
Rev. 2.2, 06/2011

© Copyright RapidIO Trade Association

RapidIO™ Interconnect Specification 
Annex 1: Software/System Bring Up 

Specification
RapidIO Trade Association



NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE 
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND 
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO 
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE.  USER AGREES TO 
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION.  WITHOUT LIMITING THE 
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR 
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER 
SUCH USE OF THE SPECIFICATION.

DISCLAIMER OF LIABILITY.  THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, 
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST 
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION 
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE 
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:

RapidIO Trade Association
12343 Hymeadow, Suite 2-R
(non-US mail deliveries to Suite 3-E)
Austin, TX 78750
512-401-2900 Tel.
512-401-2902 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their 

Revision History

Revision Description Date

1.0 First release 12/17/2003

1.3 Technical changes: the following errata showings:
04-09-00020.001, 04-09-00023.001
Converted to ISO-friendly templates
Revision bumped to align with the rest of the specification stack

02/23/2005

1.3 Removed confidentiality markings for public release 06/07/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.0 Removed confidentiality markings for public release 03/06/2008

2.1 Technical changes: Errata showing 08-06-00000.000 MM/DD/200Y

2.1 Removed confidentiality markings for public release 08/13/2009

2.2 No technical changes 05/05/2011

2.2 Removed confidentiality markings for public release 06/06/2011
RapidIO Trade Association

respective owners.



Table of Contents

RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 1  Overview

1.1 Introduction............................................................................................................. 7
1.2 Overview................................................................................................................. 7
1.3 Scope....................................................................................................................... 7
1.4 System Enumeration API........................................................................................ 8
1.5 Terminology............................................................................................................ 8
1.6 Software Conventions............................................................................................. 8

Chapter 2  Requirements for System Bring Up

2.1 Introduction............................................................................................................. 9
2.2 Boot Requirements ................................................................................................. 9
2.3 Enumeration Completion...................................................................................... 10
2.4 Enumeration Time-Out ......................................................................................... 10
2.5 Function Return Codes ......................................................................................... 11

Chapter 3  Hardware Abstraction Layer

3.1 Introduction........................................................................................................... 13
3.2 Device Addressing................................................................................................ 13
3.3 HAL Functions ..................................................................................................... 14
3.3.1 Types and Definitions....................................................................................... 14
3.3.2 rioGetNumLocalPorts....................................................................................... 14
3.3.3 rioConfigurationRead ....................................................................................... 15
3.3.4 rioConfigurationWrite ...................................................................................... 16

Chapter 4  Standard Bring Up Functions

4.1 Introduction........................................................................................................... 17
4.2 Data Structures...................................................................................................... 17
4.3 Bring Up Functions............................................................................................... 18
4.3.1 rioInitLib........................................................................................................... 18
4.3.2 rioGetFeatures................................................................................................... 19
4.3.3 rioGetSwitchPortInfo........................................................................................ 20
4.3.4 rioGetExtFeaturesPtr ........................................................................................ 21
4.3.5 rioGetNextExtFeaturesPtr................................................................................. 22
4.3.6 rioGetSourceOps............................................................................................... 23
4.3.7 rioGetDestOps .................................................................................................. 24
4.3.8 rioGetAddressMode.......................................................................................... 25
4.3.9 rioGetBaseDeviceId.......................................................................................... 26
4.3.10 rioSetBaseDeviceId .......................................................................................... 27
RapidIO Trade Association 3



Table of Contents

RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.11 rioAcquireDeviceLock...................................................................................... 28
4.3.12 rioReleaseDeviceLock...................................................................................... 29
4.3.13 rioGetComponentTag ....................................................................................... 30
4.3.14 rioSetComponentTag........................................................................................ 31
4.3.15 rioGetPortErrStatus........................................................................................... 32

Chapter 5  Routing-Table Manipulation Functions

5.1 Introduction........................................................................................................... 33
5.2 Routing Table Functions....................................................................................... 34
5.2.1 rioRouteAddEntry............................................................................................. 34
5.2.2 rioRouteGetEntry.............................................................................................. 35

Chapter 6  Device Access Routine Interface

6.1 Introduction........................................................................................................... 37
6.2 DAR Packaging .................................................................................................... 37
6.3 Execution Environment ........................................................................................ 37
6.4 Type Definitions ................................................................................................... 38
6.5 DAR Functions ..................................................................................................... 39
6.5.1 rioDar_nameGetFunctionTable........................................................................ 39
6.5.2 rioDarInitialize.................................................................................................. 40
6.5.3 rioDarTerminate................................................................................................ 41
6.5.4 rioDarTestMatch............................................................................................... 42
6.5.5 rioDarRegister................................................................................................... 43
6.5.6 rioDarGetMemorySize...................................................................................... 44
6.5.7 rioDarGetSwitchInfo ........................................................................................ 45
6.5.8 rioDarSetPortRoute........................................................................................... 46
6.5.9 rioDarGetPortRoute .......................................................................................... 47

Annex A   System Bring Up Guidelines (Informative)

A.1 Introduction........................................................................................................... 49
A.2 Overview of the System Bring Up Process .......................................................... 49
A.3 System Enumeration Algorithm ........................................................................... 50
A.3.1 Data Structures, Constants, and Global Variables............................................ 51
A.3.2 Pseudocode ....................................................................................................... 52
A.4 System Bring Up Example ................................................................................... 56
4 RapidIO Trade Association



List of Figures

RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
A-1 Example System .............................................................................................................57
RapidIO Trade Association 5



List of Figures

RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Blank page
6 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 1  Overview

1.1  Introduction
This chapter provides an overview of the RapidIO Annex 1: Software/System Bring 
Up Specification Rev. 2.2 document. This document assumes that the reader is 
familiar with the RapidIO specifications, conventions, and terminology. 

1.2  Overview
The RapidIO Architectural specifications establish a framework that enables a wide 
variety of implementations. The RapidIO Part 7: System and Device 
Inter-operability Specification provides a standard set of device and system design 
solutions to support inter-operability. This document builds upon the 
inter-operability specification to define a standard set of software API functions for 
use in system bring up. 

Each chapter addresses a different bring up topic. This revision of the RapidIO 
Annex 1: Software/System Bring Up Specification Rev. 2.2 document covers the 
following issues:

Chapter 2, “Requirements for System Bring Up”

Chapter 3, “Hardware Abstraction Layer”

Chapter 4, “Standard Bring Up Functions”

Chapter 5, “Routing-Table Manipulation Functions”

Chapter 6, “Device Access Routine Interface”

Annex A, “System Bring Up Guidelines (Informative)”

1.3  Scope
Although RapidIO networks provide many features and capabilities, there are a few 
assumptions and restrictions that this specification relies on to simplify the bring up 
process and narrow the specification scope. These assumptions and restrictions are:

• Only two hosts may simultaneously enumerate a network. Two hosts may be 
needed on a network for fault tolerance purposes. System integrators must 
determine which hosts can perform this function.
RapidIO Trade Association 7



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
• Only one host actually completes the network enumeration (this is referred to 
as the winning host). The second host must retreat and wait for the 
enumeration to complete or, assuming the winning host has failed, for 
enumeration to timeout. If a timeout occurs, the second host re-enumerates 
the network.

• After enumeration, other hosts in the system must passively discover the 
network to gather topology information such as routing tables and memory 
maps.

1.4  System Enumeration API
System enumeration API functions may be divided into two categories:

• Standard RapidIO functions that use hardware resources defined by the 
RapidIO specifications. These functions should rely on the support functions 
provided by the Hardware Abstraction Layer (HAL) to ensure portability 
between different platforms.

• Device-specific (vendor-specific) functions defined by a device manufacturer 
that use hardware resources outside of the scope of the RapidIO 
specifications. The main purpose of these functions is to provide Hardware 
Abstraction Layer (HAL) support to the standard RapidIO functions. 

An important goal of this software API specification is to minimize the number of 
device-specific functions required for enumeration so that the portability of the API 
across hardware platforms is maximized.

1.5  Terminology
This document uses terms such as local port, local configuration registers, etc. to 
refer to hardware resources associated with a RapidIO end point device attached to 
(or combined with) the host processor that performs RapidIO system enumeration 
and initialization.

1.6  Software Conventions
To describe the software API functions, this document uses syntactic and notational 
conventions consistent with the C programming language. The conventions for 
naming functions and variables used by these APIs are outside of scope of this 
document.
8 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 2  Requirements for System Bring Up

2.1  Introduction
This section describes basic requirements for system bring up and discovery. An 
overview of the system bring up process, including a system bring up example, is 
presented in Annex A, “System Bring Up Guidelines (Informative)”.

2.2  Boot Requirements
The following system state is required for proper system bring up:

After the system is powered on, the state necessary for system enumeration to occur 
using multiple host processors is automatically initialized as follows (These initial 
state requirements are specified in the RapidIO Part 7: System and Device 
Inter-operability Specification):

• System devices are initialized with the following Base Device IDs:

— Non-boot-code and non-host device IDs are set to 0xFF (0xFFFF for 
16-bit deviceID systems). 

— Boot code device IDs are set to 0xFE (0x00FE for 16-bit deviceID 
systems).

— Host device IDs are set to 0x00 (0x0000 for 16-bit deviceID systems).

• Physical layer link initialization of end points is complete.

