
Rev. 2.1, 08/2009

© Copyright RapidIO Trade Association

RapidIO™ Interconnect Specification
Annex 2: Session Management

Protocol Specification
RapidIO Trade Association

NO WARRANTY.THE RAPIDIO TRADE ASSOCIATION PUBLISHES THE SPECIFICATION “AS IS”. THE RAPIDIO TRADE
ASSOCIATION MAKES NO WARRANTY, REPRESENTATION OR COVENANT, EXPRESS OR IMPLIED, OF ANY KIND
CONCERNING THE SPECIFICATION, INCLUDING, WITHOUT LIMITATION, NO WARRANTY OF NON INFRINGEMENT, NO
WARRANTY OF MERCHANTABILITY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. USER AGREES TO
ASSUME ALL OF THE RISKS ASSOCIATED WITH ANY USE WHATSOEVER OF THE SPECIFICATION. WITHOUT LIMITING THE
GENERALITY OF THE FOREGOING, USER IS RESPONSIBLE FOR SECURING ANY INTELLECTUAL PROPERTY LICENSES OR
RIGHTS WHICH MAY BE NECESSARY TO IMPLEMENT OR BUILD PRODUCTS COMPLYING WITH OR MAKING ANY OTHER
SUCH USE OF THE SPECIFICATION.
DISCLAIMER OF LIABILITY. THE RAPIDIO TRADE ASSOCIATION SHALL NOT BE LIABLE OR RESPONSIBLE FOR ACTUAL,
INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST
PROFITS) RESULTING FROM USE OR INABILITY TO USE THE SPECIFICATION, ARISING FROM ANY CAUSE OF ACTION
WHATSOEVER, INCLUDING, WHETHER IN CONTRACT, WARRANTY, STRICT LIABILITY, OR NEGLIGENCE, EVEN IF THE
RAPIDIO TRADE ASSOCIATION HAS BEEN NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGES.

Questions regarding the RapidIO Trade Association, specifications, or membership should be forwarded to:
12343 Hymeadow, Suite 2-R
(non-US mail deliveries to Suite 3-E)
Austin, TX 78750
512-401-2900 Tel.
512-401-2902 FAX.

RapidIO and the RapidIO logo are trademarks and service marks of the RapidIO Trade Association. All other trademarks are the property of their

Revision History

Revision Description Date

2.0 First release 06/14/2007

2.0 Public release 03/06/2008

2.1 No technical changes MM/DD/200Y

2.1 Removed confidentiality markings for public release 08/13/2009
RapidIO Trade Association

respective owners.

Table of Contents

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 1 Overview

1.1 Introduction... 11
1.2 Overview... 11
1.3 Features of the Session Management Protocol ... 12
1.4 Contents .. 12
1.5 Terminology.. 13
1.6 Conventions .. 14
1.7 Useful References ... 14

Chapter 2 Managing Data Streams

2.1 Introduction... 15
2.2 System Example ... 15
2.3 Establishing Data Streams .. 16
2.4 Data Streaming System Configurations.. 17

Chapter 3 Session Management Operation

3.1 Introduction... 19
3.2 Initialization of Session Management Advertisement CSRs................................ 19
3.3 Contacting a Participating End point .. 20
3.4 Establishing Conduits ... 21
3.4.1 Master/Slave Configuration Conduit Establishment .. 22
3.4.2 Peers Configuration Conduit Establishment... 23
3.4.3 Conduit Establishment Algorithm .. 24
3.5 Management Messages ... 26
3.5.1 Session Management Message Types... 26
3.5.1.1 REQUEST .. 26
3.5.1.2 ADVERTISE .. 26
3.5.1.3 OPEN.. 27
3.5.1.4 ACCEPT... 27
3.5.1.5 REFUSE ... 27
3.5.1.6 FLOW-CONTROL... 27
3.5.1.7 DATA ... 27
3.5.1.8 CLOSE.. 27
3.5.1.9 STATUS ... 28
3.5.2 Message Header Fields ... 28
3.5.2.1 Command Header Field: <CMD><VER>.. 28
3.5.2.2 SourceID and DestID.. 28
3.5.2.3 Protocol Identifier: <ProtoID> ... 29
3.5.2.4 Class of Service: <COS>.. 29
RapidIO Trade Association 3

Table of Contents

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.5.2.5 Stream Identifier: <StreamID>... 29
3.5.3 Session Management Protocol Attributes... 30
3.5.3.1 VENDOR Attribute .. 31
3.5.3.2 DATA_OFFSET_VENDOR Attribute... 31
3.5.3.3 DATA_OFFSET Attribute ... 32
3.5.3.4 REQUEST_RETRY_PERIOD Attribute ... 32
3.5.3.5 REQUEST_TIMEOUT_PERIOD Attribute .. 32
3.5.3.6 FLOW_CONTROL_XON_TIMEOUT_PERIOD Attribute........................ 33
3.5.3.7 OPEN_MESSAGE_NUMBER Attribute... 33
3.5.3.8 CONDUIT_STREAM Attribute... 33
3.5.3.9 DATA_HEADER_FORMAT Attribute... 34
3.5.3.10 CONVEYANCE Attribute ... 34
3.5.3.11 Other Attributes .. 34
3.6 Message Sequence Examples ... 35
3.6.1 Stream Initiation ... 35
3.6.2 Refusal to Initiate a Stream... 35
3.6.3 Stream Shutdown.. 36
3.6.4 Uses of the STATUS command.. 37
3.6.5 Use of the FLOW_CONTROL Command ... 38
3.7 Session Management Error Conditions and Recovery ... 39
3.7.1 Message Loss.. 39
3.7.2 Session Management Protocol Congestion Management................................. 40
3.7.3 Session Management Protocol Non-Compliance ... 40
3.8 Rules for Session Management... 41
3.8.1 Optional Features.. 41
3.8.2 Attribute Related Rules... 41
3.8.3 Rules Related to Virtual Stream Status... 42
3.8.4 Rules Related to Vendor-Specific Commands ... 42
3.8.5 Rules Related to Reserved Fields ... 43
3.9 Notes on Optional Features and Inter-Operability.. 43
3.9.1 Optional Attributes ... 43
3.9.2 REQUEST and ADVERTISE .. 44

Chapter 4 Message Format Descriptions

4.1 Introduction... 45
4.2 Control Message Formats ... 45
4.2.1 REQUEST .. 45
4.2.2 ADVERTISE .. 46
4.2.3 OPEN.. 47
4.2.4 ACCEPT ... 48
4.2.5 REFUSE ... 49
4.2.6 FLOW_CONTROL .. 49
4.2.7 CLOSE.. 50
4.2.8 STATUS ... 51
4.2.9 User Defined ... 52
4 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1

Table of Contents

4.3 Data Formats... 53
4.3.1 DATA Message Format, MAILBOX ... 53
4.3.2 DATA1 Message Format, Large PDU ... 54
4.3.3 DATA2 Message Format.. 54
4.3.4 DATA3 Zero-length DATA header.. 54
4.3.5 Data Streaming ... 55

Chapter 5 Registers

5.1 Introduction... 57
5.2 Session Management Protocol Extended Features Register Block 58
5.2.1 Session Management Protocol Register Block Header (Block Offset 0x0) 58
5.2.2 Session Management Protocol Register Write Enable CSR

(Block Offset 0x4) .. 59
5.2.3 Session Management Advertisement CSR (Block Offset 0x8) 60
5.2.4 Session Management Attribute Range CSR (Block Offset 0xC) 61
5.2.5 Session Management Protocol Attributes 0-508 CSRs

(Block Offset 0x10-0x7F8)... 63
5.3 Component Tag CSR Session Management Protocol Advertisement.................. 64

Chapter 6 Vendor-Defined Protocols

6.1 ProtoID.. 67
6.2 Attributes .. 67
6.2.1 VENDOR attribute ... 67
6.2.2 PROTOCOL_NAME attribute ... 67
6.2.3 Other attributes ... 67
6.3 Other Requirements for Vendor-Defined Protocols ... 67

Chapter 7 Ethernet Encapsulation

7.1 ProtoID.. 69
7.2 Attributes .. 69
7.2.1 MTU Attribute .. 69
7.2.2 CONVEYANCE Attribute ... 69
7.2.3 MAC_ADDRESS Attribute.. 69
7.3 Other Requirements of Ethernet Encapsulation.. 69
7.3.1 Dropped Messages.. 70
7.3.2 Broadcast .. 70
7.3.2.1 Broadcast With Multicast Extensions... 70
7.3.2.2 Broadcast Without Multicast Extensions.. 70
7.3.2.3 Vendor defined Broadcast Server... 70
7.3.3 Ingress/Egress Nodes.. 70
RapidIO Trade Association 5

Table of Contents

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
6 RapidIO Trade Association

List of Figures

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
1-1 Data Streaming ...11
2-1 Example of a RapidIO-Based Networking System ..15
2-2 Stream Process ..16
3-1 Normal Stream Initiation ..35
3-2 Use of REFUSE Command ..35
3-3 Normal Stream Shutdown...36
3-4 Use of the STATUS Command ..37
3-5 Use of the FLOW_CONTROL Command ...38
RapidIO Trade Association 7

List of Figures
RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
8 RapidIO Trade Association

List of Tables

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
2-1 Data Streaming System Configurations..17
3-1 StreamID Assignments ...29
3-2 System Management Protocol Attribute Sizes ...30
3-3 Vendor-Specific Attribute Ranges..30
3-4 System Management Protocol Attribute Sizes ...31
3-5 System Management Protocol Attribute Sizes ...31
3-6 DATA_OFFSET Attribute Format ...32
3-7 DATA_HEADER_FORMAT Attribute Values ...34
3-8 Ethernet Encapsulation Conveyance ..34
4-1 REQUEST Message Format ...45
4-2 ADVERTISE Message Format - Protocol Attributes...46
4-3 ADVERTISE Message Format - Protocol List...47
4-4 OPEN Message Format ..48
4-5 ACCEPT Message Format..48
4-6 REFUSE Message Format ..49
4-7 FLOW_CONTROL Message Format...50
4-8 CLOSE Message Format ..50
4-9 STATUS Message Format..51
4-10 Status Bit Values...51
4-11 USERDEFINED Message Format..52
4-12 DATA Message Format..53
4-13 DATA Message Format..54
4-14 DATA Message Format..54
5-1 Bit Settings for Session Management Protocol Register Block Header58
5-2 Bit Settings for Session Management Protocol Register Write Enable Register59
5-3 Bit Settings for Session Management Protocol Advertisement Register60
5-4 Bit Settings for Session Management Attribute Range Register61
5-5 Bit Settings for Session Management Protocol Attributes 0-508 Registers63
5-6 Component Tag CSR Bit Usage ...64
RapidIO Trade Association 9

List of Tables
RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
10 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 1 Overview

1.1 Introduction
The Session Management Protocol permits system software to establish, manage,
and remove virtual streams as defined in RapidIO Interconnect Specification Part
10: Data Streaming Logical Specification Rev. 2.1. The data streaming protocol
allows data of any format to be transported between two end points. The Session
Management Protocol provides a method for two end points to negotiate the
characteristics of the data stream and assign those characteristics so the receiving
entity can use the appropriate software layers upon receiving the data stream.

1.2 Overview
A stream, is a unidirectional connection between two end points. Bidirectional
traffic is carried over two streams, one in each direction.

Figure 1-1. Data Streaming

The end points must have a common understanding of what the data within the
stream is, and associate the stream with the right end point process. One of the
principles of the data streaming protocol is the use of virtual streams. A virtual
stream contains a generic tag called the virtual stream ID (VSID). The VSID is
assigned by the destination, based on the destination’s method for decoding, and
may be a software or a hardware feature.

VSIDs are unique between any pair of source and destinations. The Session
Management Protocol allows a source and destination to discover what protocols the
two can use to communicate, assign a VSID to carry that protocol, establishing an
open stream. Once open, a stream can carry any number of protocol data units
(PDUs) until the stream is not longer needed. The Session Management Protocol is
then used to close the stream.

Stream A

Stream B

End point
Protocol
Software

End point
Protocol
Software
RapidIO Trade Association 11

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
The Session Management Protocol is intended to manage streams of
communication. When data is passed using Type 9 (Data-Streaming Class) as the
conveyance, the streamID used for Session Management Protocol is the same as the
streamID used for Type 9 data traffic. When the data are passed using Type 11
(Message Class) as the conveyance, the streamID used for Session Management
Protocol can be encapsulated in the command header of the DATA or DATA1
commands, as defined in Section 4.3.

1.3 Features of the Session Management Protocol
The Session Management Protocol provides the following features:

• A method to contact the session management software running on any end
point.

• A method to discover which protocols an end point is capable of receiving.
• A method to discover and assign streams.
• A method to manage the status of streams.
• A method to close active streams.
• A method to handle errors and to handle protocol violations.

1.4 Contents
Following are the contents of the RapidIO Interconnect Specification Annex 2:
Session Management Protocol Specification Rev. 2.1:

• Chapter 1, “Overview,” is an overview of the Session Management Protocol
specification.

• Chapter 2, “Managing Data Streams,” introduces system issues such as
discovery and transport configurations.

• Chapter 3, “Session Management Operation,” describes the set of messages
defined by the protocol and their use.

• Chapter 4, “Message Format Descriptions,” contains the packet format
definitions for the session management messages.

• Chapter 5, “Registers,” describes the visible register set that allows an external
processing element to discover and contact a session management process on
another end point.

• Chapter 6, “Vendor-Defined Protocols,” describes how to specify vendor-
defined protocol attributes.

• Chapter 7, “Ethernet Encapsulation,” contains the specific use case
requirement for tunneling Ethernet using this protocol and data streaming, as
well as requirements for vendor-specific attributes.
12 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
1.5 Terminology
The following terms are used in this document. The terms are consistent with their
usage in RapidIO Interconnect Specification Part 10: Data Streaming Logical
Specification.

Refer to the Glossary at the back of this document for additional definitions.

