
Rev. 2.1, 08/2009

© Copyright RapidIO Trade Association

RapidIO™ Interconnect Specification
Part 2: Message Passing Logical

Specification
RapidIO Trade Association

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.
DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:
RapidIO Trade Association
12343 Hymeadow, Suite 2-R
(non-US mail deliveries to Suite 3-E)
Austin, TX 78750
512-401-2900 Tel.
512-401-2902 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their

Revision History

Revision Description Date

1.1 First public release 03/08/2001

1.2 No technical changes 06/26/2002

1.3 Technical changes: incorporate Rev 1.2 errata 1 as applicable,
the following errata showings:
03-05-00006.001, 03-07-00001.001, 04-02-00001.002, 04-05-00001.002
and the following new features showings:
02-05-00013.001
Converted to ISO-friendly templates; re-formatted

02/23/2005

1.3 Removed confidentiality markings for public release 06/07/2005

2.0 No technical changes 06/14/2007

2.0 Removed confidentiality markings for public release 03/06/2008

2.1 No technical changes MM/DD/200Y

2.1 Removed confidentiality markings for public release 08/13/2009
RapidIO Trade Association
respective owners.

Table of Contents

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 1 Overview

1.1 Introduction... 9
1.2 Overview... 9
1.3 Features of the Message Passing Specification .. 9
1.3.1 Functional Features... 9
1.3.2 Physical Features .. 10
1.3.3 Performance Features ... 10
1.4 Contents .. 10
1.5 Terminology.. 11
1.6 Conventions .. 11

Chapter 2 System Models

2.1 Introduction... 13
2.2 Processing Element Models.. 13
2.2.1 Processor-Memory Processing Element Model.. 13
2.2.2 Integrated Processor-Memory Processing Element Model 14
2.2.3 Memory-Only Processing Element Model ... 14
2.2.4 Processor-Only Processing Element... 15
2.2.5 I/O Processing Element .. 15
2.2.6 Switch Processing Element... 15
2.3 Message Passing System Model ... 16
2.3.1 Data Message Operations ... 17
2.3.2 Doorbell Message Operations... 18
2.4 System Issues .. 18
2.4.1 Operation Ordering ... 18
2.4.2 Transaction Delivery... 18
2.4.3 Deadlock Considerations .. 19

Chapter 3 Operation Descriptions

3.1 Introduction... 21
3.2 Message Passing Operations Cross Reference ... 22
3.3 Message Passing Operations... 22
3.3.1 Doorbell Operations.. 22
3.3.2 Data Message Operations ... 23
3.4 Endian, Byte Ordering, and Alignment .. 24
RapidIO Trade Association 3

Table of Contents

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 4 Packet Format Descriptions

4.1 Introduction... 27
4.2 Request Packet Formats.. 27
4.2.1 Field Definitions for All Request Packet Formats.. 27
4.2.2 Type 0 Packet Format (Implementation-Defined).. 28
4.2.3 Type 1–9 Packet Formats (Reserved)... 28
4.2.4 Type 10 Packet Formats (Doorbell Class).. 28
4.2.5 Type 11 Packet Format (Message Class).. 28
4.3 Response Packet Formats ... 30
4.3.1 Field Definitions for All Response Packet Formats ... 30
4.3.2 Type 12 Packet Format (Reserved) .. 31
4.3.3 Type 13 Packet Format (Response Class) .. 31
4.3.4 Type 14 Packet Format (Reserved) .. 32
4.3.5 Type 15 Packet Format (Implementation-Defined).. 32

Chapter 5 Message Passing Registers

5.1 Introduction... 33
5.2 Register Summary... 33
5.3 Reserved Register and Bit Behavior ... 34
5.4 Capability Registers (CARs) .. 36
5.4.1 Source Operations CAR (Configuration Space Offset 0x18)........................... 36
5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)................... 37
5.5 Command and Status Registers (CSRs).. 38
0.1 Introduction... 39
0.2 Definitions and Goals ... 39
0.3 Message Operations.. 40
0.4 Inbound Mailbox Structure ... 41
0.4.1 Simple Inbox... 42
0.4.2 Extended Inbox... 42
0.4.3 Received Messages ... 43
0.5 Outbound Message Queue Structure .. 44
0.5.1 Simple Outbox .. 44
0.5.2 Extended Outbox .. 45
4 RapidIO Trade Association

List of Figures

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
2-1 A Possible RapidIO-Based Computing System..13
2-2 Processor-Memory Processing Element Example ..14
2-3 Integrated Processor-Memory Processing Element Example...14
2-4 Memory-Only Processing Element Example ...15
2-5 Processor-Only Processing Element Example..15
2-6 Switch Processing Element Example ...16
3-1 Doorbell Operation ...23
3-2 Message Operation ...23
3-3 Byte Alignment Example..24
3-4 Half-Word Alignment Example..24
3-5 Word Alignment Example ..25
4-1 Type 10 Packet Bit Stream Format...28
4-2 Type 11 Packet Bit Stream Format...30
4-3 target_info Field for Message Responses ...32
4-4 Type 13 Packet Bit Stream Format...32
A-1 Simple Inbound Mailbox Port Structure ...42
A-2 Inbound Mailbox Structure ...43
A-3 Outbound Message Queue ..44
A-4 Extended Outbound Message Queue ..45
RapidIO Trade Association 5

List of Figures
RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Blank page
6 RapidIO Trade Association

List of Tables

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
3-1 Message Passing Operations Cross Reference ...22
4-1 Request Packet Type to Transaction Type Cross Reference ..27
4-2 General Field Definitions for All Request Packets...28
4-3 Specific Field Definitions for Type 10 Packets ..28
4-4 Specific Field Definitions and Encodings for Type 11 Packets29
4-5 Response Packet Type to Transaction Type Cross Reference..30
4-6 Field Definitions and Encodings for All Response Packets ...31
4-7 Specific Field Definitions for Type 13 Packets ..31
5-1 Message Passing Register Map...33
5-2 Configuration Space Reserved Access Behavior..34
5-3 Bit Settings for Source Operations CAR ..36
5-4 Bit Settings for Destination Operations CAR...37
RapidIO Trade Association 7

List of Tables
RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Blank page
8 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 1 Overview

1.1 Introduction
Part 2 is intended for users who need to understand the message passing architecture
of the RapidIO interconnect.

1.2 Overview
The RapidIO Part 2: Message Passing Logical Specification is part of RapidIO’s
logical layer specifications that define the interconnect’s overall protocol and packet
formats. This layer contains the transaction protocols necessary for end points to
process a transaction. Other RapidIO logical layer specifications include RapidIO
Part 1: Input/Output Logical Specification and RapidIO Part 5: Globally Shared
Memory Logical Specification.

The logical specifications do not imply a specific transport or physical interface,
therefore they are specified in a bit stream format. Necessary bits are added to the
logical encoding for the transport and physical layers lower in the RapidIO
three-layer hierarchy.

RapidIO is targeted toward memory mapped distributed memory systems. A
message passing programming model is supported to enable distributed I/O
processing.