• The default routing state of all switches between the boot code device and the 
host device is set to route all requests for device ID 0xFE (0x00FE for 16-bit 
deviceID systems) to the appropriate boot code device. All response packets 
are routed back to the host from the boot code device.

• Any host that participates in discovery must change its destination ID to a 
unique ID value before starting the system initialization process. This value 
is used by a device’s Host Base Device ID Lock CSR to ensure only one host 
can manipulate a device at a time. The allowed ID values for a discovering 
host are 0x00 (0x0000) and 0x01 (0x0001). A host with an ID of 0x00 
(0x0000) has a lower priority than a host with an ID of 0x01 (0x0001). Host 
devices must be configured to accept maintenance packets with a destination 
ID of 0xFF (0xFFFF for 16-bit deviceID systems) as well as the unique host 
ID. 
RapidIO Trade Association 9



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
• All host devices have their Master Enable bit (Port General Control CSR) set 
to 1. Switch devices do not have a Master enable bit.

• All devices will accept requests with any sourceID or destinationID value

2.3  Enumeration Completion
One or two hosts can perform system enumeration in a RapidIO network. If two 
hosts are present, an algorithm is needed to determine which host has the priority to 
proceed with enumeration. The host with the higher priority is the winning host and 
the other host is the losing host. The enumeration algorithm suggested in Appendix 
A, “System Bring Up Guidelines (Informative),” on page 49 sets priority based on 
the value of the power-on device ID.

Enumeration is complete when the winning host releases the lock on the losing host. 
It is the losing host’s responsibility to detect that it has been locked by the winning 
host and to later detect that the lock has been released by the winning host. The 
methods used to release locks on nodes other than the host nodes is outside the scope 
of this document.

2.4  Enumeration Time-Out
As mentioned in the previous section, two hosts can be used to enumerate the 
RapidIO network. The algorithm in Appendix  A assumes the host with the higher 
power-on host device ID has priority over the other host. Because of this pre-defined 
priority, only one host (the one with higher priority) can win the enumeration task. 
In this case, the losing host enters a wait state. 

If the winning host fails to enumerate the entire network, the losing host’s wait state 
times out. When this occurs, the losing host attempts to enumerate the network. In 
an open 8-bit deviceID system, the losing host must wait 15 seconds before timing 
out and restarting the enumeration task. The length of the time-out period in a closed 
or a 16-bit deviceID system may differ from that of an open system.

To develop the 15 second time-out value, the following assumptions are made about 
the network maximal size:

NUMDEV      = 256 devices

NUMSWITCHES = 256 switches

NUMFTE      = 256 routing table entries per switch

It is assumed that a separate maintenance write packet is required to program each 
routing table entry for each switch. Since we need to establish a time base for 
operations, we assume:

CWTime = 100 microseconds per configuration write packet
10 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Now we can estimate that the number of configuration writes it takes to program all 
of the switch routing table entries is (256 switches)*(256 routing table entries), or;

=> 256*256*CWTIME microsecs =

=> ~6.6 seconds.

Given these rough approximations, a 15 second time-out value is seen as appropriate 
and conservative for open systems. The chosen value must be such that if a time-out 
were to occur, it must be guaranteed that failure HAS occurred, and hence choosing 
a conservative value is necessary.

2.5  Function Return Codes
The following return codes and their constant values are defined for use by the 
system bring up functions.

typedef unsigned int   STATUS;

#define RIO_SUCCESS 0x0 // Success status code
#define RIO_WARN_INCONSISTENT 0x1 // Used by

// rioRouteGetEntry—indicates
// that the routeportno returned is
// not the same for all ports

#define RIO_ERR_SLAVE 0x1001 // Another host has a higher
// priority

#define RIO_ERR_INVALID_PARAMETER 0x1002 // One or more input parameters
// had an invalid value

#define RIO_ERR_RIO 0x1003 // The RapidIO fabric returned a
// Response Packet with ERROR
// status reported

#define RIO_ERR_ACCESS 0x1004 // A device-specific hardware
// interface was unable to generate
// a maintenance transaction and
// reported an error

#define RIO_ERR_LOCK 0x1005 // Another host already acquired
// the specified processor element

#define RIO_ERR_NO_DEVICE_SUPPORT 0x1006 // Device Access Routine does not
// provide services for this device

#define RIO_ERR_INSUFFICIENT_RESOURCES 0x1007 // Insufficient storage available in
// Device Access Routine private
// storage area

#define RIO_ERR_ROUTE_ERROR 0x1008 // Switch cannot support
// requested routing

#define RIO_ERR_NO_SWITCH 0x1009 // Target device is not a switch
#define RIO_ERR_FEATURE_NOT_SUPPORTED 0x100A // Target device is not capable of

// per-input-port routing
RapidIO Trade Association 11



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Blank page
12 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 3  Hardware Abstraction Layer

3.1  Introduction
The Hardware Abstraction Layer (HAL) provides a standard software interface to 
the device-specific hardware resources needed to support RapidIO system 
configuration transactions. Configuration read and write operations are used by the 
HAL functions to access RapidIO device registers. The HAL functions are accessed 
by the RapidIO enumeration API during system bring up. 

This section describes the HAL functions and how they can be used to access local 
and remote RapidIO device registers. These functions must be implemented by 
every new device-specific host-processing element to support RapidIO system 
enumeration and initialization. The HAL functions assume the following:

• All configuration read and write operations support only single word (4-byte) 
accesses. 

• As required by the device, the size of the 8-bit or 16-bit deviceID field is 
considered by the device implementation (see section 2.4 of the RapidIO Part 
3: Common Transport Specification for more information).

• An enumerating processor device may have more than one RapidIO end point 
(local port).

3.2  Device Addressing
One purpose of the HAL is to provide a unified software interface to configuration 
registers in both local and remote RapidIO processing elements. This is done using 
a universal device-addressing scheme. Such a scheme enables HAL functions to 
distinguish between accesses to local and remote RapidIO end points without 
requiring an additional parameter. The result is that only one set of HAL functions 
must be implemented to support local and remote configuration operations. 

All HAL functions use the destid and hopcount parameters to address a RapidIO 
device. The HAL reserves destid=0xFFFFFFFF and hopcount of 0 for addressing 
configuration registers within the local RapidIO end point. A destid= 0xFFFFFFFF 
and hopcount of 0 value must be used to address the local processing end point 
regardless of the actual destination ID value. This reserved combination does not 
conflict with the address of other RapidIO devices. The localport parameter is used 
by the HAL functions to identify a specific local port within RapidIO devices 
containing multiple ports.
RapidIO Trade Association 13



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
3.3  HAL Functions
The functions that form the RapidIO initialization HAL are described in the 
following sections.

3.3.1  Types and Definitions

/* The HOST_REGS value below is a destination ID used to specify that the 
registers of the processor/platform on which the code is running are to be accessed. 
*/

#define HOST_REGS 0xFFFFFFFF

3.3.2  rioGetNumLocalPorts 
Prototype:

INT32 rioGetNumLocalPorts (
void

)

Arguments:

None

Return Value:

0 Error

n Number of RapidIO ports supported

Synopsis:

rioGetNumLocalPorts() returns the total number of local RapidIO ports supported by the HAL functions. The 
number n returned by this function should be equal to or greater than 1. A returned value of 0 indicates an error.
14 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
3.3.3  rioConfigurationRead
Prototype:

STATUS rioConfigurationRead (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *readdata

)

Arguments:

localport Local port number [IN]

destid Destination ID of the target device [IN]

hopcount Hop count [IN]

offset Word-aligned (four byte boundary) offset—in
bytes—of the CAR or CSR [IN]

*readdata Pointer to storage for received data [OUT]

Return Value:

RIO_SUCCESS The read operation completed successfully and valid
data was placed into the specified location.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioConfigurationRead() performs a configuration read transaction from CAR and/or CSR register(s) belonging to a 
local or remote RapidIO device. The function uses a device-specific hardware interface to generate maintenance 
transactions to remote devices. This hardware sends a configuration read request to the remote device (specified by 
destid and/or hopcount) and waits for a corresponding configuration read response. After the function receives a 
configuration read response it returns data and/or status to the caller. The method for accessing registers in a local device 
is device-specific. 

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 15



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
3.3.4  rioConfigurationWrite
Prototype:

STATUS rioConfigurationWrite (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *writedata

)

Arguments:

localport Local port number [IN]

destid Destination ID of the target device [IN]

hopcount Hop count [IN]

offset Word-aligned (four byte boundary) offset—in
bytes—of the CAR or CSR [IN]

*writedata Pointer to storage for data to be written [IN]

Return Value:

RIO_SUCCESS The write operation completed successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioConfigurationWrite() performs a configuration write transaction to CAR and/or CSR register(s) belonging to a 
local or remote RapidIO device. The function uses a device-specific hardware interface to generate maintenance 
transactions to remote devices. This hardware sends a configuration write request to the remote device (specified by 
destid and/or hopcount) and waits for a corresponding configuration write response. After the function receives a 
configuration write response it returns status to the caller. The method for accessing registers in a local device is 
device-specific. 

