
Rev. 2.0, 03/2008

© Copyright RapidIO Trade Association

RapidIOTM Interconnect Specification 
Part 7: System and Device 

Inter-operability Specification
RapidIO Trade Association



NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE 
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND 
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO 
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE.  USER AGREES TO 
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION.  WITHOUT LIMITING THE 
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR 
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER 
SUCH USE OF THE SPECIFICATION.
DISCLAIMER OF LIABILITY.  THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL, 
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST 
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION 
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE 
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:
RapidIO Trade Association 
12343 Hymeadow, Suite 2-R 
(non-US mail deliveries to Suite 3-E) 
Austin, TX 78750 
512-401-2900 Tel. 
512-401-2902 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their 

Revision History

Revision Description Date

1.1 First public release 04/06/2001

1.2 Technical changes: incorporate Rev. 1.1 errata rev. 1.1.1, errata 3 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
004-05-00002.002
Converted to ISO-friendly templates

02/23/2005

1.3 Removed confidentiality markings for public release 06/07/2005

2.0 Technical changes: errata showing 06-02-00001.005 06/14/2007

2.0 Removed confidentiality markings for public release 03/06/2008
RapidIO Trade Association

respective owners.



Table of Contents

RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Chapter 1  Overview

1.1 Introduction........................................................................................................... 11
1.2 Overview............................................................................................................... 11

Chapter 2  System Exploration and Initialization

2.1 Introduction........................................................................................................... 13
2.2 Boot code access ................................................................................................... 13
2.3 Exploration and initialization................................................................................ 15
2.3.1 Exploration and initialization rules................................................................... 15
2.3.2 Exploration and initialization algorithm........................................................... 16
2.3.3 Exploration and initialization example ............................................................. 16

Chapter 3  RapidIO Device Class Requirements

3.1 Introduction........................................................................................................... 21
3.2 Class Partitioning.................................................................................................. 21
3.2.1 Generic: All devices.......................................................................................... 21
3.2.1.1 General requirements.................................................................................... 21
3.2.1.2 Operation support as target ........................................................................... 22
3.2.1.3 Operation support as source.......................................................................... 23
3.2.2 Class 1: Simple target device............................................................................ 23
3.2.2.1 General requirements.................................................................................... 23
3.2.2.2 Operation support as target ........................................................................... 23
3.2.2.3 Operation support as source.......................................................................... 23
3.2.3 Class 2: Simple mastering device ..................................................................... 23
3.2.3.1 General requirements.................................................................................... 23
3.2.3.2 Operation support as target ........................................................................... 23
3.2.3.3 Operation support as source.......................................................................... 24
3.2.4 Class 3: Complex mastering device.................................................................. 24
3.2.4.1 General requirements.................................................................................... 24
3.2.4.2 Operation support as target ........................................................................... 24
3.2.4.3 Operation support as source.......................................................................... 25

Chapter 4  PCI Considerations

4.1 Introduction........................................................................................................... 27
4.2 Address Map Considerations ................................................................................ 28
4.3 Transaction Flow .................................................................................................. 29
4.3.1 PCI 2.2 Transaction Flow ................................................................................. 29
4.3.2 PCI-X Transaction Flow................................................................................... 32

RapidIO Trade Association 3



Table of Contents

RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
4.4 RapidIO to PCI Transaction Mapping .................................................................. 33
4.5 Operation Ordering and Transaction Delivery ..................................................... 35
4.5.1 Operation Ordering ........................................................................................... 35
4.5.2 Transaction Delivery Ordering ......................................................................... 36
4.5.3 PCI-X Relaxed Ordering Considerations ......................................................... 36
4.6 Interactions with Globally Shared Memory.......................................................... 37
4.6.1 I/O Read Operation Details............................................................................... 40
4.6.1.1 Internal Request State Machine .................................................................... 40
4.6.1.2 Response State Machine ............................................................................... 40
4.6.2 Data Cache Flush Operation Details................................................................. 41
4.6.2.1 Internal Request State Machine .................................................................... 41
4.6.2.2 Response State Machine ............................................................................... 41
4.7 Byte Lane and Byte Enable Usage ....................................................................... 41
4.8 Error Management ................................................................................................ 41

Chapter 5  Globally Shared Memory Devices

5.1 Introduction........................................................................................................... 43
5.2 Processing Element Behavior ............................................................................... 43
5.2.1 Processor-Memory Processing Element ........................................................... 44
5.2.1.1 I/O Read Operations ..................................................................................... 44
5.2.1.1.1 Response State Machine........................................................................... 44
5.2.1.1.2 External Request State Machine............................................................... 45
5.2.2 Memory-only Processing Element.................................................................... 46
5.2.2.1 Read Operations............................................................................................ 46
5.2.2.1.1 Response State Machine........................................................................... 46
5.2.2.1.2 External Request State Machine............................................................... 46
5.2.2.2 Instruction Read Operations ......................................................................... 47
5.2.2.2.1 Response State Machine........................................................................... 47
5.2.2.2.2 External Request State Machine............................................................... 48
5.2.2.3 Read for Ownership Operations ................................................................... 48
5.2.2.3.1 Response State Machine........................................................................... 48
5.2.2.3.2 External Request State Machine............................................................... 49
5.2.2.4 Data Cache and Instruction Cache Invalidate Operations ............................ 50
5.2.2.4.1 Response State Machine........................................................................... 50
5.2.2.4.2 External Request State Machine............................................................... 50
5.2.2.5 Castout Operations........................................................................................ 51
5.2.2.5.1 External Request State Machine............................................................... 51
5.2.2.6 Data Cache Flush Operations ....................................................................... 51
5.2.2.6.1 Response State Machine........................................................................... 51
5.2.2.6.2 External Request State Machine............................................................... 52
5.2.2.7 I/O Read Operations ..................................................................................... 53
5.2.2.7.1 Response State Machine........................................................................... 53
5.2.2.7.2 External Request State Machine............................................................... 53
5.2.3 Processor-only Processing Element.................................................................. 55
5.2.3.1 Read Operations............................................................................................ 55
4 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0

Table of Contents

5.2.3.1.1 Internal Request State Machine................................................................ 55
5.2.3.1.2 Response State Machine........................................................................... 55
5.2.3.1.3 External Request State Machine............................................................... 56
5.2.3.2 Instruction Read Operations ......................................................................... 56
5.2.3.2.1 Internal Request State Machine................................................................ 56
5.2.3.2.2 Response State Machine........................................................................... 56
5.2.3.2.3 External Request State Machine............................................................... 57
5.2.3.3 Read for Ownership Operations ................................................................... 58
5.2.3.3.1 Internal Request State Machine................................................................ 58
5.2.3.3.2 Response State Machine........................................................................... 58
5.2.3.3.3 External Request State Machine............................................................... 58
5.2.3.4 Data Cache and Instruction Cache Invalidate Operations ............................ 59
5.2.3.4.1 Internal Request State Machine................................................................ 59
5.2.3.4.2 Response State Machine........................................................................... 59
5.2.3.4.3 External Request State Machine............................................................... 60
5.2.3.5 Castout Operations........................................................................................ 60
5.2.3.5.1 Internal Request State Machine................................................................ 60
5.2.3.5.2 Response State Machine........................................................................... 60
5.2.3.6 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations........ 61
5.2.3.6.1 Internal Request State Machine................................................................ 61
5.2.3.6.2 Response State Machine........................................................................... 61
5.2.3.6.3 External Request State Machine............................................................... 61
5.2.3.7 Data Cache Flush Operations ....................................................................... 61
5.2.3.7.1 Internal Request State Machine................................................................ 61
5.2.3.7.2 Response State Machine........................................................................... 62
5.2.3.7.3 External Request State Machine............................................................... 62
5.2.3.8 I/O Read Operations ..................................................................................... 62
5.2.3.8.1 External Request State Machine............................................................... 62
5.2.4 I/O Processing Element .................................................................................... 64
5.2.4.1 I/O Read Operations ..................................................................................... 64
5.2.4.1.1 Internal Request State Machine................................................................ 64
5.2.4.1.2 Response State Machine........................................................................... 64
5.2.4.2 Data Cache Flush Operations ....................................................................... 64
5.2.4.2.1 Internal Request State Machine................................................................ 65
5.2.4.2.2 Response State Machine........................................................................... 65
5.2.5 Switch Processing Element............................................................................... 65
5.3 Transaction to Priority Mappings ......................................................................... 65
RapidIO Trade Association 5



Table of Contents

RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
6 RapidIO Trade Association



List of Figures

RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
2-1 Example system with boot ROM....................................................................................14
2-2 Automatically finding the boot ROM.............................................................................14
2-3 Example system ..............................................................................................................16
2-4 Finding the adjacent device ............................................................................................17
2-5 Finding the device on switch port 0................................................................................18
2-6 Finding the device on switch port 1................................................................................18
2-7 Finding the device on switch port 3................................................................................19
2-8 Final initialized system state...........................................................................................19
4-1 Example System with PCI and RapidIO.........................................................................27
4-2 Host segment PCI Memory Map Example .....................................................................28
4-3 AMT and Memory Mapping...........................................................................................29
4-4 PCI Mastered Posted Write Transaction Flow Diagram ................................................30
4-5 PCI Mastered non-posted (delayed) Transaction Flow Diagram ...................................31
4-6 RapidIO Mastered Transaction.......................................................................................32
4-7 PCI-X Mastered Split Response Transaction .................................................................33
4-8 Traditional Non-coherent I/O Access Example..............................................................37
4-9 Traditional Globally Coherent I/O Access Example ......................................................38
4-10 RapidIO Locally Coherent I/O Access Example............................................................39
RapidIO Trade Association 7



List of Figures
RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
8 RapidIO Trade Association



List of Tables

RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
4-1 PCI 2.2 to RapidIO Transaction Mapping ......................................................................33
4-2 PCI-X to RapidIO Transaction Mapping........................................................................34
4-3 Packet priority assignments for PCI ordering.................................................................36
4-4 Packet priority assignments for PCI-X ordering.............................................................37
5-1 Transaction to Priority Mapping ....................................................................................66
RapidIO Trade Association 9



List of Tables
RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
10 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Chapter 1  Overview

1.1  Introduction
This chapter provides an overview of the RapidIO Part 7: System and Device 
Inter-operability Specification document. This document assumes that the reader is 
familiar with the RapidIO specifications, conventions, and terminology. 

1.2  Overview
The RapidIO Architectural specifications set a framework to allow a wide variety of 
implementations. This document provides a standard set of device and system 
design solutions to provide for inter-operability.

Each chapter addresses a different design topic. This revision of the system and 
device inter-operability specification document covers the following issues:

Chapter 2, “System Exploration and Initialization”

Chapter 3, “RapidIO Device Class Requirements”

Chapter 4, “PCI Considerations”

Chapter 5, “Globally Shared Memory Devices”
RapidIO Trade Association 11



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
12 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Chapter 2  System Exploration and 
Initialization

2.1  Introduction
There are several basic ways of exploring and initializing a RapidIO system. The 
simplest method is to somehow define the power-up state of the system components 
such that all devices have adequate knowledge of the rest of the system to 
communicate as needed. This is frequently accomplished by shifting initialization 
information into all of the devices in the machine at boot time from serial ROMs or 
similar devices. This method is most applicable for relatively static systems and 
systems where boot-up time is important. A second method, having processors 
explore and configure the system at boot time, requires more time but is much more 
flexible in order to support relatively fast changing plug-and-play or hot-swap 
systems. This document describes a simple form of this second method. A much 
more detailed multiple host exploration and configuration algorithm utilizing the 
same system reset requirements is specified in the RapidIO Interconnect 
Specification Annex 1: Software/System Bring Up Specification.

2.2  Boot code access
In most RapidIO applications system initialization requires software for exploring 
and initializing devices. This is typically done by a processor or set of processors in 
the system. The boot code for the processor(s) may reside in a ROM local to the 
processor(s) or on a remote RapidIO agent device. A method of accessing the boot 
code through an uninitialized system is required if the boot code is located on a 
remote RapidIO agent device.