1.3 Features of the Message Passing Specification
The following are features of the RapidIO I/O specification designed to satisfy the
needs of various applications and systems:

1.3.1 Functional Features
• Many embedded systems are multiprocessor systems, not multiprocessing

systems, and prefer a message passing or software-based coherency
programming model over the traditional computer-style globally shared
memory programming model in order to support their distributed I/O and
processing requirements, especially in the networking and routing markets.
RapidIO supports all of these programming models.
RapidIO Trade Association 9

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
• System sizes from very small to very large are supported in the same or
compatible packet formats—RapidIO plans for future expansion and
requirements.

• Message passing devices can improve the interconnect efficiency if larger
non-coherent data quantities can be encapsulated within a single packet, so
RapidIO supports a variety of data sizes within the packet formats.

• Because the message passing programming model is fundamentally a
non-coherent non-shared memory model, RapidIO can assume that portions
of the memory space are only directly accessible by a processor or device
local to that memory space. A remote device that attempts to access that
memory space must do so through a local device controlled message passing
interface.

1.3.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface

to other devices on the interconnect fabric.
• The protocols and packet formats are independent of the physical interconnect

topology. The protocols work whether the physical fabric is a point-to-point
ring, a bus, a switched multi-dimensional network, a duplex serial
connection, and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.
• The protocols handle out-of-order packet transmission and reception.
• Certain devices have bandwidth and latency requirements for proper operation.

RapidIO does not preclude an implementation from imposing these
constraints within the system.

1.3.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead

and be organized for fast, efficient assembly and disassembly.
• Multiple transactions must be allowed concurrently in the system, otherwise a

majority of the potential system throughput is wasted.

1.4 Contents
Following are the contents of RapidIO Part 2: Message Passing Logical
Specification:

• Chapter 1, “Overview” (this chapter) provides an overview of the specification
10 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
• Chapter 2, “System Models,” introduces some possible devices that might
participate in a RapidIO message passing system environment. The chapter
also explains the message passing model, detailing the data and doorbell
message types used in a RapidIO system. System issues such as the lack of
transaction ordering and deadlock prevention are presented.

• Chapter 3, “Operation Descriptions,” describes the set of operations and
transactions supported by the RapidIO message passing protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format
definitions for the message passing specification. The two basic types,
request and response packets, and their fields and sub-fields are explained.

• Chapter 5, “Message Passing Registers,” displays the RapidIO register map
that allows an external processing element to determine the message passing
capabilities, configuration, and status of a processing element using this
logical specification. Only registers or register bits specific to the message
passing logical specification are explained. Refer to the other RapidIO
logical, transport, and physical specifications of interest to determine a
complete list of registers and bit definitions.

• Annex A, “Message Passing Interface (Informative),” contains an informative
discussion on possible programming models for the message passing logical
layer.

1.5 Terminology
Refer to the Glossary at the back of this document.

1.6 Conventions
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits
ACTIVE_HIGH Names of active high signals are shown in uppercase text with

no overbar. Active-high signals are asserted when high and
not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with
an overbar. Active low signals are asserted when low and not
asserted when high.

italics Book titles in text are set in italics.
REG[FIELD] Abbreviations or acronyms for registers are shown in

uppercase text. Specific bits, fields, or ranges appear in
brackets.

TRANSACTION Transaction types are expressed in all caps.
operation Device operation types are expressed in plain text.
n A decimal value.
RapidIO Trade Association 11

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
[n-m] Used to express a numerical range from n to m.
0bnn A binary value, the number of bits is determined by the

number of digits.
0xnn A hexadecimal value, the number of bits is determined by the

number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care
12 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 2 System Models

2.1 Introduction
This overview introduces some possible devices in a RapidIO system.

2.2 Processing Element Models
Figure 2-1 describes a possible RapidIO-based system. The processing element is a
computer device such as a processor attached to local memory and a RapidIO
interconnect. The bridge part of the system provides I/O subsystem services such as
high-speed PCI interfaces and Gbit ethernet ports, interrupt control, and other
system support functions.

The following sections describe several possible processing elements.

2.2.1 Processor-Memory Processing Element Model
Figure 2-2 shows an example of a processing element consisting of a processor
connected to an agent device. The agent carries out several services on behalf of the
processor. Most importantly, it provides access to local memory. It also provides an
interface to the RapidIO interconnect to service message requests that are used for
communications with other processing elements.

Figure 2-1. A Possible RapidIO-Based Computing System

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

Firewire
RapidIO Trade Association 13

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
2.2.2 Integrated Processor-Memory Processing Element Model
Another form of a processor-memory processing element is a fully integrated
component that is designed specifically to connect to a RapidIO interconnect
system, Figure 2-3. This type of device integrates a memory system and other
support logic with a processor on the same piece of silicon or within the same
package.

2.2.3 Memory-Only Processing Element Model
A different processing element may not contain a processor at all, but may be a
memory-only device as in Figure 2-4. This type of device is much simpler than a
processor in that it is only responsible for responding to requests from the external
system, not from local requests as in the processor-based model. As such, its
memory is remote for all processors in the system.

Figure 2-2. Processor-Memory Processing Element Example

Figure 2-3. Integrated Processor-Memory Processing Element Example

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect

Processor

Memory

RapidIO-Based
System Interconnect
14 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
2.2.4 Processor-Only Processing Element
Similar to a memory-only element, a processor-only element has no local memory.
A processor-only processing element is shown in Figure 2-5.

2.2.5 I/O Processing Element
This type of processing element is shown as the bridge in Figure 2-1. This device
has distinctly different behavior than a processor or a memory. An I/O device only
needs to move data into and out of local or remote memory.

2.2.6 Switch Processing Element
A switch processing element is a device that allows communication with other
processing elements through the switch. A switch may be used to connect a variety
of RapidIO-compliant processing elements. A possible switch is shown in
Figure 2-6. Behavior of the switches, and the interconnect fabric in general, is
addressed in the RapidIO Common Transport Specification.

Figure 2-4. Memory-Only Processing Element Example

Figure 2-5. Processor-Only Processing Element Example

Memory

Memory

Control

RapidIO-Based
System Interconnect

Agent

Processor

Local Interconnect

RapidIO-based
System Interconnect
RapidIO Trade Association 15

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
2.3 Message Passing System Model
RapidIO supports a message passing programming model. Message passing is a
programming model commonly used in distributed memory system machines. In
this model, processing elements are only allowed to access memory that is local to
themselves, and communication between processing elements is handled through
specialized hardware manipulated through application or OS software. For two
processors to communicate, the sending processor writes to a local message passing
device that reads a section of the sender’s local memory and moves that information
to the receiving processor’s local message passing device. The recipient message
passing device then stores that information in local memory and informs the
recipient processor that a message has arrived, usually via an interrupt. The recipient
processor then accesses its local memory to read the message.