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
16 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 4  Standard Bring Up Functions

4.1  Introduction
This section describes the RapidIO functions that must be implemented to support 
system bring up. Functions are defined only for device registers used during the 
RapidIO enumeration and initialization process, not for all possible RapidIO device 
registers. These functions can be implemented using the HAL functions. Many of 
the functions can also be implemented as macros that specify predefined parameters 
for the HAL functions. The standard RapidIO bring up functions can be combined 
into a library if they are implemented as a set of subroutines.

4.2  Data Structures
typedef ADDR_MODE UINT32;

#define ADDR_MODE_34BIT_SUPPORT 0x1

#define ADDR_MODE_50_34BIT_SUPPORT 0x3

#define ADDR_MODE_66_34BIT_SUPPORT 0x5

#define ADDR_MODE_66_50_34BIT_SUPPORT 0x7
RapidIO Trade Association 17



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3  Bring Up Functions

4.3.1  rioInitLib
Prototype:

STATUS rioInitLib (
void

)

Arguments:

None

Return Value: 

RIO_SUCCESS Initialization completed successfully.

RIO_ERROR Generic error report. Unable to initialize library.

Synopsis:

rioInitLib() initializes the RapidIO API library. No routines defined in this chapter may be called unless and until 
rioInitLib has been invoked. If rioInitLib returns RIO_ERROR, no routines defined in this chapter may be called.
18 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.2  rioGetFeatures
Prototype:

STATUS rioGetFeatures (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *features

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*features Pointer to storage containing the received features
[OUT]

Return Value:

RIO_SUCCESS The features were retrieved successfully and placed
into the location specified by *features.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetFeatures() uses the HAL rioConfigurationRead() function to read from the Processing Element Features 
CAR of the specified processing element. Values read are placed into the location referenced by the *features pointer. 
Reported status is similar to rioConfigurationRead()

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 19



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.3  rioGetSwitchPortInfo
Prototype:

STATUS rioGetSwitchPortInfo (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *portinfo

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*portinfo Pointer to storage containing the received port
information [OUT]

Return Value:

RIO_SUCCESS The port information was retrieved successfully and
placed into the location specified by *portinfo.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an
invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetSwitchPortInfo() uses the HAL rioConfigurationRead() function to read from the Switch Port Information 
CAR of the specified processing element. Values read are placed into the location referenced by the *portinfo pointer. 
Reported status is similar to rioConfigurationRead(). 

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
20 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.4  rioGetExtFeaturesPtr
Prototype:

STATUS rioGetExtFeaturesPtr (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *extfptr

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*extfptr Pointer to storage containing the received extended 
feature information [OUT]

Return Value:

RIO_SUCCESS The extended feature information was retrieved
successfully and placed into the location specified by
*extfptr.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetExtFeaturesPtr() uses the HAL rioConfigurationRead() function to read the pointer to the first entry in the 
extended features list from the Assembly Information CAR of the specified processing element. That pointer is placed 
into the location referenced by the *extfptr pointer. Reported status is similar to rioConfigurationRead(). 

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 

Note that if the EF_PTR field of *extfptr is 0, no extended features are available. 
RapidIO Trade Association 21



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.5  rioGetNextExtFeaturesPtr
Prototype:

STATUS rioGetNextExtFeaturesPtr (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 currfptr,
UINT32 *extfptr

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

currfptr Pointer to the last reported extended feature [IN]

*extfptr Pointer to storage containing the received extended 
feature information [OUT]

Return Value:

RIO_SUCCESS The extended feature information was retrieved
successfully and placed into the location specified by
*extfptr.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetNextExtFeaturesPtr() uses the HAL rioConfigurationRead() function to read the pointer to the next entry 
in the extended features. That pointer is placed into the location referenced by the *extfptr pointer. Reported status is 
similar to rioConfigurationRead(). 

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 

Note that if the EF_PTR field of *extfptr is 0, no further extended features are available. Invoking 
rioGetNextExtFeaturesPtr when currfptr has an EF_PTR field value of 0 will result in a return code of 
RIO_ERR_INVALID_PARAMETER.
22 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.6  rioGetSourceOps
Prototype:

STATUS rioGetSourceOps (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *srcops

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*srcops Pointer to storage containing the received source
operation information [OUT]

Return Value:

RIO_SUCCESS The source operation information was retrieved
successfully and placed into the location specified by
*srcops.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetSourceOps() uses the HAL rioConfigurationRead() function to read from the Source Operations CAR of 
the specified processing element. Values read are placed into the location referenced by the *srcops pointer. Reported 
status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 23



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.7  rioGetDestOps
Prototype:

STATUS rioGetDestOps (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *dstops

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*dstops Pointer to storage containing the received destination
operation information [OUT]

Return Value:

RIO_SUCCESS The destination operation information was retrieved
successfully and placed into the location specified by
*dstops.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetDestOps() uses the HAL rioConfigurationRead() function to read from the Destination Operations CAR of 
the specified processing element. Values read are placed into the location referenced by the *dstops pointer. Reported 
status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
24 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.8  rioGetAddressMode
Prototype:

STATUS rioGetAddressMode (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
ADDR_MODE *amode

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*amode Pointer to storage containing the received address
mode (34-bit, 50-bit, or 66-bit address) information
[OUT]

Return Value:

RIO_SUCCESS The address mode information was retrieved
successfully and placed into the location specified by
*amode.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetAddressMode() uses the HAL rioConfigurationRead() function to read from the PE Logical Layer CSR of 
the specified processing element. The number of address bits generated by the PE (as the source of an operation) and 
processed by the PE (as the target of an operation) are placed into the location referenced by the *amode pointer. 
Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 25



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.9  rioGetBaseDeviceId
Prototype:

STATUS rioGetBaseDeviceId (
UINT8 localport,
UINT32 *deviceid

)

Arguments:

localport Local port number [IN]

*deviceid Pointer to storage containing the base device ID
[OUT]

Return Value:

RIO_SUCCESS The base device ID information was retrieved
successfully and placed into the
location specified by *deviceid.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetBaseDeviceId() uses the HAL rioConfigurationRead() function to read from the Base Device ID CSR of 
the local processing element (the destid and hopcount parameters used by rioConfigurationRead() must be set to 
HOST_REGS and zero, respectively). Values read are placed into the location referenced by the *deviceid pointer. 
Reported status is similar to rioConfigurationRead(). This function is useful only for local end-point devices.
26 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.10  rioSetBaseDeviceId
Prototype:

STATUS rioSetBaseDeviceId (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 newdeviceid

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

newdeviceid New base device ID to be set [IN]

Return Value:

RIO_SUCCESS The base device ID was updated successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioSetBaseDeviceId() uses the HAL rioConfigurationWrite() function to write the base device ID in the Base 
Device ID CSR of the specified processing element (end point devices only). Reported status is similar to 
rioConfigurationWrite().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 27



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.11  rioAcquireDeviceLock
Prototype:

STATUS rioAcquireDeviceLock (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 hostdeviceid,
UINT16 *hostlockid

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

hostdeviceid Host base device ID for the local processing element
[IN]

*hostlockid Device ID of the host holding the lock if ERR_LOCK
is returned [OUT]

Return Value:

RIO_SUCCESS The device lock was acquired successfully.

RIO_ERR_LOCK Another host already acquired the specified processor
element. ID of the device holding the lock is contained
in the location referenced by the *hostlockid
parameter.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioAcquireDeviceLock() tries to acquire the hardware device lock for the specified processing element on behalf of 
the requesting host. The function uses the HAL rioConfigurationWrite() function to write the requesting host device 
ID into the Host Base Lock Device ID CSR of the specified processing element. After the write completes, this function 
uses the HAL rioConfigurationRead() function to read the value back from the Host Base Lock Device ID CSR. 
The written and read values are compared. If they are equal, the lock was acquired successfully. Otherwise, another host 
acquired this lock and the device ID for that host is reported.

This function assumes unique host-based device identifiers are assigned to discovering hosts. For more details, refer to 
Annex A, “System Bring Up Guidelines (Informative)”.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
28 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.12  rioReleaseDeviceLock
Prototype:

STATUS rioReleaseDeviceLock (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 hostdeviceid,
UINT16 *hostlockid

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

hostdeviceid Host base device ID for the local processing element
[IN]

*hostlockid Device ID of the host holding the lock if ERR_LOCK
is returned [OUT]

Return Value:

RIO_SUCCESS The device lock was released successfully.

RIO_ERR_LOCK Another host already acquired the specified processor
element. 

