp Generator Status CSR
	7.9.4 MECS Tick Interval CSR
	7.9.5 MECS Next Timestamp MSW CSR
	7.9.6 MECS Next Timestamp LSW CSR
	7.9.7 Timestamp Generator MSW CSR
	7.9.8 Timestamp Generator LSW CSR
	7.9.9 Port n Timestamp 0 MSW CSRs
	7.9.10 Port n Timestamp 0 LSW CSRs
	7.9.11 Port n Timestamp 1 MSW CSRs
	7.9.12 Port n Timestamp 1 LSW CSRs
	7.9.13 Port n Timestamp Generator Synchronization CSRs
	7.9.14 Port n Auto Update Counter CSRs
	7.9.15 Port n Timestamp Synchronization Command CSRs
	7.9.16 Port n Timestamp Synchronization Status CSRs
	7.9.17 Port n Timestamp Offset CSRs

	7.10 Miscellaneous Physical Layer Extension Block
	7.10.1 Miscellaneous Physical Layer Extension Block Header
	7.10.2 Miscellaneous Physical Layer CAR
	7.10.3 Port n Reinit Control CSR
	7.10.4 Port n SAL Control and Status CSR
	7.10.5 Port n SMECS Control CSR
	7.10.6 Port n PRBS Control CSR
	7.10.7 Port n PRBS Lane Control CSR
	7.10.8 Port n PRBS Status 0 CSR
	7.10.9 Port n PRBS Status 1 CSR
	7.10.10 Port n PRBS Locked Time CSR
	7.10.11 Port n PRBS Seed CSR

	Chapter 8 Signal Descriptions
	8.1 Introduction
	8.2 Signal Definitions
	8.3 Serial RapidIO Interface Diagrams

	Chapter 9 Common Electrical Specifications for less than 6.5 Gbaud LP-Serial Links
	9.1 Introduction
	9.2 References
	9.3 Abbreviations
	9.4 Definitions
	9.4.1 Definition of Amplitude and Swing
	9.4.2 Transmitter (Near-End) Template
	9.4.3 Receiver (Far-End) Template
	9.4.4 Definition of Skew and Relative Wander
	9.4.5 Total Wander Mask
	9.4.6 Relative Wander Mask
	9.4.7 Random Jitter Mask
	9.4.8 Defined Test Patterns
	9.4.9 Reference Model

	9.5 Common Electrical Specification
	9.5.1 Introduction
	9.5.2 Data Patterns
	9.5.3 Signal Levels
	9.5.4 Bit Error Ratio
	9.5.5 Ground Differences
	9.5.6 Cross Talk
	9.5.7 Transmitter Test Load
	9.5.8 Transmitter Lane-to-Lane Skew
	9.5.9 Receiver Input Lane-to-Lane Skew
	9.5.10 Transmitter Short Circuit Current
	9.5.11 Differential Resistance and Return Loss, Transmitter and Receiver
	9.5.12 Baud Rate Tolerance
	9.5.13 Termination and DC Blocking

	9.6 Pulse Response Channel Modelling
	9.6.1 Generating a Pulse Response
	9.6.2 Basic Pulse Response Definitions
	9.6.3 Transmitter Pulse Definition
	9.6.4 Receiver Pulse Response
	9.6.5 Crosstalk Pulse Response
	9.6.6 Decision Feedback Equalizer
	9.6.7 Time Continuous Transverse Filter
	9.6.8 Time Continuous Zero/Pole
	9.6.9 Degrees of Freedom

	9.7 Jitter Modelling
	9.7.1 High Frequency Jitter vs. Wander
	9.7.2 Total Wander vs. Relative Wander
	9.7.3 Correlated vs. Uncorrelated Jitter
	9.7.4 Jitter Distributions
	9.7.5 Statistical Eye Methodology

	Chapter 10 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud LP-Serial Links
	10.1 Level I Application Goals
	10.2 Equalization
	10.3 Explanatory Note on Level I Transmitter and Receiver Specifications
	10.4 Level I Electrical Specification
	10.4.1 Level I Short Run Transmitter Characteristics
	10.4.2 Level I Long Run Transmitter Characteristics
	10.4.3 Level I Receiver Specifications