For example, referring to Figure 2-1, processing element A can only access the
memory attached to it, and cannot access the memory attached to processing
elements B, C, or D. Correspondingly, processing element B can only access the
memory attached to it and cannot access the memory attached to processing element
A, C, or D, and so on. If processing element A needs to communicate with
processing element B, the application software accesses special message passing
hardware (also called mailbox hardware) through operating system calls or API
libraries and configure it to assemble the message and send it to processing element
B. The message passing hardware for processing element B receives the message
and puts it into local memory at a predetermined address, then notifies processing
element B.

Many times a message is required to be larger than a single packet allows, so the
source needs to break up the message into multiple packets before transmitting it. At
times it may also be useful to have more than one message being transmitted at a
time. RapidIO has facilities for both of these features.

Figure 2-6. Switch Processing Element Example

Switch
16 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
2.3.1 Data Message Operations
A source may generate a single message operation of up to 16 individual packets
containing as much as 256 data bytes per packet. A variety of data payload sizes
exist, allowing a source to choose a smaller size data payload if needed for an
application. RapidIO defines all data message packets as containing the same
amount of data with the exception of the last one, which can contain a smaller data
payload if desired. The packets are formatted with three fields:

• One field specifies the size of the data payload for all except the last packet for
the data message operation.

• The second field specifies the size of the data payload for that packet, and
• The third field contains the packet sequence order information.

The actual packet formats are shown in Chapter 4, “Packet Format Descriptions.”

Because all packets except the last have the same data payload size, the receiver is
able to calculate the local memory storage addresses if the packets are received out
of order, allowing operation with an interconnect fabric that does not guarantee
packet delivery ordering.

For multiple packet messages, a letter field and a mailbox field allow a source to
simultaneously have up to four data message operations (or “letters”) in progress to
each of four different mailboxes, allowing up to sixteen concurrent data message
operations between a sender and a receiver. The mailbox field can be used to indicate
the priority of a data message, allowing a higher priority message to interrupt a lower
priority one at the sender, or it can be used as a simple mailbox identifier for a
particular receiver if the receiver allows multiple mailbox addresses. If the mailbox
number is used as a priority indicator, mailbox number 0 is the highest priority and
mailbox 3 is the lowest.

For single packet messages, the letter and mailbox fields instead allow four
concurrent letters to sixty-four possible mailboxes. As for multiple packet messages,
if the mailbox number is used as a priority indicator, mailbox number 0 is the highest
priority and mailbox 63 is the lowest.

The number of packets comprising a data message operation, the maximum data
payload size, the number of concurrent letters, and the number of mailboxes that can
be sent or received is determined by the implementation of a particular processing
element. For example, a processing element could be designed to generate two
concurrent letters of at most four packets with a maximum 64-byte data payload.
That same processing element could also be designed to receive data messages in
two mailboxes with two concurrent letters for each, all with the maximum data
payload size and number of packets.

There is further discussion of the data message operation programming model and
the necessary hardware support in Annex A, “Message Passing Interface
(Informative)”.
RapidIO Trade Association 17

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
2.3.2 Doorbell Message Operations
RapidIO supports a second message type, the doorbell message operation. The
doorbell message operation sends a small amount of software-defined information
to the receiver and the receiver controls all local memory addressing as with the data
message operation. It is the responsibility of the processor receiving the doorbell
message to determine the action to undertake by examining the ID of the sender and
the received data. All information supplied in a doorbell message is embedded in the
packet header so the doorbell message never has a data payload.

The generation, transmission, and receipt of a doorbell message packet is handled in
a fashion similar to a data message packet. If processing element A wants to send a
doorbell message to processing element B, the application software accesses special
doorbell message hardware through operating system calls or API libraries and
configures it to assemble the doorbell message and send it to processing element B.
The doorbell message hardware for processing element B receives the doorbell
message and puts it into local memory at a predetermined address, then notifies
processing element B, again, usually via an interrupt.

There is further discussion of the doorbell message operation programming model
and the necessary hardware support in Annex A, “Message Passing Interface
(Informative)”.

2.4 System Issues
The following sections describe transaction ordering and system deadlock
considerations in a RapidIO system.

2.4.1 Operation Ordering
The RapidIO Part 2: Message Passing Logical Specification requires no special
system operation ordering. Message operation completion is managed by the
overlying system software.

It is important to recognize that systems may contain a mix of transactions that are
maintained under the message passing model as well as under another model. As an
example, I/O traffic may be interspersed with message traffic. In this case, the shared
I/O traffic may require strong ordering rules to maintain coherency. This may set an
operation ordering precedence for that implementation, especially in the case where
the connection fabric cannot discern between one type of operation and another.

2.4.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO
processing elements: unordered and ordered. The RapidIO logical protocols assume
that all outstanding transactions to another processing element are delivered in an
arbitrary order. In other words, the logical protocols do not rely on transaction
18 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
interdependencies for operation. RapidIO also allows completely ordered delivery
systems to be constructed. Each type of system puts different constraints on the
implementation of the source and destination processing elements and any
intervening hardware.

A message operation may consist of several transactions. It is possible for these
transactions to arrive at a target mailbox in an arbitrary order. A message transaction
contains explicit tagging information to allow the message to be reconstructed as it
arrives at the target processing element.

2.4.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation
where a loop of buffering devices is formed, in which forward progress at each
device is dependent upon progress at the next device. If no device in the loop can
make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases
resources in the network and allows forward progress to be made. RapidIO is
designed to be a reliable fabric for use in real time tightly coupled systems, therefore
discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a
deadlock free topology be provided for response-less operations. Dependency loops
to single direction packets can exist in unconstrained switch topologies. Often the
dependency loop can be avoided with simple routing rules. Topologies like
hypercubes or three-dimensional meshes, physically contain loops. In both cases,
routing is done in several dimensions (x,y,z). If routing is constrained to the x
dimension, then y, then z (dimension ordered routing) then topology related
dependency loops are avoided in these structures.

In addition, a processing element design must not form dependency links between
its input and output port. A dependency link between input and output ports occurs
if a processing element is unable to accept an input packet until a waiting packet can
be issued from the output port.

RapidIO supports operations, such as read operations, that require responses to
complete. These operations can lead to a dependency link between an processing
element’s input port and output port.

As an example of a input to output port dependency, consider a processing element
where the output port queue is full. The processing element cannot accept a new
request at its input port since there is no place to put the response in the output port
queue. No more transactions can be accepted at the input port until the output port
is able to free entries in the output queue by issuing packets to the system.

The method by which a RapidIO system maintains a deadlock free environment is
RapidIO Trade Association 19

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
described in the appropriate Physical Layer specification.
20 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 3 Operation Descriptions

3.1 Introduction
This chapter describes the set of operations and transactions supported by the
RapidIO message passing protocols. The opcodes and packet formats are described
in Chapter 4, “Packet Format Descriptions”.

The RapidIO operation protocols use request/response transaction pairs through the
interconnect fabric. A processing element sends a request transaction to another
processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been
completed or if an error condition is encountered. Each transaction is sent as a packet
through the interconnect fabric. For example, a processing element that needs to
send part of a message operation to another processing element sends a MESSAGE
request packet to that processing element, which processes the message packet and
returns a DONE response packet.