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioReleaseDeviceLock() tries to release the hardware device lock for the specified processing element on behalf of 
the requesting host. The function uses the HAL rioConfigurationWrite() function to write the requesting host device 
ID into the Host Base Lock Device ID CSR of the specified processing element. After the write completes, this function 
uses the HAL rioConfigurationRead() function to read the value back from the Host Base Lock Device ID CSR. If 
the Device ID that is read back from the Host Base Device ID register is 0xFFFF then the lock has been released 
successfully.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 29



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.13  rioGetComponentTag
Prototype:

STATUS rioGetComponentTag (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 *componenttag

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

*componenttag Pointer to storage containing the received component
tag information [OUT]

Return Value:

RIO_SUCCESS The component tag information was retrieved
successfully and placed into the location specified by
*componenttag.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetComponentTag() uses the HAL rioConfigurationRead() function to read from the Component Tag CSR of 
the specified processing element. Values read are placed into the location referenced by the *componenttag pointer. 
Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
30 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.14  rioSetComponentTag 
Prototype:

STATUS rioSetComponentTag (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT32 componenttag

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

componenttag Component tag value to be set [IN]

Return Value:

RIO_SUCCESS The component tag was updated successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioSetComponentTag() uses the HAL rioConfigurationWrite() function to write the component tag into the 
Component Tag CSR of the specified processing element. Reported status is similar to rioConfigurationWrite().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 31



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
4.3.15  rioGetPortErrStatus
Prototype:

STATUS rioGetPortErrStatus (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT16 extfoffset,
UINT8 portnum,
UINT32 *porterrorstatus

)

Arguments:

localport Local port number [IN]

destid Destination ID of the processing element [IN]

hopcount Hop count [IN]

extfoffset Offset from the previously reported extended features
pointer [IN]

portnum Port number to be accessed [IN]

*porterrorstatus Pointer to storage for the returned value [OUT]

Return Value:

RIO_SUCCESS The read completed successfully and valid data was
placed into the location specified by *porterrorstatus.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

Synopsis:

rioGetPortErrStatus() uses the HAL rioConfigurationRead() function to read the contents of the Port n Error 
and Status CSR of the specified processing element. Reported status is similar to rioConfigurationRead().

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
32 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 5  Routing-Table Manipulation 
Functions

5.1  Introduction
This section describes the RapidIO functions that must be provided to support 
routing tables used within the switch fabric. The RapidIO common transport 
specification requires implementing device-identifier-based packet routing. The 
detailed implementation of routing tables is beyond the scope of this specification. 

The routing-table manipulation functions assume the following:

• The destination ID of the device that receives a packet routed by the switch is 
the route destination ID. 

• The specific port at the route destination ID that receives a packet routed by the 
switch is the route port number. 

• The software paradigm used for routing tables is a linear routing table indexed 
by the route destination ID.

• Switches may implement a global routing table, “per port” routing tables, or a 
combination of both.
RapidIO Trade Association 33



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
5.2  Routing Table Functions
The functions defined for RapidIO routing-table manipulation are described in the 
following sections.

5.2.1  rioRouteAddEntry
Prototype:

STATUS rioRouteAddEntry (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 routeportno

)

Arguments:

localport Local port number (RapidIO switch) [IN]

destid Destination ID of the processing element (RapidIO
switch) [IN]

hopcount Hop count [IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

routeportno Route port number—value written to the selected
routing table entry [IN]

Return Value:

RIO_SUCCESS The routing table entry was added successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. Error status returned by this
function may contain additional information from the
Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

RIO_WARN_INCONSISTENT Used by rioRouteGetEntry—indicates that the
routeportno returned is not the same for all ports.

Synopsis:

rioRouteAddEntry() adds an entry to a routing table for the RapidIO switch specified by the destid and hopcount 
parameters. The tableidx parameter is used to select a specific routing table in the case of implementations with “per 
port” routing tables. A value of tableidx=0xFFFFFFFF specifies a global routing table for the RapidIO switch. The 
routeportno parameter is written to the routing table entry selected by the routedestid parameter. 

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
34 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
5.2.2  rioRouteGetEntry
Prototype:

STATUS rioRouteGetEntry (
UINT8 localport,
UINT32 destid,
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 *routeportno

)

Arguments:

localport Local port number (RapidIO switch) [IN]

destid Destination ID of the processing element (RapidIO
switch) [IN]

hopcount Hop count [IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

*routeportno Route port number—pointer to value read from the
selected routing table entry [OUT]

Return Value:

RIO_SUCCESS The routing table entry was added successfully.

RIO_ERR_INVALID_PARAMETER One or more input parameters had an invalid value.

RIO_ERR_RIO The RapidIO fabric returned a Response Packet with
ERROR status reported. 
Error status returned by this function may contain
additional information from the Response Packet.

RIO_ERR_ACCESS A device-specific hardware interface was unable to
generate a maintenance transaction and reported an
error.

RIO_WARN_INCONSISTENT Used by rioRouteGetEntry—indicates that the
routeportno returned is not the same for all ports.

Synopsis:

rioRouteGetEntry() reads an entry from a routing table for the RapidIO switch specified by the destid and 
hopcount parameters. The tableidx parameter is used to select a specific routing table in the case of implementations 
with “per port” routing tables. A value of tableidx=0xFF specifies a global routing table for the RapidIO switch. The 
value in the routing table entry selected by the routedestid parameter is read from the table and placed into the 
location referenced by the *routeportno pointer.

Reads from the global routing table may be undefined in the case where per-port routing tables exist.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 35



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Blank page
36 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Chapter 6  Device Access Routine Interface

6.1  Introduction
This section defines the device access routine (DAR) interface that must be provided 
for RapidIO device configuration. The client for this interface is the boot loader 
responsible for RapidIO network enumeration and initialization. By using a standard 
DAR interface, the firmware does not need to include knowledge of device-specific 
configuration operations. Thus, enumeration and initialization firmware can operate 
transparently with devices from many component vendors.

6.2  DAR Packaging
For each processor type supported by a DAR provider, linkable object files for 
DARs shall be supplied using ELF format. Device-specific configuration DARs 
shall be supplied using C-language source code format.

6.3  Execution Environment
The functions provided by device-specific configuration DARs must be able to link 
and execute within a minimal execution context (e.g., a system-boot monitor or 
firmware). In general, configuration DARs should not call an external function that 
is not implemented by the DAR, unless the external function is passed to the 
configuration DAR by the initialization function. Also, configuration DAR 
functions may not call standard C-language I/O functions (e.g., printf) or standard 
C-language library functions that might manipulate the execution environment (e.g., 
malloc or exit).
RapidIO Trade Association 37



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.4  Type Definitions
The following type definitions are to be used by the DAR functions in Section 6.5.

typedef struct RDCDAR_PLAT_OPS_STRUCT {
UINT32 specversion;
UINT32 (*rioConfigurationRead) ( UINT8 localport,

UINT16 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *readdata);

UINT32 (*rioConfigurationWrite) ( UINT8 localport,
UINT16 destid,
UINT8 hopcount,
UINT32 offset,
UINT32 *writedata);

} RDCDAR_PLAT_OPS;

typedef struct RDCDAR_OPS_STRUCT {
UINT32 specversion;
UINT32 (*rioDarInitialize) (...);
UINT32 (*rioDarTerminate) (...);
UINT32 (*rioDarTestMatch) (...);
UINT32 (*rioDarRegister) (...);
UINT32 (*rioDarGetSwitchInfo) (...);
UINT32 (*rioDarSetPortRoute) (...);
UINT32 (*rioDarGetPortRoute) (...);
UINT32 (*rioDarGetMemorySize) (...);

} RDCDAR_OPS

typedef struct RDCDAR_DATA_STRUCT {
UINT32 databytesallocated;
CHAR *data;

} RDCDAR_DATA

typedef struct RDCDAR_SWITCH_INFO_STRUCT {
BOOL useslutmodel;
BOOL separatelutperinputport;
UINT32 maxlutentries;

} RDCDAR_SWITCH_INFO
38 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5  DAR Functions
The functions that must be provided for a RapidIO device-specific configuration 
DAR are described in the following sections. For the 
rioDar_nameGetFunctionTable functions, the rioDar_name portion of the function 
name shall be replaced by an appropriate name for the implemented driver.

6.5.1  rioDar_nameGetFunctionTable
Prototype:

UINT32 rioDar_nameGetFunctionTable(
UINT32 specversion,
RDCDAR_OPS_STRUCT *darops,
UINT32 maxdevices,
UINT32 *darspecificdatabytes

)

Arguments:

specversion Version number of the DAR interface specification
indicating the caller’s implementation of the type
definition structures [IN]

*darops Pointer to a structure of DAR functions that are
allocated by the caller and filled in by the called
function (see Section 6.4) [OUT]

maxdevices Maximum expected number of RapidIO devices that
must be serviced by this configuration DAR [IN]

*darspecificdatabytes Number of bytes needed by the DAR for the DAR
private data storage area [OUT]

Return value:

RIO_SUCCESS On successful completion

Synopsis:

rioDar_nameGetFunctionTable() is called by a client to obtain the list of functions implemented by a RapidIO 
device-specific configuration DAR module. It shall be called once before enumerating the RapidIO network.

The specversion parameter is the version number defined by the revision level of the specification from which the 
DAR type definition structures are taken (see Section 6.4).

The maxdevices parameter is an estimate of the maximum number of RapidIO devices in the network that this DAR 
must service. The DAR uses this estimate to determine the size required for the DAR private data storage area. The 
storage size is returned to the location referenced by the *darspecificdatabytes pointer. After the client calls this 
function, the client shall allocate a DAR private data storage area of a size no less than that indicated by 
*darspecificdatabytes. The client shall provide that private data storage area to rioDarInitialize().
RapidIO Trade Association 39



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.2  rioDarInitialize
Prototype:

UINT32 rioDarInitialize (
UINT32 specversion,
UINT32 maxdevices,
RDCDAR_PLAT_OPS *platops,
RDCDAR_DATA *privdata

)

Arguments:

specversion Version number of the DAR interface specification
indicating the caller’s implementation of the type
definition structures [IN]

maxdevices Maximum expected number of RapidIO devices that
must be serviced by this configuration DAR [IN]

*platops Pointer to a structure of platform functions for use by
the DAR (see Section 6.4) [IN]

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Return value:

RIO_SUCCESS On successful completion

Synopsis:

rioDarInitialize() is called by a client to initialize a RapidIO device-specific configuration DAR module. This 
function shall be called once after calling the rioDar_nameGetFunctionTable() functions and before enumerating 
the RapidIO network.