Class of service - (cos) a term used to describe different treatment (quality of
service) for different data streams. Support for class of service is provided by a class
of service field in the data streaming protocol. The class of service field is used in
the virtual stream ID and in identifying a virtual queue.

The value of the cos field is not defined by this specification, but is implementation
dependent. The requirements for this field are that every message with a given cos
must be transmitted with equal priority.

Conduit - A bidirectional data path, consisting of one stream for data transfer in
each direction.

Conveyance - The RapidIO logical layer protocol used to transmit and receive data
within a stream. This specification defines the use of RapidIO Type 11 (Message
Class) and Type 9 (Data-Streaming Class) conveyances.

Egress - Egress is the device or node where traffic exits the system. The egress node
also becomes the destination for traffic out of the RapidIO fabric. The terms egress
and destination may or may not be used interchangeably when considering a single
end to end connection.

Ingress - Ingress is the device or node where traffic enters the system. The ingress
node also becomes the source for traffic into the RapidIO fabric. The terms ingress
and source may or may not be used interchangeably when considering a single end
to end connection.

Process - When a node communicates with a remote, some element of execution is
responsible for managing the data communication. In this specification such
element of execution is referred to as a process. No implication is intended regarding
the internal structure of the operating system or other system organization.

Protocol Data Unit - (PDU) A self contained unit of data transfer comprised of data
and protocol information that defines the treatment of that data.

Virtual Stream ID - (VSID) an identifier comprised of several fields in the protocol
to identify individual data streams. When using Type 9 (Data-Streaming Class) as
the conveyance for data transfers, the VSID is encapsulated in the Type 9 protocol.
When using Type 11 (Message Class) as the conveyance for data transfers, the VSID
is encapsulated in fields in the DATA or DATA1 Session Management Protocol
commands.
RapidIO Trade Association 13

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
StreamID - a specific field in the data streaming protocol that is combined with the
data stream’s transaction request flow ID and the source ID or destination ID from
the underlying packet transport fabric to form the virtual stream ID.

Segment - A portion of a PDU.

Segmentation - a process by which a PDU is transferred as a series of smaller
segments.

Segmentation context - Information that allows a receiver to associate a particular
packet with the correct PDU.

Suspect - A node which, for some reason, is not behaving according to the
specification. See “Section 3.7, Session Management Error Conditions and
Recovery” on page 39 for more information.

1.6 Conventions
All fields and message formats are described using big endian format.
|| Concatenation, used to indicate that two fields are physically

associated as consecutive bits
italics Book titles in text are set in italics.
REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.

Specific bits, fields, or ranges appear in brackets.
TRANSACTION Transaction types are expressed in all caps.
operation Device operation types are expressed in plain text.
n A decimal value.
[n-m] Used to express a numerical range from n to m.
0bnn A binary value, the number of bits is determined by the number of

digits.
0xnn A hexadecimal value, the number of bits is determined by the

number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value.

x This value is a don’t care.
<variable> Identifies a logical variable that may be a specific field of a register

or packet or data structure.

1.7 Useful References
RapidIO Interconnect Specification Part 2: Message Passing Logical Specification

RapidIO Interconnect Specification Part 3: Common Transport Specification

RapidIO Interconnect Specification Part 10: Data Streaming Logical Specification
14 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 2 Managing Data Streams

2.1 Introduction
Data streaming provides a common layer in RapidIO that allows any protocol to
simultaneously share the same physical transport with any and all other protocols.
The system can be comprised of many end points, supporting multiple protocols,
and utilizing a variety of hardware and software acceleration features. Using data
streaming and this management protocol, any standard or proprietary protocol data
format can be tunneled on a RapidIO fabric.

2.2 System Example
Figure 2-1 shows an example of a system using two methods to perform file
transfers, one interworking with an Ethernet bridge and one tunneling FTP directly.

Figure 2-1. Example of a RapidIO-Based Networking System

Stream 1

External
Ethernet
Link

MAC to RIO
Switching

Stream 2

FTP IP
EN

ET
R

ap
id

IO
 L

ay
er

Stream 1

IP
EN

ETFTP

TCP
UDP

TCP
UDP

R
ap

id
IO

 L
ay

er Stream 2FTP

End point #1

End point #2

End point #3

R
ap

id
IO

 L
ay

er
RapidIO Trade Association 15

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
2.3 Establishing Data Streams
The data streaming process is separated into two phases, with the management phase
separated from the data phase. All the information about the stream is exchanged
separately from the actual data transfer. Once established, a stream can support
many data transfers. The data transfer only contains the information necessary to
recover the original data. The received data must then be associated with an end
process.

The method of association makes use of both the streamID and class of service (cos)
to identify the stream. For example, the streamID can be linked directly to a given
process which receives information for that stream. The cos may be used to
determine the real time behavior necessary for the data, for example, guaranteed
latency of X for responses.

Figure 2-2. Stream Process

The Session Management Protocol begins with a discovery process. That discovery
process detects which end points can perform session management negotiations.
The discovery process is described in “Section 3.3, Contacting a Participating End
point” on page 20.

Once two management end points are connected, they exchange a series of Session
Management Protocol messages to discover the data streaming capabilities of the
other. If both have the right capabilities, then one or more streams are opened for a
given protocol.

With an open stream data can be transferred at any time. A stream may be persistent,
existing even though there is no data to transfer at any given time.

Any stream may be closed by either end point, however most streams should remain
open as long as the hardware and software might need to transfer data. If an end
point is shutting down, or is terminating the process that handles data on that stream,
it may close a stream.

As previously described, streams are unidirectional. However, many systems have

Source Destination
Mgmt
Process

Mgmt
Process

Stream A

Make Contact, Open Stream

Stream A

Mgmt
Process

Mgmt
Process

Close Stream (optional)

Recv
Process

Data Transfers

T
IM

E

16 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
requirements that communication be bidirectional. A bidirectional data path is
created out of two streams, one in each direction. Such a bidirectional data path is
called a conduit. When there is a requirement for bidirectional data transfer, one
system may initiate the connection. The recipient of the initial negotiation is
expected to start negotiation for the connection in the other direction. The resulting
pair of streams should be grouped together, so that whenever one stream of the
conduit is opened or closed, the other stream is treated the same. For more
information, see “Section 3.4, Establishing Conduits” on page 21.

2.4 Data Streaming System Configurations
RapidIO Interconnect Specification Part 10: Data Streaming Logical Specification
defines a logical layer for streaming data transfer. Hardware designed to this
specification can transfer data using hardware or software resources to encapsulate
data. The data streaming protocol uses a segmentation and reassembly protocol to
manage variable sized PDUs.

Other methods may be used to transfer variable sized PDUs as long as they include
the elements of segmentation and reassembly and contain a virtual stream ID. This
specification also defines a method to encapsulate data using the RapidIO
Interconnect Specification Part 2: Message Passing Logical Layer Specification.

The management protocol may also be run over a number of conveyances. The
messages may be embedded in a predesignated stream in the data streaming logical
layer, or it may be run over the message passing logical layer, even if the data is on
the data streaming logical layer. Additional conveyances may be available as
vendor-specific conveyances or in future versions of the RapidIO specifications.
Table 2-1 shows the system configurations that are currently defined by this
specification.

The protocol first establishes how to contact the management process. Once
contacted, the management processes then exchange the necessary information to
transfer the data.

When a single node supports Session Management Protocol on multiple
conveyances, the initial information required to establish a Session Management
Protocol connection on each conveyance must be put in a separate Session
Management Protocol Extended Features Register Block, as described in “Section
5.2, Session Management Protocol Extended Features Register Block” on page 58.

Table 2-1. Data Streaming System Configurations

Management Data Transfers

Messaging (Type 11) Messaging (Type 11)

Messaging (Type 11) Data Streaming (Type 9)

Data Streaming (Type 9) Messaging (Type 11)

Data Streaming (Type 9) Data Streaming (Type 9)
RapidIO Trade Association 17

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Therefore, multiple Session Management Protocol Extended Features Register
Blocks may be required.
18 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 3 Session Management Operation

3.1 Introduction
This chapter describes the RapidIO Session Management Protocol. The protocol
consists of a sequence of messages to establish capabilities, open streams, manage
streams, and close streams. The protocol includes methods for handling abnormal
conditions.

3.2 Initialization of Session Management Advertisement
CSRs

Before any management messages can be exchanged, an end point must first
establish which end points support data streams, and discover how to contact their
management process. The Session Management Protocol allows each end point to
use its own resources as needed for the process of data streaming.

Participating end points place information in the Session Management
Advertisement CSR, indicating that it supports the session management protocol,
and identifies which conveyance to use to contact the management process. Legacy
devices may also advertise participation in this protocol using the Component TAG
CSR (see RapidIO Interconnect Specification Part 3: Common Transport
Specification and “Section 5.3, Component Tag CSR Session Management Protocol
Advertisement” on page 64).

On hardware power-up and on hardware reset, the Session Management
Advertisement CSR and the Component Tag CSR must be initialized by hardware
to indicate non-participation in Session Management Protocol. During software
initialization, implementations conforming to this specification must indicate
participation in the Session Management Protocol by modifying the Session
Management Advertisement CSR, or optionally by modifying the Component Tag
CSR if the Session Management Protocol Extended Features Register Block is not
available.

The Session Management Advertisement CSRs, defined in “Section 5.2, Session
Management Protocol Extended Features Register Block” on page 58, may be
initialized by a processor which is part of the device implementing the Session
Management Advertisement CSRs, by a processor remote from the device, or
through a combination of the two. For example, protocol support related attributes
could be initialized by the local processor, while system related attributes such as
RapidIO Trade Association 19

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
message timeout values could be initialized by a remote processor.

The Session Management Advertisement CSRs include a number of registers to
facilitate initialization by local and remote processors. These are:

• “Section 5.2.2, Session Management Protocol Register Write Enable CSR
(Block Offset 0x4)” on page 59

• “Section 5.2.4, Session Management Attribute Range CSR (Block Offset
0xC)” on page 61

The Session Management Protocol Register Write Enable CSR implements mutual
exclusion between processors attempting to write to the attribute registers. If the
Session Management Protocol Register Write Enable CSR is locked, other
processors must respect the lock and not attempt to modify the attribute registers.

The Session Management Attribute Range CSR indicates how many attributes have
been initialized. It also supports encoding up to 16 stages of initialization, to allow
sequencing of the attribute initialization process.

For more information, refer to the definitions of the named registers.

3.3 Contacting a Participating End point
The Session Management Advertisement CSR contains the following information:

<Conveyance> indicates which conveyance can be used for the Session
Management Protocol

If the conveyance is Type 11 (messaging) then the CSR has the following
information:

• <Mailbox ID> identifies a mailbox dedicated for the reception of management
messages.

If the conveyance is Type 9 (streaming) then the CSR has the following information:
• <StreamID> identifies a stream dedicated for the reception of management

messages.
• <COS> identifies the class of service dedicated for the reception of

management messages.

The conveyance used to create and manage all streams is specified in the Session
Management Advertisement CSR, or in the Component Tag CSR if the Session
Management Protocol Extended Features Register Block is not available. Unless
otherwise specified, the conveyance used to transmit DATA and
FLOW_CONTROL messages for a stream is the same as the conveyance used to
create and manage all streams. Specification of other conveyances for DATA and
FLOW_CONTROL traffic is performed by including the CONVEYANCE attribute
as described in Section 3.5.3.10.
20 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
A special case may be needed when a system is required to create and manage
streams using both Type 11 (messaging) and Type 9 (streaming). This will occur on
mixed systems, where some nodes provide support for only Type 11 conveyance and
other nodes provide support for only Type 9 conveyance. When necessary, this can
be accomplished by use of the Session Management Advertisement CSR to contain
contact information for Type 9 management, and using the Component Tag CSR to
contain contact information for Type 11 management. Other configurations may be
possible, but are implementation specific.

End points have two options to determine whether a remote node participates in this
protocol. First, they may choose an implementation-specific mechanism, such as a
built-in table, to check only for specified remote systems. Second, they may scan
management space for all remote nodes, collecting information on participating end
points. In either case, the end point is then expected to contact remote end points as
appropriate, asking for their capabilities. See Chapter 5, “Registers”, for the bit
definitions.

3.4 Establishing Conduits
Conduits consist of a pair of unidirectional streams for transferring data for a single
protocol between two end points. In every conduit, one stream transfers protocol
data in one direction while the other stream transfers protocol data in the other
direction.

Conduits are established using the same command set as unidirectional streams. The
Session Management Protocol requires that the sender initiate the process of
opening a stream. One consequence of these two facts is that for conduits to be
established, both end points are required to send an OPEN command, and there must
be a mechanism to link the two streams into a single conduit. Linking the two
streams into a conduit is accomplished by use of the CONDUIT_STREAM attribute
during OPEN/ACCEPT negotiation. The CONDUIT_STREAM attribute is a 32-bit
attribute, as described in Section 3.5.3.8. The data associated with this attribute
consists of two streamIDs involved in the conduit.

One difficulty arises, based on whether a known end point is required to establish
the conduit based on some external criteria, or whether it is possible for either end
point to initiate establishment of the conduit.

The simple case, where one end point initiates establishment of the conduit, is
referred to as a master/slave configuration. In this case, the master may send an
OPEN message at any time to initiate establishment of the conduit, but the slave may
only send the corresponding OPEN message after receiving the OPEN message
from the master.

The more general case is referred to as a peers configuration. In this case, either node
may send an OPEN message at any time to initiate establishment of the conduit. The
peers configuration is more complex, because there must be a mechanism to handle
RapidIO Trade Association 21

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
the case when the two OPEN messages are in transmit at the same time.

It should be noted that an implementation capable of handling the peers
configuration is capable of handling the master/slave configuration. For this reason,
the algorithm for the peers configuration is presented in Section 3.4.3, but no
algorithms for master/slave configuration are provided.

3.4.1 Master/Slave Configuration Conduit Establishment
In the master/slave configuration, one end point, the master, is always responsible
for initiating conduit establishment. The other end point, the slave, completes
conduit establishment in response to the establishment of the first conduit stream.
The algorithm running on the master may not be identical to the algorithm running
on the slave.