Three possible response transactions can be received by a requesting processing
element:

• A DONE response indicates to the requestor that the desired transaction has
completed.

• A RETRY response shall be generated for a message transaction that attempts
to access a mailbox that is busy servicing another message operation, as can
a doorbell transaction that encounters busy doorbell hardware. A transaction
request which receives a RETRY response must be re-transmitted in order to
complete the operation.

• An ERROR response means that the target of the transaction encountered an
unrecoverable error and could not complete the transaction.

Packets may contain additional information that is interpreted by the interconnect
fabric to route the packets through the fabric from the source to the destination, such
as a device number. These requirements are described in the appropriate RapidIO
transport layer specification, and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of
the physical layer protocol to manage flow control, errors, etc. Flow control and
other fabric-specific communication requirements are described in the appropriate
RapidIO physical layer specification and are beyond the scope of this document.
RapidIO Trade Association 21

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Each request transaction sent into the system is marked with a transaction ID that is
unique for each requestor and responder processing element pair. This transaction
ID allows a response to be easily matched to the original request when it is returned
to the requestor. An end point cannot reuse a transaction ID value to the same
destination until the response from the original transaction has been received by the
requestor. The number of outstanding transactions that may be supported is
implementation dependent.

3.2 Message Passing Operations Cross Reference
Table 3-1 contains a cross-reference list of the message passing operations defined
in this RapidIO specification and their system usage.

3.3 Message Passing Operations
The two kinds of message passing transactions are described in this section and
defined as follows:

• Doorbell
• Data Message

3.3.1 Doorbell Operations
The doorbell operation, consisting of the DOORBELL and RESPONSE transactions
(typically a DONE response) as shown in Figure 3-1, is used by a processing
element to send a very short message to another processing element through the
interconnect fabric. The DOORBELL transaction contains the info field to hold
information and does not have a data payload. This field is software-defined and can
be used for any desired purpose; see Section 4.2.4, “Type 10 Packet Formats
(Doorbell Class),” for information about the info field.

A processing element that receives a doorbell transaction takes the packet and puts
it in a doorbell message queue within the processing element. This queue may be
implemented in hardware or in local memory. This behavior is similar to that of
typical message passing mailbox hardware. The local processor is expected to read
the queue to determine the sending processing element and the info field and
determine what action to take based on that information.

Table 3-1. Message Passing Operations Cross Reference

Operation Transactions
Used Possible System Usage Description Packet Format

Doorbell DOORBELL,
RESPONSE

Section 3.3.1 Type 10
Section 4.2.4

Data Message MESSAGE,
RESPONSE

Section 3.3.2 Type 11
Section 4.2.5
22 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Figure 3-1. Doorbell Operation

3.3.2 Data Message Operations
The data message operation, consisting of the MESSAGE and RESPONSE
transactions (typically a DONE response) as shown in Figure 3-2, is used by
a processing element’s message passing support hardware to send a data
message to other processing elements. Completing a data message operation
can consist of up to 16 individual MESSAGE transactions. MESSAGE
transaction data payloads are always multiples of doubleword quantities.

Figure 3-2. Message Operation

The processing element’s message passing hardware that is the recipient of a
data message operation examines a number of fields in order to place an
individual MESSAGE packet data in local memory:

• Message length (msglen) field—Specifies the number of transactions
that comprise the data message operation.

• Message segment (msgseg) field—Identifies which part of the data
message operation is contained in this transaction. The message length
and segment fields allow the individual packets of a data message to
be sent or received out of order.

• Mailbox (mbox) field—Specifies which mailbox is the target of the data
message.

• Letter (letter) field —Allows receipt of multiple concurrent data
message operations from the same source to the same mailbox.

• Standard size (ssize) field—Specifies the data size of all of the
transactions except (possibly) the last transaction in the data message.

From this information, the message passing hardware of the recipient
processing element can calculate to which local memory address the
transaction data should be placed.

DOORBELL1

Requestor Destination

DONE2

MESSAGEs, data1

Requestor Destination

DONEs2
RapidIO Trade Association 23

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
For example, assume that the mailbox starting addresses for the recipient processing
element are at addresses 0x1000 for mailbox 0, 0x2000 for mailbox 1, 0x3000 for
mailbox 2, and 0x4000 for mailbox 3, and that the processing element receives a
message transaction with the following fields:

• message length of 6 packets
• message segment is 3rd packet
• mailbox is mailbox 2
• letter is 1
• standard size is 32 bytes
• data payload is 32 bytes (it shall be 32 bytes since this is not the last transaction)

Using this information, the processing element’s message passing hardware can
determine that the 32 bytes contained in this part of the data message shall be put
into local memory at address 0x3040.

The message passing hardware may also snoop the local processing element’s
caching hierarchy when writing local memory if the mailbox memory is defined as
being cacheable by that processing element.

3.4 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means
that the RapidIO interface to devices that are little-endian shall perform the proper
endian transformation at the output to format a data payload.

Operations that specify data quantities that are less than 8 bytes shall have the bytes
aligned to their proper byte position within the big-endian double-word, as in the
examples shown in Figure 3-3 through Figure 3-5.

Figure 3-3. Byte Alignment Example

Figure 3-4. Half-Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB
24 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Figure 3-5. Word Alignment Example

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
RapidIO Trade Association 25

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Blank page
26 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 4 Packet Format Descriptions

4.1 Introduction
This chapter contains the packet format definitions for the RapidIO Part 2: Message
Passing Logical Specification. There are four types of message passing packet
formats:

• Request
• Response
• Implementation-defined
• Reserved

The packet formats are intended to be interconnect fabric independent so the system
interconnect can be anything required for a particular application. Reserved formats,
unless defined in another logical specification, shall not be used by a device.

4.2 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing
element to accomplish some activity on its behalf, such as a doorbell operation. The
request packet format types and their transactions for the RapidIO Part 2: Message
Passing Logical Specification are shown in Table 4-1.

4.2.1 Field Definitions for All Request Packet Formats
The field definitions in Table 4-2 apply to all of the request packet formats. Fields
that are unique to type 10 and type 11 formats are defined in the sections that
describe each type. Bit fields that are defined as “reserved” shall be assigned to logic
0s when generated and ignored when received. Bit field encodings that are defined

Table 4-1. Request Packet Type to Transaction Type Cross Reference

Request Packet
Format Type Transaction Type Definition Document Section

Number

Type 0 Implementation-
defined

Defined by the device implementation Section 4.2.2

Type 1–9 — Reserved Section 4.2.3

Type 10 DOORBELL Send a short message Section 4.2.4

Type 11 MESSAGE Send a message Section 4.2.5
RapidIO Trade Association 27

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
as “reserved” shall not be assigned when the packet is generated. A received
reserved encoding is regarded as an error if a meaningful encoding is required for
the transaction and function, otherwise it is ignored. Implementation-defined fields
shall be ignored unless the encoding is understood by the receiving device. All
packets described are bit streams from the first bit to the last bit, represented in the
figures from left to right respectively.