After resetting, a processor typically vectors to a fixed address and issues a code 
fetch. The agent hardware between the processor and the RapidIO fabric is required 
to take this read request and map it automatically to a NREAD transaction. The 
transaction is also mapped to a dedicated device ID at the proper address offset to 
find the boot code. All devices between the processor and the agent device where 
the boot ROM resides shall default to a state that will route the NREAD transaction 
to the boot ROM device and route the response back to the processor. The device ID 
for the agent device where the boot ROM resides is device ID=0xFE (0x00FE for 
16-bit device IDs). The processor default device IDs are assigned sequentially 
starting at 0x00 (0x0000 for 16-bit device IDs). 
RapidIO Trade Association 13



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 2-1. Example system with boot ROM

Figure 2-1 shows an example system with the boot ROM residing on an Agent 
device. The default routing state for the switch device between the processor and the 
agent shall allow all requests to device ID=0xFE to get to the agent device and all 
response packets to get from the agent device back to the processor. This means that 
the switch may also have to know the device ID that the processor will be using 
while fetching boot code (processor device IDs are assigned starting at 0x00 as 
described above). For the example in Figure 2-2, the system processor defaults to 
device ID=0x00, and the switch’s default state routes device ID=0x00 to port 2. 

Figure 2-2. Automatically finding the boot ROM

Once the processor is able to begin running boot code, it can begin executing the 
exploration and initialization of the rest of the system.

Processor

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

device ID=0x??

device ID=0xFE

device ID=0x??

device ID=0x??

boot ROM

Processor

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

device ID=0x00

device ID=0xFE

device ID=0x??

device ID=0x??

boot ROM

Request
Response
14 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
2.3  Exploration and initialization 
This example algorithm addresses the simple case of a system with a single 
processor that is responsible for exploring and initializing a system, termed a Host. 
The exploration and initialization process starts with a number of rules that the 
component and system designers shall follow. 

2.3.1  Exploration and initialization rules
1. A Host shall be able to “reach” all agent devices that it is to be responsible for. 

This may require mechanisms to generate third party transactions to reach 
devices that are not transparently visible. 

2. Maintenance responses generated by agent and switch devices shall be sent to 
the port that the maintenance request was received on. For example, consider 
a device that implements a 5 port switch. The system Host issues a 
maintenance read request to the switch device, which is received on input 
port 3. The switch, upon generating the maintenance response to the 
maintenance read request, must route it to output port 3 even though the 
switch may have been configured by default to route the response to a port 
other than port 3 (when the switch is configured it should also route the 
response to port 3).

3. All devices have CSRs to assist with exploration and initialization procedures. 
The registers used in this example contain the following information:

– Base device ID register - This is the default device ID for the device, 
and it resides in a standard register in the CSR space at offset 0x60. At 
power-up, the base device ID defaults to logic 0xFF for all agent 
devices (0xFFFF for 16-bit route fields), with the exception of the 
boot code device and the Host device. The boot code device (if 
present) will have it’s device ID default to 0xFE and the Host device 
will have it’s device ID default to 0x00 as described in Section 2.2. A 
device may have multiple device IDs, but only this architecturally 
defined device ID is used in the exploration and initialization 
procedure.

– Master Enable bit - the Master Enable bit is reset at power-up for agent 
devices and set for Host devices. The Master Enable bit is located in 
the RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification or 
the RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification Port 
General Control CSR at block offset 0x3C. If the Master Enable bit is 
clear the agent device is not allowed to issue requests and is only able 
to respond to received requests. This bit is used by the system Host to 
control when agents are allowed to issue transactions into the system. 
Switches are by default enabled and do not have a Master Enable bit. 

– Discovered bit - the Discovered bit is reset at power-up for agent 
devices and set for the Host device, and is located in the 8/16 
LP-LVDS or 1x/4x LP-Serial physical layer Port General Control 
RapidIO Trade Association 15



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
CSR at block offset 0x3C. The system Host device sets this bit when 
the device has been discovered through the exploration mechanism. 
The Discovered bit is useful for detecting routing loops, and for hot 
plug or swap environments. 

2.3.2  Exploration and initialization algorithm
If the above rules are followed, all agent devices are now accessible either as an end 
point that responds to any maintenance transaction or, for switches, via the 
hop_count mechanism.

The basic algorithm is to explore the system through each end point in sequence by 
first locating the adjacent device by sending a maintenance read to device ID=0xFF 
and hop count= 0x00, which is guaranteed to cause the adjacent device to respond. 
That device is then configured to reach the next device by assigning it a unique base 
device ID other than 0xFF, setting up route tables to reach the next device, etc.

When all devices in the system have been identified and have unique base device 
IDs assigned (no devices have a base device ID value=0xFF), the Host can then 
complete the final device ID assignment and configuration required for the 
application and enable agent devices to issue requests.

2.3.3  Exploration and initialization example
Figure 2-3 shows the previous example of a small single Host system. 

Following the rules defined above, the base device ID value for all devices except 
the Host and boot ROM device after reset is applied is 0xFF, the Host has it’s Master 
Enable and Discovered bits set, and the agent devices have their Master Enable and 
Discovered bits cleared.

Figure 2-3. Example system

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

device ID=0x00

device ID=0xFE

device ID=0xFF

device ID=0xFF

boot ROM
16 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Assigning the Host’s base device ID=0x00 is the first step in the process. The next 
step is to find the adjacent device, so the Host sends a maintenance read of offset 
0x00_0000 to device ID=0xFF and hop_count=0x00. The switch consumes the 
request because the hop_count field is equal to zero and responds by sending the 
contents of it’s Device Identity and Information CARs back to the port the request 
came from. From the returned information, the software on the Host can identify this 
as a switch. The Host then reads the switch port information CAR at offset 
0x00_0014 to find out which port it is connected to. The response indicates a 4 port 
switch (which the Host may have already known from the device information 
register), connected to port 2.

The Host then examines the default routing tables for the switch to find the port route 
for the boot device ID=0xFE so it can preserve the path to the boot code (which it 
may still be running), and discovers that the boot device is located through port 1 of 
the switch. It also sets the switch’s Discovered bit.

Figure 2-4. Finding the adjacent device

The next step is for the Host to configure the switch to route device ID=0xFF to port 
0 and device ID=0x00 to port 2 (which it already was because of the boot device in 
the system) via maintenance write requests to hop_count=0x00. The Host then 
issues another maintenance read request, this time to device ID=0xFF and 
hop_count=0x01. The switch discovers that it is not the final destination of the 
maintenance request packet, so it decrements the hop_count and routes the packet to 
port 0 and on to the attached agent device. The agent device responds, and the switch 
routes the response packet to device ID=0x00 back through port 2 to the Host. 
Again, software identifies the device, sets its Discovered bit, configures it as 
required, and assigns the base device ID=0x01.

Host

Switch AgentAgent

Agent

Port 0

Port 1
Port 2

Port 3

Request
Response

device ID=0x00

device ID=0xFE

device ID=0xFF

device ID=0xFF

boot ROM
RapidIO Trade Association 17



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 2-5. Finding the device on switch port 0

The Host then modifies the routing tables to now route device ID=0x01 to port 0. 
Since the boot device is located through port 1, instead of modifying the routing 
tables to route device ID=0xFF to port 1, the Host issues a maintenance read of 
device ID=0xFE (the boot device) and hop_count=0x01. The response identifies the 
agent on port 1, sets the agent’s Discovered bit, and configures it as necessary, 
leaving the base device ID=0xFE so the Host can continue to execute the boot code.

Figure 2-6. Finding the device on switch port 1

For the next iteration, the Host sets the switch device routing table entry for device 
ID=0xFF to route to port 3 (the Host already knows it is directly connected to port 
2), and issues the maintenance read transaction as before. 

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

Request
Response

base device ID=0x00

base device ID=0xFE

device ID=0xFF

base device ID=0xFF

boot ROM

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

Request
Response

base device ID=0x00

base device ID=0xFE

base device ID=0xFF

base device ID=0x01

boot ROM
18 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 2-7. Finding the device on switch port 3

When the end point only agent responds with the requested CAR information the 
Host now knows that exploration is completed (there are no other paths to follow 
through the fabric), and can finalize configuring the system as shown in Figure 2-8. 
The agent devices can then have their Master Enable bits set so they can begin to 
issue transactions into the initialized system. The boot device ID can be changed, if 
desired, when the Host completes executing code from the boot ROM. 

Figure 2-8. Final initialized system state

Variants to this procedure may be desirable. For example, a system may wish to 
enable some devices before exploration has been completed. 

More complex systems with multiple Hosts, failed Host recovery, and hot swap 
requirements can be addressed with more complex algorithms utilizing the Host 

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

Request
Response

base device ID=0x00

base device ID=0xFE

base device ID=0xFF

base device ID=0x01

boot ROM

Host

Switch AgentAgent

Agent

Port 0

Port 1

Port 2

Port 3

base device ID=0x00

base device ID=0x04

base device ID=0x02

base device ID=0x01

boot ROM
RapidIO Trade Association 19



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
base device ID Lock Register and the Component Tag Register in standard registers 
in the CSR space at offsets 0x68 and 0x6C.
20 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Chapter 3  RapidIO Device Class Requirements

3.1  Introduction
The RapidIO Architecture specifications allow for a variety of implementations. In 
order to form standard points of support for RapidIO, this chapter describes the 
requirements for RapidIO devices adhering to the RapidIO Part 4: 8/16 LP-LVDS 
Physical Layer Specification or the RapidIO Part 6: 1x/4x LP-Serial Physical Layer 
Specification and corresponding to different measures of functionality. Three device 
“classes” are defined, each with a minimum defined measure of support. The first 
class defines the functionality of the least capable device, with subsequent classes 
expanding the measure of support, in order to establish levels of inter-operability. 

3.2  Class Partitioning
Each class includes the functionality defined in all previous class devices and 
defines the minimum additional functionality for that class. A device is not required 
to comply exactly with a class, but may optionally supply additional features as a 
value-add for that device. All functions that are not required in any class list are also 
optional value-adds for a device.

First is a set of requirements that are applicable to all RapidIO compliant devices, 
including switch devices without end point functionality. 