The master begins to establish the conduit by creating a local structure to contain
information about the conduit. The first RapidIO transaction that the master makes
is sending an OPEN message1 containing the CONDUIT_STREAM attribute. The
CONDUIT_STREAM attribute value is 0xFFFFFFFF in the first OPEN message
when establishing a conduit, indicating that no previous negotiation has already
been performed for this protocol between these two end points.

Upon receipt of an OPEN with CONDUIT_STREAM specified, the slave creates a
local record containing information about the conduit. It responds to the OPEN with
an ACCEPT message specifying a newly created streamID, which we refer to as
0xSSSS and CONDUIT_STREAM attribute value of 0xFFFFSSSS indicating that
the slave, the sender of the ACCEPT message, will receive data on streamID
0xSSSS for this conduit.

To complete conduit creation, the slave then sends an OPEN message with the
CONDUIT_STREAM attribute set to 0xFFFFSSSS to the master. The first field is
the streamID that the slave will use to transmit data on, which has not yet been
established. The second field is the streamID that the slave will use to receive data
on, which has been assigned in the prior ACCEPT message.

The CONDUIT_STREAM attribute data contains the first field set to 0xFFFF and the
second field set to a valid streamID. The fact that the CONDUIT_STREAM attribute
is specified indicates that the OPEN message is related to a conduit. The value
0xFFFF in the first field indicates that the slave, the sender of the OPEN message,
does not already know the streamID to use for transmitting data related to the
conduit. The value of 0xSSSS in the second field indicates that the slave, the sender
of the OPEN message, does already know the streamID to use for received data
related to the conduit, and that the streamID is 0xSSSS.

The master, on receiving the ACCEPT message, reads the CONDUIT_STREAM

1REQUEST and ADVERTISE messages may have been previously exchanged. As these details add no relevant infor-
mation to the discussion of establishing a conduit, they have been omitted.
22 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
attribute data, extracts the second field and finds 0xSSSS, and searches through its
internal data for a conduit with matching streamID. The criteria for determining that
the streamID is a match includes, but may not be limited to, the following tests. The
matching streamID from the master’s internal data must be part of a conduit. It must
have the same value as specified, 0xSSSS. Finally, it must be the streamID that the
master uses to transmit data on that conduit. If no such data record is found, the
master may respond with REFUSE. However, when the master does find the data
record associated with the conduit, it responds to the OPEN with ACCEPT, and
updates its internal data structures. The ACCEPT message specifies a streamID on
which the master will receive data, 0xMMMM, as well as the CONDUIT_STREAM
attribute. The data contained in the CONDUIT_STREAM attribute consists of
0xSSSSMMMM.

The slave, on receiving the ACCEPT, searches through its internal data containing
incomplete conduit records, finds a matching record, and updates its internal data
structures.

3.4.2 Peers Configuration Conduit Establishment
In some distributed and/or reliable systems, it is necessary to allow each end of a
conduit to attempt, simultaneously, to establish a conduit. The difference between
the peers configuration and the master/slave configuration is that, in the peers
configuration, an additional check is required before attempting to complete the
conduit.

Assume that node M and node P are attempting to simultaneously create a conduit
for a protocol. It is possible that node P receives node M’s OPEN request before
node P transmits is own OPEN request, and vice versa. When P receives the OPEN
request, it checks to see if it has an outstanding OPEN request for establishing the
same conduit. In this case, Node P does not, so the peers algorithm degenerates into
the master/slave algorithm. Node P sends an ACCEPT response for node M’s OPEN
request, followed by node P’s OPEN request to complete the creation of the conduit.

If node P receives node M’s OPEN request after node P has transmitted its own
OPEN request to node M, then when node P checks for outstanding OPEN requests
for the creation of a conduit with the specified protocol with the other node, it will
find one. Node P will respond with an ACCEPT message specifying the streamID
that node P will receive data on using the CONDUIT_STREAM attribute, and will
note that stream against its own attempt to establish the conduit. When node P
receives the ACCEPT response for its own OPEN request for the conduit, both the
transmit and receive stream IDs for the conduit will be known. Exactly the same
procedure occurs on node M, so the conduit is established.
RapidIO Trade Association 23

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.4.3 Conduit Establishment Algorithm
The following algorithm consists of three entry points, representing the procedure to
call when processing incoming OPEN and ACCEPT messages, and the procedure
for application code to initiate the procedure to establish a conduit. These are called
process_incoming_open(), process_incoming_accept(), and create_conduit(),
respectively. When working together, these three procedures create conduits.

There are several user-supplied procedures called from this algorithm. The function
names should be self-explanatory, with the exception of find_partial_conduit(). This
procedure searches through internal data structures for a conduit structure matching
the specified remote nodeID and protocol, and with the streamIDs matching in the
following manner. If the streamID specified in the call is 0xFFFF, then any streamID
matches. If the streamID specified in the call is not 0xFFFF but the streamID in the
local structure is 0xFFFF, then the streamID matches. If neither is 0xFFFF, then the
values must be identical for them to match.

The algorithm specified here can be implemented for systems using a single
execution thread and polled mode I/O. It does not indicate critical sections, which
must be mutually exclusive. For multi-threaded OS implementations, the
implementer must supply a locking mechanism to prevent concurrent access by
other processes and/or interrupt service routines, and identify which portions of the
algorithm need to be protected in their particular environment.
process_incoming_open(message)

remote = get_sender(message)

proto = get_protocol(message)

rem_xmit = get_sender_transmit(message)

rem_rcv = get_sender_receive(message)

conduit = find_partial_conduit(remote, proto, rem_xmit, rem_rcv)

if (not found(conduit))

conduit = create_new_conduit(remote, proto)

local_xmit = rem_rcv

local_rcv = rem_xmit

update_conduit_transmit(conduit, local_xmit)

else

local_xmit = get_conduit_transmit(conduit)

local_rcv = get_conduit_receive(conduit)

streamID = alloc_new_stream()

update_conduit_receive(conduit, streamID)

response = create_new_message()

put_local_receive(response, streamID)

put_local_transmit(response, local_xmit)
24 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
send_accept(remote, response, streamID)

if (local_xmit == 0xFFFF)

response = create_new_message()

put_local_receive(response, streamID)

put_local_transmit(response, 0xFFFF)

update_conduit_flag(conduit, OPEN_SENT)

send_open(remote, response)

process_incoming_accept(message)

remote = get_sender(message)

proto = get_protocol(message)

rem_xmit = get_sender_transmit(message)

rem_rcv = get_sender_receive(message)

local_xmit = rem_rcv

conduit = find_partial_conduit(remote, proto, rem_xmit, rem_rcv)

if (not found(conduit))

conduit = create_new_conduit(remote, proto)

local_rcv = rem_xmit

update_conduit_receive(conduit, local_rcv)

else

local_rcv = get_conduit_receive(conduit)

if (local_rcv == 0xFFFF)

local_rcv = rem_xmit

update_conduit_receive(conduit, local_rcv)

update_conduit_transmit(conduit, local_xmit)

flag = get_conduit_flag(conduti)

if (not flagIsSet(flag, OPEN_SENT))

response = create_new_message()

put_local_receive(response, local_rcv)

put_local_transmit(response, 0xFFFF)

update_conduit_flag(conduit, OPEN_SENT)

send_open(remote, response)

create_conduit(remote, proto)

conduit = find_partial_conduit(remote, proto, 0xFFFF, 0xFFFF)

if (not found(conduit))

conduit = create_new_conduit(remote, proto)
RapidIO Trade Association 25

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
update_conduit_receive(conduit, 0xFFFF)

update_conduit_transmit(conduit, 0xFFFF)

message = create_new_message()

put_local_transmit(message, 0xFFFF)

put_local_receive(message, 0xFFFF)

update_conduit_flag(conduit, OPEN_SENT)

send_open(remote, message)

3.5 Management Messages
The Session Management protocol consists of the following messages. The formats
of the messages are defined in Chapter 4, “Message Format Descriptions,” on
page 45.

Message names in this document use only capital letters to avoid confusion with
non-message related use of the terms for message names.

Attribute names in this document are italicized and in uppercase, with individual
words separated by underscore, to avoid confusion with non-attribute related use of
the terms for attribute names.

3.5.1 Session Management Message Types
The following subsections list the messages used in the Session Management
Protocol.

3.5.1.1 REQUEST
A REQUEST message is used to request information related to the protocols
supported by the remote. The REQUEST can be for a list of supported protocols, or
a list of attributes associated with a particular protocol.

For more information, refer to “Section 4.2.1, REQUEST” on page 45.

3.5.1.2 ADVERTISE
An ADVERTISE message is the response to a REQUEST message. If the
REQUEST message specified that a list of protocols supported should be returned,
the ADVERTISE message contains only a list of protocols.

If the REQUEST message specified a particular protocol, and the recipient of the
REQUEST supported the protocol, the ADVERTISE message contains all required
and optional attributes related to the protocol.

Optional attributes and vendor defined attributes may be negotiated. See Section
3.5.3 for discussion on this topic.

For more information, refer to “Section 4.2.2, ADVERTISE” on page 46.
26 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.5.1.3 OPEN
An OPEN message is sent to attempt to open a session on a target. The attributes
specified in the OPEN message may or may not be acceptable by the target.

For more information, refer to “Section 4.2.3, OPEN” on page 47.

3.5.1.4 ACCEPT
An ACCEPT message is sent if the OPEN message is successful. The ACCEPT
message specifies the stream to be used to identify the session, as well as the other
attribute values which will govern the session.

OPEN messages may be sent to attempt to open multiple sessions with the same
target and attributes. A target may optionally support only a single session for a
given protocol and source, in which case attempts to OPEN multiple sessions will
result in ACCEPT responses which all specify the same stream.

For more information, refer to “Section 4.2.4, ACCEPT” on page 48.

3.5.1.5 REFUSE
A REFUSE message is sent if the OPEN message is unsuccessful. The REFUSE
message contains all the attributes in the OPEN request, in order to allow the OPEN
sender to differentiate which OPEN request was refused.

For more information, refer to “Section 4.2.5, REFUSE” on page 49.

3.5.1.6 FLOW-CONTROL
FLOW-CONTROL messages start or stop transmission of DATA messages. It is not
necessary for any implementation to send FLOW-CONTROL messages, however
FLOW-CONTROL messages must always be supported when received.

For more information, refer to “Section 4.2.6, FLOW_CONTROL” on page 49.

3.5.1.7 DATA
DATA messages are used to transfer data using the message passing logical layer.
There are several DATA messages, each with a different header format for use in
different hardware and/or software environments.

For more information, refer to “Section 4.3, Data Formats” on page 53.

3.5.1.8 CLOSE
CLOSE messages are used to terminate the existence of a stream between a source
and destination.

NOTE:
The stream may or may not exist at either the source or destination.
After reception of a CLOSE message, the stream specified must no
RapidIO Trade Association 27

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
longer be used. After sending a CLOSE message, the system must be
able to receive, without error, messages in transit at the time the
CLOSE was sent. Such messages may be dropped.

When the stream is part of a conduit, the conduit should be closed. The means of
determining that a stream is part of a conduit is implementation specific.

For more information, refer to “Section 4.2.7, CLOSE” on page 50.

3.5.1.9 STATUS
STATUS messages can be used to query status information related to a specified
stream. In this form of the STATUS command, a streamID is included in the
message, and other parts of the command indicate that the purpose is to query the
status of the stream.

STATUS message are also used to provide status information, related either to a
specified stream or to a specified command. A STATUS message is sent in three
situations: as a response to a STATUS message querying status for a specific stream,
indicating the current status of the stream; as a response to a CLOSE message,
indicating that the CLOSE was successful, and as a response to an illegal, unknown,
or malformed command, indicating that the command was not understood.

Note that the STATUS response to a STATUS query can include a query of the same
stream.

For more information, refer to “Section 4.2.8, STATUS” on page 51.

3.5.2 Message Header Fields
All Session Management Protocol messages begin with a command header field,
followed by one or more additional fields. The header fields and arrangement of the
header fields are fixed for each message type.

3.5.2.1 Command Header Field: <CMD><VER>
The command header field consists of two octets, a command value denoted
<CMD>, and a version value denoted <VER>. Each command value corresponds to
one of the messages laid out in Section 3.5.1 on page 26.

<VER> for all commands described in this version of the specification, except the
DATA1 command, must be set to a numeric value of 0x01. Receivers of commands
must check <VER>. If a receiver receives an unrecognized message or a message
other than STATUS with unknown <VER>, then the receiver must respond with a
STATUS command with the Command_Unknown bit set. Recipients must not
respond to STATUS messages with unknown <VER>.

3.5.2.2 SourceID and DestID
SourceID, denoted <SourceID>, is the RapidIO destination ID of the device which
28 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
transmitted the message. DestID, denoted <DestID>, is the RapidIO destination ID
for the device which should receive this message.

Both <SourceID> and <DestID> are 2 octets in size.

3.5.2.3 Protocol Identifier: <ProtoID>
The protocol identifier is used to specify what encapsulated protocol is being
referenced by the Session Management message. The <ProtoID> is always 16 bits
in size.

Ethernet encapsulation, as described below, uses protocol ID 0x0102.

Proprietary protocols use 0x0101 for all proprietary protocols. Different protocols
are distinguished by protocol attributes, as described in Chapter 6, “Vendor-Defined
Protocols”.

Protocol ID 0xFFFF is reserved for special usage within messages. Refer to the
definition of individual message types for the use of this special value, if any.

3.5.2.4 Class of Service: <COS>
The Class of Service field can be used to specify the priority of a given stream or
virtual stream. The value of the COS field is not defined by this spec, but can be
implementation dependent. The requirements for this field are that every message
with a given COS value must be transmitted with equal priority.

Class of Service, or <COS>, is always one octet in size.

3.5.2.5 Stream Identifier: <StreamID>
The stream identifier is the value used to identify the particular session for a given
protocol between a <SourceID> and <DestID>. The combination of
<SourceID><DestID><ProtoID><StreamID> must always be unique in the system.