	10.5 Level I Measurement and Test Requirements
	10.5.1 Level I Transmitter Measurements
	10.5.2 Level I Receiver Jitter Tolerance

	Chapter 11 5 Gbaud and 6.25 Gbaud LP-Serial Links
	11.1 Level II Application Goals
	11.1.1 Common to Level II Short run, Medium run and Long run
	11.1.2 Application Goals for Level II Short Run
	11.1.3 Application Goals for Level II Medium Run
	11.1.4 Application Goals for Long Run
	11.1.5 Explanatory Note on Transmitter and Receiver Specifications

	11.2 Equalization
	11.3 Link Compliance Methodology
	11.3.1 Overview
	11.3.2 Reference Models
	11.3.3 Channel Compliance
	11.3.4 Transmitter Compliance
	11.3.5 Receiver Compliance

	11.4 Level II Short Run Interface - General Requirements
	11.4.1 Jitter and Inter-operability Methodology
	11.4.2 Level II SR Electrical Characteristics
	11.4.3 Level II SR StatEye.org Template

	11.5 Level II Long Run Interface General Requirements
	11.5.1 Long Run Jitter and Inter-operability Methodology
	11.5.2 Level II LR Interface Electrical Characteristics
	11.5.3 Level II LR Link and Jitter Budgets
	11.5.4 Level II LR StatEye.org Template

	11.6 Level II Medium Run Interface General Requirements
	11.6.1 Medium Run Jitter and Inter-operability Methodology
	11.6.2 Level II MR Interface Electrical Characteristics
	11.6.3 Level II MR Link and Jitter Budgets
	11.6.4 Level II MR StatEye.org Template

	11.7 Level II Measurement and Test Requirements
	11.7.1 High Frequency Transmit Jitter Measurement
	11.7.2 Total Transmit Wander Measurement
	11.7.3 Relative Transmit Wander Measurement
	11.7.4 Jitter Tolerance

	Chapter 12 Electrical Specification for 10.3125 and 12.5 Gbaud LP-Serial Links
	12.1 References
	12.2 Level III Application Goals
	12.2.1 Common to Level III Short run and Long run
	12.2.2 Application Goals for Level III Short Run
	12.2.3 Application Goals for Long Run

	12.3 Equalization
	12.3.1 Receiver
	12.3.2 Transmitter

	12.4 Level III Electrical Specification
	12.4.1 Level III Short Run
	12.4.2 Level III Long Run
	12.4.3 Level III Transmitter Lane-to-Lane Skew
	12.4.4 Receiver Input Lane-to-Lane Skew
	12.4.5 Electrical IDLE

	Annex A Transmission Line Theory and Channel Information (Informative)
	A.1 Transmission Lines Theory
	A.2 Impedance Matching
	A.3 Impedance Definition Details
	A.4 Density considerations
	A.5 Common-Mode Impedance and Return Loss
	A.6 Crosstalk Considerations
	A.7 Equation Based Channel Loss by Curve Fit

	Annex B BER Adjustment Methodology (Informative)
	B.1 Extrapolation of Correlated Bounded Gaussian Jitter to low BERs
	B.1.1 Bathtub Measurements

	B.2 Confidence Level of Errors Measurement
	B.3 Eye Mask Adjustment for Sampling Oscilloscopes
	B.3.1 Theory
	B.3.2 Usage

	Annex C Interface Management (Informative)
	C.1 Introduction
	C.2 Packet Retry Mechanism
	C.2.1 Input port retry recovery state machine
	C.2.2 Output port retry recovery state machine

	C.3 Error Recovery
	C.3.1 Input port error recovery state machine
	C.3.2 Output port error recovery state machine
	C.3.3 Changes in Error Recovery Behavior for CT

	Annex D Critical Resource Performance Limits (Informative)
	D.1 IDLE1 and IDLE2
	D.2 IDLE3

	Annex E Manufacturability and Testability (Informative)
	Annex F Multiple Port Configuration Example (Informative)
	F.1 Introduction
	F.2 System with Different Port Width Capabilities