3.2.1  Generic: All devices

3.2.1.1  General requirements
• One or more 8/16 LP-LVDS and/or 1x/4x LP-Serial ports

— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification 
and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer Specification)

• Support for small (8-bit) transport device ID fields 
— (refer to RapidIO Part 3: Common Transport Specification, Section 2.4)

• Ability to accept requests with all sourceID and destinationID values on exit 
from reset
— (refer to RapidIO Part 3: Common Transport Specification, Section 2.3)

• Support for recovery from a single corrupt packet or control symbol
— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification, 
RapidIO Trade Association 21



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Section 1.3.5) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer 
Specification, Section 5.10.2) 

• Support for packet retry protocol
— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification, 

Section 1.2.4) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer 
Specification, Section 5.6) 

• Support for throttle based flow control on 8/16 LP-LVDS physical layer ports
— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification, 

Section 2.3) 
• Support for transaction ordering for flowID B

— (end point programmability for all flow levels is recommended)
— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification, 

Section 1.2.2) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer 
Specification, Section 5.3.3)

• Switch devices maintain error coverage internally
— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification, 

Section 1.3.6) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer 
Specification, Section 5.5)

• Support for maximum size (276 byte) packets for switch devices
— (refer to RapidIO Part 4: 8/16 LP-LVDS Physical Layer Specification, 

Section 1.4) and/or RapidIO Part 6: 1x/4x LP-Serial Physical Layer 
Specification, Section 2.4)

• Support for maximum size (256 byte) data payloads for end point devices
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

3.1.2)
• Device must contain the following registers:

– Device Identity CAR
– Device Information CAR
– Assembly Identity CAR
– Assembly Information CAR
– Processing Element Features CAR
– Source Operations CAR
– Destination Operations CAR

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 4.4)

3.2.1.2  Operation support as target
• Maintenance read 

— (switch targeted by hop_count transport field)
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
22 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
2.3.1, Section 3.1.10)
• Maintenance write 

— (switch targeted by hop_count transport field)
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.3.1, Section 3.1.10)

3.2.1.3  Operation support as source
• <none>

3.2.2  Class 1: Simple target device

3.2.2.1  General requirements
• all Generic requirements
• Support for 34-bit address packet formats

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
4.4.5)

3.2.2.2  Operation support as target
• all Generic requirements
• Write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.2.2, Section 3.1.7)

• Streaming-write
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.2.2, Section 3.1.8)
• Write-with-response

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.2.3, Section 3.1.7)

• Read
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.2.1, Section 3.1.5)

3.2.2.3  Operation support as source
• all Generic requirements

3.2.3  Class 2: Simple mastering device 

3.2.3.1  General requirements
• all Class 1 requirements

3.2.3.2  Operation support as target
• all Class 1 requirements
RapidIO Trade Association 23



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
3.2.3.3  Operation support as source
• all Class 1 requirements
• Maintenance read

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.3.1, Section 3.1.10)

• Maintenance write
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.3.1, Section 3.1.10)
• Write

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.2.2, Section 3.1.7)

• Streaming-write
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.2.2, Section 3.1.8)
• Write-with-response

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.2.3, Section 3.1.7)

• Read
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.2.1, Section 3.1.5)

3.2.4  Class 3: Complex mastering device

3.2.4.1  General requirements
• all Class 2 requirements

3.2.4.2  Operation support as target
• all Class 2 requirements
• Atomic set

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.2.4, Section 3.1.7)

• Maintenance port-write
— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 

2.3.1, Section 3.1.10)
• Data message mailbox 0, letter 0, single segment, 8 byte payload

— (refer to RapidIO Part 2: Message Passing Logical Specification, Section 
2.2.2, Section 3.1.5)
24 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
3.2.4.3  Operation support as source
• all Class 2 requirements
• Atomic set

— (refer to RapidIO Part 1: Input/Output Logical Specification, Section 
2.2.4, Section 3.1.7)

• Data message mailbox 0, letter 0, single segment, 8 byte payload
— (refer to RapidIO Part 2: Message Passing Logical Specification, Section 

2.2.2, Section 3.1.5)
RapidIO Trade Association 25



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
26 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Chapter 4  PCI Considerations

4.1  Introduction
RapidIO contains a rich enough set of operations and capabilities to allow transport 
of legacy interconnects such as PCI1. While RapidIO and PCI share similar 
functionality, the two interconnects have different protocols thus requiring a 
translation function to move transactions between them. A RapidIO to PCI bridge 
processing element is required to make the necessary translation between the two 
interconnects. This chapter describes architectural considerations for an 
implementation of a RapidIO to PCI bridge processing element. This chapter is not 
intended as an implementation instruction manual, rather, it is to provide direction 
to the bridge processing element architect and aid in the development of 
interoperable devices. For this chapter it is assumed that the reader has a thorough 
understanding of the PCI 2.2 and/or the PCI-X 1.0 specifications.

Figure 4-1 shows a typical system with devices connected using various RapidIO 
and PCI bus segments. A host bridge is connected to various peripherals via a PCI 
bus. A RapidIO bridge is used to translate PCI formatted transactions to the 
equivalent RapidIO operations to allow access to the rest of the system, including 
additional subordinate PCI bus segments.

Figure 4-1. Example System with PCI and RapidIO

1For additional information on the Peripheral Component Interconnect PCI refer to the PCI 2.2 and the PCI-X 1.0 
specifications. 

Host
CPU Bridge

Host

Host
Mem

Periph 1

Periph 2

RapidIO
to

PCI
RapidIO
Switch

PCI 2

PCI 0

Periph 3

Periph 4

PCI 1Host Bus Segment

Periph 5

bridge

RapidIO
to

PCI
bridge

RapidIO
to

PCI
bridge
RapidIO Trade Association 27



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Where RapidIO is introduced into a legacy system, it is desirable to limit changes to 
software. For transactions which must travel between RapidIO and PCI it is 
necessary to map address spaces defined on the PCI bus to those of RapidIO, 
translate PCI transaction types to RapidIO operations, and maintain the 
producer/consumer requirements of the PCI bus. This chapter will address each of 
these considerations for both PCI version 2.2 and PCI-X.

4.2  Address Map Considerations
PCI defines three physical address spaces, specifically, the memory, I/O memory, 
and configuration spaces. RapidIO, on the other hand, only addresses memory and 
configuration space. This section discusses memory space. Configuration space is 
discussed in Section 4.4. Figure 4-2 shows a simple example of the PCI memory and 
I/O address spaces for a host bus segment. In order for devices on the PCI bus to 
communicate with those connected through RapidIO, it is necessary to provide a 
memory mapping function. The example PCI host memory map uses a 32-bit 
physical address space resulting in 4 Gbytes of total address space. Host memory is 
shown at the bottom of the address map and peripheral devices at the top. Consider 
that the RapidIO to PCI bridge processing element contains a specified window(s) 
of address space mapped to it using the PCI base address register(s)1. The example 
shown in Figure 4-2 illustrates the RapidIO bridge address window located in an 
arbitrary software defined location. Likewise, if it was desired to communicate with 
PCI legacy I/O devices over RapidIO an I/O window would be assigned to the 
RapidIO to PCI bridge as shown.

Figure 4-2. Host segment PCI Memory Map Example

Any transactions issued to the bus segment with an address that matches the 
RapidIO bridge window will be captured by the RapidIO to PCI bridge for 
forwarding. Once the transaction has been accepted by the RapidIO to PCI bridge 
processing element it must be translated to the proper RapidIO context as shown in 

1Refer to the PCI 2.2 Specification Chapter 6 for a discussion on PCI address maps and configuration registers

Host
Memory

0

RapidIO Bridge

Peripheral 1
Peripheral 2

4G

PCI Memory Space

RapidIO
Bridge

PCI I/O Space
0

Window

Window

4G
28 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 4-3. For the purposes of this discussion this function is called the Address 
Mapping and Translation function (AMT). The AMT function is responsible for 
translating PCI addresses to RapidIO addresses as well as the translation and 
assignment of the respective PCI and RapidIO transaction types. The address space 
defined by the RapidIO bridge window may represent more than one subordinate 
RapidIO target device. A device on PCI bus segment 0 shown in Figure 4-1 may 
require access to a peripheral on PCI bus 1, bus 2, or RapidIO Peripheral 5. Because 
RapidIO uses source addressing (device IDs), the AMT is responsible for translating 
the PCI address to both a target device ID and associated offset address. In addition 
to address translation, RapidIO attributes, transaction types, and other necessary 
delivery information are established.

Similarly, transactions traveling from a RapidIO bus to a PCI bus must also pass 
through the AMT function. The address and transaction type are translated back into 
PCI format, and the AMT selects the appropriate address for the transaction. 
Memory mapping is relied upon for all transactions bridged between PCI and 
RapidIO.

Figure 4-3. AMT and Memory Mapping

4.3  Transaction Flow
In considering the mapping of the PCI bus to RapidIO it is important to understand 
the transaction flow of PCI transactions through RapidIO. 

4.3.1  PCI 2.2 Transaction Flow
The PCI 2.2 specification defines two classes of transaction types, posted and 
non-posted. Figure 4-4 shows the route taken by a PCI-RapidIO posted write 
transaction. Once the request is sent from the PCI Master on the bus, it is claimed by 

P3

I/O

CFG

PCI
Memory

P3

I/O

CFG

PCI
Memory

RapidIO bridge
Address block

Mem

I/O

CFG

Device ID
OxXX

RapidIO

AMTAMT
RapidIO Trade Association 29



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
the bridge processing element which uses the AMT to translate it into a RapidIO 
request. Only when the transaction is in RapidIO format can it be posted to the 
RapidIO target. In some cases it may be desirable to guarantee end to end delivery 
of the posted write transaction. For this case the RapidIO NWRITE_R transaction is 
used which results in a response as shown in the figure.

Figure 4-4. PCI Mastered Posted Write Transaction Flow Diagram

A non-posted PCI transaction is shown in Figure 4-5. The transaction is mastered by 
the PCI agent on the PCI bus and accepted by the RapidIO to PCI bridge. The 
transaction is retried on the PCI bus if the bridge is unable to complete it within the 
required time-out period. In this case the transaction is completed as a delayed 
transaction. The transaction is translated to the appropriate RapidIO operation and 
issued on the RapidIO port. At some time later a RapidIO response is received and 
the results are translated back to PCI format. When the PCI master subsequently 
retries the transaction, the delayed results are returned and the operation is 
completed.

PCI
Master

PCI
Posted 

RapidIO
Request

RapidIO
Target

Translation
to RapidIO

Request

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO Request

Response

RapidIO
Transaction
Completion

RapidIO
Optional
30 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 4-5. PCI Mastered non-posted (delayed) Transaction Flow Diagram

Because PCI allows unbounded transaction data tenures, it may be necessary for the 
RapidIO to PCI bridge to break the single PCI transaction into multiple RapidIO 
operations. In addition, RapidIO does not have byte enables and therefore does not 
support sparse byte transactions. For this case the transaction must be broken into 
multiple operations as well. “Section 4.7, Byte Lane and Byte Enable Usage” on 
page 41 describes this situation in more detail.

A RapidIO mastered operation is shown in Figure 4-6. For this case the RapidIO 
request transaction is received at the RapidIO to PCI bridge. The bridge translates 
the request into the appropriate PCI command which is then issued to the PCI bus. 
The PCI target may complete the transaction as a posted, non-posted, or delayed 
non-posted transaction depending on the command type. Once the command is 
successfully completed on the PCI bus the results are translated back into the 
RapidIO format and a response transaction is issued back to the RapidIO Master.

PCI
Master

PCI
Transaction 

RapidIO
Request

RapidIO
Response

RapidIO
Target

Translation
to RapidIO

Request

(Delayed)
Transaction

Results

RapidIO
to PCI

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO Request
RapidIO Trade Association 31



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 4-6. RapidIO Mastered Transaction

4.3.2  PCI-X Transaction Flow
The flow of transactions described in the previous section applies to the PCI-X bus 
as well. PCI-X supports split transactions instead of delayed transactions. The 
example shown in Figure 4-7 illustrates a transaction completed with a PCI-X split 
completion. The PCI-X master issues a transaction. The RapidIO to PCI-X bridge 
determines that it must complete the transaction as a split transaction, and responds 
with a split response. The transaction is translated to RapidIO and a request is issued 
on the RapidIO port. The RapidIO target returns a response transaction which is 
translated to a PCI-X Split Completion transaction completing the operation. PCI-X 
allows up to a 4 Kilobyte request. Larger PCI-X requests must be broken into 
multiple RapidIO operations. The RapidIO to PCI-X bridge may return the results 
back to the PCI-X Master using multiple Split Completion transactions in a 
pipelined fashion. Since PCI-X only allows devices to disconnect on 128 byte 
boundaries it is advantageous to break the large PCI-X request into either 128 or 256 
byte RapidIO operations.

PCI
Target

PCI
Translation

RapidIO
Request

RapidIO
Response

RapidIO
Master

RapidIO
Transaction

Request

(Delayed)
Transaction

Results

RapidIO
to

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO

Request
32 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Figure 4-7. PCI-X Mastered Split Response Transaction

4.4  RapidIO to PCI Transaction Mapping
The RapidIO I/O and GSM specifications include the necessary transactions types 
to map all PCI transactions. Table 4-1 lists the map of transactions between PCI and 
RapidIO. A mapping mechanism such as the AMT function described in Section 4.2
is necessary to assign the proper transaction type based on the address space for 
which the transaction is targeted.