4.2.2 Type 0 Packet Format (Implementation-Defined)
The type 0 packet format is reserved for implementation-defined functions such as
flow control.

4.2.3 Type 1–9 Packet Formats (Reserved)
The type 1–9 formats are reserved.

4.2.4 Type 10 Packet Formats (Doorbell Class)
The type 10 packet format is the DOORBELL transaction format. Type 10 packets
never have data payloads. The field value 0b1010 in Figure 4-1 specifies that the
packet format is of type 10.

Definitions and encodings of fields specific to type 10 packets are provided in
Table 4-3. Fields that are not specific to type 10 packets are described in Table 4-2.

Figure 4-1 displays a type 10 packet with all its fields.

4.2.5 Type 11 Packet Format (Message Class)
The type 11 packet is the MESSAGE transaction format. Type 11 packets always
have a data payload. Sub-double-word messages are not specifiable and must be
managed in software.

Table 4-2. General Field Definitions for All Request Packets

Field Definition

ftype Format type—Represented as a 4-bit value; is always the first four bits in the logical packet stream.

rsrv Reserved

Table 4-3. Specific Field Definitions for Type 10 Packets

Field Encoding Definition

info — Software-defined information field

Figure 4-1. Type 10 Packet Bit Stream Format

1 0 1 0

4 8 8

rsrv srcTID

8

info (msb)

8

info (lsb)
28 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Definitions and encodings of fields specific to type 11 packets are provided in
Table 4-4. Fields that are not specific to type 11 packets are described in Table 4-2.

Table 4-4. Specific Field Definitions and Encodings for Type 11 Packets

Field Encoding Definition

msglen — Total number of packets comprising this message operation. A value of 0 indicates a
single-packet message. A value of 15 (0xF) indicates a 16-packet message, etc. See example in
Section 3.3.2, “Data Message Operations”.

msgseg — For multiple packet data message operations, specifies the part of the message supplied by this
packet. A value of 0 indicates that this is the first packet in the message. A value of 15 (0xF)
indicates that this is the sixteenth packet in the message, etc. See example in Section 3.3.2, “Data
Message Operations”.

xmbox — For single packet data message operations, specifies the upper 4 bits of the mailbox targeted by
the packet.
xmbox || mbox are specified as follows:
0000 00 - mailbox 0
0000 01 - mailbox 1
0000 10 - mailbox 2
0000 11 - mailbox 3
0001 00 - mailbox 4
....
1111 11 - mailbox 63

ssize — Standard message packet data size. This field informs the receiver of a message the size of the
data payload to expect for all of the packets for a single message operations except for the last
packet in the message. This prevents the sender from having to pad the data field excessively for
the last packet and allows the receiver to properly put the message in local memory. See example
in Section 3.3.2, “Data Message Operations”.

0b0000–1000 Reserved

0b1001 8 bytes

0b1010 16 bytes

0b1011 32 bytes

0b1100 64 bytes

0b1101 128 bytes

0b1110 256 bytes

0b1111 Reserved

mbox — Specifies the recipient mailbox in the target processing element

letter — Identifies a slot within a mailbox. This field allows a sending processing element to concurrently
send up to four messages to the same mailbox on the same processing element.
RapidIO Trade Association 29

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Figure 4-2 displays a type 11 packet with all its fields. The value 0b1011 in
Figure 4-2 specifies that the packet format is of type 11.

The combination of the letter, mbox, and the msgseg or xmbox fields uniquely
identifies the message packet in the system for each requestor and responder
processing element pair in the same way as the transaction ID is used for other
request types. Care must be taken to prevent aliasing of the combination of these
values.

4.3 Response Packet Formats
A response transaction is issued by a processing element when it has completed a
request made by a remote processing element. Response packets are always directed
and are transmitted in the same way as request packets. Currently two response
packet format types exist, as shown in Table 4-5.

4.3.1 Field Definitions for All Response Packet Formats
The field definitions in Table 4-6 apply to more than one of the response packet
formats. Fields that are unique to the type 13 format are defined in Section 4.3.3,
“Type 13 Packet Format (Response Class).”

Figure 4-2. Type 11 Packet Bit Stream Format

Table 4-5. Response Packet Type to Transaction Type Cross Reference

Response Packet
Format Type Transaction Type Definition Document Section

Number

Type 12 — Reserved Section 4.3.2

Type 13 RESPONSE Issued by a processing element when it completes a
request by a remote element.

Section 4.3.3

Type 14 — Reserved Section 4.3.4

Type 15 Implementation-
defined

Defined by the device implementation Section 4.3.5

letter

2

double-word 0

64

double-word 1

64

double-word n

64

• • •

1 0 1 1

4 4 4

msglen ssize msgseg/xmbox

4

mbox

2

30 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
4.3.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

4.3.3 Type 13 Packet Format (Response Class)
The type 13 packet format returns status and the requestor’s transaction ID or
message segment and mailbox information. The type 13 format is used for response
packets to all request packets. Responses to message and doorbell packets never
contain data.

Definitions and encodings of fields specific to type 13 packets are provided in
Table 4-7. Fields that are not specific to type 13 packets are described in Table 4-6.

Figure 4-3 shows the format of the target_info field for message responses.

Table 4-6. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload (including DOORBELL
RESPONSE)

0b0001 MESSAGE RESPONSE transaction

0b0010–1111 Reserved

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001–0010 — Reserved

0b0011 RETRY Requested transaction is not accepted; re-transmission of the request is
needed to complete the transaction

0b0100–0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional information such
as an error code

Table 4-7. Specific Field Definitions for Type 13 Packets

Field Sub-Field Definition

target_info As shown in Figure 4-3, when the response is the target_info field, these three sub-fields are used:

msgseg Specifies the part of the message supplied by the corresponding message packet. A value of
0 indicates that this is the response for the first packet in the message. A value of 15 (0xF)
indicates that this is the response for the sixteenth (and last) packet in the message, etc.

mbox Specifies the recipient mailbox from the corresponding message packet.

letter Identifies the slot within the target mailbox. This field allows a sending processing element
to concurrently send up to four messages to the same mailbox on the same processing
element.

targetTID — Transaction ID of the request that caused this response (except for message responses
defined in Figure 4-3).
RapidIO Trade Association 31

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Figure 4-4 displays a type 13 packet with all its fields. The value 0b1101 in
Figure 4-4 specifies that the packet format is of type 13.

4.3.4 Type 14 Packet Format (Reserved)
The type 14 packet format is reserved.

4.3.5 Type 15 Packet Format (Implementation-Defined)
The type 15 packet format is reserved for implementation-defined functions such as
flow control.

Figure 4-3. target_info Field for Message Responses

Figure 4-4. Type 13 Packet Bit Stream Format

mbox

2

letter

2

msgseg

4

1 1 0 1

4 4 4 8

transaction status target_info/targetTID
32 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Chapter 5 Message Passing Registers

5.1 Introduction
This chapter describes the visible register set that allows an external processing
element to determine the capabilities, configuration, and status of a processing
element using this logical specification. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical,
transport, and physical specifications of interest to determine a complete list of
registers and bit definitions. All registers are 32-bits and aligned to a 32-bit
boundary.