	Annex G MECS Time Synchronization (Informative)
	G.1 Introduction
	G.2 Detection of Missing MECS
	G.3 MECS and SMECS Redundant Operation
	G.4 Detection of (S)MECS Source Failure

	Part 7 - System and Device Interoperability
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview

	Chapter 2 System Exploration and Initialization
	2.1 Introduction
	2.2 Boot code access
	2.3 Exploration and initialization
	2.3.1 Exploration and initialization rules
	2.3.2 Exploration and initialization algorithm
	2.3.3 Exploration and initialization example

	Chapter 3 RapidIO Device Class Requirements
	3.1 Introduction
	3.2 Class Partitioning
	3.2.1 Generic: All devices
	3.2.2 Class 1: Simple target device
	3.2.3 Class 2: Simple mastering device
	3.2.4 Class 3: Complex mastering device

	3.3 Space Device Definition
	3.3.1 Basic Space Device Requirements
	3.3.2 Enhanced Space Device Requirements
	3.3.3 Space-10xN Device Requirements
	3.3.4 Space Switch Device Requirements
	3.3.5 Space Endpoint Device Requirements
	3.3.6 Space Endpoint-E Device Requirements

	Chapter 4 PCI Considerations
	4.1 Introduction
	4.2 Address Map Considerations
	4.3 Transaction Flow
	4.3.1 PCI 2.2 Transaction Flow
	4.3.2 PCI-X Transaction Flow

	4.4 RapidIO to PCI Transaction Mapping
	4.5 Operation Ordering and Transaction Delivery
	4.5.1 Operation Ordering
	4.5.2 Transaction Delivery Ordering
	4.5.3 PCI-X Relaxed Ordering Considerations

	4.6 Interactions with Globally Shared Memory
	4.6.1 I/O Read Operation Details
	4.6.2 Data Cache Flush Operation Details

	4.7 Byte Lane and Byte Enable Usage
	4.8 Error Management

	Chapter 5 Globally Shared Memory Devices
	5.1 Introduction
	5.2 Processing Element Behavior
	5.2.1 Processor-Memory Processing Element
	5.2.2 Memory-only Processing Element
	5.2.3 Processor-only Processing Element
	5.2.4 I/O Processing Element
	5.2.5 Switch Processing Element

	5.3 Transaction to Priority Mappings

	Part 8 - Error Management-Hot Swap
	Chapter 1 Error Management Extensions
	1.1 Introduction
	1.2 Physical Layer Extensions
	1.2.1 Port n Error Detect, Enable, and Capture CSRs
	1.2.2 Error Reporting Thresholds
	1.2.3 Error Rate Control and Status
	1.2.4 Port Behavior When Error Rate Failed Threshold is Reached
	1.2.5 Packet Timeout Mechanism in a Switch Device
	1.2.6 Hot Swap Extensions
	1.2.7 Physical Layer Multiple Event Capture

	1.3 Logical and Transport Layer Extensions
	1.3.1 Logical/Transport Error Detect, Enable, and Capture CSRs
	1.3.2 Message Passing Error Detection
	1.3.3 Other Logical Layer Errors
	1.3.4 Logical/Transport Layer Multiple Event Capture

	1.4 System Software Notification of Error
	1.5 Mechanisms for Software Debug
	1.6 IDLE3 Port_Status Extension

	Chapter 2 Error Management Registers
	2.1 Introduction
	2.2 Additions to Existing Registers
	2.2.1 Port n Control CSRs
	2.2.2 Port n Error and Status CSRs