 

Table 4-1. PCI 2.2 to RapidIO Transaction Mapping

PCI Command RapidIO Transaction Comment

Interrupt-acknowledge NREAD

Special-cycle NWRITE

I/O-read NREAD

I/O-write NWRITE_R

Memory-read, 
Memory-Read-Line, 
Memory-Read-Multiple

NREAD or 
IO_READ_HOME

The PCI memory read transactions can be represented by the NREAD 
operation. If the operation is targeted to hardware maintained globally 
coherent memory address space then the I/O Read operation must be 
used (see “Section 4.6, Interactions with Globally Shared Memory” on 
page 37.)

Memory-write, 
Memory-write-and- 
invalidate

NWRITE, NWRITE_R, 
or FLUSH

The PCI Memory Write and Memory-Write-and-Invalidate can be 
represented by the NWRITE operation. If reliable delivery of an 
individual write transaction is desired then the NWRITE_R is used. If 
the operation is targeted to hardware maintained globally coherent 
memory address space then the Data Cache Flush operation must be used 
(refer to “Section 4.6, Interactions with Globally Shared Memory” on 
page 37.)

PCI-X
Master

RapidIO
Response(s)

RapidIO
Target

Translation
to RapidIO

Request

Split
Completion

Transaction(s)

RapidIO
to PCI-X

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO

PCI-X
Split

Response

PCI-X
Transaction

Request

RapidIO
Request(s)
RapidIO Trade Association 33



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
PCI 2.2 memory transactions do not specify a size. It is possible for a PCI master to 
read a continuous stream of data from a target or to write a continuous stream of data 
to a target. Because RapidIO is defined to have a maximum data payload of 256 
bytes, PCI transactions that are longer than 256 bytes must be broken into multiple 
RapidIO operations. 

Table 4-2 shows the transaction mapping between PCI-X and RapidIO. 

Configuration-read NREAD

Configuration-write NWRITE_R

Table 4-2. PCI-X to RapidIO Transaction Mapping

PCI-X Command RapidIO Transaction Comment

Interrupt-acknowledge NREAD

Special-cycle NWRITE

I/O-read NREAD

I/O-write NWRITE_R

Memory-read DWORD NREAD or 
IO_READ_HOME

The PCI-X memory read DWORD transactions can be represented by 
the NREAD operation. If the operation is targeted to hardware 
maintained coherent memory address space then the I/O Read operation 
must be used (refer to “Section 4.6, Interactions with Globally Shared 
Memory” on page 37.) This is indicated in PCI-X using the No Snoop 
(NS) bit described in Section 2.5 of the PCI-X 1.0 specification.

Memory-write NWRITE, NWRITE_R, 
or FLUSH

The PCI-X Memory Write and Memory-Write-and-Invalidate can be 
represented by the NWRITE operation. If reliable delivery of an 
individual write transaction is desired then the NWRITE_R is used. If 
the operation is targeted to hardware maintained coherent memory 
address space then the Data Cache Flush operation must be used (refer to 
“Section 4.6, Interactions with Globally Shared Memory” on page 37.) 
This is indicated in PCI-X using the No Snoop (NS) bit described in 
Section 2.5 of the PCI-X 1.0 specification.

Configuration-read NREAD

Configuration-write NWRITE_R

Split Completion -- The Split Completion transaction is the result of a request on the PCI-X 
bus that was terminated by the target with a Split Response. In the case 
of the RapidIO to PCI-X bridge this would be the artifact of a transaction 
that either the bridge mastered and received a split response or was the 
target and issued a split response. This command is equivalent to a 
RapidIO response transaction and does not traverse the bridge.

Table 4-1. PCI 2.2 to RapidIO Transaction Mapping

PCI Command RapidIO Transaction Comment
34 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
The PCI-X addendum to the PCI specification adds the ability to do split operations. 
This results in an operation being broken into a Split Request and one or more Split 
Completions. As a target of a PCI-X Split Request, the RapidIO to PCI bridge may 
reply with a Split Response and complete the request using multiple RapidIO 
operations. The results of these operations are issued on the PCI-X bus as Split 
Completions. If the RapidIO to PCI-X bridge is the initiator of a Split Request, the 
target may also indicate that it intends to run the operation as a split transaction with 
a Split Response. In this case the target would send the results to the RapidIO to 
PCI-X bridge using Split Completions.

4.5  Operation Ordering and Transaction Delivery 
This section discusses what the RapidIO to PCI bridge must do to address the 
requirements of the ordering rules of the PCI specifications.

4.5.1  Operation Ordering
Section 1.2.1 of the RapidIO Part 1: Input/Output Logical Specification describes a 
set of ordering rules. The rules guarantee ordered delivery of write data and that 
results of read operations will contain any data that was previously written to the 
same location.

For bridge devices, the PCI 2.2 specification has the additional requirement that the 
results of a read command push ahead posted writes in both directions. 

In order for the RapidIO to PCI bridge to be consistent with the PCI 2.2 ordering 
rules it is necessary to follow the transaction ordering rules listed in section 1.2.1 of 
the I/O logical specification. In addition, the RapidIO to PCI bridge is required to 
adhere to the following RapidIO rule: 

Read responses must push ahead all write requests and write responses.

Memory-read-block NREAD or 
IO_READ_HOME

The PCI-X memory read transactions can be represented by the NREAD 
operation. If the operation is targeted to hardware maintained globally 
coherent memory address space then the I/O Read operation must be 
used (refer to “Section 4.6, Interactions with Globally Shared Memory” 
on page 37.) This is indicated in PCI-X using the No Snoop (NS) bit 
described in Section 2.5 of the PCI-X 1.0 specification.

Memory-write-block NWRITE, NWRITE_R, 
or FLUSH

The PCI-X Memory Write and Memory-Write-and-Invalidate can be 
represented by the NWRITE operation. If reliable delivery of an 
individual write transaction is desired then the NWRITE_R is used. If 
the operation is targeted to hardware maintained globally coherent 
memory address space then the Data Cache Flush operation must be used 
(refer to “Section 4.6, Interactions with Globally Shared Memory” on 
page 37.) This is indicated in PCI-X using the No Snoop (NS) bit 
described in Section 2.5 of the PCI-X 1.0 specification.

Table 4-2. PCI-X to RapidIO Transaction Mapping

PCI-X Command RapidIO Transaction Comment
RapidIO Trade Association 35



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
4.5.2  Transaction Delivery Ordering
The RapidIO 8/16 LP-LVDS and 1x/4x LP-Serial physical layer specifications
describe the mechanisms by which transaction ordering and delivery occur through 
the system. When considering the requirements for the RapidIO to PCI bridge it is 
first necessary to follow the transaction delivery ordering rules in section 1.2.4.1 of 
the 8/16 LP-LVDS specification and/or Section 5.8 of the 1x/4x LP-Serial
specification. Further, it is necessary to add additional constraints to maintain 
programming model compatibility with PCI.

As described in Section 4.5.1 above, PCI has an additional transaction ordering 
requirement over RapidIO. In order to guarantee inter-operability, transaction 
ordering, and deadlock free operation, it is recommended that devices be restricted 
to utilizing transaction request flow level 0. In addition, it is recommended that 
response transactions follow a more strict priority assignment. Table 4-3 illustrates 
the priority assignment requirements for transactions in the PCI to RapidIO 
environment. 

The PCI transaction ordering model requires that a RapidIO device not issue a read 
request into the system unless it has sufficient resources available to receive and 
process a higher priority write or response packet in order to prevent deadlock. PCI 
2.2 states that read responses cannot pass write transactions. The RapidIO 
specification provides PCI ordering by issuing priority 0 to read requests, and 
priority 1 to read responses and PCI writes. Since read responses and writes are 
issued at the same priority, the read responses will not pass writes.

4.5.3  PCI-X Relaxed Ordering Considerations
The PCI-X specification defines an additional ordering feature called relaxed 
ordering. If the PCI-X relaxed ordering attribute is set for a read transaction, the 
results for the read transaction are allowed to pass posted write transactions. PCI-X 
read transactions with this bit set allow the PCI-X to RapidIO bridge to ignore the 
rule described in Section 4.5.1. Table 4-4 shows the results of this additional 

Table 4-3. Packet priority assignments for PCI ordering

RapidIO packet type priority comment

read request 0 This will push write requests and responses ahead

write request 1 Forces writes to complete in order, but allows write requests to bypass read requests

read response 1 Will force completion of preceding write requests and allows bypass of read requests

write response 2 Will prevent NWRITE_R request based deadlocks
36 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
function.

4.6  Interactions with Globally Shared Memory
Traditional systems have two notions of system or subsystem cache coherence. The 
first, non-coherent, means that memory accesses have no effect on the caches in the 
system. The memory controller reads and writes memory directly, and any cached 
address becomes incoherent in the system. This behavior requires that all cache 
coherence with I/O be managed using software mechanisms, as illustrated in 
Figure 4-8. 

The second notion of system cache coherence is that of global coherence. An I/O 
access to memory causes a snoop cycle to be issued on the processor bus, keeping 
all of the system caches coherent with the memory, as illustrated in Figure 4-9.

Table 4-4. Packet priority assignments for PCI-X ordering

RapidIO packet type priority comment

read request 0 This will push write requests and responses ahead

write request 1 Forces writes to complete in order, but allows write requests to bypass of read 
requests

read response 1 When PCI-X Relaxed Ordering attribute is set to 0. Will force completion of 
preceding write requests and allows bypass of read requests

read response 2, 3 When PCI-X Relaxed Ordering attribute is set to 1. The endpoint may promote the 
read response to higher priority to allow it to move ahead of posted writes.

write response 2

Figure 4-8. Traditional Non-coherent I/O Access Example

Agent

Memory

Processor

Local Interconnect

Processor

Request
Response

cachecache

RapidIO
Interconnect

Fabric
RapidIO Trade Association 37



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
With RapidIO globally shared systems, there is no common bus that can be used in 
order to issue the snoop, so global coherence requires special hardware support 
beyond simply snooping the bus. This leads to a third notion of cache coherence, 
termed local coherence. For local coherence, a snoop on a processor bus local to the 
targeted memory controller can be used to keep those caches coherent with that part 
of memory, but not caches associated with other memory controllers, as illustrated 
in Figure 4-10. Therefore, what once was regarded in a system as a “coherent 
access” is no longer globally coherent, but only locally coherent. Typically, deciding 
to snoop or not snoop the local processor caches is either determined by design or 
system architecture policy (always snoop or never snoop), or by an attribute 
associated with the physical address being accessed. In PCI-X, this attribute is the 
No Snoop (NS) bit described in Section 2.5 of the PCI-X 1.0 specification.

Figure 4-9. Traditional Globally Coherent I/O Access Example

Agent

Memory

Processor

Local Interconnect

Processor

Request
Response

cache cache

snoop

RapidIO
Interconnect

Fabric
38 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
In order to preserve the concept of global cache coherence for a system, the RapidIO 
Part 5: Globally Shared Memory Logical Specification defines several operations 
that allow a RapidIO to PCI bridge processing element to access data in the globally 
shared space without having to implement all of the cache coherence protocol. 
These operations are the I/O Read and Data Cache Flush operations (globally shared 
memory specification, sections 3.2.9 and 3.2.10). For PCI-X bridging, these 
operations can also be used as a way to encode the NO SNOOP attribute for locally 
as well as globally coherent transactions. The targeted memory controller can be 
designed to understand the required behavior of such a transaction. These encodings 
also are useful for tunneling PCI-X transactions between PCI-X bridge devices. 

The data payload for an I/O Read operation is defined as the size of the coherence 
granule for the targeted globally shared memory domain. However, the Data Cache 
Flush operation allows coherence granule, sub-coherence granule, and 
sub-double-word writes to be performed.

The IO_READ_HOME transaction is used to indicate to the GSM memory 
controller that the memory access is globally coherent, so the memory controller 
finds the latest copy of the requested data within the coherence domain (the 
requesting RapidIO to PCI bridge processing element is, by definition, not in the 
coherence domain) without changing the state of the participant caches. Therefore, 
the I/O Read operation allows the RapidIO to PCI bridge to cleanly extract data from 
a coherent portion of the system with minimal disruption and without having to be 
a full participant in the coherence domain. 