5.2 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability
registers (CARs) and command and status registers (CSRs) can be accessed using
Part 1: Input/Output Logical Specification maintenance operations. Any register
offsets not defined are considered reserved for this specification unless otherwise
stated. Other registers required for a processing element are defined in other
applicable RapidIO specifications and by the requirements of the specific device and
are beyond the scope of this specification. Read and write accesses to reserved
register offsets shall terminate normally and not cause an error condition in the target
device. Writes to CAR (read-only) space shall terminate normally and not cause an
error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only.
Bits that are reserved in this specification may be defined in another RapidIO
specification.

Table 5-1. Message Passing Register Map

Configuration
Space Byte

Offset
Register Name

0x0-14 Reserved

0x18 Source Operations CAR

0x1C Destination Operations CAR

0x20–FC Reserved
RapidIO Trade Association 33

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
5.3 Reserved Register and Bit Behavior
Table 5-2 describes the required behavior for accesses to reserved register bits and
reserved registers for the RapidIO register space,

0x100–
FFFC Extended Features Space

0x10000–
FFFFFC Implementation-defined Space

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register Space
(CAR Space - this space is
read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - write - ignored

 Reserved
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status
Register Space (CSR
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 5-1. Message Passing Register Map (Continued)

Configuration
Space Byte

Offset
Register Name
34 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value
unless
implementation-defined
function understood

read - return
implementation-defined value

write - preserve current value
if implementation-defined
function not understood

write -
implementation-defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined
Space

Reserved bit and
register

All behavior implementation-defined

1Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from
the read value.

2All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the
desired values for defined bits to be modified, and write the register, thus preserving the value of all
reserved bits.

Table 5-2. Configuration Space Reserved Access Behavior (Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
RapidIO Trade Association 35

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
5.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external
processing element to determine its capabilities using the I/O logical maintenance
read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow
larger accesses. CARs are read-only. Refer to Table 5-2 for the required behavior for
accesses to reserved registers and register bits.

CARs are big-endian with bit 0 the most significant bit.

5.4.1 Source Operations CAR
(Configuration Space Offset 0x18)

This register defines the set of RapidIO message passing logical operations that can
be issued by this processing element; see Table 5-3. It is assumed that a processing
element can generate I/O logical maintenance read and write requests if it is required
to access CARs and CSRs in other processing elements. RapidIO switches shall be
able to route any packet.

Table 5-3. Bit Settings for Source Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–19 — Reserved

20 Data message PE can support a data message operation

21 Doorbell PE can support a doorbell operation

22–29 — Reserved

30–31 Implementation Defined Defined by the device implementation
36 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
5.4.2 Destination Operations CAR
(Configuration Space Offset 0x1C)

This register defines the set of RapidIO message passing operations that can be
supported by this processing element; see Table 5-4. It is required that all processing
elements can respond to I/O logical maintenance read and write requests in order to
access these registers. The Destination Operations CAR is applicable for end point
devices only. RapidIO switches shall be able to route any packet.

Table 5-4. Bit Settings for Destination Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–19 — Reserved

20 Data message PE can support a data message operation

21 Doorbell PE can support a doorbell operation

22–29 — Reserved

30–31 Implementation Defined Defined by the device implementation
RapidIO Trade Association 37

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
5.5 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs)
that allows an external processing element to control and determine the status of its
internal hardware. All registers are 32 bits wide and are organized and accessed in
the same way as the CARs. Refer to Table 5-2 for the required behavior for accesses
to reserved registers and register bits.

Currently there are no CSRs defined by the message passing logical layer
specification.
38 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Annex A Message Passing Interface
(Informative)

A.1 Introduction
The RapidIO Part 2: Message Passing Logical Specification defines several packet
formats that are useful for sending messages from a source device to a destination.
These formats do not describe a specific programming model but are instantiated as
an example packetizing mechanism. Because the actual programming models for
message passing can vary greatly in both capability and complexity, they have been
deemed beyond the scope of this specification. This appendix is provided as a
reference model for message passing and is not intended to be all encompassing.

A.2 Definitions and Goals
A system may be made up of several processors and distributed memory elements.
These processors may be tightly coupled and operating under a monolithic operating
system in certain applications. When this is true the operating system is tasked with
managing the pool of processors and memory to solve a set of tasks. In most of these
cases, it is most efficient for the processors to work out of a common
hardware-maintained coherent memory space. This allows processors to
communicate initialization and completion of tasks through the use of semaphores,
spin locks, and inter-process interrupts. Memory is managed centrally by the
operating system with a paging protection scheme.

In other such distributed systems, processors and memory may be more loosely
coupled. Several operating systems or kernels may be coexistent in the system, each
kernel being responsible for a small part of the entire system. It is necessary to have
a communication mechanism whereby kernels can communicate with other kernels
in a system of this nature. Since this is a shared nothing environment, it is also
desirable to have a common hardware and software interface mechanism to
accomplish this communication. This model is typically called message passing.

In these message passing systems, two mechanisms typically are used to move data
from one portion of memory space to another. The first mechanism is called direct
memory access (DMA), the second is messaging. The primary difference between
the two models is that DMA transactions are steered by the source whereas messages
are steered by the target. This means that a DMA source not only requires access to
a target but must also have visibility into the target’s address space. The message
RapidIO Trade Association 39

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
source only requires access to the target and does not need visibility into the target’s
address space. In distributed systems it is common to find a mix of DMA and
messaging deployed.

The RapidIO architecture contains a packet transport mechanism that can aid in the
distributed shared nothing environment. The RapidIO message passing model meets
several goals:

• A message is constructed of one or more transactions that can be sent and
received through a possibly unordered interconnect

• A sender can have a number of outstanding messages queued for sending
• A sender can send a higher priority message before a lower priority message

and can also preempt a lower priority message to send a higher priority one
and have the lower priority message resume when the higher is complete
(prioritized concurrency)

• A sender requires no knowledge of the receiver’s internal structure or memory
map

• A receiver of a message has complete control over it’s local address space
• A receiver can have a number of outstanding messages queued for servicing if

desired
• A receiver can receive a number of concurrent multiple-transaction messages

if desired

A.3 Message Operations
The RapidIO Part 2: Message Passing Logical Specification defines the type 11
packet as the MESSAGE transaction format. The transaction may be used in a
number of different ways dependent on the specific system architecture. The
transaction header contains the following field definitions:
mbox Specifies the recipient mailbox in the target processing element.

RapidIO allows up to four mailbox ports in each target device.
This can be useful for defining blocks of different message
frame sizes or different local delivery priority levels.

letter A RapidIO message operation may be made up of several
transactions. It may be desirable in some systems to have
more than one multi-transaction message concurrently in
transit to the target mailbox. The letter identifies the specific
message within the mailbox. This field allows a sending of up
to four messages to the same mailbox in the same target
device.

multi-transaction fieldsIn cases where message operations are made up of multiple
transactions, the following fields allow reconstruction of a
message transported through an unordered interconnect
40 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
fabric:
msglen Specifies the total number of transactions comprising this message.