	2.3 New Error Management Registers
	2.4 Register Map
	2.5 Command and Status Registers (CSRs)
	2.5.1 Error Management Extensions Block Header
	2.5.2 Error Management/Hot Swap Extension Block CAR
	2.5.3 Logical/Transport Layer Error Detect CSR
	2.5.4 Logical/Transport Layer Error Enable CSR
	2.5.5 Logical/Transport Layer High Address Capture CSR
	2.5.6 Logical/Transport Layer Address Capture CSR
	2.5.7 Logical/Transport Layer Device ID Capture CSR
	2.5.8 Logical/Transport Layer Control Capture CSR
	2.5.9 Logical/Transport Layer Dev32 Destination ID Capture CSR
	2.5.10 Logical/Transport Layer Dev32 Source ID Capture CSR
	2.5.11 Port-Write Target deviceID CSR
	2.5.12 Packet Time-to-live CSR
	2.5.13 Port-write Dev32 Target deviceID CSR
	2.5.14 Port-Write Transmission Control CSR
	2.5.15 Port n Error Detect CSR
	2.5.16 Port n Error Rate Enable CSR
	2.5.17 Port n Attributes Capture CSR
	2.5.18 Port n Capture 0 CSR
	2.5.19 Port n Capture 1 CSR
	2.5.20 Port n Capture 2 CSR
	2.5.21 Port n Capture 3 CSR
	2.5.22 Port n Capture 4 CSR
	2.5.23 Port n Error Rate CSR
	2.5.24 Port n Error Rate Threshold CSR
	2.5.25 Port n Link Uninit Discard Timer CSR
	2.5.26 Port n FIFO Error Detect CSR

	Annex A Error Management Discussion (Informative)
	A.1 Introduction
	A.2 Limitations of Error Management Discussion
	A.3 Hot-insertion/extraction Discussion
	A.4 Port-write Discussion
	A.5 Physical Layer Fatal Error Recovery Discussion

	Part 9 - Flow Control Logical
	Chapter 1 Flow Control Overview
	1.1 Congestion Management
	1.1.1 Introduction
	1.1.2 Requirements
	1.1.3 Problem Illustration

	1.2 Flow Arbitration
	1.2.1 Fixed / Static Resource Allocation
	1.2.2 Dynamic Resource Allocation Protocol

	Chapter 2 Logical Layer Flow Control Operation
	2.1 Fabric Link Congestion
	2.2 Flow Arbitration
	2.2.1 Arbitration Protocol
	2.2.2 Number Of Outstanding Requests

	2.3 Flow Control Operation
	2.4 Physical Layer Requirements
	2.4.1 Fabric Topology
	2.4.2 Flow Control Transaction Transmission
	2.4.3 Priority to Transaction Request Flow Mapping
	2.4.4 Flow Control Transaction Ordering Rules
	2.4.5 End Point Congestion Management Rules
	2.4.6 Switch Congestion Management Rules
	2.4.7 Endpoint Rules for the Arbitration Protocol
	2.4.8 Abnormal De-allocation of Resources

	Chapter 3 Packet Format Descriptions
	3.1 Introduction
	3.2 Logical Layer Packet Format
	3.3 Flow Arbitration Message Fields (FAM)
	3.4 Transport and Physical Layer Packet Format

	Chapter 4 Logical Layer Flow Control Extensions Register Bits
	4.1 Introduction
	4.2 Capability Registers (CARs)
	4.2.1 Processing Elements Features CAR
	4.2.2 Port n Control CSR

	Annex A Flow Control Examples (Informative)
	A.1 Congestion Detection and Remediation
	A.2 Orphaned XOFF Mechanism Description
	A.3 Discussion on Flow Arbitration

	Part 10 - Data Streaming Logical
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Data Streaming Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions
	1.7 Useful References

	Chapter 2 Data Streaming Systems
	2.1 Introduction
	2.2 System Example
	2.3 Traffic Streams
	2.4 Operation Ordering
	2.5 Class of Service and Virtual Queues
	2.6 End-to-end Traffic Management
	2.7 Deadlock Considerations

	Chapter 3 Operation Descriptions
	3.1 Introduction
	3.2 Data Streaming Protocol
	3.2.1 Data Streaming Operation
	3.2.2 Virtual Streams
	3.2.3 PDU Sequences Within Streams
	3.2.4 Segments within a PDU
	3.2.5 Rules for Segmentation and Reassembly

	3.3 Class of Service and Traffic Streams
	3.4 Traffic Management
	3.4.1 Traffic Management Operand
	3.4.2 On/Off Traffic Management
	3.4.3 Rate Base Traffic Management
	3.4.4 Credit Based Traffic Management
	3.4.5 Rules for Traffic Management