The Data Cache Flush operation has several uses in a coherent part of a system. One 

Figure 4-10. RapidIO Locally Coherent I/O Access Example

Agent

Memory

Processor

Request
Response

cache

RapidIO
Interconnect

Fabric

snoop

Agent

Memory

Processor
cache

snoop
RapidIO Trade Association 39



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
such use is to allow a RapidIO to PCI bridge processing element to write to globally 
shared portions of the system memory. Analogous to the IO_READ_HOME 
transaction, the FLUSH transaction is used to indicate to the GSM memory 
controller that the access is globally coherent. The memory controller forces all of 
the caches in the coherence domain to invalidate the coherence granule if they have 
a shared copy (or return the data to memory if one had ownership of the data), and 
then writes memory with the data supplied with the FLUSH request. This behavior 
allows the I/O device to cleanly write data to the globally shared address space 
without having to be a full participant in the coherence domain.

Since the RapidIO to PCI bridge processing element is not part of the coherence 
domain, it is never the target of a coherent operation. 

4.6.1  I/O Read Operation Details
Most of the complexity of the I/O Read operation resides in the memory controller. 
For the RapidIO to PCI Bridge processing element the I/O Read operation requires 
some additional attention over the non-coherent read operation. The necessary 
portions of the I/O Read state machine description in Section 6.10 of the globally 
shared memory specification are extracted below. Refer to Chapter 6 of the GSM 
specification for state machine definitions and conventions. The GSM specification 
takes precedence in the case of any discrepancies between the corresponding 
portions of the GSM specification and this description. 

4.6.1.1  Internal Request State Machine
This state machine handles requests to the remote globally shared memory space.
remote_request(IO_READ_HOME, mem_id, my_id);

4.6.1.2  Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect.
switch(remote_response) 
case DONE: 

return_data(); 
free_entry(); 

case DONE_INTERVENTION: // must be from third party 
set_received_done_message(); 
if (received_data_only_message) 

free_entry(); 
else 

// wait for a DATA_ONLY 
endif; 

case DATA_ONLY: // this is due to an intervention, a 
// DONE_INTERVENTION should come 
// separately 

set_received_data_only_message(); 
if (received_done_message) 

return_data(); 
free_entry(); 

else 
return_data(); // OK for weak ordering 

endif; 
40 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
case RETRY: 
remote_request(IO_READ_HOME, received_srcid, my_id); 

default 
error();

4.6.2  Data Cache Flush Operation Details
As with the I/O Read operation, the complexity for the Data Cache Flush operation 
resides in the memory controller. The necessary portions of the Data Cache Flush 
state machine description from Section 6.10 of the GSM logical specification are 
extracted below. Refer to Chapters 2 and 3 of the GSM specification to determine 
the size of data payloads for the FLUSH transaction. The GSM specification takes 
precedence in the case of any discrepancies between the corresponding portions of 
the GSM specification and this description. 

4.6.2.1  Internal Request State Machine
This state machine handles requests to the remote globally shared memory space. 
remote_request(FLUSH, mem_id, my_id, data);

4.6.2.2  Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect.
switch (received_response) 
case DONE: 

local_response(OK); 
free_entry(); 

case RETRY: 
remote_request(FLUSH, received_srcid, my_id, data); 

default: 
error();

4.7  Byte Lane and Byte Enable Usage
PCI makes use of byte enables and allows combining and merging of transactions. 
This may have the result of write transactions with sparse valid bytes. In order to 
save on transaction overhead, RapidIO does not include byte enables. RapidIO does, 
however, support a set of byte encodings defined in Chapter 3 of the RapidIO Part 
1: Input/Output Logical Specification. PCI to RapidIO operations may be issued 
with sparse bytes. Should a PCI write transaction with byte enables that do not match 
a RapidIO byte encoding be issued to a RapidIO to PCI bridge, that operation must 
be broken into multiple valid RapidIO operations. 

4.8  Error Management
Errors that are detected on a PCI bus are signaled using side band signals. The 
treatment of these signals is left to the system designer and is outside of the PCI 
specifications. Likewise, this document does not recommend any practices for the 
delivery of error interrupts in the system. 
RapidIO Trade Association 41



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
42 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Chapter 5  Globally Shared Memory Devices

5.1  Introduction
Different processing elements have different requirements when participating in a 
RapidIO GSM environment. The GSM protocols and address collision tables are 
written from the point of view of a fully integrated processing element comprised of 
a local processor, a memory controller, and an I/O controller. Obviously, the 
complexity and implementation requirements for this assumed device are much 
greater than required for a typical design. This chapter assumes that the reader is 
familiar with the RapidIO Part 5: Globally Shared Memory Logical Specification. 

Additionally, this chapter contains the 8/16 LP-LVDS and 1x/4x LP-Serial physical 
layer transaction to priority mappings to guarantee that a system maintains cache 
coherence and is deadlock free.

5.2  Processing Element Behavior
In Chapter 2 of the globally shared memory specification are a number of examples 
of possible processing elements:

• A processor-memory processing element
• A memory-only processing element
• A processor-only processing element
• An I/O processing element
• A switch processing element

Of all of these, only the switch processing element does not have to implement 
anything additional to exist in a GSM system or sub-system. All of the remaining 
processing element types are of interest, and all are likely to exist in some form in 
the marketplace. This chapter is intended to define the portions of the protocol 
necessary to implement each of these devices. Other processing elements are 
allowed by the globally shared memory specification, for example, a memory-I/O 
processing element. The portions of the protocol necessary to implement these 
devices are not addressed in this chapter. 

The behaviors described in this chapter have been extracted directly from revision 
1.1 of the globally shared memory specification, and may be out of date with respect 
to the latest revision of that document. The GSM specification takes precedence in 
RapidIO Trade Association 43



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
the case that there are discrepancies between it and this chapter.

5.2.1  Processor-Memory Processing Element
This processing element is very nearly the same as the assumed processing element 
used for the state machine description in Chapter 6, and requires nearly all of the 
described functionality. The following operation behavior is not changed from the 
Chapter 6 descriptions:

• Read
• Instruction read
• Read for ownership
• Data cache and instruction cache invalidate
• Castout
• TLB invalidate entry and TLB invalidate entry synchronize
• Data cache flush

This leaves the I/O Read operation. Since the processor-memory processing element 
does not contain an I/O device, this processing element will not generate the I/O read 
operation, but is required to respond to it. This removes the internal request state 
machine and portions of the response state machine, requiring the behavior 
described in Section 2.1.1 below. The only exception to this is the special case where 
there exists multiple coherence domains. It is possible that a processor in one 
coherence domain may wish to read data in another coherence domain and thus 
would require support of the I/O Read operation.

5.2.1.1  I/O Read Operations
This operation is used for I/O reads of globally shared memory space.

5.2.1.1.1  Response State Machine

This machine handles responses to requests made to the RapidIO interconnect made 
on behalf of a third party.
switch(remote_response) 
case INTERVENTION: 

update_memory(); 
remote_response(DONE_INTERVENTION, original_srcid, my_id); 
free_entry(); 

case NOT_OWNER, // data comes from memory, mimic 
// intervention 

case RETRY: 
switch(directory_state) 
case LOCAL_MODIFIED, 
case LOCAL_SHARED: 

remote_response(DATA_ONLY, original_srcid, my_id, 
data); 

remote_response(DONE_INTERVENTION, original_srcid, 
my_id); 

free_entry(); 
case REMOTE_MODIFIED: // spin or wait for castout 
44 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
remote_request(IO_READ_OWNER, received_srcid, my_id, 
my_id); 

default: 
error(); 

default: 
error();

5.2.1.1.2  External Request State Machine

This machine handles requests from the system to the local memory or the local 
processor. This may require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
elseif (IO_READ_HOME) // remote request to our local memory 

assign_entry(); 
switch (directory_state) 
case LOCAL_MODIFIED: 

local_request(READ_LATEST); 
remote_response(DONE, received_srcid, my_id, data); 

// after push completes 
free_entry(); 

case LOCAL_SHARED: 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

case REMOTE_MODIFIED: 
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid); 

case SHARED: 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

default: 
error(); 

else // IO_READ_OWNER request to our caches 
assign_entry(); 
local_request(READ_LATEST); // spin until a valid response from 

// the caches 
switch (local_response) 
case MODIFIED: // processor indicated a push; 

// wait for it 
if (received_srcid == received_secid) 

// original requestor is also home 
// module 

remote_response(INTERVENTION, received_srcid, my_id, 
data); 

else 
remote_response(DATA_ONLY, received_secid, my_id, 

data); 
remote_response(INTERVENTION, received_srcid, my_id); 

endif; 
case INVALID:   // must have cast it out during 

// an address collision 
remote_response(NOT_OWNER, received_srcid, my_id); 

default: 
error(); 

free_entry(); 
endif;
RapidIO Trade Association 45



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.2  Memory-only Processing Element
This processing element is simpler than the assumed processing element used in 
Chapter 6, removing all of the internal request state machines and portions of all of 
the external request and response state machines. A memory-only processing 
element does not receive TLB invalidate entry or TLB invalidate synchronize 
operations. The required behavior for each operation is described below.

5.2.2.1  Read Operations
This operation is a coherent data cache read.

5.2.2.1.1  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of a third party.
switch(remote_response) 
case INTERVENTION: 

update_memory(); 
update_state(SHARED, original_srcid); 
remote_response(DONE_INTERVENTION, original_srcid, my_id); 
free_entry(); 

case NOT_OWNER, // data comes from memory,  
// mimic intervention 

case RETRY: 
switch(directory_state) 
case LOCAL_SHARED: 

update_state(SHARED, original_srcid); 
remote_response(DATA_ONLY, original_srcid, 

my_id, data); 
remote_response(DONE_INTERVENTION, original_srcid, 

my_id); 
free_entry(); 

case LOCAL_MODIFIED: 
update_state(SHARED, original_srcid); 
remote_response(DATA_ONLY, original_srcid, 

my_id, data); 
remote_response(DONE_INTERVENTION, original_srcid, 

my_id); 
free_entry(); 

case REMOTE_MODIFIED: // spin or wait for castout 
remote_request(READ_OWNER, received_srcid, 

my_id, my_id); 
default: 

error(); 
default: 

error();

5.2.2.1.2  External Request State Machine

This state machine handles read requests from the system to the local memory. This 
may require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // READ_HOME 

assign_entry(); 
switch (directory_state) 
case LOCAL_MODIFIED: 

local_request(READ); 
46 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
update_state(SHARED, received_srcid); 
// after possible push completes 

remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

case LOCAL_SHARED, 
case SHARED: 

update_state(SHARED, received_srcid); 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

case REMOTE_MODIFIED: 
if (mask_id ~= received_srcid) 

// intervention case 
remote_request(READ_OWNER, mask_id, 

my_id, received_srcid); 
else 

error(); // he already owned it;  
// cache paradox (or I-fetch after d- 
// store if not fixed elsewhere) 

endif; 
default: 

error(); 
endif;

5.2.2.2  Instruction Read Operations
This operation is a partially coherent instruction cache read.

5.2.2.2.1  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of a third party.
switch(remote_response) 
case INTERVENTION: 

update_memory(); 
update_state(SHARED, original_srcid); 
remote_response(DONE, original_srcid, my_id); 
free_entry(); 

case NOT_OWNER, // data comes from memory,  
// mimic intervention 

case RETRY: 
switch(directory_state) 
case LOCAL_SHARED: 

update_state(SHARED, original_srcid); 
remote_response(DONE, original_srcid, my_id); 
free_entry(); 

case LOCAL_MODIFIED: 
update_state(SHARED, original_srcid); 
remote_response(DONE, original_srcid, my_id); 
free_entry(); 

case REMOTE_MODIFIED: // spin or wait for castout 
remote_request(READ_OWNER, received_srcid, 

my_id, my_id); 
default: 

error(); 
default: 

error();
RapidIO Trade Association 47



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.2.2.2  External Request State Machine