The specversion parameter is the version number defined by the revision level of the specification from which the 
DAR type definition structures are taken (see Section 6.4).

The maxdevices parameter is an estimate of the maximum number of RapidIO devices in the network that this DAR 
must service. The maxdevices value must be equal to the value used in the corresponding 
rioDar_nameGetFunctionTable() function call. The client is responsible for allocating the structure referenced by 
*privdata. The client is also responsible for allocating a DAR private data storage area at least as large as that specified 
by the rioDar_nameGetFunctionTable() call. The client must initialize the structure referenced by *privdata with 
the number of bytes allocated to the DAR private data storage area and with the pointer to the storage area. After calling 
rioDarInitialize(), the client may not deallocate the DAR private data storage area until after the rioDarTerminate() 
function has been called.
40 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.3  rioDarTerminate
Prototype:

UINT32 rioDarTerminate (
RDCDAR_DATA *privdata

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

Return value:

RIO_SUCCESS On successful completion

Synopsis:

rioDarTerminate() is invoked by a client to terminate a RapidIO device-specific configuration DAR module. This 
function shall be called once after all use of the DAR services is completed. After calling this function, the client may 
deallocate the DAR private data storage area in the structure referenced by *privdata.
RapidIO Trade Association 41



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.4  rioDarTestMatch
Prototype:

UINT32 rioDarTestMatch (
RDCDAR_DATA *privdata,
UINT8 localport, 
UINT32 destid, 
UINT8 hopcount

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number used to access the network [IN]

destid Destination device ID for the target device [IN]

hopcount Number of switch hops needed to reach the target
device [IN]

Return value:

RIO_SUCCESS Device DAR does provide services for this device

RIO_ERR_NO_DEVICE_SUPPORT Device DAR does not provide services for this device.

Synopsis:

rioDarTestMatch() is invoked by a client to determine whether or not a RapidIO device-specific configuration DAR 
module provides services for the device specified by destid. The DAR interrogates the device (using the platform 
functions supplied during DAR initialization), examines the device identity and any necessary device registers, and 
determines whether or not the device is handled by the DAR.

The DAR does not assume that a positive match (return value of 0) means the DAR will actually provide services for the 
device. The client must explicitly register the device with rioDARregister() if the client will be requesting services.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
42 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.5  rioDarRegister
Prototype:

UINT32 rioDarRegister (
RDCDAR_DATA *privdata,
UINT8 localport, 
UINT32 destid, 
UINT8 hopcount,

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number used to access the network [IN]

destid Destination device ID for the target device [IN]

hopcount Number of switch hops needed to reach the target
device [IN]

Return value:

RIO_SUCCESS Device DAR successfully registered this device.

RIO_ERR_NO_DEVICE_SUPPORT Device DAR does not provide services for this device.

RIO_ERR_INSUFFICIENT_RESOURCES Insufficient storage available in DAR private storage
area

Synopsis:

rioDarRegister() is invoked by a client to register a target device with a RapidIO device-specific configuration DAR. 
The client must call this function once for each device serviced by the DAR. The client should first use the 
rioDarTestMatch() function to verify that the DAR is capable of providing services to the device.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 43



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.6  rioDarGetMemorySize
Prototype:

UINT32 rioDarGetMemorySize (
RDCDAR_DATA *privdata,
UINT8 localport, 
UINT32 destid, 
UINT8 hopcount,
UINT32 regionix,
UINT32 *nregions,
UINT32 *regbytes[2],
UINT32 *startoffset[2]

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number used to access the network [IN]

destid Destination device ID for the target device [IN]

hopcount Number of switch hops needed to reach the target
device [IN]

regionix Index of the memory region being queried (0, 1, 2, 3,
...) [IN]

*nregions Number of memory regions provided by the target
device [OUT]

*regbytes Size (in bytes) of the queried memory region [OUT]

*startoffset Starting address offset for the queried memory region
[OUT]

Return value:

RIO_SUCCESS Device DAR successfully returned memory size
information for the target device.

RIO_ERR_NO_DEVICE_SUPPORT  
Device DAR could not determine memory size
information for the target device.

Synopsis:

rioDarGetMemorySize() is invoked by a client to determine the number of, the sizes of, and the offsets for the 
memory regions supported by a RapidIO target device. The function is intended to support the mapping of PCI or other 
address windows to RapidIO devices. If the regionix parameter is greater than the number of regions provided by the 
device (*nregions), the DAR should return a value of zero for the *regbytes and *startoffset parameters, and 
indicate a “successful” (0) return code.

rioDarGetMemorySize always returns at least one region. The first index, index 0, always refers to the region controlled 
by the Local Configuration Space Base Address Registers.

The client must register the target device with the RapidIO device-specific configuration DAR before calling this 
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
44 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.7  rioDarGetSwitchInfo
Prototype:

UINT32 rioDarGetSwitchInfo (
RDCDAR_DATA *privdata,
UINT8 localport, 
UINT32 destid, 
UINT8 hopcount,
RDCDAR_SWITCH_INFO *info

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number to be used to access network [IN]

destid Destination device ID to reach target switch device
[IN]

hopcount Number of switch hops to reach target switch device
[IN]

*info Pointer to switch information data structure (see
Section 6.4) [OUT]

Return value:

RIO_SUCCESS Device DAR successfully retrieved the information
for RDCDAR_PLAT_OPS_STRUCT.

RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.

RIO_ERR_NO_SWITCH Target device is not a switch.

Synopsis:

rioDarGetSwitchInfo() is invoked by a client to retrieve the data necessary to initialize the 
RDCDAR_SWITCH_INFO structure. 

The client must register the target device with the RapidIO device-specific configuration DAR before calling this 
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 45



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.8  rioDarSetPortRoute
Prototype:

UINT32 rioDarSetPortRoute (
RDCDAR_DATA *privdata,
UINT8 localport, 
UINT32 destid, 
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 routeportno

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number to be used to access network [IN]

destid Destination device ID to reach target switch device
[IN]

hopcount Number of switch hops to reach target switch device
[IN]

inport Target switch device input port [IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

routeportno Route port number—value written to the selected
routing table entry [IN]

Return value:

RIO_SUCCESS Device DAR successfully modified the packet routing
configuration for the target switch device.

RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.

RIO_ERR_ROUTE_ERROR Switch cannot support requested routing.

RIO_ERR_NO_SWITCH Target device is not a switch.

RIO_ERR_FEATURE_NOT_SUPPORTED Target device is not capable of per-input-port routing.

Synopsis:

rioDarSetPortRoute() is invoked by a client to modify the packet routing configuration for a RapidIO target switch 
device. 

The client must register the target device with the RapidIO device-specific configuration DAR before calling this 
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
46 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
6.5.9  rioDarGetPortRoute
Prototype:

UINT32 rioDarGetPortRoute (
RDCDAR_DATA *privdata,
UINT8 localport, 
UINT32 destid, 
UINT8 hopcount,
UINT8 tableidx,
UINT16 routedestid,
UINT8 *routeportno

)

Arguments:

*privdata Pointer to structure containing DAR private data area
(see Section 6.4) [IN/OUT]

localport Local port number to be used to access network [IN]

destid Destination device ID to reach target switch device
[IN]

hopcount Number of switch hops to reach target switch device
[IN]

tableidx Routing table index for per-port switch
implementations [IN]

routedestid Route destination ID—used to select an entry into the
specified routing table [IN]

*routeportno Route port number—pointer to value read from the
selected routing table entry [OUT]

Return value:

RIO_SUCCESS Device DAR successfully modified the packet routing
configuration for the target switch device.

RIO_ERR_NO_DEVICE_SUPPORT Insufficient switch routing resources available.

RIO_ERR_ROUTE_ERROR Switch cannot support requested routing.

RIO_ERR_NO_SWITCH Target device is not a switch.

Synopsis:

rioDarGetPortRoute() is invoked by a client to read the packet routing configuration for a RapidIO target switch 
device. 

The client must register the target device with the RapidIO device-specific configuration DAR before calling this 
function.

A destid value of HOST_REGS and hopcount of 0 results in accesses to the local hosts RapidIO registers. 
RapidIO Trade Association 47



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Blank page
48 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Annex A System Bring Up Guidelines 
(Informative)

A.1  Introduction
The RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2 defines a 
standard set of software API functions for use in system enumeration and 
initialization. These API functions enable up to two RapidIO hosts to cooperatively 
enumerate and configure a RapidIO network. 

This appendix is provided as a reference model for the system bring up process. An 
algorithm is presented that enables up to two cooperating host processors in a Rapid 
IO system to enumerate the entire network, set up a route to every system node, and 
enable the booting software to start the next boot-process phase. The actual 
implementation of the algorithm used to bring up a RapidIO network can vary 
greatly from this model in both capability and complexity. 

A.2  Overview of the System Bring Up Process
This section presents a high-level overview of the system bring up process.