The <StreamID> is always two octets in size.

StreamIDs are assigned by the recipient of an OPEN message. The value of the
StreamID must conform to the criteria shown in Table 3-1.

StreamIDs marked “available for applications” in Table 3-1 must be opened with an
OPEN message. StreamIDs with vendor specific values and reserved values are
pre-defined and may be used without explicitly opening a stream. Definitions of

Table 3-1. StreamID Assignments

StreamID value Usage

0x0000 - 0xDFFF Available for applications

0xE000 - 0xEFFF Vendor specific

0xF000 - 0xFFFE Reserved

0xFFFF Invalid
RapidIO Trade Association 29

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
reserved StreamIDs are defined in protocol specific chapters.

3.5.3 Session Management Protocol Attributes
Protocol attributes are relevant to individual virtual streams, and not to the session
management protocol. Protocol attributes specify information about the stream,
about the data transferred within the stream, or about how the data is to be
represented on egress.

Each session management protocol attribute is encoded and made available to the
remote system. Each attribute is encoded into an attribute field. Regardless of the
data being identified, the attribute field always consists of a 64-bit (8-octet) value,
consisting of two fields. The first field, Attribute ID, contains an identifier of the
attribute. The second field, Attribute Value, contains the value associated with the
attribute on a particular system. The fixed size allows for consistent parsing of
attributes between multiple different protocols. It also allows attributes to be ignored
if they are not understood by a given implementation. Another reason to have fixed
size attributes is that it will simplify the implementation of hardware support for
these attributes.

Attribute IDs can have one of three sizes: 8-bits, 16-bits, and 32-bits. The size of
each attribute can be determined based on the first octet of the Attribute ID. The
remaining bits in the attribute encoding are available for the Attribute Value.
Attribute ID sizes are pre-defined, independent of protocol. Table 3-3 lists the sizes
of each Attribute ID for all protocols.

Attribute IDs marked as vendor specific are available for use by vendors for their
own purposes. Table 3-3 shows the attribute ID ranges available for vendor use. All
attribute ID ranges not explicitly assigned as general attributes, protocol-specific
attributes, or vendor-specific attributes, are reserved and must not be used.

There are minimal ordering requirements for protocol attributes. All required
attributes must occur ahead of all optional or vendor specific attributes. The order of

Table 3-2. System Management Protocol Attribute Sizes

Attribute ID size Attribute ID value

8 bits 0x00 - 0x7F

16 bits 0x8000 - 0xEFFF

32 bits 0xF0000000 - 0xFFFFFFFF

Table 3-3. Vendor-Specific Attribute Ranges

Attribute ID size Vendor-Specific Range

8-bits 0x78-0x7F

16-bits 0xEF00 - 0xEFFF

32-bits 0xFE000000 - 0xFFFFFFFF
30 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
any attributes required by a protocol may be specified by the protocol. Optional
attributes may occur in any order. All optional attributes must occur after all required
attributes, and before any vendor specific attributes. If vendor specific attributes are
used, the first vendor specific attribute must begin with attribute 0x00, which
identifies the vendor associated with the vendor specific attributes. Any further
ordering requirements of vendor specific attributes may be defined by the vendor.

All implementations of the Session Management Protocol must include complete
support for all standard attributes for every protocol supported. In the event that an
optional or vendor specific attribute is not understood by an implementation, the
session must not be opened.

3.5.3.1 VENDOR Attribute
The VENDOR attribute is an 8-bit attribute ID (0x00) with a 56-bit value. Only one
VENDOR attribute may be specified in any single command.

The attribute value for the VENDOR attribute must conform to one of two formats:

OUI format: The three-octet OUI for the vendor defining the protocol may be
assigned to the second, third, and fourth octets of the attribute, and the remaining
four octets set to zero.

NAME format: A seven-octet value, where every octet must contain a non-zero
value. This format may be assigned to a seven-character representation of the ASCII
value of the vendor company name.

Vendors should use the OUI format if an OUI is available. If NAME format is used,
the vendor is responsible for insuring that the choice of NAME does not conflict
with any existing VENDOR attribute value.

NOTE:
The values specified above are for example only, and should not be
used.

3.5.3.2 DATA_OFFSET_VENDOR Attribute
The DATA_OFFSET_VENDOR attribute is an 8-bit attribute ID (0x02) with a 56-bit
value. The value must conform to the formats specified for the VENDOR attribute.

Table 3-4. System Management Protocol Attribute Sizes

AttributeID OUI #1 OUI #2 OUI #3 Zero Zero Zero Zero

0x01 0x00 0xA0 0x1E 0x00 0x00 0x00 0x00

Table 3-5. System Management Protocol Attribute Sizes

AttributeID Char #1 Char #2 Char #3 Char #4 Char #5 Char #6 Char #7

0x01 0x52 0x61 0x70 0x69 0x64 0x49 0x4F
RapidIO Trade Association 31

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
The DATA_OFFSET_VENDOR attribute identifies the vendor associated with the
contents of the DATA_OFFSET Attribute.

The DATA_OFFSET_VENDOR attribute is optional, however, if the
DATA_OFFSET_VENDOR attribute is specified, then the DATA_OFFSET attribute
must follow it.

3.5.3.3 DATA_OFFSET Attribute
The DATA_OFFSET attribute is specified with the 16-bit attribute ID 0x8003,
leaving six octets of data.

The DATA_OFFSET attribute specifies the number of octets of data that will be
appended to the header of a Data message for a given stream. These octets are
known as the Offset octets. The Offset octets can be used to convey information such
as TCP/IP offload information, packet classification, and other vendor specific
features. The remaining five octets in the DATA_OFFSET attribute are available for
vendor specific information, labelled <VendorN>. The format of the
DATA_OFFSET Attribute is as follows:

DATA_OFFSET must be present if the DATA_OFFSET_VENDOR is specified.
If the DATA_OFFSET_VENDOR and DATA_OFFSET attributes are not included in
an Open request, the default number of Offset octets is 0.
If the DATA_OFFSET_VENDOR and DATA_OFFSET attributes are present, the
DATA_OFFSET attribute must follow the DATA_OFFSET_VENDOR attribute.

3.5.3.4 REQUEST_RETRY_PERIOD Attribute
The REQUEST_RETRY_PERIOD attribute is specified with the 32 bit attribute ID
0xF0000000.

The REQUEST_RETRY_PERIOD attribute indicates the time period, in
microseconds, after which an REQUEST, OPEN, CLOSE, or STATUS request
which has not received a response should be sent again.

The REQUEST_RETRY_PERIOD attribute default value is 250 milliseconds.

3.5.3.5 REQUEST_TIMEOUT_PERIOD Attribute
The REQUEST_TIMEOUT_PERIOD attribute is specified with the 32 bit attribute
ID 0xF0000001.

The REQUEST_TIMEOUT_PERIOD attribute indicates the time period, in

Table 3-6. DATA_OFFSET Attribute Format

attributeID Offset Vendor0 Vendor1 Vendor2 Vendor3 Vendor4

16-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

0x8003 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
32 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
microseconds, after which an REQUEST, OPEN, CLOSE, or STATUS request
which has not received a response should be judged to have failed.

The REQUEST_TIMEOUT_PERIOD attribute default value is 1 second.

3.5.3.6 FLOW_CONTROL_XON_TIMEOUT_PERIOD Attribute
The FLOW_CONTROL_XON TIMEOUT attribute is specified with the 32 bit
attribute ID 0xF0000002.

The FLOW_CONTROL_XON TIMEOUT attribute value indicates the time period,
in microseconds, from the time a FLOW CONTROL XOFF request is received until
another FLOW CONTROL XOFF/XON message must be received. In the event that
a FLOW CONTROL XOFF/XON message is not received in the timeout interval,
transmission of the XOFF’ed stream should resume. This behavior is designed to
detect the loss of FLOW CONTROL XON messages.

The FLOW_CONTROL_XON TIMEOUT attribute default value is 1 second.

3.5.3.7 OPEN_MESSAGE_NUMBER Attribute
The OPEN_MESSAGE_NUMBER attribute is specified with the 32 bit attribute ID
0xF0000003.

The OPEN_MESSAGE_NUMBER attribute is used by the originator of an OPEN
message to identify the response to the OPEN request. This allows the originator to
have multiple parallel OPEN requests in flight, and to be able to match responses to
the requests.

The OPEN_MESSAGE_NUMBER attribute value is used in an implementation
specific manner.

3.5.3.8 CONDUIT_STREAM Attribute
The CONDUIT_STREAM attribute is specified with the 32 bit attribute ID
0xF0000004.

The CONDUIT_STREAM attribute is used by both sides, in OPEN and ACCEPT
messages, when creating a bidirectional conduit. The 32 bit value associated with
the CONDUIT_STREAM attribute consists of the two stream IDs associated with the
conduit. The first sixteen bits are used to indicate the stream ID of the stream which
the sender of the OPEN or ACCEPT will use to transmit data on. The last sixteen
bits are used to indicate the stream ID of the stream which the sender of the OPEN
or ACCEPT will use to receive data on. The value of 0xFFFF for either field
indicates that the specified stream ID was not known at the time the OPEN or
ACCEPT message was sent.

See “Section 3.4, Establishing Conduits” on page 21 for more information, and
examples of usage.
RapidIO Trade Association 33

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.5.3.9 DATA_HEADER_FORMAT Attribute
The DATA_HEADER_FORMAT attribute is specified with the 32 bit attribute ID
0xF0000005.

The DATA_HEADER_FORMAT attribute is used in an ACCEPT message to
indicate which DATA header should be used for DATA messages. The value is the
numeric value of the DATA command, that is 0x06 indicates DATA Message
Format, MAILBOX, as described in “Section 4.3.1, DATA Message Format,
MAILBOX” on page 53, 0x09 indicates DATA1 message format for large PDUs,
and so on.
Note that a special case exists for the DATA2 command. The
implementation-specific value in the DATA2 header preceeds the DATA2 command
in the attribute value field, as shown in Table 3-7.

When the DATA_HEADER_FORMAT attribute is not specified, the DATA
command (0x06) must be used.

3.5.3.10 CONVEYANCE Attribute
The transmission channel is assigned with the 16-bit attribute ID 0x8001, leaving six octets
for channel information. The channel is encoded in the first sixteen bits, leaving 32 bits for
channel-specific information. The values for the conveyance are shown in Table 3-8.

Note that if a vendor-specific channel is used, the VENDOR attribute must be
specified.

3.5.3.11 Other Attributes
For all protocols, system vendors may choose to define additional vendor-specific
attributes not defined by the protocol. If additional protocol-specific attributes are

Table 3-7. DATA_HEADER_FORMAT Attribute Values

8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

DATA 0xF0 0x00 0x00 0x05 Reserved Reserved 0x00 0x06

DATA1 0xF0 0x00 0x00 0x05 Reserved Reserved Implementation-Specific 0x09

DATA2 0xF0 0x00 0x00 0x05 Reserved Reserved 0x00 0x0A

DATA3 0xF0 0x00 0x00 0x05 Reserved Reserved 0x00 0x0B

Table 3-8. Ethernet Encapsulation Conveyance

Channel (16 bits) Channel-specific information (32 bits)

0x0000 = reserved N/A

0x0001 = message 0x0000_00nn; nn indicates a mailbox

0x0002 - 0xFEFF = reserved N/A

0xFF00 - 0xFFFF = vendor-specific Vendor-defined
34 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
used, the list of attributes must include the VENDOR attribute.

3.6 Message Sequence Examples
This section presents flow diagrams, to illustrate some typical uses of the Session
Management command set.

3.6.1 Stream Initiation
Figure 3-1 shows the message sequence for initiation of a stream.

Figure 3-1. Normal Stream Initiation

3.6.2 Refusal to Initiate a Stream
Figure 3-2 shows the usage of a REFUSE command, when the recipient of an OPEN
command does not allow the stream to be created.

Figure 3-2. Use of REFUSE Command

DestSource

Message Format
<CMD> Command
<VER> Version
<HDR> Message Header
<ATTR> Message Attribute(s)

<PAR=True>< TYPE 11>< MAILBOX>
Read Session Mgmt CSR of <DEST>

All future messages to <DEST><MAILBOX>
Read Session Mgmt CSR of <SOURCE>

<PAR=True>< TYPE 11>< MAILBOX>

All future messages to <SRC><MAILBOX>
<REQUEST><Ver><HDR>

<ADVERTISE><Ver><HDR>
<Prot ID><Attribs>
<Prot ID><Attribs><OPEN><Ver><HDR>

<Prot ID><Attrib>
<ACCEPT><VER><HDR>
<StreamID>

<DATA> . . . <StreamID>
<DATA> . . . <StreamID>
<DATA> . . . <StreamID>

Source Dest

<OPEN> <Ver> <HDR>
<Prot ID> <Attrib>

<REFUSE> <Ver>
<HDR> <Prot ID> <At-
RapidIO Trade Association 35

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.6.3 Stream Shutdown
Figure 3-3 shows the sequence of commands for use during stream shutdown, when
the initiator sends the CLOSE command. The receiver may also initiate the
shutdown procedure.

Note that after the CLOSE message has been received, subsequent data must be
discarded.

Figure 3-3. Normal Stream Shutdown

Src Dest

CLOSE<Ver><HDR><Src>
<Dest><COS><StreamID>

Close <StreamID>, prepare
response

<DATA>...<StreamID>

Discard DATA for a closed
stream

<STATUS>...<Stream-
ID><Closed>

Close <StreamID>, prepare response
36 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.6.4 Uses of the STATUS command
Figure 3-4 demonstrates several uses of the STATUS command.

Figure 3-4. Use of the STATUS Command

There are four examples of the use of a Status query and response contained in
Figure 3-4. The first message sent is a well formed STATUS request for information
on a known VSID. The response to this message includes the state of the VSID, as
well as all of the attributes used to OPEN the VSID. The second example is similar
to the first, but for a VSID which is not open. The third example shows the use of a
STATUS message to respond to a malformed packet. The last example shows the
discard of a malformed STATUS command.