This state machine handles instruction read requests from the system to the local 
memory. This may require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // IREAD_HOME 

assign_entry(); 
switch (directory_state) 
case LOCAL_MODIFIED: 

local_request(READ); 
update_state(SHARED, received_srcid); 

// after possible push completes 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

case LOCAL_SHARED, 
case SHARED: 

update_state(SHARED, received_srcid); 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

case REMOTE_MODIFIED: 
if (mask_id ~= received_srcid)  

// intervention case 
remote_request(READ_OWNER, mask_id, 

my_id, received_srcid); 
else // he already owned it in his  

//data cache; cache paradox case 
remote_request(READ_OWNER, mask_id, my_id, my_id); 

endif; 
default: 

error(); 
endif;

5.2.2.3  Read for Ownership Operations
This is the coherent cache store miss operation.

5.2.2.3.1  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of a third party.
switch(received_response) 
case DONE: // invalidates for shared  

// directory states 
if ((mask ~= (my_id OR received_id)) == 0) 

// this is the last DONE 
update_state(REMOTE_MODIFIED, original_srcid); 
remote_response(DONE, original_srcid, my_id, data); 
free_entry(); 

else 
mask <= (mask ~= received_srcid); 

// flip the responder’s shared bit 
endif; // and wait for next DONE 

case INTERVENTION: 
// remote_modified case 

update_memory(); // for possible coherence error 
// recovery 

update_state(REMOTE_MODIFIED, original_id); 
remote_response(DONE_INTERVENTION, original_id, my_id); 
free_entry(); 

case NOT_OWNER: // data comes from memory, mimic 
48 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
// intervention 
switch(directory_state) 
case LOCAL_SHARED: 
case LOCAL_MODIFIED: 

update_state(REMOTE_MODIFIED, original_srcid); 
remote_response(DATA_ONLY, original_srcid, my_id, 

data); 
remote_response(DONE, original_srcid, my_id); 
free_entry(); 

case REMOTE_MODIFIED: 
remote_request(READ_TO_OWN_OWNER, received_srcid, 

my_id, original_srcid); 
default: 

error(); 
case RETRY: 

switch (directory_state) 
case LOCAL_MODIFIED, 
case LOCAL_SHARED: 

update_state(REMOTE_MODIFIED, original_srcid); 
remote_response(DATA_ONLY, original_srcid, my_id, 

data); 
remote_response(DONE, original_srcid, my_id); 
free_entry(); 

case REMOTE_MODIFIED: // mask_id must match received_srcid 
// or error condition 

remote_request(READ_TO_OWN_OWNER, received_srcid, 
my_id, my_id); 

case SHARED: 
remote_request(DKILL_SHARER, received_srcid, my_id, 

my_id); 
default: 

error(); 
default: 

error();

5.2.2.3.2  External Request State Machine

This state machine handles requests from the interconnect to the local memory. This 
may require making further external requests.
if (address_collision) // use collision tables 

// in Chapter 7, “Address Collision Resolution 
Tables” 
else // READ_TO_OWN_HOME 

assign_entry(); 
switch (directory_state) 
case LOCAL_MODIFIED, 
case LOCAL_SHARED: 

local_request(READ_TO_OWN); 
remote_response(DONE, received_srcid, my_id, data); 

// after possible push 
update_state(REMOTE_MODIFIED, received_srcid); 
free_entry(); 

case REMOTE_MODIFIED: 
if (mask_id ~= received_srcid) 

//intervention case 
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, 

received_srcid); 
else 

error(); // he already owned it! 
endif; 

case SHARED: 
local_request(READ_TO_OWN); 
if (mask == received_srcid) 

//requestor is only remote sharer 
update_state(REMOTE_MODIFIED, received_srcid); 
RapidIO Trade Association 49



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
remote_response(DONE, received_srcid, my_id, data); 
// from memory 

free_entry(); 
else //there are other remote sharers 

remote_request(DKILL_SHARER, (mask ~= received_srcid), 
my_id, my_id); 

endif; 
default: 

error(); 
endif;

5.2.2.4  Data Cache and Instruction Cache Invalidate Operations
This operation is used with coherent cache store-hit-on-shared, cache operations.

5.2.2.4.1  Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of a third party.
switch(received_response) 
case DONE: // invalidates for shared  

// directory states 
if ((mask ~= (my_id OR received_id)) == 0) 

// this is the last DONE 
update_state(REMOTE_MODIFIED, original_srcid); 
remote_response(DONE, original_srcid, my_id); 
free_entry(); 

else 
mask <= (mask ~= received_srcid); 

// flip the responder’s shared bit 
endif; // and wait for next DONE 

case RETRY: 
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid, 

my_id); // retry 
default: 

error();

5.2.2.4.2  External Request State Machine

This state machine handles requests from the system to the local memory. This may 
require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // DKILL_HOME or IKILL_HOME 

assign_entry(); 
if (DKILL_HOME) 

switch (directory_state) 
case LOCAL_MODIFIED, // cache paradoxes; DKILL is 

// write-hit-on-shared 
case LOCAL_SHARED, 
case REMOTE_MODIFIED: 

error(); 
case SHARED: // this is the right case, send 

// invalidates to the sharing list 
local_request(DKILL); 
if (mask == received_srcid 

// requestor is only remote sharer 
update_state(REMOTE_MODIFIED, received_srcid); 
remote_response(DONE, received_srcid, my_id); 
free_entry(); 

else // there are other remote sharers 
remote_request(DKILL_SHARER, 
50 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
(mask ~= received_srcid), my_id, NULL); 
endif; 

default: 
error(); 

else // IKILL goes to everyone except the 
// requestor 

remote_request(IKILL_SHARER, 
(mask <= (participant_list ~= 
(received_srcid AND my_id), my_id); 

endif;

5.2.2.5  Castout Operations
This operation is used to return ownership of a coherence granule to home memory, 
leaving it invalid in the cache. 

5.2.2.5.1  External Request State Machine

This machine handles requests from the system to the local memory. This may 
require making further external requests.
assign_entry(); 
update_memory(); 
state_update(LOCAL_SHARED, my_id); // may be LOCAL_MODIFIED if the 

// default is owned locally 
remote_response(DONE, received_srcid, my_id); 
free_entry();

5.2.2.6  Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and 
performs a coherent write.

5.2.2.6.1  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of a third party.
switch(received_response) 
case DONE: // invalidates for shared directory 

// states 
if ((mask ~= (my_id OR received_id)) == 0) 

// this is the last DONE 
remote_response(DONE, original_srcid, my_id, my_id); 
if (received_data) 

// with original request or response 
update_memory(); 

endif; 
update_state(LOCAL_SHARED); // or LOCAL_MODIFIED 
free_entry(); 

else 
mask <= (mask ~= received_srcid); 

// flip responder’s shared bit 
endif; // and wait for next DONE 

case NOT_OWNER: 
switch(directory_state) 
case LOCAL_SHARED, 
case LOCAL_MODIFIED: 

remote_response(DONE, original_srcid, my_id); 
if (received_data) 

// with original request 
update_memory(); 

endif; 
RapidIO Trade Association 51



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
free_entry(); 
case REMOTE_MODIFIED: 

remote_request(READ_TO_OWN_OWNER, received_srcid, 
my_id, original_srcid); 

default: 
error(); 

case RETRY: 
switch(directory_state) 
case LOCAL_SHARED, 
case LOCAL_MODIFIED: 

remote_response(DONE, original_srcid, my_id); 
if (received_data) 

// with original request 
update_memory(); 

endif; 
free_entry(); 

case REMOTE_MODIFIED: 
remote_request(READ_TO_OWN_OWNER, received_srcid, 

my_id, original_srcid); 
case SHARED: 

remote_request(DKILL_SHARER, received_srcid, my_id); 
default: 

error(); 
default: 

error();

5.2.2.6.2  External Request State Machine

This state machine handles requests from the system to the local memory. This may 
require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // FLUSH 

assign_entry(); 
switch (directory_state) 
case LOCAL_MODIFIED, 
case LOCAL_SHARED: 

local_request(READ_TO_OWN); 
remote_response(DONE, received_srcid, my_id); 

// after snoop completes 
if (received_data) // from request or local response 

update_memory(); 
endif; 
update_state(LOCAL_SHARED, my_id); 

// or LOCAL_MODIFIED 
free_entry(); 

case REMOTE_MODIFIED: 
if (mask_id ~= received_srcid) // owned elsewhere 

remote_request(READ_TO_OWN_OWNER, mask_id, my_id, 
received_srcid); 

else // requestor owned it; shouldn’t  
// generate a flush 

error(); 
endif; 

case SHARED: 
local_request(READ_TO_OWN); 
if (mask == received_srcid)  // requestor is only remote sharer 

remote_response(DONE, received_srcid, my_id); 
// after snoop completes 

if (received_data) // from request or response 
update_memory(); 

endif; 
update_state(LOCAL_SHARED, my_id); // or LOCAL_MODIFIED 
free_entry(); 
52 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
else //there are other remote sharers 
remote_request(DKILL_SHARER, (mask ~= received_srcid), my_id, 

my_id); 
endif; 

default: 
error(); 

endif;

5.2.2.7  I/O Read Operations
This operation is used for I/O reads of globally shared memory space.

5.2.2.7.1  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of a third party.
switch(remote_response) 
case INTERVENTION: 

update_memory(); 
remote_response(DONE_INTERVENTION, original_srcid, my_id); 
free_entry(); 

case NOT_OWNER, // data comes from memory, mimic 
// intervention 

case RETRY: 
switch(directory_state) 
case LOCAL_MODIFIED, 
case LOCAL_SHARED: 

remote_response(DATA_ONLY, original_srcid, my_id, 
data); 

remote_response(DONE_INTERVENTION, original_srcid, 
my_id); 

free_entry(); 
case REMOTE_MODIFIED: // spin or wait for castout 

remote_request(IO_READ_OWNER, received_srcid, my_id, 
my_id); 

default: 
error(); 

default: 
error();

5.2.2.7.2  External Request State Machine

This machine handles requests from the system to the local memory. This may 
require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // IO_READ_HOME 

assign_entry(); 
switch (directory_state) 
case LOCAL_MODIFIED: 

local_request(READ_LATEST); 
remote_response(DONE, received_srcid, my_id, data); 

// after push completes 
free_entry(); 

case LOCAL_SHARED: 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 

case REMOTE_MODIFIED: 
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid); 

case SHARED: 
remote_response(DONE, received_srcid, my_id, data); 
free_entry(); 
RapidIO Trade Association 53



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
default: 
error(); 

endif;
54 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.3  Processor-only Processing Element
A processor-only processing element is much simpler than the assumed combined 
processing described in Chapter 6. Much of the internal request, response, and 
external request state machines are removed. 