1. The system is powered on. Refer to Chapter 2, “Requirements for System 
Bring Up” for the system power-on requirements.

2. The host processor fetches the initial boot code (if necessary). If two 
processors are present, both can fetch the initial boot code.

3. The system exploration and enumeration algorithm is started. The algorithm 
for this process is outlined in Section A.3 on page 50.

4. All devices have been enumerated and stored in the device database, and 
routes have been set up between the host device and all end point devices. 
The enumeration process may optionally choose to do the following:

a)  Compute and configure optimal routes between the host device and 
end point devices, and between different end point devices. 

b)  Configure the switch devices with the optimal route information.

c)  Store the optimal route and alternate route information in the device 
database.

5. The address space is mapped.

The host may access the network across a host-RapidIO bridge or host-PCI bridge. The 
address-space mapping across this bridge must be done when devices are enumerated and 
stored in the device database. This allows the address of a found device to be retrieved later 
and presented to the device access routines during operating system (OS) initialization. The 
pseudocode for this process is as follows:
RapidIO Trade Association 49



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
1  ACQUIRE the host bridge address-space requirement
2  MAP the address space into a host address partition X
3  FOR every device in the database
4  IF the component is a RapidIO device
5  ACQUIRE the device’s address-space requirement
6  MAP the address space into a new host address partition
7  EXPAND the partition X window to cover the new partition
8  UPDATE the device database with the new host address
9  ELSE IF the component is a PCI bridge
10  ACQUIRE the bridge’s PCI bus ID
11  ACQUIRE the bridge’s address-space requirement
12  // All devices that appear behind this PCI bridge must have their address spaces

// mapped within the region specified for this bridge.
13  MAP the address space into a new host address partition
14  EXPAND the partition X window to cover the new partition
15  UPDATE the device database with the new host address
16  ENDIF
17  ENDFOR

After discovery has been concluded, it is expected that the majority of systems will then 
attempt to load in a software image from a boot device. 

A.3  System Enumeration Algorithm
The system enumeration algorithm is designed for use by one or two host 
processors. The outline of the algorithm is as follows:

1. Access the RapidIO network. This step may involve generating special 
transaction cycles to ensure that the RapidIO network is accessible. 

2. Discover the host and assign a device ID to it.

3. Discover the neighbor, if present.

4. If necessary, repeat the previous step recursively to discover additional 
devices.

5. Clear up.

When a host begins exploring, it must acquire the Host Base Device ID Lock before 
it can proceed. Once acquired, it can set its device ID and discover its neighbor (if 
necessary).

If two hosts are used, both can execute the enumeration algorithm. However, only 
one host (the one with higher priority) can win the enumeration task. The losing host 
enters a wait state. The guidelines for prioritizing hosts to enumerate the network 
and restarting enumeration should the winning host fail to complete the task are 
described in Chapter  2, “Requirements for System Bring Up,” on page 9.

The enumeration algorithm described below sets priority based on the value of the 
power-on device ID. The winning host is the device with the higher power-on host 
device ID. The losing host has the lower power-on host device ID. The losing host 
enters a wait state until the winning host completes enumeration or until the wait 
50 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
state times out.

The prioritization mechanism never results in a deadlock if the priorities of both host 
processors are unique. The enumeration process is initially performed in parallel by 
both hosts until they meet at a device. When a meeting occurs, prioritization 
guarantees one winning host—the other host retreats (enters a wait state). 

The enumeration algorithm described below uses a recursive, depth-first graph 
traversal to discover the network. It may be possible to improve the algorithm using 
non-recursive or breadth-first graph traversal. However, those improvements and 
optimizations are implementation dependent and beyond the scope of this 
document. 

A.3.1  Data Structures, Constants, and Global Variables

This section outlines the data structures, constants, and global variables used by the 
system enumeration algorithm pseudocode.

The example system is composed of only 8 bit capable devices.

Data Structures

struct rioRouteTable {

// The switch routing table is implemented as a linear routing table for destination IDs. The table is
// indexed using the destination ID and the table index range is equal to the maximum destination ID
// value. The value of a table entry indicates the output port number used to route messages for the
// destination ID. The table entry default value is implementation dependent. Table entries must be
// initialized to support FLASH memory accesses. The algorithm pseudocode described in this
// document assumes the device ID is equal to the RapidIO protocols destination ID. This assignment
// is not a general requirement. 

UINT8 LFT[MAX_DEVICEID];
}

struct rioSwitch {

…

UINT16 SwitchIdentity; // Switch Identity
UINT16 hopCount; // Hop Count to reach this switch
UINT16 DeviceID; // Associated Device ID in the path to this switch
struct rioRouteTable RouteTable; // Switch Routing Table 

…

}

Constants

RIO_GEN_DFLT_DID 0x00FFFFFF // RIO_GEN_DFLT_DID is the general default device
// ID assigned to non-host and non-boot code end
// points

RIO_BOOT_DFLT_DID 0x0000FFFE // RIO_BOOT_DFLT_DID is the default device ID
// assigned to boot code devices

RIO_HOST_DFLT_DID 0x00000000 // RIO_HOST_DFLT_DID is the default device ID
// assigned to host devices

Global Variables

UINT16 DeviceID = 0; // Currently available Device ID to be assigned to the
RapidIO Trade Association 51



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
// end point device
UINT16 SwitchID = 0; // Currently available Switch ID. This is used

// internally by the to index
// switches that have been discovered.

// The following global arrays are used to store device
// information
// collected from rioGetFeatures and
// rioGetSwitchPortInfo. They are
// also used to store the hopCount and DeviceID
// assigned to switches. 

struct rioSwitch Switches[MAX_SWITCHES];

A.3.2  Pseudocode

This section outlines the detailed pseudocode for the system enumeration algorithm.

1  //**********************************************************************
2  // System enumeration and initialization using the power-on device ID as the hostDeviceID
3  // —Discover the host first
4  // —Discover the host’s neighbor recursively
5  
6  STATUS rioSystemEnumerate (hostDeviceID)
7  {
8  // Discover the host first.
9  status = rioEnumerateHost (hostDeviceID);
10  
11  if (status == ERR_SLAVE) {
12  rioClearUp (hostDeviceID); 
13  return ERR_SLAVE;
14  }
15  
16  // Discover the host neighbor
17  status = rioEnumerateNeighbor (hostDeviceID, hopCount = 1);
18  
19  if (status == ERR_SLAVE) {
20  rioClearUp (hostDeviceID);
21  return ERR_SLAVE;
22  }
23  
24  // If the code advances to this point successfully, the host must acquire the
25  // HostBaseDeviceIdLock for all devices in the system. When this is done, the Discovered bit
26  // Master Enable bit, etc. can be set for all devices.
27  
28  } // end rioSystemEnumerate
29  
30  //**********************************************************************
31  // System Delay
32  // —Wait for other host to release the lock
33  
34  rioDelay () {
35  } // end rioDelay
36  
37  //**********************************************************************
38  // Host enumeration and initialization
39  
40  STATUS rioEnumerateHost (hostDeviceID)
52 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
41  {
42  // Try to acquire the lock 
43  rioAcquireDeviceLock (0, hostDeviceID, 0, hostDeviceID);
44  
45  while (HostBaseDeviceIdLockCSR.HostBaseDeviceID < hostDeviceID) {
46  // Delay for a while
47  rioDelay ();
48  
49  // Retry lock acquisition
50  rioAcquireDeviceLock (0, hostDeviceID, 0, hostDeviceID, &lockingHost);
51  }
52  
53  // Check to see if there is a master with a larger host device ID
54  if (HostBaseDeviceIdLock.HostBaseDeviceID > hostDeviceID) {
55  // Release the current lock
56  rioReleaseDeviceLock (0, hostDeviceID, 0, hostDeviceID);
57  
58  return ERR_SLAVE;
59  }
60  
61  // Lock has been acquired so enumeration can begin
62   
63  // Assign the default host ID to the host
64  rioSetBaseDeviceId (0, hostDeviceID, hostDeviceID);
65  
66  // Increment the available device ID
67  if (DeviceID == hostDeviceID) {
68  DeviceID ++;
69  }
70  
71  return RIO_SUCCESS;
72  } // end rioEnumerateHost
73  
74  //**********************************************************************
75  // Neighbor enumeration
76  
77  STATUS rioEnumerateNeighbor (hostDeviceID, hopCount)
78  {
79  // The host has already discovered this node if it currently owns the lock
80  rioGetCurHostLock (0, 0, 0, &owner_device_id);
81  if (owner_device_id == hostDeviceID) {
82  return RIO_SUCCESS; 
83  }
84  
85  // Try to acquire the lock 
86  rioAcquireDeviceLock (0, RIO_GEN_DFLT_DID, hopCount, hostDeviceID, &lockingHost);
87  
88  while (HostBaseDeviceIdLockCSR.HostBaseDeviceID < hostDeviceID) {
89  // Delay for a while
90  rioDelay ();
91  
92  // Retry lock acquisition
93  rioAcquireDeviceLock(0, RIO_GEN_DFLT_DID, hopCount, hostDeviceID,