	Chapter 4 Packet Format Descriptions
	4.1 Introduction
	4.2 Type 9 Packet Format (Data-Streaming Class)
	4.3 Type 9 Extended Packet Format
	4.3.1 TM Operand
	4.3.2 Basic Traffic Management
	4.3.3 Rate Based Traffic Management
	4.3.4 Credit Based Traffic Management

	Chapter 5 Data Streaming Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register, Bit and Bit Field Value Behavior
	5.4 Additions to Existing Registers
	5.5 Capability Registers (CARs)
	5.5.1 Source Operations CAR
	5.5.2 Destination Operations CAR
	5.5.3 Data Streaming Information CAR

	5.6 Command and Status Registers (CSRs)
	5.6.1 Data Streaming Logical Layer Control CSR

	Annex A VSID Usage Examples
	A.1 Introduction
	A.2 Background
	A.3 Packet Classification
	A.3.1 Sub-port Addressing at the Destination
	A.3.2 Virtual Output Queueing - Fabric On-ramp

	A.4 System Requirements
	A.4.1 UTOPIA to RapidIO ATM bridge
	A.4.2 Network processor
	A.4.3 CSIX to RapidIO interface
	A.4.4 10Gb Metropolitan Area Network interface

	Part 11 - Multicast Exntesions
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Requirements

	Chapter 2 Multicast Extensions Behavior
	2.1 Introduction
	2.2 Packet Replication
	2.3 Multicast Operation
	2.4 Multicast Transaction Ordering Requirements

	Chapter 3 Multicast Extensions Registers
	3.1 Introduction
	3.2 Capability Registers (CARs)
	3.2.1 Processing Elements Features CAR
	3.2.2 Switch Multicast Support CAR
	3.2.3 Switch Multicast Information CAR

	3.3 Command and Status Registers (CSRs)
	3.3.1 Multicast Mask Port CSR
	3.3.2 Multicast Associate Select CSR
	3.3.3 Multicast Associate Operation CSR

	3.4 Switch Routing Table Register Block
	3.4.1 Register Map
	3.4.2 Broadcast Routing Table Control CSR
	3.4.3 Broadcast Multicast Info CSR
	3.4.4 Port n Routing Table Control CSR
	3.4.5 Port n Multicast Info CSR
	3.4.6 Broadcast Multicast Mask x Set Register y CSR
	3.4.7 Broadcast Multicast Mask x Clear Register y CSR
	3.4.8 Port n Multicast Mask x Set Register y CSR
	3.4.9 Port n Multicast Mask x Clear Register y CSR

	Chapter 4 Configuration Examples
	4.1 Introduction
	4.2 Configuring Multicast Masks
	4.2.1 Clearing Multicast Masks
	4.2.2 Assigning Ports to Multicast Masks
	4.2.3 Removing a Port from a Multicast Mask
	4.2.4 Querying a Multicast Mask

	4.3 Simple Association
	4.3.1 Restrictions on Block Size
	4.3.2 Restrictions on Block Associate
	4.3.3 Restrictions on Associations

	4.4 Configuring Associations
	4.4.1 Basic Association
	4.4.2 Using Per-Ingress Port Association
	4.4.3 Using Block Association
	4.4.4 Using Per-Ingress Port and Block Association
	4.4.5 Removing a Destination ID to Multicast Mask Association
	4.4.6 Querying an Association

	Annex A End Point Considerations (Informative)
	A.1 Introduction
	A.2 Multicast Destination ID
	A.3 End Point Multicast Channels

	Annex B Multicast Applications (Informative)
	B.1 Introduction
	B.2 Example 1 - Static Multicast Masks
	B.3 Example 2 - Linking Multicast Masks to Destination IDs

	Part 12 - VOQ Extensions
	Chapter 1 Introduction
	1.1 Problem Illustration 9
	1.2 Terminology 10
	1.3 Conventions 10

	Chapter 2 Overview
	2.1 Congestion Message 13
	2.2 Traffic Staging 14
	2.3 Adding Device Independence 15
	2.4 Relationship With Virtual Channels 16
	2.5 Additional Queueing Considerations 16