Source Dest

<STATUS>...<Source> <StreamID>
<Stream Functional, Ready to Re-
ceive, Data Ready to Send, Request
Status of Remote>

<STATUS>...<Source> <Stream-
ID> <DataSize = xx Bytes>
<Stream Functional, Ready to Re-
ceive, Data Ready to Send>
<Attributes of the stream>

<STATUS>...<Source> <StreamID>
<DataSize=0><Stream Functional,
Ready to Receive, Data Ready to
Send, Request Status of Remote> <STATUS>...<Source> <Stream-

ID> <Stream Unknown, Closed>

<BAD CMD>...<Random Contents>
<STATUS>...<Source> <Stream-
ID> <DataSize = yy Bytes>
<Stream Unknown, Command
Unknown> <BAD CMD>...
<Random Contents>

<STATUS>...<Random Contents>

Drop the malformed STATUS
packet
RapidIO Trade Association 37

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.6.5 Use of the FLOW_CONTROL Command
Figure 3-5 shows sample usage of the FLOW_CONTROL command.

Figure 3-5. Use of the FLOW_CONTROL Command

FLOW_CONTROL packets are used to start and stop the transmission of data for a
VSID, and to inform receivers that data is available to be transmitted. The above
example shows a transmission being started (<XON>), stopped (<XOFF>), and the
receiver being informed that there is data to be sent. The VSID is then started
(<XON>), and data transmission begins anew.

Source Dest

<FLOW_CONTROL>...<StreamID>
<XON>

<DATA>...<StreamID>

<FLOW_CONTROL>...<StreamID>
<XOFF>

<FLOW_CONTROL>...<Stream-
ID> <RTS>

<FLOW_CONTROL>...<StreamID>
<XON>

<DATA>...<StreamID>
<DATA>...<StreamID>

<FLOW_CONTROL>...<Stream-
ID> <RTS>

<DATA>...<StreamID>
<DATA>...<StreamID>
<DATA>...<StreamID>
38 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.7 Session Management Error Conditions and Recovery
Error conditions which the Session Management Protocol is designed to handle are:

• Message Loss
• Message Congestion at Source or Destination
• Session Management Protocol Non-compliance

Under some situations, some operating systems may need to drop messages. It is this
source of message loss that the Session Management Protocol is designed to deal
with. Message loss is not likely to occur in RapidIO fabrics and hardware when
reliable communication channels are used. Session Management Protocol must not
be used over unreliable channels.

RapidIO fabrics may experience congestion. Many mechanisms are available to
manage congestion within RapidIO systems, including those designed in the Session
Management Protocol.

The Session Management Protocol is designed to allow deployment of reliable
systems in the face of software defects. The scope of defects is generally limited to
non-responsiveness or poorly formed responses. Pathological software defects and
malicious intent may still result in Session Management Protocol failure.

Non-compliance is tested in several ways. First, whenever illegal values are
specified in individual commands, the system receiving the command must respond
with an indication of error. Second, compliant software systems must be able to be
configured into a validation mode, in which fields are tested for validity whenever
possible and all reserved fields are tested to insure that the contents are zero.

3.7.1 Message Loss
Message loss for the Session Management Protocol REQUEST, OPEN, CLOSE and
STATUS request messages is detectable through timeouts on ADVERTISE,
ACCEPT, REFUSE, and STATUS responses.

Session Management control messages may be dropped due to lack of resources by
the receiver. In this case, the transmitter can detect the fact that the message has been
lost through a response timeout, which will trigger retransmission of the original
request. A timeout period limits the number of retries which can be attempted.

Both the interval between retries, and the overall timeout period, are negotiated
using attributes in the OPEN command. These attributes are the
REQUEST_RETRY_PERIOD attribute, and the REQUEST_TIMEOUT_PERIOD
attribute, respectively. By default, a REQUEST, OPEN, CLOSE or STATUS request
should be retried once every 250 msec, with an overall timeout period of 1 second.

FLOW_CONTROL XOFF message loss is detected through continued transmission
of DATA on the stream which was turned off. In this case, the implementation may
RapidIO Trade Association 39

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
send additional FLOW_CONTROL XOFF messages, or if the congestion becomes
severe, send a CLOSE request for the stream or conduit.

FLOW_CONTROL XON message loss is detected through timeouts on reception of
a FLOW_CONTROL XON after the reception of a FLOW_CONTROL XOFF. The
timeout period is set using the FLOW_CONTROL_XON TIMEOUT attribute in the
OPEN message for the stream. To support a wide variation in timeout periods and
data patterns, it may be necessary to handle to receive repeated FLOW_CONTROL
XOFF messages for a stream.

If DATA message loss is allowed to occur in a system, it may be handled by the
application or by the Session Management Protocol implementation.

Once message transmission has been timed out, the target of the message and all
intervening nodes should be deemed suspect by the system.

In the event that no response is received in reply to a STATUS command within the
reply delay period, the streamID specified in the STATUS command must be silently
closed locally, and the remote node must be considered suspect.

For information on dealing with suspect nodes, refer to Chapter 3.7.3, “Session
Management Protocol Non-Compliance,” on page 40.

3.7.2 Session Management Protocol Congestion Management
The Session Management Protocol is designed to avoid congestion conditions.

It is strongly recommended that messaging hardware implement a mechanism
allowing ACCEPT, CLOSE, FLOW_CONTROL and STATUS messages to be sent
and received with higher priority than messages containing commands OPEN,
REQUEST, ADVERTISE, REFUSE, DATA and USERDEFINED. This allows the
mechanisms for avoiding and managing congestion to operate in the presence of
congestion.

The relative priority within the set of ACCEPT, CLOSE, FLOW_CONTROL and
STATUS is implementation specific, with equality being the norm. Similarly, the
relative priority within the set of OPEN, REQUEST, ADVERTISE, REFUSE,
DATA, and USERDEFINED messages is implementation specific, with equality
being the norm.

3.7.3 Session Management Protocol Non-Compliance
Session Management Protocol Non-Compliance is the term used to indicate one of
two conditions. It can indicate that a target node is not operating in strict compliance
with the Session Management Protocol and/or the timeout values used by the
transmitter. It can also indicate that a target node is making illegal or non-specified
use of reserved fields. In both cases, the target node is judged to be suspect
(unreliable) by the Session Management Protocol implementation.
40 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
When a target node is judged to be suspect, the local system should follow the
procedures, if any, defined for abnormal behavior for each command as described in
Chapter 4, “Message Format Descriptions,” on page 45. System recovery actions
may be initiated. The system recovery actions are outside the scope of this
specification.

3.8 Rules for Session Management
This section describes restrictions and conditions during use of the Session
Management Protocol.

3.8.1 Optional Features
This document describes a fully functional model, in which RapidIO end points can
probe whether remote end points participate, send queries to discover what protocols
each end point supports, and establish conduits and/or Virtual Streams with which
to communicate. This functionality is designed for inter-operability of software,
independent of the choice of OS.

In closed systems, the system designer may design the system so that each end point
uses hard-coded information about all the remote end points with which it needs to
communicate. In this case, the full functionality described in this document may not
be necessary. Within such a closed system the use of the Component Tag CSR
should be considered optional; however, a Session Management Protocol Register
Extension Block, if available in the hardware, is not optional. The commands
REQUEST and ADVERTISE are also optional. Designers of such systems should
keep in mind that the rules below related to Attribute order may still place
restrictions on the required order of Attributes to the OPEN command, and design
the system accordingly.

Even in systems not intended as closed, the REQUEST and ADVERTISE
commands are optional. No system may refuse to establish a connection based
solely on the fact that no REQUEST command had been previously received and a
corresponding ADVERTISE command sent in response. Systems which do not
implement support for REQUEST and ADVERTISE will respond to REQUEST
with STATUS, indicating Command_Unknown. When implementations do include
support for REQEUEST and ADVERTISE, this also allows the system to attempt
faster startup, trying OPEN first with the preferred protocol and attributes, and only
fall back on the REQUEST / ADVERTISE mechanism in case of failure.

3.8.2 Attribute Related Rules
Implementations may choose to view Attributes as ordered lists. Therefore, any
given implementation may refuse to open a Virtual Stream if the Attributes are not
in the same order as presented in the ADVERTISE command. To ensure
inter-operability, OPEN commands should maintain the order of Attributes that was
RapidIO Trade Association 41

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
used in the ADVERTISE command.

When advertising attributes, there may be cases when multiple values for a specific
Attribute are provided for a single protocol block, resulting in duplicate copies of the
Attribute. In this case, the initiator may remove the duplicate copies in order to select
a specific value, or it may leave all values in place. However, by the time the
ACCEPT command is sent, all duplicate copies must be removed. Therefore, if an
OPEN command is received, containing duplicate copies of any attribute, the
recipient must remove the duplicates and determine a specific value for every
required Attribute.

In some cases, duplicate copies of Attributes may indicate that the receiver can
receive a range of values. In this case, there will always be exactly two copies of the
Attribute, indicating the minimum and maximum values. A system receiving an
ADVERTISE command with this condition may attempt to OPEN a Virtual Stream
with an intermediate value. If the receiver responds with REFUSE, then the sender
must not attempt any other intermediate value for any such attribute, but restrict
itself to the values specified. A single attempt at intermediate values may be
attempted. It is not necessary for implementations to exhaustively check attribute
ranges.

In all systems, vendor-specific VSIDs may be handled in vendor-specific manner. In
this case, the participants are not required to go through the establishment protocol
with OPEN, ACCEPT, and REFUSE, but may be defined by the vendor to be
available for immediate DATA messages.

3.8.3 Rules Related to Virtual Stream Status
If an OPEN message is received for a protocol and remote end point, where an
existing Virtual Stream is already open, the recipient may choose to either re-send
the existing VSID, or to create a new VSID for a second instance of the protocol
connection.

In the case that the recipient of an OPEN message responds with an ACCEPT
command containing the existing VSID, the ACCEPT should be followed by a
STATUS message indicating that the stream is functional and indicating other status
information as appropriate. If any DATA or FLOW_CONTROL command is
received, which specifies a VSID which the recipient does not understand, the
recipient must respond with a STATUS command indicating that the VSID is
unknown. Upon receipt of such a STATUS command, the node should, at a time
deemed appropriate by the system designer, check all other open VSIDs to verify
that they are functional. This is intended to handle the condition where a node is
rebooted and the Virtual Streams need to be closed and/or reestablished.

3.8.4 Rules Related to Vendor-Specific Commands
If any USERDEFINED command is received, which the recipient does not
42 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
understand, the receiver must respond with a STATUS command indicating that the
USERDEFINED command is unknown.

3.8.5 Rules Related to Reserved Fields
Several fields in the structures described by this specification are marked reserved.
On transmission, these fields must be filled with zeros.

Implementations of Session Management Protocol conforming to this specification
must be able to be configured into a validation mode. When configured in this mode,
the receiver must test all reserved fields for zero-filled content, and reject the
received command if not zero-filled. The sender of such a message is thereafter to
be treated as suspect (unreliable). Normal error handling is used in such a case, or if
no other error handling is specified, a STATUS message must be returned, indicating
Command_Unknown.

For higher performance, implementations of Session Management Protocol
conforming to this specification may be able to be configured into a non-validation
mode, in which reserved fields are ignored. Other error handling must not be
disabled when the implementation is configured in non-validation mode.

3.9 Notes on Optional Features and Inter-Operability
For full inter-operability, an implementation must support all the features of this
specification, including the optional features. There are conditions in which lack of
optional features may restrict functionality and inter-operability. This section lists a
sample of some potential consequences of not implementing all defined features,
though this list is neither complete nor comprehensive. It is included as a warning of
some consequences of design decisions during implementation.

3.9.1 Optional Attributes
Every implementation may choose to implement vendor specific attributes. If any
vendor specific attribute is used, it should be optional. If not, then it is unlikely that
other systems, which may not understand the vendor-specific attribute, will be able
to inter-operate with the implementation.

For example, if the DATA_OFFSET_VENDOR and DATA_OFFSET attributes are
required, then the system will not be able to communicate with other
implementations. However, if the DATA_OFFSET_VENDOR and DATA_OFFSET
attributes are used but not required, then the implementation may operate more
efficiently with other systems using the feature, but will continue to inter-operate
with systems not implementing that feature.
RapidIO Trade Association 43

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
3.9.2 REQUEST and ADVERTISE
The REQUEST and ADVERTISE message types are listed as optional. This is true
in two senses. First, no system is required to use REQUEST or ADVERTISE when
attempting to open a connection. Second, no system is required to recognize
incoming REQUEST and ADVERTISE messages, but may respond to them with
STATUS messages indicating Command_Unknown.

However, any arbitrary node, which wants to establish a connection with a node that
does not recognize incoming REQUEST messages, may not be able to determine the
appropriate attributes to use for the desired protocol. Without a listing of the
available attributes from an ADVERTISE message, it is not possible reliably to
make a connection. Such systems would not inter-operate.

Furthermore, if an implementation that does not support REQUEST and
ADVERTISE messages also chooses to view attributes as an ordered list, then even
in the case that some external agent provided the attributes and values to use, then
the two systems may still not be inter-operable due to ordering restrictions.
44 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 4 Message Format Descriptions

4.1 Introduction
This chapter contains the definition of the data streaming packet format.

4.2 Control Message Formats
All message formats are given in big endian format - the most significant octet is on
the left of each field.

4.2.1 REQUEST
A REQUEST message is used to request information related to protocols supported
by the remote. There are two primary variants to the REQUEST message: first, to
request a list of protocols supported by the remote; second, to request attributes of a
specified protocol. These two variants are distinguished by the contents of the
ProtoID field. A value containing all ones, 0xffff, indicates a request for a list of
protocols without attributes. Protocol specific values of ProtoID are described in
“Section 3.5.2.3, Protocol Identifier: <ProtoID>” on page 29.

The form of REQUEST, which is used to request the attributes for a specified
protocol, may limit the request by including a list of required attributes. The
<NumAttrib> field contains the number of attributes listed, or zero if no attributes
are listed. Upon receipt of a REQUEST message, the receiver should respond only
with attributes that match the attributes included in the REQUEST message.