5.2.3.1  Read Operations
This operation is a coherent data cache read. 

5.2.3.1.1  Internal Request State Machine

This state machine handles requests to remote memory from the local processor.
if (address_collision) // this is due to an external request 

// in progress or a cache 
local_response(RETRY); // index hazard from a previous request 

else // remote - we’ve got to go  
// to another module 

assign_entry(); 
local_response(RETRY); // can’t guarantee data before a 

// snoop yet 
remote_request(READ_HOME, mem_id, my_id); 

endif;

5.2.3.1.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor.
switch(remote_response) 
case DONE: 

local_response(SHARED); // when processor re-requests 
return_data(); 
free_entry(); 

case DONE_INTERVENTION: // must be from third party 
set_received_done_message(); 
if (received_data_only_message) 

free_entry(); 
else 

// wait for a DATA_ONLY 
endif; 

case DATA_ONLY: // this is due to an intervention, a 
// DONE_INTERVENTIONshould come 
// separately 

local_response(SHARED); 
set_received_data_only_message(); 
if (received_done_message) 

return_data(); 
free_entry(); 

else 
return_data(); // OK for weak ordering 

endif; 
case RETRY: 

remote_request(READ_HOME, received_srcid, my_id); 
default 

error();
RapidIO Trade Association 55



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.3.1.3  External Request State Machine

This state machine handles read requests from the system to the local processor. This 
may require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // READ_OWNER 

assign_entry(); 
local_request(READ); // spin until a valid response 

// from caches 
switch (local_response) 
case MODIFIED: // processor indicated a push; 

// wait for it 
cache_state(SHARED or INVALID); 

// surrender ownership 
if (received_srcid == received_secid) 

// original requestor is also home 
remote_response(INTERVENTION, received_srcid, 

my_id, data); 
else 

remote_response(DATA_ONLY, received_secid, 
my_id, data); 

remote_response(INTERVENTION, received_srcid, 
my_id, data); 

endif; 
case INVALID: // must have cast it out 

remote_response(NOT_OWNER, received_srcid, my_id); 
default: 

error(); 
free_entry(); 

endif;

5.2.3.2  Instruction Read Operations
This operation is a partially coherent instruction cache read. 

5.2.3.2.1  Internal Request State Machine

This state machine handles requests to remote memory from the local processor.
if (address_collision) // this is due to an external  

 // request in progress or a cache  
local_response(RETRY); // index hazard from a previous request 

else // remote - we’ve got to go 
// to another module 

assign_entry(); 
local_response(RETRY); 

// can’t guarantee data before a 
// snoop yet 

remote_request(IREAD_HOME, mem_id, my_id); 
endif;

5.2.3.2.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor.
switch(remote_response) 
case DONE: 

local_response(SHARED); // when processor re-requests 
return_data(); 
free_entry(); 
56 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
case DONE_INTERVENTION: // must be from third party 
set_received_done_message(); 
if (received_data_only_message) 

free_entry(); 
else 

// wait for a DATA_ONLY 
endif; 

case DATA_ONLY: // this is due to an intervention; a 
// DONE_INTERVENTION should come 
// separately 

local_response(SHARED); 
set_received_data_only_message(); 
if (received_done_message) 

return_data(); 
free_entry(); 

else 
return_data(); // OK for weak ordering 

endif; 
case RETRY: 

remote_request(IREAD_HOME, received_srcid, my_id); 
default 

error();

5.2.3.2.3  External Request State Machine

This state machine handles instruction read requests from the system to the local 
processor. 
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // READ_OWNER request to our caches 

assign_entry(); 
local_request(READ); // spin until a valid response 

// from caches 
switch (local_response) 
case MODIFIED: // processor indicated a push; 

// wait for it 
cache_state(SHARED or INVALID); 

// surrender ownership 
if (received_srcid == received_secid) 

// original requestor is also home 
remote_response(INTERVENTION, received_srcid, 

my_id, data); 
else 

remote_response(DATA_ONLY, received_secid, 
my_id, data); 

remote_response(INTERVENTION, received_srcid, 
my_id, data); 

endif; 
case INVALID: // must have cast it out 

remote_response(NOT_OWNER, received_srcid, my_id); 
default: 

error(); 
free_entry(); 

endif;
RapidIO Trade Association 57



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.3.3  Read for Ownership Operations
This is the coherent cache store miss operation.

5.2.3.3.1  Internal Request State Machine

This state machine handles requests to remote memory from the local processor.
if (address_collision) // this is due to an external request 

// in progress or a cache index 
local_response(RETRY); // hazard from a previous request 

else // remote - we’ve got to go to another 
// module 

assign_entry(); 
local_response(RETRY); 
remote_request(READ_TO_OWN_HOME, mem_id, my_id); 

endif;

5.2.3.3.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor.
switch (received_response) 
case DONE: 

local_response(EXCLUSIVE); 
return_data(); 
free_entry(); 

case DONE_INTERVENTION: 
set_received_done_message(); 
if (received_data_message) 

free_entry(); 
else 

// wait for DATA_ONLY 
endif; 

case DATA_ONLY: 
set_received_data_message(); 
local_response(EXCLUSIVE); 
if (received_done_message) 

return_data(); 
free_entry(); 

else 
return_data(); // OK for weak ordering 

endif; // and wait for a DONE 
case RETRY: // lost at remote memory so retry 

remote_request(READ_TO_OWN_HOME, mem_id, my_id); 
default: 

error();

5.2.3.3.3  External Request State Machine

This state machine handles requests from the interconnect to the local processor. 
if (address_collision) // use collision tables 

// in Chapter 7, “Address Collision Resolution 
Tables” 
elseif(READ_TO_OWN_OWNER // request to our caches 

assign_entry(); 
local_request(READ_TO_OWN); // spin until a valid response from 

// the caches 
switch (local_response) 
case MODIFIED: // processor indicated a push 

cache_state(INVALID); 
// surrender ownership 

if (received_srcid == received_secid) 
58 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
//the original request is from the home 
remote_response(INTERVENTION, received_srcid, my_id, 

data); 
else // the original request is from a 

// third party 
remote_response(DATA_ONLY, received_secid, my_id, 

data); 
remote_response(INTERVENTION, received_srcid, my_id, 

data); 
endif; 
free_entry(); 

case INVALID: // castout address collision 
remote_response(NOT_OWNER, received_srcid, my_id); 

default: 
error(); 

else // DKILL_SHARER request to our caches 
assign_entry(); 
local_request(READ_TO_OWN); 

// spin until a valid response from the 
// caches 

switch (local_response) 
case SHARED, 
case INVALID: // invalidating for shared cases 

cache_state(INVALID); // surrender copy 
remote_response(DONE, received_srcid, my_id); 
free_entry(); 

default: 
error(); 

 
endif;

5.2.3.4  Data Cache and Instruction Cache Invalidate Operations
This operation is used with coherent cache store-hit-on-shared, cache operations.

5.2.3.4.1  Internal Request State Machine

This state machine handles requests to remote memory from the local processor.
if (address_collision) // this is due to an external request in  

// progress or a cache index 
local_response(RETRY); // hazard from a previous request 

else // remote - we’ve got to go to another 
// module 

assign_entry(); 
local_response(RETRY); 
remote_request({DKILL_HOME, IKILL_HOME}, mem_id, my_id); 

endif;

5.2.3.4.2  Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor.
switch (received_response) 
case DONE: 

local_response(EXCLUSIVE); 
free_entry(); 

case RETRY: 
remote_request({DKILL_HOME, IKILL_HOME}, received_srcid, 

my_id); // retry the transaction 
default: 

error();
RapidIO Trade Association 59



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.3.4.3  External Request State Machine

This state machine handles requests from the system to the local processor. 
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution Tables” 
else // DKILL_SHARER or IKILL_SHARER request to our 
caches 

assign_entry(); 
local_request({READ_TO_OWN, IKILL}); 

// spin until a valid response from the 
// caches 

switch (local_response) 
case SHARED, 
case INVALID: // invalidating for shared cases 

cache_state(INVALID); // surrender copy 
remote_response(DONE, received_srcid, my_id); 
free_entry(); 

default: 
error(); 

endif;

5.2.3.5  Castout Operations
This operation is used to return ownership of a coherence granule to home memory, 
leaving it invalid in the cache. A processor-only processing element is never the 
target of a castout operation. 

5.2.3.5.1  Internal Request State Machine

A castout may require local activity to flush all caches in the hierarchy and break 
possible reservations.
assign_entry(); 
local_response(OK); 
remote_request(CASTOUT, mem_id, my_id, data);

5.2.3.5.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor.
switch (received_response) 
case DONE: 

free_entry(); 
default: 

error();
60 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.3.6  TLB Invalidate Entry, TLB Invalidate Entry Synchronize 
Operations

These operations are used for software coherence management of the TLBs.

5.2.3.6.1  Internal Request State Machine

The TLBIE and TLBSYNC transactions are always sent to all domain participants 
except the sender and are always to the processor, not home memory.
assign_entry(); 
remote_request({TLBIE, TLBSYNC}, participant_id, my_id); 
endif;

5.2.3.6.2  Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor. The responses are always from a coherence 
participant, not a home memory. 
switch (received_response) 
case DONE: 

if ((mask ~= (my_id OR received_id)) == 0) 
// this is the last DONE 

free_entry(); 
else 

mask <= (mask ~= received_srcid); 
// flip the responder’s participant 
// bit and wait for next DONE 

endif; 
case RETRY: 

remote_request({TLBIE, TLBSYNC}, received_srcid, my_id, my_id); 
default 

error();

5.2.3.6.3  External Request State Machine

This state machine handles requests from the system to the local memory or the local 
processor. The requests are always to the local caching hierarchy.
assign_entry(); 
local_request({TLBIE, TLBSYNC}); // spin until a valid response 

// from the caches 
remote_response(DONE, received_srcid, my_id); 
free_entry();

5.2.3.7  Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and 
performs a coherent write.

5.2.3.7.1  Internal Request State Machine

This state machine handles requests to remote memory from the local processor.
if (address_collision) // this is due to an external 

// request in progress or a cache index 
local_response(RETRY); // hazard from a previous request 

else // remote - we’ve got to go to  
// another module 

assign_entry(); 
remote_request(FLUSH, mem_id, my_id, data); 
RapidIO Trade Association 61



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
// data is optional 
endif;

5.2.3.7.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect 
on behalf of the local processor.
switch (received_response) 
case DONE: 

local_response(OK); 
free_entry(); 

case RETRY: 
remote_request(FLUSH, received_srcid, my_id, data); 

// data is optional 
default: 

error();

5.2.3.7.3  External Request State Machine

This state machine handles requests from the system to the local processor. 
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
elseif (READ_TO_OWN_OWNER) // remote request to our caches 

assign_entry(); 
local_request(READ_TO_OWN); // spin until a valid response  

// from the caches 
switch (local_response) 
case MODIFIED: // processor indicated a push,  

// wait for it 
cache_state(INVALID); // surrender ownership 
remote_response(DONE, received_srcid, my_id, data); 

case INVALID: 
// must have cast it out during an 
// address collision 

remote_response(NOT_OWNER, received_srcid, my_id); 
default: 

error(); 
free_entry(); 

else // DKILL_SHARER remote request 
// to our caches 

assign_entry(); 
local_request(DKILL); // spin until a valid response from 

// the caches 
switch (local_response) 
case MODIFIED: // cache paradox 

remote_response(ERROR, received_srcid, my_id); 
case INVALID: 

remote_response(DONE, received_srcid, my_id); 
default: 

error(); 
free_entry(); 

endif;

5.2.3.8  I/O Read Operations
This operation is used for I/O reads of globally shared memory space. A 
processor-only processing element never initiates an I/O read operation. 

5.2.3.8.1  External Request State Machine

This machine handles requests from the system to the local memory or the local 
62 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
processor. This may require making further external requests.
if (address_collision) // use collision tables in 

// Chapter 7, “Address Collision Resolution 
Tables” 
else // IO_READ_OWNER request to our caches 

assign_entry(); 
local_request(READ_LATEST); // spin until a valid response from 

// the caches 
switch (local_response) 
case MODIFIED: // processor indicated a push; 

// wait for it 
if (received_srcid == received_secid) 

// original requestor is also home 
// module 

remote_response(INTERVENTION, received_srcid, my_id, 
data); 

else 
remote_response(DATA_ONLY, received_secid, my_id, 

data); 
remote_response(INTERVENTION, received_srcid, my_id); 

endif; 
case INVALID:   // must have cast it out during 

// an address collision 
remote_response(NOT_OWNER, received_srcid, my_id); 

default: 
error(); 

free_entry(); 
endif;
RapidIO Trade Association 63



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.4  I/O Processing Element
The simplest GSM processing element is an I/O device. A RapidIO I/O processing 
element does not actually participate in the globally shared memory environment (it 
is defined as not in the coherence domain), but is able to read and write data into the 
GSM address space through special I/O operations that provide for this behavior. 
These operations are the I/O Read and Data Cache Flush operations. Other than the 
ability to read and write into the GSM address space, an I/O device has no other 
operational requirements. Since the I/O processing element is not part of the 
coherence domain, it is never the target of a coherence transaction and thus does not 
have to implement any of the related behavior, including the address collision tables. 