	Chapter 3 Control Symbol Format
	3.1 Stype2 Control Symbol 48 19
	3.2 Control Symbol 64 VoQ Backpressure 20
	3.3 VoQ Backpressure per VC 22

	Chapter 4 Rules
	4.1 Implementation Rules 23
	4.2 Rules for Generating Backpressure Control Symbols 23
	4.3 Rules for Interpreting Backpressure Control Symbols 24

	Chapter 5 Register Definitions
	5.1 VoQ Backpressure Extended Features Block 25
	5.1.1 Register Map 25
	5.1.2 VoQ Backpressure Control Block Registers 26
	5.1.2.1 LP-Serial VC Register Block Header 26
	5.1.2.2 Port n VoQ Control Status Register 27

	Chapter 1 Introduction
	1.1 Problem Illustration
	1.2 Terminology
	1.3 Conventions

	Chapter 2 Overview
	2.1 Congestion Message
	2.2 Traffic Staging
	2.3 Adding Device Independence
	2.4 Relationship With Virtual Channels
	2.5 Additional Queueing Considerations

	Chapter 3 Control Symbol Format
	3.1 Stype2 Control Symbol 48
	3.2 Control Symbol 64 VoQ Backpressure
	3.3 VoQ Backpressure per VC

	Chapter 4 Rules
	4.1 Implementation Rules
	4.2 Rules for Generating Backpressure Control Symbols
	4.3 Rules for Interpreting Backpressure Control Symbols

	Chapter 5 Register Definitions
	5.1 VoQ Backpressure Extended Features Block
	5.1.1 Register Map
	5.1.2 VoQ Backpressure Control Block Registers

	Annex 1 - Software-System Bring Up
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Scope
	1.4 System Enumeration API
	1.5 Terminology
	1.6 Software Conventions

	Chapter 2 Requirements for System Bring Up
	2.1 Introduction
	2.2 Boot Requirements
	2.3 Enumeration Completion
	2.4 Enumeration Time-Out
	2.5 Function Return Codes

	Chapter 3 Hardware Abstraction Layer
	3.1 Introduction
	3.2 Device Addressing
	3.3 HAL Functions
	3.3.1 Types and Definitions
	3.3.2 rioGetNumLocalPorts
	3.3.3 rioConfigurationRead
	3.3.4 rioConfigurationWrite

	Chapter 4 Standard Bring Up Functions
	4.1 Introduction
	4.2 Data Structures
	4.3 Bring Up Functions
	4.3.1 rioInitLib
	4.3.2 rioGetFeatures
	4.3.3 rioGetSwitchPortInfo
	4.3.4 rioGetExtFeaturesPtr
	4.3.5 rioGetNextExtFeaturesPtr
	4.3.6 rioGetSourceOps
	4.3.7 rioGetDestOps
	4.3.8 rioGetAddressMode
	4.3.9 rioGetBaseDeviceId
	4.3.10 rioSetBaseDeviceId
	4.3.11 rioAcquireDeviceLock
	4.3.12 rioReleaseDeviceLock
	4.3.13 rioGetComponentTag
	4.3.14 rioSetComponentTag
	4.3.15 rioGetPortErrStatus

	Chapter 5 Routing-Table Manipulation Functions
	5.1 Introduction
	5.2 Routing Table Functions
	5.2.1 rioRouteAddEntry
	5.2.2 rioRouteGetEntry

	Chapter 6 Device Access Routine Interface
	6.1 Introduction
	6.2 DAR Packaging
	6.3 Execution Environment
	6.4 Type Definitions
	6.5 DAR Functions
	6.5.1 rioDar_nameGetFunctionTable
	6.5.2 rioDarInitialize
	6.5.3 rioDarTerminate
	6.5.4 rioDarTestMatch
	6.5.5 rioDarRegister
	6.5.6 rioDarGetMemorySize
	6.5.7 rioDarGetSwitchInfo
	6.5.8 rioDarSetPortRoute
	6.5.9 rioDarGetPortRoute