&lockingHost);
94  }
95  
RapidIO Trade Association 53



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
96  // Check to see if there is a master with a larger host device ID
97  if (HostBaseDeviceIdLock.HostBaseDeviceID > hostDeviceID) {
98  return ERR_SLAVE;
99  }
100  
101  // Lock has been acquired so enumeration can begin
102   
103  // Check Source Operation CAR and Destination Operation CAR to see if a Device ID can be
104  // assigned
105  
106  rioGetSourceOps (0, RIO_GEN_DFLT_DID, hopCount, &SourceOperationCAR);
107  rioGetDestOps (0, RIO_GEN_DFLT_DID, hopCount, &DestinationOperationCAR);
108  
109  if ( (SourceOperationCAR.Read || Write || Atomic) && 
110  (DestinationOperationCAR.Read || Write || Atomic)) {
111  
112  // Set the device ID
113  rioSetBaseDeviceId (0, RIO_GEN_DFLT_DID, DeviceID);
114  
115  // Increment the available device ID
116  DeviceID ++;
117  if (DeviceID == hostDeviceID) {
118  DeviceID ++;
119  }
120  }
121  
122  // Check to see if the device is a switch
123  rioGetFeatures (0, RIO_GEN_DFLT_DID, hopCount, &ProcessingElementFeatureCAR);
124  if (ProcessingElementFeatureCAR.Switch == TRUE) {
125  
126  // Read the switch information
127  rioGetSwitchPortInfo (0, RIO_GEN_DFLT_DID, hopCount,

&SwitchPortInformationCAR);
128  
129  // Record the switch device identity
130  Switches[SwitchID].SwitchIdentity = DeviceIdentityCAR.DeviceIdentity;
131  
132  // Bookkeeping for the current switch ID
133  curSwitchID = SwitchID;
134  
135  // Increment the available switch ID
136  SwitchID ++;
137  
138  // Initialize the current switch routing table to add entries for all previously discovered
139  // devices so that they are routed correctly. Start with the host device ID (0x00) and end with
140  // DeviceID-1.
141  for (each deviceID in [0..DeviceID-1]) {
142  rioRouteAddEntry (0, RIO_GEN_DFLT_DID, hopCount, RIO_GEN_DFLT_DID,

deviceID,
143  SwitchPortInformationCAR.PortNumber, NULL);
144  }
145  
146  // Synchronize the current switch routing table with the global table
147  for (each deviceID in [0.. DeviceID-1]) {
148  Switches[curSwitchID].RouteTable.LFT[deviceID] = 
149  SwitchPortInformationCAR.PortNumber;
54 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
150  }
151  
152  // Update the hopCount to reach the current switch
153  Switches[curSwitchID].HopCount = hopCount;
154  
155  for (each portNum in SwitchPortInformationCAR.PortTotal) {
156  if (SwitchPortInformationCAR.PortNumber == portNum) {
157  continue;
158  }
159  
160  // Bookkeeping for the current available device ID
161  curDeviceID = DeviceID;
162  
163  rioGetPortErrStatus (0, RIO_GEN_DFLT_DID, hopCount,

&PortErrorStatusCSR[portNum]);
164  
165  // Check if it is possible to have a neighbor
166  if (PortErrorStatusCSR[portNum].PortUninitialized == TRUE) {
167  continue;
168  }
169  
170  else if (PortErrorStatusCSR[portNum].PortOK == TRUE) {
171  
172  // Check if it is an enumeration boundary port
173  if (PortControlCSR[portNum].PortEnumerationBoundary == TRUE) {
174  continue;
175  }
176  rioRouteAddEntry(0, RIO_GEN_DFLT_DID, hopCount, RIO_GEN_DFLT_DID, 0,

portNumber, NULL);
177  
178  // Discover the neighbor recursively
179  if (status = rioEnumerateNeighbor(hopCount + 1) != RIO_SUCCESS) {
180  return status;
181  }
182  
183  // If more than one end point device was found, update the current switch routing table
184  // entries beginning with the curDeviceID entry and ending with the DeviceID-1
185  // entry.
186  if (DeviceID > curDeviceID) {
187  for (each deviceID in [curDeviceID..DeviceID-1]) {
188  rioRouteAddEntry(0, RIO_GEN_DFLT_DID, hopCount, deviceID,

portNumber);
189  }
190  
191  // Synchronize the current switch routing table with the global table
192  for (each deviceID in [curDeviceID..DeviceID-1]) {
193  Switches[curSwitchID].RouteTable.LFT[deviceID] = portNumber;
194  }
195  
196  // Update the associated Device ID in the path.
197  Switches[curSwitchID].DeviceID = curDeviceID;
198  } // end if
199  } // end else if
200  } // end for
201  } // end if (ProcessingElementFeatureCAR.Switch == TRUE)
202  
RapidIO Trade Association 55



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
203  return RIO_SUCCESS;
204  
205  } // end rioEnumerateNeighbor
206  
207  // **********************************************************************
208  // System clear up
209  // —Reset the previously acquired lock because a master exists elsewhere. Use hostDeviceID to
210  // reset the lock
211  
212  STATUS rioClearUp (hostDeviceID) {
213  
214  // Clear the host lock
215  if (hostDeviceID > DeviceID –1) {
216  rioReleaseDeviceLock (0, hostDeviceID, 0, hostDeviceID);
217  }
218  
219  // Clear the discovered end point device lock
220  while (DeviceID >= 1) {
221  rioReleaseDeviceLock (0, DeviceID-1, 0, hostDeviceID);
222  DeviceID --;
223  }
224  
225  // Clear the discovered switch device lock
226  while (SwitchID >= 1) {
227  rioReleaseDeviceLock (0, Switches[SwitchID–1].DeviceID,
228  Switches[SwitchID-1].hopCount, hostDeviceID);
229  SwitchID --;
230  }
231  
232  return RIO_SUCCESS;
233  } // end rioClearUp

A.4  System Bring Up Example
This section walks-through a system bring up example. The system described in this 
example is shown in Figure A-1.
56 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Figure A-1. Example System

Referring to Figure A-1, system Host A is preloaded with device ID 0x00 and 
system Host B is preloaded with device ID 0x01. Host A is configured to accept 
maintenance packets with destination IDs of 0x00 and 0xFF. Host B is configured 
to accept maintenance packets with destination IDs of 0x01 and 0xFF. System Bring 
Up advances through time slots along the following timeline:

The time slots shown above are defined as follows:

• T+0: Host A begins RapidIO enumeration.

• T+1: Host B begins RapidIO enumeration and Host A continues RapidIO 
enumeration.

• T+2: Host B discovers another host in the system (Host A) and waits.

• T+3: Host A discovers a higher priority host in the system (Host B) and 
retreats.

T+0 T+1 T+2 T+3 T+4 T+5 T+6 T+7

System
Host A

Microprocessor

Host RapidIO
Bridge Board Switch

System
Host B

Microprocessor

HostRapidIO
BridgeBoard Switch

High-Speed I/O Card

Ethernet

RapidIO to RapidIO to
PCI/X Bridge PCI/X Bridge

ATM

DSP

DSP

RapidIO to
PCI/X Bridge

DSP

Farm

DSP

DSP

Board Interconnect
Switch

(Midplane Switch)

0

12

3

4

RapidIO Trade Association 57



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
• T+4: Host B assumes sole enumeration of the system.

• T+5: Host B enumerates the PE on switch port 1.

• T+6: Host B enumerates the PEs on switch ports 2, 3 and 4.

• T+7: System enumeration is complete.

The following describes the actions taken during each time slot in more detail:

Time T+0

Host A attempts to acquire the lock from its Host Base Device ID Lock CSR by 
writing 0x00 to the CSR. Host A confirms it has acquired the lock when it reads the 
value of 0x00 (the host device ID) from the Lock CSR. Host A continues by reading 
the Processing Element Features CAR and adding the information from the CAR to 
its RapidIO device database. Host A updates its Base Device ID CSR with the host 
device ID (0x00).

Time T+1

Host B attempts to acquire the lock from its Host Base Device ID Lock CSR by 
writing 0x01 to the CSR. Host B confirms it has acquired the lock when it reads the 
value of 0x01 (the host device ID) from the Lock CSR. Host B continues by reading 
the Processing Element Features CAR and adding the information from the CAR to 
its RapidIO device database. Host B updates its Base Device ID CSR with the host 
device ID (0x01).

Host A begins neighbor enumeration. It attempts to acquire the lock from the Host 
Base Device ID Lock CSR of the Board Interconnect Switch. A maintenance write 
of the host device ID (0x00), the destination device ID (0xFF), and the hop count (0) 
is issued for the Lock CSR. Host A confirms it has acquired the lock when it reads 
the value of 0x00 (the host device ID) from the Lock CSR.

Time T+2

Host B begins neighbor enumeration. It attempts to acquire the lock from the Host 
Base Device ID Lock CSR of the Board Interconnect Switch. A maintenance write 
of the host device ID (0x01), the destination device ID (0xFF), and the hop count (0) 
is issued for the Lock CSR. However, after Host B issues a maintenance read from 
the Lock CSR it finds that the device was already locked by host device ID 0x00. 
Because Host B has a higher priority than the current lock holder (0x01 is greater 
than 0x00), Host B spins in a delay loop and repeatedly attempts to acquire the lock. 