Requirements for a specific I/O processing element, a RapidIO to PCI/PCI-X 
bridge, is discussed in Chapter  4, “PCI Considerations,” on page 4-27.

5.2.4.1  I/O Read Operations
This operation is used for I/O reads of globally shared memory space.

5.2.4.1.1  Internal Request State Machine

This state machine handles requests to remote memory.
remote_request(IO_READ_HOME, mem_id, my_id);

5.2.4.1.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.
switch(remote_response) 
case DONE: 

return_data(); 
free_entry(); 

case DONE_INTERVENTION: // must be from third party 
set_received_done_message(); 
if (received_data_only_message) 

free_entry(); 
else 

// wait for a DATA_ONLY 
endif; 

case DATA_ONLY: // this is due to an intervention, a 
// DONE_INTERVENTION should come 
// separately 

set_received_data_only_message(); 
if (received_done_message) 

return_data(); 
free_entry(); 

else 
return_data(); // OK for weak ordering 

endif; 
case RETRY: 

remote_request(IO_READ_HOME, received_srcid, my_id); 
default 

error();

5.2.4.2  Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and 
performs a coherent write.
64 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
5.2.4.2.1  Internal Request State Machine

This state machine handles requests to remote memory.
remote_request(FLUSH, mem_id, my_id, data);

5.2.4.2.2  Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.
switch (received_response) 
case DONE: 

local_response(OK); 
free_entry(); 

case RETRY: 
remote_request(FLUSH, received_srcid, my_id, data); 

default: 
error();

5.2.5  Switch Processing Element
A switch processing element is required to be able to route all defined packets. Since 
it is not necessary for a switch to analyze a packet in order to determine how it 
should be treated outside of examining the priority and the destination device ID, a 
switch processing element does not have any additional requirements to be used in 
a globally shared memory environment.

5.3  Transaction to Priority Mappings
The Globally Shared Memory model does not have the concept of an end point to 
end point request transaction flow like the I/O programming model. Instead, all 
transaction ordering is managed by the load-store units of the processors 
participating in the globally shared memory protocol. The GSM logical 
specification behaviors assume an unordered and resource unconstrained 
communication fabric. The ordered fabric of the 8/16 LP-LVDS and the 1x/4x 
LP-Serial physical layers requires the proper transaction to priority mappings to 
mimic the effect of an unordered fabric to suit the GSM model. These mappings 
leverage the physical layer ordering and deadlock avoidance rules that are required 
by the I/O Logical layer. In addition, it is assumed that the latency-critical GSM 
operations are of necessity higher priority than non-coherent I/O traffic, therefore 
I/O operations are recommended to be assigned to the lowest system priority flow. 
RapidIO Trade Association 65



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Table 5-1 shows the GSM transaction to priority mappings. 
Table 5-1. Transaction to Priority Mapping 

Request transaction Request
Packet Priority

Response
Packet Priority

READ_TO_OWN_HOME 1 2 or 3

READ_HOME 1 2 or 3

IO_READ_HOME 1 2 or 3

IREAD_HOME 1 2 or 3

DKILL_HOME 1 2 or 3

IKILL_HOME 1 2 or 3

FLUSH (without data) 1 2 or 3

FLUSH (with data) 1 2 or 3

TLBIE 1 2 or 3

TLBSYNC 1 2 or 3

READ_OWNER 2 3

READ_TO_OWN_OWNER 2 3

IO_READ_OWNER 2 3

DKILL_SHARER 2 3

IKILL_SHARER 2 3

CASTOUT 2 3
66 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used 
in this book. 

Agent.  A processing element that provides services to a processor.

Bridge. A processing element that connects one computer bus to another, 
allowing a processing element on one bus to access an processing 
element on the other. 

Cache. High-speed memory containing recently accessed data and/or 
instructions (subset of main memory) associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from 
its cache is supplied with data corresponding to the most recent value 
written to memory or to another processor’s cache. In other words, a 
write operation to an address in the system is visible to all other 
caches in the system.

Capability registers (CARs). A set of read-only registers that allows a 
processing element to determine another processing element’s
capabilities.

Command and status registers (CSRs). A set of registers that allows a 
processing element to control and determine the status of another 
processing element’s internal hardware.

Control symbol. A quantum of information transmitted between two linked 
devices to manage packet flow between the devices. 

Deadlock. A situation in which two processing elements that are sharing 
resources prevent each other from accessing the resources, resulting 
in a halt of system operation.

Delayed transaction. The process of the target of a transaction capturing the 
transaction and completing it after responding to the source with a
retry. 

A

B

C

D

RapidIO Trade Association 67



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Destination. The termination point of a packet on the RapidIO interconnect, 
also referred to as a target. 

Device. A generic participant on the RapidIO interconnect that sends or 
receives RapidIO transactions, also called a processing element.

Device ID. The identifier of an end point processing element connected to the 
RapidIO interconnect.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of 
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Field or Field name. A sub-unit of a register, where bits in the register are 
named and defined. 

Globally shared memory (GSM). Cache coherent system memory that can 
be shared between multiple processors in a system.

Host. A processing element responsible for exploring and initializing all or a 
portion of a RapidIO based system.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to 
as a source.

I/O. Input-output.

Local memory. Memory associated with the processing element in question. 

LVDS. Low voltage differential signaling.

Mailbox. Dedicated hardware that receives messages.

Message passing. An application programming model that allows processing 
elements to communicate via messages to mailboxes instead of via 
GSM. Message senders do not write to a memory address in the 
target.

Non-coherent. A transaction that does not participate in any system globally 
shared memory cache coherence mechanism.

E

F

G

H

I

L

M

N

68 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Operation. A set of transactions between end point devices in a RapidIO 
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO 
system.

Peripheral component interface (PCI). A bus commonly used for 
connecting I/O devices in a system. 

Port-write. An address-less maintenance write operation.

Priority. The relative importance of a transaction or packet; in most systems 
a higher priority transaction or packet will be serviced or transmitted 
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic 
instructions that drive a computer. 

Remote memory. Memory associated with a processing element other than 
the processing element in question.

ROM. Read-only memory.

Sender. The RapidIO interface output port on a processing element. 

Source. The origin of a packet on the RapidIO interconnect, also referred to 
as an initiator. 

Switch. A multiple port processing element that directs a packet received on 
one of its input ports to one of its output ports. 

Symbol. A 16-bit quantity. 

Target. The termination point of a packet on the RapidIO interconnect, also 
referred to as a destination.

Transaction. A specific request or response packet transmitted between end 
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two 
processing elements that have a required completion order at the 
destination processing element. There are no ordering requirements 
between transaction request flows.

O

P

R

S

T

RapidIO Trade Association 69



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0
Blank page
70 RapidIO Trade Association



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0

RapidIO Trade Association 71

Blank page



RapidIO Part 7: System and Device Inter-operability Specification Rev. 2.0

72 RapidIO Trade Association

Blank page


	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview

	Chapter 2 System Exploration and Initialization
	2.1 Introduction
	2.2 Boot code access
	2.3 Exploration and initialization
	2.3.1 Exploration and initialization rules
	2.3.2 Exploration and initialization algorithm
	2.3.3 Exploration and initialization example


	Chapter 3 RapidIO Device Class Requirements
	3.1 Introduction
	3.2 Class Partitioning
	3.2.1 Generic: All devices
	3.2.1.1 General requirements
	3.2.1.2 Operation support as target
	3.2.1.3 Operation support as source

	3.2.2 Class 1: Simple target device
	3.2.2.1 General requirements
	3.2.2.2 Operation support as target
	3.2.2.3 Operation support as source

	3.2.3 Class 2: Simple mastering device
	3.2.3.1 General requirements
	3.2.3.2 Operation support as target
	3.2.3.3 Operation support as source

	3.2.4 Class 3: Complex mastering device
	3.2.4.1 General requirements
	3.2.4.2 Operation support as target
	3.2.4.3 Operation support as source



	Chapter 4 PCI Considerations
	4.1 Introduction
	4.2 Address Map Considerations
	4.3 Transaction Flow
	4.3.1 PCI 2.2 Transaction Flow
	4.3.2 PCI-X Transaction Flow

	4.4 RapidIO to PCI Transaction Mapping
	4.5 Operation Ordering and Transaction Delivery
	4.5.1 Operation Ordering
	4.5.2 Transaction Delivery Ordering
	4.5.3 PCI-X Relaxed Ordering Considerations

	4.6 Interactions with Globally Shared Memory
	4.6.1 I/O Read Operation Details
	4.6.1.1 Internal Request State Machine
	4.6.1.2 Response State Machine

	4.6.2 Data Cache Flush Operation Details
	4.6.2.1 Internal Request State Machine
	4.6.2.2 Response State Machine


	4.7 Byte Lane and Byte Enable Usage
	4.8 Error Management

	Chapter 5 Globally Shared Memory Devices
	5.1 Introduction
	5.2 Processing Element Behavior
	5.2.1 Processor-Memory Processing Element
	5.2.1.1 I/O Read Operations
	5.2.1.1.1 Response State Machine
	5.2.1.1.2 External Request State Machine


	5.2.2 Memory-only Processing Element
	5.2.2.1 Read Operations
	5.2.2.1.1 Response State Machine
	5.2.2.1.2 External Request State Machine

	5.2.2.2 Instruction Read Operations
	5.2.2.2.1 Response State Machine
	5.2.2.2.2 External Request State Machine

	5.2.2.3 Read for Ownership Operations
	5.2.2.3.1 Response State Machine
	5.2.2.3.2 External Request State Machine

	5.2.2.4 Data Cache and Instruction Cache Invalidate Operations
	5.2.2.4.1 Response State Machine
	5.2.2.4.2 External Request State Machine

	5.2.2.5 Castout Operations
	5.2.2.5.1 External Request State Machine

	5.2.2.6 Data Cache Flush Operations
	5.2.2.6.1 Response State Machine
	5.2.2.6.2 External Request State Machine

	5.2.2.7 I/O Read Operations
	5.2.2.7.1 Response State Machine
	5.2.2.7.2 External Request State Machine


	5.2.3 Processor-only Processing Element
	5.2.3.1 Read Operations
	5.2.3.1.1 Internal Request State Machine
	5.2.3.1.2 Response State Machine
	5.2.3.1.3 External Request State Machine

	5.2.3.2 Instruction Read Operations
	5.2.3.2.1 Internal Request State Machine
	5.2.3.2.2 Response State Machine
	5.2.3.2.3 External Request State Machine

	5.2.3.3 Read for Ownership Operations
	5.2.3.3.1 Internal Request State Machine
	5.2.3.3.2 Response State Machine
	5.2.3.3.3 External Request State Machine

	5.2.3.4 Data Cache and Instruction Cache Invalidate Operations
	5.2.3.4.1 Internal Request State Machine
	5.2.3.4.2 Response State Machine
	5.2.3.4.3 External Request State Machine

	5.2.3.5 Castout Operations
	5.2.3.5.1 Internal Request State Machine
	5.2.3.5.2 Response State Machine

	5.2.3.6 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations
	5.2.3.6.1 Internal Request State Machine
	5.2.3.6.2 Response State Machine
	5.2.3.6.3 External Request State Machine

	5.2.3.7 Data Cache Flush Operations
	5.2.3.7.1 Internal Request State Machine
	5.2.3.7.2 Response State Machine
	5.2.3.7.3 External Request State Machine

	5.2.3.8 I/O Read Operations
	5.2.3.8.1 External Request State Machine


	5.2.4 I/O Processing Element
	5.2.4.1 I/O Read Operations
	5.2.4.1.1 Internal Request State Machine
	5.2.4.1.2 Response State Machine

	5.2.4.2 Data Cache Flush Operations
	5.2.4.2.1 Internal Request State Machine
	5.2.4.2.2 Response State Machine


	5.2.5 Switch Processing Element

	5.3 Transaction to Priority Mappings