	Annex A System Bring Up Guidelines (Informative)
	A.1 Introduction
	A.2 Overview of the System Bring Up Process
	A.3 System Enumeration Algorithm
	A.3.1 Data Structures, Constants, and Global Variables
	A.3.2 Pseudocode

	A.4 System Bring Up Example

	Annex 2 - Session Mgt Protocol
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Session Management Protocol
	1.4 Contents
	1.5 Terminology
	1.6 Conventions
	1.7 Useful References

	Chapter 2 Managing Data Streams
	2.1 Introduction
	2.2 System Example
	2.3 Establishing Data Streams
	2.4 Data Streaming System Configurations

	Chapter 3 Session Management Operation
	3.1 Introduction
	3.2 Initialization of Session Management Advertisement CSRs
	3.3 Contacting a Participating End point
	3.4 Establishing Conduits
	3.4.1 Master/Slave Configuration Conduit Establishment
	3.4.2 Peers Configuration Conduit Establishment
	3.4.3 Conduit Establishment Algorithm

	3.5 Management Messages
	3.5.1 Session Management Message Types
	3.5.2 Message Header Fields
	3.5.3 Session Management Protocol Attributes

	3.6 Message Sequence Examples
	3.6.1 Stream Initiation
	3.6.2 Refusal to Initiate a Stream
	3.6.3 Stream Shutdown
	3.6.4 Uses of the STATUS command
	3.6.5 Use of the FLOW_CONTROL Command

	3.7 Session Management Error Conditions and Recovery
	3.7.1 Message Loss
	3.7.2 Session Management Protocol Congestion Management
	3.7.3 Session Management Protocol Non-Compliance

	3.8 Rules for Session Management
	3.8.1 Optional Features
	3.8.2 Attribute Related Rules
	3.8.3 Rules Related to Virtual Stream Status
	3.8.4 Rules Related to Vendor-Specific Commands
	3.8.5 Rules Related to Reserved Fields

	3.9 Notes on Optional Features and Inter-Operability
	3.9.1 Optional Attributes
	3.9.2 REQUEST and ADVERTISE

	Chapter 4 Message Format Descriptions
	4.1 Introduction
	4.2 Control Message Formats
	4.2.1 REQUEST
	4.2.2 ADVERTISE
	4.2.3 OPEN
	4.2.4 ACCEPT
	4.2.5 REFUSE
	4.2.6 FLOW_CONTROL
	4.2.7 CLOSE
	4.2.8 STATUS
	4.2.9 User Defined

	4.3 Data Formats
	4.3.1 DATA Message Format, MAILBOX
	4.3.2 DATA1 Message Format, Large PDU
	4.3.3 DATA2 Message Format
	4.3.4 DATA3 Zero-length DATA header
	4.3.5 Data Streaming

	Chapter 5 Registers
	5.1 Introduction
	5.2 Session Management Protocol Extended Features Register Block
	5.2.1 Session Management Protocol Register Block Header (Block Offset 0x0)
	5.2.2 Session Management Protocol Register Write Enable CSR (Block Offset 0x4)
	5.2.3 Session Management Advertisement CSR (Block Offset 0x8)
	5.2.4 Session Management Attribute Range CSR (Block Offset 0xC)
	5.2.5 Session Management Protocol Attributes 0-508 CSRs (Block Offset 0x10-0x7F8)

	5.3 Component Tag CSR Session Management Protocol Advertisement

	Chapter 6 Vendor-Defined Protocols
	6.1 ProtoID
	6.2 Attributes
	6.2.1 VENDOR attribute
	6.2.2 PROTOCOL_NAME attribute
	6.2.3 Other attributes

	6.3 Other Requirements for Vendor-Defined Protocols

	Chapter 7 Ethernet Encapsulation
	7.1 ProtoID
	7.2 Attributes
	7.2.1 MTU Attribute
	7.2.2 CONVEYANCE Attribute
	7.2.3 MAC_ADDRESS Attribute

	7.3 Other Requirements of Ethernet Encapsulation
	7.3.1 Dropped Messages
	7.3.2 Broadcast
	7.3.3 Ingress/Egress Nodes