Time T+3

Host A continues neighbor enumeration. It issues a maintenance read cycle to the 
Device Identity CAR of the Board Interconnect Switch and looks for a matching 
entry in the device database. Device configuration continues because no match is 
found (Host A has not enumerated the device). Host A reads the Source Operations 
and Destination Operations CARs for the device. It is determined that the device 
58 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
does not support read/write/atomic operations and does not require a device ID. 
Host A reads the Processing Element Feature CAR for the device and determines 
that it is a switch element.

Because the device is a switch, Host A reads the Switch Port Information CAR and 
records the device identity in the switch database. Next, Host A adds a set of entries 
to the switch's routing table. For each previously discovered device ID, an entry is 
created containing a target ID (0xFF), hop count (0), and the route port number 
(from the Switch Port Information CAR). The switch database is updated with the 
same routing information. Host A reads the Port Error Status CSR for switch port 0, 
verifying that it is possible for the port to have a neighbor PE. An entry is created in 
the switch’s routing table containing target ID (0xFF), hop count (0), and the route 
port number (0).

Host A continues neighbor enumeration using a hop count of 1. It attempts to 
acquire the lock from the Host Base Device ID Lock CSR of the neighbor PE on port 
0. A maintenance write of the host device ID (0x00), the destination device ID 
(0xFF), and the hop count (1) is issued for the Lock CSR. However, after Host B 
issues a maintenance read from the Lock CSR it finds that the device was already 
locked by host device ID 0x01. Because Host A has a lower priority than the current 
lock holder (0x00 is less than 0x01), Host A retreats. It begins the process of backing 
out all enumeration and configuration changes it has made.

Host A checks its device and switch databases to find all host locks it obtained 
within the system (System Host A and the Board Interconnect Switch). It issues a 
maintenance write transaction to their Host Base Device ID Lock CSRs to release 
the locks.

Time T+4

As Host B spins in its delay loop, it attempts to acquire the lock from the Host Base 
Device ID Lock CSR of the Board Interconnect Switch. A maintenance write of the 
host device ID (0x01), the destination device ID (0xFF), and the hop count (0) is 
issued for the Lock CSR. Because Host A released the lock, Host B is able to 
confirm it has acquired the lock when it reads the value of 0x01 from the Lock CSR.

Host B continues neighbor enumeration. It issues a maintenance read cycle to the 
Device Identity CAR of the Board Interconnect Switch and looks for a matching 
entry in the device database. Device configuration continues because no match is 
found (Host B has not enumerated the device). Host B reads the Source Operations 
and Destination Operations CARs for the device. It is determined that the device 
does not support read/write/atomic operations and does not require a device ID. 
Host B reads the Processing Element Feature CAR for the device and determines 
that it is a switch element.

Because the device is a switch, Host B reads the Switch Port Information CAR and 
records the device identity in the switch database. Next, Host B adds a set of entries 
to the switch's routing table. For each previously discovered device ID, an entry is 
RapidIO Trade Association 59



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
created containing a target ID (0xFF), hop count (0), and the route port number 
(from the Switch Port Information CAR). The switch database is updated with the 
same routing information. Host B reads the Port Error Status CSR for switch port 0, 
verifying that it is possible for the port to have a neighbor PE. An entry is created in 
the switch’s routing table containing target ID (0xFF), hop count (0), and the route 
port number (0). Host B detects that it is attached to port 0. Because Host B has 
already been enumerated, neighbor enumeration continues on the next port.

Time T+5

Host B reads the Port Error Status CSR for switch port 1, verifying that it is possible 
for the port to have a neighbor PE. An entry is created in the switch’s routing table 
containing target ID (0xFF), hop count (0), and the route port number (1).

Host B continues neighbor enumeration using a hop count of 1. It attempts to acquire 
the lock from the Host Base Device ID Lock CSR of the neighbor PE on port 1. A 
maintenance write of the host device ID (0x01), the destination device ID (0xFF), 
and the hop count (1) is issued for the Lock CSR. Host B confirms it has acquired 
the lock when it reads the value of 0x01 from the Lock CSR.

Host B issues a maintenance read cycle to the Device Identity CAR of the DSP Farm 
and looks for a matching entry in the device database. Device configuration 
continues because no match is found (Host B has not enumerated the device). 
Host B reads the Source Operations and Destination Operations CARs for the 
device. It is determined that the device supports read/write/atomic operations. A 
maintenance write is used to update the Base Device ID CSR with the value of 0x00 
(the first available device ID). DeviceID is incremented and compared with the 
Host B device ID. Because they are equal, deviceID is assigned the next available 
device ID.

Time T+6

The process described in the previous step (Time T+5) is repeated on switch ports 
2–4. Device IDs 0x02, 0x03, and 0x04 are assigned to the PEs on switch ports 2, 3 
and 4, respectively.

Time T+7

Host A detects that its Host Base Device Lock CSR has been acquired by another 
host device, indicating it has been enumerated. Host A can initiate passive discovery 
to build a local system database.
60 RapidIO Trade Association



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used 
in this book. 

Application programming interface (API.). A standard software interface 
that promotes portability of application programs across multiple 
devices.

Capability registers (CARs). High-speed memory containing recently 
accessed data and/or instructions (subset of main memory) 
associated with a processor.

Command and status registers (CSRs). A set of registers that allows a 
processing element to control and determine the status of another 
processing element’s internal hardware.

Destination. The termination point of a packet on the RapidIO interconnect, 
also referred to as a target. 

Device. A generic participant on the RapidIO interconnect that sends or 
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the 
RapidIO interconnect.

Discovery. The passive exploration of a RapidIO network fabric. This 
process involves walking an already enumerated RapidIO fabric to 
determine network topology and resource allocations.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of 
transactions through a RapidIO fabric.

End point device. A processing element which contains end point 
functionality.

A

C

D

E

RapidIO Trade Association 61



RapidIO Annex 1: Software/System Bring Up Specification Rev. 2.2
Enumeration. The active exploration of a RapidIO network fabric. This 
process involves configuring device identifiers and maintaining 
proper host locking.

Hardware abstraction layer (HAL). A a standard software interface to 
device-specific hardware resources.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to 
as a source.

Operation. A set of transactions between end point devices in a RapidIO 
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO 
system.

Processing Element (PE). A generic participant on the RapidIO interconnect 
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic 
instructions that drive a computer. 

Sender. The RapidIO interface output port on a processing element. 

Source. The origin of a packet on the RapidIO interconnect, also referred to 
as an initiator. 

Switch. A multiple port processing element that directs a packet received on 
one of its input ports to one of its output ports. 

Target. The termination point of a packet on the RapidIO interconnect, also 
referred to as a destination.

Transaction. A specific request or response packet transmitted between end 
point devices in a RapidIO system.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

Write port. Hardware within a processing element that is the target of a port-
write operation.

H

I

O

P

S

T

W

62 RapidIO Trade Association


	RapidIO™ Interconnect Specification Annex 1: Software/System Bring Up Specification
	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Scope
	1.4 System Enumeration API
	1.5 Terminology
	1.6 Software Conventions

	Chapter 2 Requirements for System Bring Up
	2.1 Introduction
	2.2 Boot Requirements
	2.3 Enumeration Completion
	2.4 Enumeration Time-Out
	2.5 Function Return Codes

	Chapter 3 Hardware Abstraction Layer
	3.1 Introduction
	3.2 Device Addressing
	3.3 HAL Functions
	3.3.1 Types and Definitions
	3.3.2 rioGetNumLocalPorts
	3.3.3 rioConfigurationRead
	3.3.4 rioConfigurationWrite


	Chapter 4 Standard Bring Up Functions
	4.1 Introduction
	4.2 Data Structures
	4.3 Bring Up Functions
	4.3.1 rioInitLib
	4.3.2 rioGetFeatures
	4.3.3 rioGetSwitchPortInfo
	4.3.4 rioGetExtFeaturesPtr
	4.3.5 rioGetNextExtFeaturesPtr
	4.3.6 rioGetSourceOps
	4.3.7 rioGetDestOps
	4.3.8 rioGetAddressMode
	4.3.9 rioGetBaseDeviceId
	4.3.10 rioSetBaseDeviceId
	4.3.11 rioAcquireDeviceLock
	4.3.12 rioReleaseDeviceLock
	4.3.13 rioGetComponentTag
	4.3.14 rioSetComponentTag
	4.3.15 rioGetPortErrStatus


	Chapter 5 Routing-Table Manipulation Functions
	5.1 Introduction
	5.2 Routing Table Functions
	5.2.1 rioRouteAddEntry
	5.2.2 rioRouteGetEntry


	Chapter 6 Device Access Routine Interface
	6.1 Introduction
	6.2 DAR Packaging
	6.3 Execution Environment
	6.4 Type Definitions
	6.5 DAR Functions
	6.5.1 rioDar_nameGetFunctionTable
	6.5.2 rioDarInitialize
	6.5.3 rioDarTerminate
	6.5.4 rioDarTestMatch
	6.5.5 rioDarRegister
	6.5.6 rioDarGetMemorySize
	6.5.7 rioDarGetSwitchInfo
	6.5.8 rioDarSetPortRoute
	6.5.9 rioDarGetPortRoute


	Annex A System Bring Up Guidelines (Informative)
	A.1 Introduction
	A.2 Overview of the System Bring Up Process
	A.3 System Enumeration Algorithm
	A.3.1 Data Structures, Constants, and Global Variables
	A.3.2 Pseudocode

	A.4 System Bring Up Example