A value of 0 indicates a single transaction message. A value
of 15 (0xF) indicates a 16 transaction message, and so forth.

msgseg Specifies the part of the message operation supplied by this
transaction. A value of 0 indicates that this is the first
transaction in the message. A value of 15 (0xF) indicates that
this is the sixteenth transaction in the message, and so on.

ssize Standard message transaction data size. This field tells the receiver
to expect a message the size of the data field for all of the
transactions except the last one. This prevents the sender from
having to pad the data field excessively for the last transaction
and allows the receiver to properly put the message in local
memory; otherwise, if the last transaction is the first one
received, the address calculations will be in error when
writing the transaction to memory.

For a more detailed description of the message packet format, refer to Section 4.2.5,
“Type 11 Packet Format (Message Class).”

The second type of message packet is the type 10 doorbell transaction packet. The
doorbell transaction is a lightweight transaction that contains only a 16-bit
information field that is completely software defined. The doorbell is intended to be
an in-band mechanism to send interrupts between processors. In this usage the
information field would be used to convey interrupt level and target information to
the recipient. For a more detailed description of the doorbell packet format, refer to
Section 4.2.4, “Type 10 Packet Formats (Doorbell Class).”

There are two transaction format models described in this appendix, a simple model
and an extended model. The simple model is recommended for both the type 10
(doorbell) and type 11 (message) packet format messages. The extended model is
only recommended for the type 11 (message) packet format messages.

A.4 Inbound Mailbox Structure
RapidIO provides two message transaction packet formats. By nature of having such
formats it is possible for one device to pass a message to another device without a
specific memory mapped transaction. The transaction allows for the concept of a
memory map independent port. As mentioned earlier, how the transactions are
generated and what is done with them at the destination is beyond the scope of the
RapidIO Part 2: Message Passing Logical Specification. There are, however, a few
examples as to how they could be deployed. First, look at the destination of the
message.
RapidIO Trade Association 41

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
A.4.1 Simple Inbox
Probably the most simple inbound mailbox structure is that of a single-register port
or direct map into local memory space (see Figure A-1).

In this structure, the inbound single transaction message is posted to either a register,
set of registers, or circular queue in local memory. In the case of the circular queue,
hardware maintains a head and tail pointer that points at a fixed window of
pre-partitioned message frames in memory. Whenever the head pointer equals the
tail pointer, no more messages can be accepted and they are retried on the RapidIO
interface. When messages are posted, the local processor is interrupted. The
interrupt service routine reads the mailbox port that contains the message located at
the tail pointer. The message frame is equal to the largest message operation that can
be received.

The RapidIO MESSAGE transaction allows up to four such inbound mailbox ports
per target address. The DOORBELL transaction is defined as a single mailbox port.

A.4.2 Extended Inbox
A second more extensible structure similar to that used in the intelligent I/O (I2O)
specification, but managed differently, also works for the receiver (see Figure A-2).

Figure A-1. Simple Inbound Mailbox Port Structure

Head Pointer

Tail Pointer

Inbound
Mailbox

Port

Transactions
from

RapidIO Interface

Local Processor
Read

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Local Memory

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Tail Pointer
42 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1

One of these structures is required for each priority level supported in an
implementation. There are inbound post and free list FIFOs which function as
circular queues of a fixed size. The message frames are of a size equal to the
maximum message size that can be accepted by the receiver. Smaller messages can
be accepted if allowed by the overlaying software. The sender only specifies the
mailbox and does not request the frame pointer and perform direct memory access
as with I2O, although the I2O model can be supported in software with this structure.
All pointers are managed by the inbound hardware and the local processor. Message
priority and letter number are managed by software.

The advantage of the extended structure is that it allows local software to service
message frames in any order. It also allows memory regions to be moved in and out
of the message structure instead of forcing software to copy the message to a
different memory location.

A.4.3 Received Messages
When a message transaction is received, the inbound mailbox port takes the message
frame address (MFA) pointed at by the inbound free list tail pointer and increments
that pointer (this may cause a memory read to prefetch the next MFA), effectively
taking the MFA from the free list. Subsequent message transactions from a different
sender or with a different letter number are now retried until all of the transactions
for this message operation have been received, unless there is additional hardware
to handle multiple concurrent message operations for the same mailbox,
differentiated by the letter slots.

Figure A-2. Inbound Mailbox Structure

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Letter Slot
Letter Slot
Letter Slot
Letter Slot

MFA
MFA
MFA

MFA
MFA
MFA
MFA
MFA

Tail Pointer

Head Pointer

Tail Pointer

Head Pointer

Inbound
Mailbox

Port

Transactions
from

RapidIO Interface

Local Processor
Read

Local Memory Local Memory

Inbound
Post
List
FIFO

Inbound
Free
List
FIFO

Local Processor
Write

Optional
Letter Slots

allow multiple
multi-transaction
messages to
arrive in the

Inbox
concurrently
RapidIO Trade Association 43

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
The inbound mailbox port uses the MFA to write the transaction data into local
memory at that base address with the exact address calculated as described in
Section 2.3.1, “Data Message Operations” and Section 3.3.2, “Data Message
Operations.” When the entire message is received and written into memory, the
inbound post list pointer is incremented and the MFA is written into that location. If
the queue was previously empty, an interrupt is generated to the local processor to
indicate that there is a new message pending. This causes a window where the letter
hardware is busy and cannot service a new operation between the receipt of the final
transaction and the MFA being committed to the local memory.

When the local processor services a received message, it reads the MFA indicated
by the inbound post FIFO tail pointer and increments the tail pointer. When the
message has been processed (or possibly deferred), it puts a new MFA in the
memory address indicated by the inbound free list head pointer and increments that
pointer, adding the new MFA to the free list for use by the inbound message
hardware.

If the free list head and tail pointer are the same, the FIFO is empty and there are no
more MFAs available and all new messages are retried. If the post list head and tail
pointers are the same, there are no outstanding messages awaiting service from the
local processor. Underflow conditions are fatal since they indicate improper system
behavior. This information can be part of an associated status register.

A.5 Outbound Message Queue Structure
Queueing messages in RapidIO is accomplished either through a simple or a more
extended outbox.

A.5.1 Simple Outbox
Generation of a message can be as simple as writing to a memory-mapped descriptor
structure either in local registers or memory. The outbound message queue (see
Figure A-3) looks similar to the inbox.

Figure A-3. Outbound Message Queue

Tail Pointer

Head Pointer

Outbound
Mailbox

Port

Transactions
to

RapidIO Interface

Local Processor
Write

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Local Memory
44 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
The local processor reads a port in the outbound mailbox to obtain the position of a
head pointer in local memory. If the read results in a pre-determined pattern the
message queue is full. The processor then writes a descriptor structure and message
to that location. When it is done, it writes the message port to advance the head point
and mark the message as queued. The outbound mailbox hardware then reads the
messages pointed to by the tail pointer and transfers them to the target device
pointed at by the message descriptor.