All the header fields in a REQUEST message other than <NumAttrib> are described
in Chapter 3.5.2, “Message Header Fields,” on page 28.

Table 4-1. REQUEST Message Format

Octet 0 Octet 1 Octet 2 Octet 3

Word 0 <CMD=0x01> <VER> <SourceID> <SourceID>

Word 1 <DestID> <DestID> <COS> Reserved

Word 2 <ProtoID> <ProtoID> <NumAttrib> <NumAttrib>

Word 3 Reserved Reserved Reserved Reserved
RapidIO Trade Association 45

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
4.2.2 ADVERTISE
An ADVERTISE message is sent in response to a REQUEST message, to identify
supported protocols or attributes of a specified protocol, depending on the contents
of the REQUEST message. The two variants are distinguished by the value of the
<A> bit in the message header.

Table 4-2. ADVERTISE Message Format - Protocol Attributes

3 2 1 0

<CMD=0x02> <VER> <SourceID> <SourceID>

<DestID> <DestID> <S+A+Count> <Count=M>

<ProtoID_1> <ProtoID_1> <numAttributes_1=N1> <numAttributes_1=N1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N1> <Attribute_N1> <Attribute_N1> <Attribute_N1>

<Attribute_N1> <Attribute_N1> <Attribute_N1> <Attribute_N1>

<ProtoID_2> <ProtoID_2> <numAttributes_2=N2> <numAttributes_2=N2>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N2> <Attribute_N2> <Attribute_N2> <Attribute_N2>

<Attribute_N2> <Attribute_N2> <Attribute_N2> <Attribute_N2>

.....

<ProtoID_M> <ProtoID_M> <numAttributes_2=NM> <numAttributes_2=NM>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_NM> <Attribute_NM> <Attribute_NM> <Attribute_NM>

<Attribute_NM> <Attribute_NM> <Attribute_NM> <Attribute_NM>
46 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
<S>: (1 bit) indicates whether or not the requested protocol is supported. If the value
of <S> is 1, then the protocol is supported. If the value of <S> is 0, then the protocol
is not supported, and the <A> bit must be set to zero (0).

<A>: (1 bit) indicates whether or not the ADVERTISE message includes attributes
or whether it is a simple list of protocols. Note that if <S> is set, then the <A> bit is
invalid and must contain the value zero (0). <A>=1 indicates that the format follows
Table 4-2. <A>=0 indicates that the format follows Table 4-3.

If <A>=0, then the message contains a list of <ProtoID> values, as shown in Table
4-3. Note that the final Reserved fields shown in the table indicate padding to a
multiple of 8 octets, and that there may be zero to seven such Reserved octets, and
not exactly the six (6) octets shown in the Table 4-3. The Reserved octets must
contain zero (0) values.

The valid values of S+A are 0b00, 0b10, and 0b11. The value of 0b01 is reserved.

If <S>=0, then <Count> is invalid and must be set to zero (0). If <S>=1, then
<Count> is valid. <Count> is a 14 bit value the number of <ProtoID>’s included in
the ADVERTISE message. Note that this field does not indicate octet length, but
rather the number of protocols.

If <A>=0, then the message contains a list of <ProtoID> values, padded out to a
multiple of 8 octets.

If <A>=1, then the message contains a list of Attributes associated with the
<ProtoID>, padded out to the nearest multiple of 8 octets. The number of Attributes
in the message is contained in the <numAttributes> field. Note that a value of 0,
meaning that no Attributes are supported for this <ProtoID>, is valid.

4.2.3 OPEN
An OPEN message is used to request that the remote system create a stream or
virtual stream suitable for the remote system to receive data on. The OPEN message
specifies the protocol which is to be carried on the stream or virtual stream, as well
as any protocol attributes that need to be used.

Table 4-3. ADVERTISE Message Format - Protocol List

3 2 1 0

<CMD=0x02> <VER> <SourceID> <SourceID>

<DestID> <DestID> <1+0+Count> <Count>

<ProtoID_1> <ProtoID_1> <ProtoID_2> <ProtoID_2>

.....

<ProtoID_Count> <ProtoID_Count> Reserved Reserved

Reserved Reserved Reserved Reserved
RapidIO Trade Association 47

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Note that the packet format specifies the SourceID, but no DestID. When the OPEN
message is received, the receiver uses it’s own nodeID as the recipient of traffic, and
the SourceID specified in the message is the information that the recipient needs to
have in order to pass control traffic.

The OPEN request must have the OPEN_MESSAGE_NUMBER attribute as the first
attribute in its attribute list.

4.2.4 ACCEPT
An ACCEPT message is used to inform a requestor that a stream or virtual stream is
now open and that the requestor can send data traffic using the StreamID specified
in the ACCEPT message.

“ack type” values:
• 0: normal ACK
• 1-255: reserved

Table 4-4. OPEN Message Format

3 2 1 0

<CMD=0x03> <VER> <SourceID> <SourceID>

<ProtoID> <ProtoID> <numAttributes=N> <numAttributes=N>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

Table 4-5. ACCEPT Message Format

3 2 1 0

<CMD=0x04> <VER> <DestID> <DestID>

<ack-type> <COS> <StreamID> <StreamID>

<ProtoID> <ProtoID> <numAttributes=N> <numAttributes=N>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>
48 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
For ACCEPT and REFUSE messages, the DestID is the nodeID of the receiver,
which is the system sending the ACCEPT or REFUSE message.

The only attribute required in the ACCEPT message is the
OPEN_MESSAGE_NUMBER attribute from the OPEN. Other attributes from the
REQUEST message may optionally be copied to the ACCEPT message.

4.2.5 REFUSE
A REFUSE message is sent in response to an OPEN request, if the requestee cannot
create a stream or virtual stream with the protocol and attributes specified in the
OPEN request.

“nack type” values:
• 0: normal NACK
• 1-255: reserved

For ACCEPT and REFUSE messages, the <DestID> is the nodeID of the receiver,
which is the system sending the ACCEPT or REFUSE message.

The only attribute required in the REFUSE message is the
OPEN_MESSAGE_NUMBER attribute from the OPEN. Other attributes from the
REQUEST message may optionally be copied to the REFUSE message.

4.2.6 FLOW_CONTROL
A FLOW_CONTROL message is used to regulate traffic and manage traffic
congestion. There are three types of flow control behavior which can be specified.
First, use the XON command to enable data traffic. Second, use the XOFF command
to suspend data traffic. In the case that data traffic is suspended, RTS can be used to
inform the stream owner (data receiver) that data is available to be sent.

Table 4-6. REFUSE Message Format

3 2 1 0

<CMD=0x05> <VER> <DestID> <DestID>

<nack-type> 0xFF 0xFF 0xFF

<ProtoID> <ProtoID> <numAttributes=N> <numAttributes=N>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_1> <Attribute_1> <Attribute_1> <Attribute_1>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

<Attribute_2> <Attribute_2> <Attribute_2> <Attribute_2>

.....

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>

<Attribute_N> <Attribute_N> <Attribute_N> <Attribute_N>
RapidIO Trade Association 49

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1

The default state when a stream is opened is for traffic to be enabled. No explicit
FLOW_CONTROL command XON needs to be sent in the default case.

Once an RTS message is sent, additional RTS messages must not be sent to indicate
that additional data is available. A single RTS message is sufficient. Because no
explicit response to RTS is required, the sender of a FLOW_CONTROL command
RTS may retry the message at 250 msec intervals, until 1 second has elapsed.

Flow_Control values:
• XON: 0x01
• XOFF: 0x00
• RTS: 0xff

No node is required to initiate FLOW-CONTROL. However, all RapidIO nodes
must accept and handle FLOW-CONTROL commands coming from the remote.
Note that it is possible to receive a FLOW-CONTROL command with XON flow
when no previous FLOW-CONTROL command with XOFF flow has been
received, since the FLOW-CONTROL XOFF command could have been lost.

4.2.7 CLOSE
A CLOSE message is used to terminate a stream or virtual stream. Either endpoint
may initiate the CLOSE behavior. In the event that the stream or virtual stream is
part of a conduit, both streams or virtual streams must be closed at the same time.
The means of determining that a stream is part of a conduit is implementation
specific.

NOTE: both SourceID and DestID must be specified in order to allow both
endpoints to initiate a shutdown. Regardless of which endpoint initiates the CLOSE,
the SourceID indicates the node sending data.

Table 4-7. FLOW_CONTROL Message Format

3 2 1 0

<CMD=0x07> <VER> <COS> <Flow_Control>

<SourceID> <SourceID> <StreamID> <StreamID>

<ProtoID> <ProtoID> Reserved Reserved

Reserved Reserved Reserved Reserved

Table 4-8. CLOSE Message Format

3 2 1 0

<CMD=0x08> <VER> <SourceID> <SourceID>

<DestID> <DestID> <COS> Reserved

<StreamID> <StreamID> Reserved Reserved

Reserved Reserved Reserved Reserved
50 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
When receiving a CLOSE message, the receiver of the CLOSE must reply with a
STATUS message indicating that the StreamID has been closed.

4.2.8 STATUS
A STATUS message is used to request the status of a stream or virtual stream, to
report the status of a stream or virtual stream, and to indicate certain error conditions
such as illegal commands. The status bits indicate the status of the stream and/or the
reason for sending the STATUS message.

A STATUS message consists of two parts. The initial header fields, as shown in
Table 4-9, and context specific data. The contents of the context specific data
depends on the reason for sending the STATUS message. In all cases, the
<DataSize> field is used to indicate he number of 8-octet words contained in the
<ContextSpecificData> fields. That is, the number of octets in the
<ContextSpecificData> field is eight times the value of <DataSize>.

If the STATUS message is sent in response to an invalid, unknown, or malformed
command, then the original command is sent in the <ContextSpecificData> fields

Table 4-9. STATUS Message Format

3 2 1 0

<CMD=0x10> <VER> <COS> <DataSize>

<SourceID> <SourceID> <StreamID> <StreamID>

<Mailbox> <Reserved> <CmdID> <CmdVersion>

<Status> <Status> <Status> <Status>

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

.....

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

<ContextSpecificData> <ContextSpecificData> <ContextSpecificData> <ContextSpecificData>

Table 4-10. Status Bit Values

Status Bit Meaning

0x00000001 Stream Unknown

0x00000002 Stream Functional

0x00000004 Ready to Receive

0x00000008 Data Ready to Send

0x0ffffff0 Reserved

0x10000000 Error

0x20000000 Closed

0x40000000 Command Unknown

0x80000000 Request Status of Remote
RapidIO Trade Association 51

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
and the Command_Unknown flag bit is set. If the STATUS message is sent in
response to a STATUS message with the Request_Status_of_Remote bit set, then the
<ContextSpecificData> fields should be set to a copy of the ProtoID and attributes
used to create the StreamID or virtual StreamID. If the STATUS message is sent in
order to request the status of a StreamID, the <ContextSpecificData> fields are not
used, and <DataSize> must be set to zero.

In the case that the Stream_Unknown bit is set in the status field, the only two valid
flag bits are Stream_Unknown and Closed. Other flags are implicitly Reserved, and
must be set to zero by the sender.

When configured in validation mode, the receiver must test the value of the
Reserved bits of the Status field, including the bits explicitly marked as Reserved
and the bits which are implicitly Reserved if the Stream_Unknown bit is set.

The receiver must not respond to an illegally formed STATUS command with
another STATUS command. If not well-formed, the STATUS command must be
ignored. Such as system should indicate the reception of an illegal STATUS message
with a message printed to the console or other implementation specific error
reporting mechanism, but the method and format to indicate this error is beyond the
scope of this specification.

When a STATUS message is received with the ’Request_Status_of_Remote’ bit set,
a STATUS message must be sent back to the originator for the streamID requested.
The STATUS message which is sent back must not have the
’Request_Status_of_Remote’ bit set.

The STATUS message will only include <ContextSpecificData> fields when a
STATUS message is sent as a response for an unrecognized/unsupported/malformed
message or in response to a STATUS message.

4.2.9 User Defined
A number of message IDs are reserved for application specific commands.

If a system receives a USERDEFINED command which is not understood, it must
respond with a STATUS message, with the Command Unknown bit set to indicate
that it does not understand the command.

Table 4-11. USERDEFINED Message Format

3 2 1 0

<CMD=0xF0 to 0xFF> <VER> <COS> Reserved

<SourceID> <SourceID> <StreamID> <StreamID>

<user-defined data> <user-defined data> <user-defined data> <user-defined data>

<user-defined data> <user-defined data> <user-defined data> <user-defined data>
52 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
4.3 Data Formats

4.3.1 DATA Message Format, MAILBOX
DATA message format is used to send virtual Type 9 data (streams, see RapidIO
Interconnect Specification Part 10: Data Streaming Logical Specification) when the
only conveyance provided by the hardware is Type 11 (messages). The <Mailbox>
field is set to the mailbox ID used by the receiver of the data. <COS> is defined in
Table 3.5.2.4, “Class of Service: <COS>,” on page 29.

In the case that data is received for a StreamID unknown to the receiver, then the
receiver must respond with a STATUS message with the Closed bit set to indicate
that the stream is no longer open. It may also send STATUS messages to all other
StreamIDs for the same remote system, whether the StreamID is for transmitted
traffic or for received traffic.

The S and E bits are used to segment transfers larger than the maximum PDU length
over multiple messages. The S bit indicates that this is the first segment in a transfer.
The E bit indicates that this is the last segment in a transfer. If neither the S or the E
bit is set, then this is one of the middle segments in a multi-segment transfer. If a
transfer fits within a single segment, then both the S and E bits are set. PDUs in a
multi-segment transfer must be sent in order: Start segment, middle segments, End
segment.

The length field contains the size of the data payload included in this message
excluding the encapsulation header. The StreamID/PDU-Length field contains
either the StreamID of the message or the length of the data payload excluding the
encapsulation header. If either the S or E bit is set, then the StreamID/PDU-Length
field contains the StreamID. If neither S nor E is set, then the StreamID/PDU-Length
field contains PDU-Length, which includes the total size of all RapidIO messages
making up this packet, exclusive of encapsulation headers.