One of these structures is required for each priority level of outbound messages
supported.

A.5.2 Extended Outbox
A more extensible method of queueing messages is again a two-level approach (see
Figure A-4). Multiple structures are required if concurrent operation is desired in an
implementation. The FIFO is a circular queue of some fixed size. The message
frames are of a size that is equal to the maximum message operation size that can be
accepted by the receivers in the system. Smaller message operations can be sent if
allowed by the hardware and the overlaying software. As with the receive side, the
outbound slots can be virtual and any letter number can be handled by an arbitrary
letter slot.

When the local processor wishes to send a message, it stores the message in local
memory, writes the message frame descriptor (MFD) to the outbound mailbox port
(which in-turn writes it to the location indicated by the outbound post FIFO head
pointer), and increments the head pointer.

The advantage of this method is that software can have pre-set messages stored in
local memory. Whenever it needs to communicate an event to a specific end point it
writes the address of the message frame to the outbound mailbox, and the outbound
mailbox generates the message transactions and completes the operation.

If the outbound post list FIFO head and tail pointers are not equal, there is a message
waiting to be sent. This causes the outbound mailbox port to read the MFD pointed

Figure A-4. Extended Outbound Message Queue

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Letter Slot
Letter Slot
Letter Slot
Letter Slot MFD

MFD
MFD

Tail Pointer

Head Pointer

Outbound
Mailbox

Port

Transactions
to

RapidIO Interface

Local Memory

Outbound
Post
List
FIFO

MFD
MFD

Local Memory
Local Processor

Write
RapidIO Trade Association 45

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
to by the outbound post list tail pointer and then increment the pointer (this may
cause a memory read to prefetch the next MFD). The hardware then uses the
information stored in the MFD to read the message frame, packetize it, and transmit
it to the receiver. Multiple messages can be transmitted concurrently if there is
hardware to support them, differentiated by the letter slots in Figure A-4.

If the free list head and tail pointer are the same, the FIFO is empty and there are no
more MFDs to be processed. Underflow conditions are fatal because they indicate
improper system behavior. This information can also be part of a status register.

Because the outbound and inbound hardware are independent entities, it is possible
for more complex outbound mailboxes to communicate with less complex inboxes
by simply reducing the complexity of the message descriptor to match. Likewise
simple outboxes can communicate with complex inboxes. Software can determine
the capabilities of a device during initial system setup. The capabilities of a devices
message hardware are stored in the port configuration registers.
46 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Agent. A processing element that provides services to a processor.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

CCITT. Consultive Communication for International Telegraph and
Telephone.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing
resources prevent each other from accessing the resources, resulting
in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Direct Memory Access (DMA). The process of accessing memory in a
device by specifying the memory address directly.

A

B

C

D

RapidIO Trade Association 47

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Distributed memory. System memory that is distributed throughout the
system, as opposed to being centrally located.

Doorbell. A port on a device that is capable of generating an interrupt to a
processor.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

FIFO. First in, first out.

Globally shared memory (GSM). Cache coherent system memory that can
be shared between multiple processors in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

I2O. Intelligent I/O architecture specification.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to
as a source.

I/O. Input-output.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Local memory. Memory associated with the processing element in question.

LSB. Least significant byte.

Mailbox. Dedicated hardware that receives messages.

E

F

G

H

I

L

M

48 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Message passing. An application programming model that allows processing
elements to communicate via messages to mailboxes instead of via
DMA or GSM. Message senders do not write to a memory address
in the receiver.

MFA. Message frame address.

MFD. Message frame descriptor.

MSB. Most significant byte.

Non-coherent. A transaction that does not participate in any system globally
shared memory cache coherence mechanism.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PCB. Printed circuit board.

Peripheral component interface (PCI). A bus commonly used for
connecting I/O devices in a system.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Receiver. The RapidIO interface input port on a processing element.

Remote memory. Memory associated with a processing element other than
the processing element in question.

Sender. The RapidIO interface output port on a processing element.

Semaphore. A technique for coordinating activities in which multiple
processing elements compete for the same resource, typically
requiring atomic operations.

N

O

P

R

S

RapidIO Trade Association 49

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1
Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

T

W

50 RapidIO Trade Association

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1

RapidIO Trade Association 51

Blank page

RapidIO Part 2: Message Passing Logical Specification Rev. 2.1

52 RapidIO Trade Association

Blank page

	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Message Passing Specification
	1.3.1 Functional Features
	1.3.2 Physical Features
	1.3.3 Performance Features

	1.4 Contents
	1.5 Terminology
	1.6 Conventions

	Chapter 2 System Models
	2.1 Introduction
	2.2 Processing Element Models
	2.2.1 Processor-Memory Processing Element Model
	2.2.2 Integrated Processor-Memory Processing Element Model
	2.2.3 Memory-Only Processing Element Model
	2.2.4 Processor-Only Processing Element
	2.2.5 I/O Processing Element
	2.2.6 Switch Processing Element

	2.3 Message Passing System Model
	2.3.1 Data Message Operations
	2.3.2 Doorbell Message Operations

	2.4 System Issues
	2.4.1 Operation Ordering
	2.4.2 Transaction Delivery
	2.4.3 Deadlock Considerations

	Chapter 3 Operation Descriptions
	3.1 Introduction
	3.2 Message Passing Operations Cross Reference
	3.3 Message Passing Operations
	3.3.1 Doorbell Operations
	3.3.2 Data Message Operations

	3.4 Endian, Byte Ordering, and Alignment

	Chapter 4 Packet Format Descriptions
	4.1 Introduction
	4.2 Request Packet Formats
	4.2.1 Field Definitions for All Request Packet Formats
	4.2.2 Type 0 Packet Format (Implementation-Defined)
	4.2.3 Type 1-9 Packet Formats (Reserved)
	4.2.4 Type 10 Packet Formats (Doorbell Class)
	4.2.5 Type 11 Packet Format (Message Class)

	4.3 Response Packet Formats
	4.3.1 Field Definitions for All Response Packet Formats
	4.3.2 Type 12 Packet Format (Reserved)
	4.3.3 Type 13 Packet Format (Response Class)
	4.3.4 Type 14 Packet Format (Reserved)
	4.3.5 Type 15 Packet Format (Implementation-Defined)

	Chapter 5 Message Passing Registers
	5.1 Introduction
	5.2 Register Summary
	5.3 Reserved Register and Bit Behavior
	5.4 Capability Registers (CARs)
	5.4.1 Source Operations CAR (Configuration Space Offset 0x18)
	5.4.2 Destination Operations CAR (Configuration Space Offset 0x1C)

	5.5 Command and Status Registers (CSRs)

	Annex A Message Passing Interface (Informative)
	A.1 Introduction
	A.2 Definitions and Goals
	A.3 Message Operations
	A.4 Inbound Mailbox Structure
	A.4.1 Simple Inbox
	A.4.2 Extended Inbox
	A.4.3 Received Messages

	A.5 Outbound Message Queue Structure
	A.5.1 Simple Outbox
	A.5.2 Extended Outbox