Table 4-12. DATA Message Format

3 2 1 0

<CMD=0x06> <VER> <Mailbox> <COS>

<Reserved> <Reserved> <SourceID> <SourceID>

<S+E+00
+Length(4bits)>

<Length> <StreamID/PDU-Length> <StreamID/PDU-Length>

Payload Data octet Payload Data octet Payload Data octet Payload Data octet

.....

Payload Data octet Payload Data octet Payload Data octet Payload Data octet
RapidIO Trade Association 53

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
4.3.2 DATA1 Message Format, Large PDU
DATA1 message format is used in situations where large amounts of data need to be
transferred as a block. All fields have the same meaning as in the DATA header.

All fields in this header format are used in the same manner as the DATA command.
However, the capacity of this format allows transfers of up to 4 gigabytes of data.

Underlying hardware may place limits on the size of messages, such as only
allowing data to be transferred in multiples of eight octets. In this case, padding must
be used where necessary to fill the size constraints. If padding is used, the data must
contain zeros, and the pad octets are not included in the <S+E+00+Length>,
<Length>, <StreamID/PDU-Length>, and <Reserved/PDU-Length> fields.

4.3.3 DATA2 Message Format
The DATA2 command is available for use when the full information contained in the
DATA and DATA1 headers is not required. Note that use of this format restricts the
packet size to the size limited by hardware, so that the maximum PDU size is 16380
octets, but may be smaller due to hardware constraints.

The Implementation-Specific field is available for use by implementers. Note that
the DATA2 message format is only used when the DATA Header attribute is used
during stream creation. The value to be used in this field is the seventh octet of the
DATA Header attribute, preceding the DATA command value.

4.3.4 DATA3 Zero-length DATA header
When using some conveyances, it may be possible to fully segregate traffic based
on streamID or other information. In this case, no header is required. For the

Table 4-13. DATA Message Format

3 2 1 0

<CMD=0x09> <VER> <Mailbox> <COS>

<Reserved> <Reserved> <SourceID> <SourceID>

<S+E+Length(6bits)> <Length> <Length> <Length>

<StreamID/PDU-Length
>

<StreamID/PDU-Length
>

<Reserved/PDU-Length> <Reserved/PDU-Length>

Payload Data octet Payload Data octet Payload Data octet Payload Data octet

.....

Payload Data octet Payload Data octet Payload Data octet Payload Data octet

Table 4-14. DATA Message Format

3 2 1 0

<CMD=0x0A> <Implementation-Specific> <S+E+Length (6 bits)> <Length>
54 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
purposes of determining the DATA header format, this can be considered as
CMD=0x0B, though the actual command value of 0x0B must never be transmitted.

This header format is used for hardware assisted data streaming, as defined in
RapidIO Interconnect Specification Part 10: Data Streaming Logical Specification.

4.3.5 Data Streaming
When the data is carried by the Data Streaming Protocol is uses a logical layer
packet format defined in RapidIO Interconnect Specification Part 10: Data
Streaming Logical Specification. In this case, no additional header needs to be used.

It is strongly recommended that the RapidIO specific information necessary for
software to compose and respond to Data messages is made accessible to software
through implementation specific means by hardware that supports type 9 packets.
RapidIO Trade Association 55

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
56 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 5 Registers

5.1 Introduction
Before sending session management protocol messages, it is necessary to know if
the target node supports session management protocol, and the messaging method
used by the target node. The target node advertises this information using registers.

A Session Management Protocol register extension block may be used to advertise
a target nodes session management protocol parameters. This method is the
recommended approach.

Devices which are capable of accepting session management protocol messages
may advertise this fact in the Component Tag CSR. The Component Tag CSR may
be used to advertise session management protocol parameters only if a Session
Management Protocol register extension block is not present in a device. Only
devices whose Destination Operations CAR and Source Operations CAR indicate
support for Data Message and/or Data Streaming transactions may advertise support
for the Session Management Protocol using the Component Tag CSR.

The use of the Component Tag CSR is deprecated for new devices.
RapidIO Trade Association 57

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
5.2 Session Management Protocol Extended Features
Register Block

Where Reserved fields are used in the following structures, the value must be set to
zero. Implementations configured in validation mode should check these fields
when first reading the Session Management Protocol Extended Features Register
Block, and indicate the presence of an illegal Session Management Protocol
Extended Features Register with a message to the console or other implementation
specific error reporting mechanism, but the method and format to indicate this error
is beyond the scope of this specification.

Note that there should be an instance of the Session Management Protocol Extended
Features Register Block for every conveyance supported by the endpoint.

5.2.1 Session Management Protocol Register Block Header
(Block Offset 0x0)

The Session Management Protocol Register Block Header contains the EF_PTR to
the next extended features block and the EF_ID that identifies this as the Session
Management Protocol Register Block Header.

Table 5-1. Bit Settings for Session Management Protocol Register Block Header

Bit Name Reset
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one
exists

16-31 EF_ID 0x000C Hard wired Extended Features ID
58 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
5.2.2 Session Management Protocol Register Write Enable CSR
(Block Offset 0x4)

The Session Management Protocol Advertisement register is used allow an external
RapidIO entity write access to the Session Management Protocol registers, which
otherwise are read only.

The operation of this register is identical to the Host Base Device ID CSR specified
in Part 2 Common Transport Specification:

• When the Lock_Val is 0xFFFF, all other registers in this block are read only.
• Writing to this register when Lock_Val is 0xFFFF sets the Lock_Val field to the

value written.
• When the Lock_Val field is not 0xFFFF, all registers in this block are writable.

Implementation specific checking may be done on the write transactions to
this block.

• When the Lock_Val field is not 0xFFFF, writing the value of the Lock_Val field
to this register resets the Lock_Val field to 0xFFFF.

• When the Lock_Val field is not 0xFFFF, writing a value different from the
Lock_Val field to this register does not affect the value of the Lock_Val field.

• Writing 0xFFFF to the Lock_Val field when the Lock_Val field is 0xFFFF has
no effect.

Table 5-2. Bit Settings for Session Management Protocol Register Write Enable Register

Bit Name Reset
Value Description

0-15 Reserved 0x0000 Not Used

16-31 Lock_Val 0xFFFF See description above
RapidIO Trade Association 59

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
5.2.3 Session Management Advertisement CSR
(Block Offset 0x8)

The Session Management Protocol Advertisement register is used to indicate
whether or not the node supports the session management protocol and, if so, how
to send session management protocol messages to the node.

All of the fields of this register are read-only using RapidIO maintenance
transactions, but may be written by the local processing element.

Table 5-3. Bit Settings for Session Management Protocol Advertisement Register

Bit Name Reset
Value Description

0-3 Conveyance Impl.
Spec.

Identifies which conveyance this Session Management
Protocol register block applies to:
0x0 - Messaging (Type 11)
0x1 - Data Streaming (Type 9)
0x2-0xE - Reserved
0xF - Not Supported

Write Protected by Session Management Protocol Register
Write Enable register.

4-31 Conveyance_Info Impl.
Dep.

Conveyance Info
This field communicates conveyance specific information
for reception of Session Management Protocol messages.

If Conveyance = type 11, the field format is
0x00000nn
where nn represents the mailbox ID, formatted according
to the definition in Part 2.

If Conveyance = type 9, the field format is 0x0ccssss
where:
cc - Class of Service (COS) value to be used
ssss - StreamID to be used

Write Protected by Session Management Protocol Register
Write Enable register.
60 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
5.2.4 Session Management Attribute Range CSR
(Block Offset 0xC)

The Session Management Protocol Advertisement register is used to indicate
whether or not the node supports the session management protocol and, if so, how
to send session management protocol messages to the node.

All of the fields of this register are read-only using RapidIO maintenance
transactions.

Table 5-4. Bit Settings for Session Management Attribute Range Register

Bit Name Reset
Value Description

0-7 — 0x00 reserved

8-15 Sess_Mgmt_Max_Attr Impl.
Dep.

This field contains the maximum number of attributes. Each
attribute takes up 8 octets.

0 - No Session Management Protocol Attribute Registers
1 - 2 Session Management Protocol Attribute Registers
2 - 4 Session Management Protocol Attribute Registers
3 - 6 Session Management Protocol Attribute Registers
...
n - 2n Session Management Protocol Attribute Registers
...
0xFE - 508 Session Management Protocol Attribute Registers
0xFF - Reserved

This field is Read Only from the RapidIO interface, but may
be writable by the local Processing Element.

16-19 — 0x0 reserved
RapidIO Trade Association 61

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
20-23 Sess_Mgmt_Init_Stage Impl.
Dep.

This field indicates progress through the register initialization
sequence, with a standard value indicating that initialization is
complete.

0x0 - Initialization of registers complete
0x1-0xF - Initialization of registers incomplete, initialization
stage X in progress.

Write Protected by Session Management Protocol Register
Write Enable register.

24-31 Sess_Mgmt_Num_Attr Impl.
Dep.

This field contains the number of valid attributes following
this register. Each attribute takes up 8 octets.

0 - No Session Management Protocol Attribute Registers
1 - 2 Session Management Protocol Attribute Registers
2 - 4 Session Management Protocol Attribute Registers
3 - 6 Session Management Protocol Attribute Registers
...
n - 2n Session Management Protocol Attribute Registers
...
0xFE - 508 Session Management Protocol Attribute Registers
0xFF-0xFFFE - Reserved
0xFFFF - Session Management Protocol Attribute Registers
not initialized

Write Protected by Session Management Protocol Register
Write Enable register.

Table 5-4. Bit Settings for Session Management Attribute Range Register

Bit Name Reset
Value Description
62 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
5.2.5 Session Management Protocol Attributes 0-508 CSRs
(Block Offset 0x10-0x7F8)

The number of valid Session Management Protocol Attribute registers is indicated
by the Sess_Mgmt_Num_Attr field of the Session Management Protocol
Advertisement register.

The number of Session Management Protocol Attributes registers is implementation
specific. Up to 508 Session Management Protocol Attributes registers can exist.

It is recommended that at least 8 Session Management Protocol Attributes registers
be implemented.

Table 5-5. Bit Settings for Session Management Protocol Attributes 0-508 Registers

Bit Name Reset
Value Description

0-63 Attribute Data Impl
Dep

Attribute specification data, formatted as per the attributes
defined in Section 3.5.3 and in the protocol-specific
chapters.
RapidIO Trade Association 63

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
5.3 Component Tag CSR Session Management Protocol
Advertisement

If a Session Management Protocol Register Block Header does not exist within the
registers for a device, the device may advertise support for the Session Management
Protocol using the Component Tag CSR, as described in Table 5-6.

Only devices whose Destination Operations CAR and Source Operations CAR
indicate support for Data Message and/or Data Streaming transactions may advertise
support for the Session Management Protocol using the Component Tag CSR.

If Bit 0 of the Component Tag CSR contains a value of 0, then the node does not
conform to this specification. In this case, this specification puts no requirements on
the remaining bits of the Component Tag CSR.

If Bit 0 contains a value of 1, then the node must not use the first 16 bits of this
register for any purpose other than advertising support for Session Management
Protocol messages.

Table 5-6. Component Tag CSR Bit Usage

Bit Field Name Description

0 Sess_Mgmt_Sup Session Management Protocol Support
This bit indicates whether or not a processing element
supports the Session Management Protocol.

0b0 - This processing element does not support the Session
Management Protocol
0b1 - This processing element does support the Session
Management Protocol
64 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
The Sess_Mgmt_Chan bits indicate the conveyance to use for Session Management
Protocol traffic. The value of 0b11, Expansion, is used to indicate that a reserved,
expanded Sess_Mgmt_Chan field, larger than two bits, is to be used. In this case,
Sess_Mgmt_Chan_Info will consist of fewer bits.

1-2 Sess_Mgmt_Chan Session Management Protocol Channel
This bit indicates what logical layer to use, and how to
interpret the Channel Information below:

0b00 = Use Message Passing (type 11)
0b01 = Use Data Streaming (type 9)
0b10 = Reserved
0b11 = Expansion

This field is only valid if Sess_Mgmt_Sup is 0b1.

2-15 Sess_Mgmt_Chan_Info Session Management Protocol Channel Info
This field communicates channel specific information for
reception of Session Management Protocol messages.

If Session Management Channel = type 11:
bits 2-15 = 0b00000nnnnnnnn
where the low 8 bits are the mailbox ID (formatted
according to the definition in Part 2)

If Session Management Channel = type 9:
bits 2-5 = 0bx0000nnnnnnnn where:
x = 1 = StreamID MSB = 0xFF
x = 0 = StreamID MSB = 0x00
n = StreamID LSB
The StreamID is the Stream to use to embed the
management messages. The COS field in the VSID should
be the highest priority COS supported by the interface.
ex: 0b100001111000 = StreamID = 0xFFF0

This field is only valid if Sess_Mgmt_Sup is 1.

Table 5-6. Component Tag CSR Bit Usage

Bit Field Name Description
RapidIO Trade Association 65

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
66 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 6 Vendor-Defined Protocols

6.1 ProtoID
The ProtoID value for vendor-defined protocols is 0x0101.

6.2 Attributes
Two protocol attributes are required for vendor-defined protocols. These two
attributes distinguish a vendor-defined protocol from all other vendor-defined
protocols. The attributes are the VENDOR attribute, and the PROTOCOL-NAME
attribute.

6.2.1 VENDOR attribute
The VENDOR attribute, described in “Section 3.5.3.1, VENDOR Attribute” on
page 31, is required. It must be the first attribute listed.

6.2.2 PROTOCOL_NAME attribute
The PROTOCOL-NAME attribute is an 8-bit attribute ID (0x01) with a 56-bit value.
The PROTOCOL-NAME attribute is required for all vendor-defined protocols, and
must immediately follow the VENDOR attribute. The format of the attribute value
is defined by the vendor. The sole restriction is that the value defined by the vendor
must uniquely identify the protocol in that it differentiates the protocol from all other
protocols defined by the vendor. It may consist of an ASCII string or a numeric
value, at the discretion of the vendor defining the protocol.

6.2.3 Other attributes
Other attributes may be defined by the vendor.

6.3 Other Requirements for Vendor-Defined Protocols
Vendors wishing to make their protocols available may choose to create an RFC
describing attributes and other issues related to their protocol.
RapidIO Trade Association 67

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
68 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Chapter 7 Ethernet Encapsulation

7.1 ProtoID
The protocol ID value for Ethernet encapsulation is 0x0102.

7.2 Attributes
Several protocol attributes are required: MTU, CONVEYANCE, and
MAC_ADDRESS. No ordering restrictions are placed on these attributes by the
specification, though implementations may impose ordering restrictions. Additional
optional protocol attributes exist, depending on the system configuration.

7.2.1 MTU Attribute
The MTU is assigned with the 16-bit attributed ID 0x8002, leaving six octets of data
for the MTU value. Only the lowest two octets should be used, allowing a maximum
MTU of 64 KBytes.

7.2.2 CONVEYANCE Attribute
The CONVEYANCE attribute, as described in “Section 3.5.3.10, CONVEYANCE
Attribute” on page 34, is required for Ethernet encapsulation.

7.2.3 MAC_ADDRESS Attribute
The MAC address is specified with the 16-bit attribute ID 0x8003, leaving six octets
of data for the MAC address.

This protocol is intended for use where RapidIO nodes and Ethernet nodes may
co-exist on the same virtual Ethernet segment. Therefore, MAC addresses are
required to conform to industry standards. This includes the requirement that the
first three octets of the MAC address should be a valid OUI (Organizationally
Unique Identifier) assigned by IEEE.

7.3 Other Requirements of Ethernet Encapsulation
There are a number of additional requirements for Ethernet encapsulation. These
requirements are discussed in the following sections.
RapidIO Trade Association 69

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
7.3.1 Dropped Messages
In Ethernet, it is appropriate for a packet to be dropped if there are difficulties
sending it, since higher level protocols handle retransmission. Although this differs
from the normal goal of RapidIO, that is, to have reliable transmission, there are
some conditions in which it is appropriate to drop Ethernet encapsulation messages.

If a node has received an XOFF from the remote system using Ethernet
encapsulation at the time a new message is to be sent, the node must retain at least
one pending message for transmission, however it may choose to drop additional
messages. The pending message(s) should be the most recent message(s), and older
messages should be dropped.

7.3.2 Broadcast

7.3.2.1 Broadcast With Multicast Extensions
If multicast capabilities are available in the RapidIO switches, they should be used
for broadcast messages. The value of the destination ID for ethernet encapsulation
should be 0xFE for 8-bit IDs or 0xFFFE for 16-bit IDs.

7.3.2.2 Broadcast Without Multicast Extensions
If multicast capabilities are not available, broadcast messages must be sent by
unicast transmission. The reserved StreamID value 0xF000 may be used for
transmission of broadcast traffic. Note that no OPEN message is required for this
StreamID, so no dedicated resources are required to be permanently allocated in
order to receive broadcast traffic. Receivers of broadcast traffic know that it is a
broadcast message, by reading the StreamID of incoming messages.

7.3.2.3 Vendor defined Broadcast Server
Vendors may wish to define a vendor-specific protocol for use by a broadcast server,
thereby eliminating the requirement for multiple unicast message transmission by
other nodes. Such broadcast servers must not re-transmit incoming broadcast
messages received on the broadcast StreamID 0xF000.

7.3.3 Ingress/Egress Nodes
Ingress/Egress nodes may be configured as switches or as routers. If configured as
routers, ingress and egress traffic are handled at a higher level protocol, and not the
subject of this protocol.

If ingress/egress nodes are configured as switches, the node must forward ingress
and egress traffic. This is handled as a layer 2 switch, the behavior of which is well
understood and not defined in this protocol.

When Ethernet-over-RapidIO traffic is transmitted outside the RapidIO fabric, the
70 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
egress system must be able to be configured to forward broadcast packets to the
external network and forward external broadcast packets into the RapidIO fabric.
This can be done by forwarding RapidIO messages received on StreamID 0xF000
to ethernet interfaces. Incoming broadcast packets coming from Ethernet interfaces
must be sent using the RapidIO broadcast mechanism.
RapidIO Trade Association 71

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Blank page
72 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
in this book.

Bridge. A processing element that connects one computer bus to another,
allowing a processing element on one bus to access an processing
element on the other.

Capability registers (CARs). A set of read-only registers that allows a
processing element to determine another processing element’s
capabilities.

Class of service (cos). A term used to describe different treatment (quality of
service) for different data streams. Support for class of service is
provided by a class of service field in the data streaming protocol.
The class of service field is used in the virtual stream ID and in
identifying a virtual queue.

Command and status registers (CSRs). A set of registers that allows a
processing element to control and determine the status of another
processing element’s internal hardware.

Conduit. A bidirectional data transfer mechanism consisting of two streams
or virtual streams, one for communication in each direction.

Conveyance. A communication channel, e.g. mailbox, stream, shared
memory mechanism, etc.

Destination. The termination point of a packet on the RapidIO interconnect,
also referred to as a target.

Device. A generic participant on the RapidIO interconnect that sends or
receives RapidIO transactions, also called a processing element.

Double-word. An eight octet or 64 bit quantity, aligned on eight octet
boundaries.

Egress. Egress is the device or node where traffic exits the system. The egress
node also becomes the destination for traffic out of the RapidIO

B

C

D

E

RapidIO Trade Association 73

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
fabric. The terms egress and destination may or may not be used
interchangeably when considering a single end to end connection.

End point. A processing element which is the source or destination of
transactions through a RapidIO fabric.

End point device. A processing element which contains end point
functionality.

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the
processing element in question.

Field or Field name. A sub-unit of a register, where bits in the register are
named and defined.

Half-word. A two octet or 16 bit quantity, aligned on two octet boundaries.

Host. A processing element responsible for exploring and initializing all or a
portion of a RapidIO based system.

Ingress. Ingress is the device or node where traffic enters the system. The
ingress node also becomes the source for traffic into the RapidIO
fabric. The terms ingress and source may or may not be used
interchangeably when considering a single end to end connection.

Initiator. The origin of a packet on the RapidIO interconnect, also referred
to as a source.

I/O. Input-output.

Operation. A set of transactions between end point devices in a RapidIO
system (requests and associated responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO
system.

PDU. Protocol Data Unit, the OSI term for a packet.

Priority. The relative importance of a transaction or packet; in most systems
a higher priority transaction or packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect
that sends or receives RapidIO transactions, also called a device.

F

H

I

O

PP
74 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Processor. The logic circuitry that responds to and processes the basic
instructions that drive a computer.

Protocol Attributes. Information relevant to communication using a
particular protocol, or to data transferred within the context of a
connection using that protocol.

Receiver. The RapidIO interface input port on a processing element.

SAR. Segmentation and Reassembly, a mechanism for encapsulating a PDU
within multiple packets.

Segmentation. A process by which a PDU is transferred as a series of smaller
segments.

Session Management Protocol. The protocol specified in this document,
used for negotiation of communication sessions and optionally for
data transfers.

Sequence. Sequentially ordered, uni-directional group of messages that
constitute the basic unit of data delivered from one end point to
another.

StreamID. A specific field in the data streaming protocol that is combined
with the data stream’s transaction request flow ID and the sourceID
or destinationID from the underlying packet transport fabric to form
the virtual stream ID.

Suspect. A communication partner, which may not fully conform to the
session management protocol.

Source. The origin of a packet on the RapidIO interconnect, also referred to
as an initiator.

Switch. A multiple port processing element that directs a packet received on
one of its input ports to one of its output ports.

Target. The termination point of a packet on the RapidIO interconnect, also
referred to as a destination.

Transaction. A specific request or response packet transmitted between end
point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two
processing elements that have a required completion order at the
destination processing element. There are no ordering requirements
between transaction request flows.

R

S

T

RapidIO Trade Association 75

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1
Virtual Stream ID (VSID). An identifier comprised of several fields, used
to identify individual data streams. When using Type 9 (streaming)
as the conveyance for data transfers, the VSID is encapsulated in the
Type 9 protocol. When using Type 11 (messaging) as the
conveyance for data transfers, the VSID is encapsulated in fields in
the DATA or DATA1 Session Management Protocol commands.

Word. A four octet or 32 bit quantity, aligned on four octet boundaries.

V

W

76 RapidIO Trade Association

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1

RapidIO Trade Association 77

Blank page

RapidIO Annex 2: Session Management Protocol Specification Rev. 2.1

78 RapidIO Trade Association

Blank page

	Chapter 1 Overview
	1.1 Introduction
	1.2 Overview
	1.3 Features of the Session Management Protocol
	1.4 Contents
	1.5 Terminology
	1.6 Conventions
	1.7 Useful References

	Chapter 2 Managing Data Streams
	2.1 Introduction
	2.2 System Example
	2.3 Establishing Data Streams
	2.4 Data Streaming System Configurations

	Chapter 3 Session Management Operation
	3.1 Introduction
	3.2 Initialization of Session Management Advertisement CSRs
	3.3 Contacting a Participating End point
	3.4 Establishing Conduits
	3.4.1 Master/Slave Configuration Conduit Establishment
	3.4.2 Peers Configuration Conduit Establishment
	3.4.3 Conduit Establishment Algorithm

	3.5 Management Messages
	3.5.1 Session Management Message Types
	3.5.1.1 REQUEST
	3.5.1.2 ADVERTISE
	3.5.1.3 OPEN
	3.5.1.4 ACCEPT
	3.5.1.5 REFUSE
	3.5.1.6 FLOW-CONTROL
	3.5.1.7 DATA
	3.5.1.8 CLOSE
	3.5.1.9 STATUS

	3.5.2 Message Header Fields
	3.5.2.1 Command Header Field: <CMD><VER>
	3.5.2.2 SourceID and DestID
	3.5.2.3 Protocol Identifier: <ProtoID>
	3.5.2.4 Class of Service: <COS>
	3.5.2.5 Stream Identifier: <StreamID>

	3.5.3 Session Management Protocol Attributes
	3.5.3.1 VENDOR Attribute
	3.5.3.2 DATA_OFFSET_VENDOR Attribute
	3.5.3.3 DATA_OFFSET Attribute
	3.5.3.4 REQUEST_RETRY_PERIOD Attribute
	3.5.3.5 REQUEST_TIMEOUT_PERIOD Attribute
	3.5.3.6 FLOW_CONTROL_XON_TIMEOUT_PERIOD Attribute
	3.5.3.7 OPEN_MESSAGE_NUMBER Attribute
	3.5.3.8 CONDUIT_STREAM Attribute
	3.5.3.9 DATA_HEADER_FORMAT Attribute
	3.5.3.10 CONVEYANCE Attribute
	3.5.3.11 Other Attributes

	3.6 Message Sequence Examples
	3.6.1 Stream Initiation
	3.6.2 Refusal to Initiate a Stream
	3.6.3 Stream Shutdown
	3.6.4 Uses of the STATUS command
	3.6.5 Use of the FLOW_CONTROL Command

	3.7 Session Management Error Conditions and Recovery
	3.7.1 Message Loss
	3.7.2 Session Management Protocol Congestion Management
	3.7.3 Session Management Protocol Non-Compliance

	3.8 Rules for Session Management
	3.8.1 Optional Features
	3.8.2 Attribute Related Rules
	3.8.3 Rules Related to Virtual Stream Status
	3.8.4 Rules Related to Vendor-Specific Commands
	3.8.5 Rules Related to Reserved Fields

	3.9 Notes on Optional Features and Inter-Operability
	3.9.1 Optional Attributes
	3.9.2 REQUEST and ADVERTISE

	Chapter 4 Message Format Descriptions
	4.1 Introduction
	4.2 Control Message Formats
	4.2.1 REQUEST
	4.2.2 ADVERTISE
	4.2.3 OPEN
	4.2.4 ACCEPT
	4.2.5 REFUSE
	4.2.6 FLOW_CONTROL
	4.2.7 CLOSE
	4.2.8 STATUS
	4.2.9 User Defined

	4.3 Data Formats
	4.3.1 DATA Message Format, MAILBOX
	4.3.2 DATA1 Message Format, Large PDU
	4.3.3 DATA2 Message Format
	4.3.4 DATA3 Zero-length DATA header
	4.3.5 Data Streaming

	Chapter 5 Registers
	5.1 Introduction
	5.2 Session Management Protocol Extended Features Register Block
	5.2.1 Session Management Protocol Register Block Header (Block Offset 0x0)
	5.2.2 Session Management Protocol Register Write Enable CSR (Block Offset 0x4)
	5.2.3 Session Management Advertisement CSR (Block Offset 0x8)
	5.2.4 Session Management Attribute Range CSR (Block Offset 0xC)
	5.2.5 Session Management Protocol Attributes 0-508 CSRs (Block Offset 0x10-0x7F8)

	5.3 Component Tag CSR Session Management Protocol Advertisement

	Chapter 6 Vendor-Defined Protocols
	6.1 ProtoID
	6.2 Attributes
	6.2.1 VENDOR attribute
	6.2.2 PROTOCOL_NAME attribute
	6.2.3 Other attributes

	6.3 Other Requirements for Vendor-Defined Protocols

	Chapter 7 Ethernet Encapsulation
	7.1 ProtoID
	7.2 Attributes
	7.2.1 MTU Attribute
	7.2.2 CONVEYANCE Attribute
	7.2.3 MAC_ADDRESS Attribute

	7.3 Other Requirements of Ethernet Encapsulation
	7.3.1 Dropped Messages
	7.3.2 Broadcast
	7.3.2.1 Broadcast With Multicast Extensions
	7.3.2.2 Broadcast Without Multicast Extensions
	7.3.2.3 Vendor defined Broadcast Server

	7.3.3 Ingress/Egress Nodes

